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Key Points: 22 

• Radiance simulations can help characterize two essential inputs of climate services, 23 
satellite data records and reanalyses 24 

• Uncertainties in observations collected by the Spektrometer Interferometer-1 flown on a 25 
Soviet satellite in 1979 were estimated 26 

• Radiance simulations of satellite instruments can provide information on the quality and 27 
realism of climate reanalyses 28 

 29 
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Abstract 30 

Climate services are largely supported by climate reanalyses and by satellite Fundamental 31 
(Climate) Data Records (F(C)DRs). This paper demonstrates how the development and the 32 
uptake of F(C)DR benefit from radiance simulations, using reanalyses and radiative transfer 33 
models. We identify three classes of applications, with examples for each application class. The 34 
first application is to validate assumptions during F(C)DR development. Hereto we show the 35 
value of applying advanced quality controls to geostationary European (Meteosat) images. We 36 
also show the value of a cloud mask to study the spatio-temporal coherence of the impact of the 37 
Mount Pinatubo volcanic eruption between Advanced Very High Resolution Radiometer 38 
(AVHRR) and the High-resolution Infrared Radiation Sounder (HIRS) data. The second 39 
application is to assess the coherence between reanalyses and observations. Hereto we show the 40 
capability of reanalyses to reconstruct spectra observed by the Spektrometer Interferometer (SI-41 
1) flown on a Soviet satellite in 1979. We also present a first attempt to estimate the random 42 
uncertainties from this instrument. Finally, we investigate how advanced bias correction can help 43 
to improve the coherence between reanalysis and Nimbus-3 Medium-Resolution Infrared 44 
Radiometer (MRIR) in 1969. The third application is to inform F(C)DR users about particular 45 
quality aspects. We show how simulations can help to make a better-informed use of the 46 
corresponding F(C)DR, taking as examples the Nimbus-7 Scanning Multichannel Microwave 47 
Radiometer (SMMR), the Meteosat Second Generation imager, and the DMSP Special Sensor 48 
Microwave Water Vapor Profiler (SSM/T-2). 49 

1 Introduction 50 

Recognizing increased inter-relations between human activities, impacts, and evolving 51 
climate phenomena, the World Climate Conference-3 (WCC-3, 2009a) fostered a substantial 52 
expansion and enhancement of climate services worldwide. Although several World 53 
Meteorological Organization (WMO) members already operated climate services before 2009, 54 
this conference was a milestone in the establishment of the Global Framework for Climate 55 
Services (GFCS). In coordination with several other organizations, including the United Nations 56 
Educational, Scientific and Cultural Organization (UNESCO), the United Nations Environment 57 
Programme (UNEP), the Food and Agriculture Organization of the United Nations (FAO), and 58 
the International Council for Science (ICSU), the GFCS was established to complement and 59 
support the work of the Intergovernmental Panel on Climate Change (IPCC) and the United 60 
Nations Framework Convention on Climate Change (UNFCCC) (WCC-3, 2009b). 61 

More than ten years later, climate services have evolved beyond the scope of classical 62 
climatology. Moving on from the classical form of climate means, compiled and served to the 63 
public by national weather agencies, climate activities today embrace a bundle of relationships 64 
and exchanges between the climate data and actors and societal applications (e.g., Brasseur & 65 
Gallardo, 2016). Furthermore, environmental observations are no longer the exclusive remit of 66 
selected public agencies: observations are now collected, assembled, curated, and served by a 67 
variety of actors including, e.g., space agencies, universities, research programs and 68 
organizations involved in environmental monitoring, but also associative or private initiatives, 69 
and structural elements such as cloud-computing platforms (e.g., Thorpe & Rogers, 2018). These 70 
actors operate alongside traditional national weather agencies that remain, in most cases, 71 
ultimately responsible for key properties of climate data record monitoring (Mahon et al., 2019). 72 
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Climate monitoring is only one component of climate services (World Meteorological 73 
Organization (WMO), 2018). Other components, of which some of them are related to 74 
monitoring, include climate reanalyses, climate indicators and indices, longer-term forecast 75 
elements that include predictions and projections, and attribution of climate phenomena. This last 76 
component is crucial to understand the causes of, and later better project or predict, selected 77 
climate phenomena and their impacts, and develop relevant mitigation or adaptation measures. 78 
Enabled by methods such as developed by Hasselmann (1997), attribution is a preliminary step 79 
before further climate adaptation or mitigation measures may be taken. Attribution is also called 80 
to play a role in the UNFCCC Warsaw International Mechanism (WIM) to deal with loss and 81 
damage due to climate change (Parker et al., 2015). Beyond this, without an underlying 82 
understanding of the causes of important climate phenomena (such as ‘extremes’) and their inter-83 
relations with human activities, the risks run high of counter-productive societal measures that 84 
can worsen the issues at stake (e.g., Schipper, 2020). 85 

Even if climate services are not limited to climate monitoring and the corresponding 86 
preparation and provision of observation-based Climate Data Records (CDRs), these data records 87 
remain the necessary physical basis for all other components of the climate services. As such, 88 
observation-based products underpin the outcomes of IPCC’s First Working Group that 89 
examines the physical science of climate change (Masson-Delmotte et al., 2021). Similarly, 90 
observations are often depicted at the onset of the weather and climate value chain (e.g., Ruti et 91 
al., 2020). 92 

The present paper focuses on a method to accelerate the development and uptake of 93 
satellite-based CDRs. These are optimally based on satellite sensor data in the form of 94 
Fundamental Climate Data Records (FCDRs), or else on Fundamental Data Records (FDRs), 95 
also referred to as Sensor Data Records (SDRs) (Privette et al., 2023). Hereafter we evaluate the 96 
quality of F(C)DRs by comparing them with simulated observations. While the use of 97 
simulations to survey the quality of satellite-based observations and products over the long-term 98 
is not a novelty (e.g., Jackson & Soden, 2007; Newman et al., 2020), their use to support the 99 
CDR development is rather recent. 100 

The outline of this paper is as follows. Section 2 presents the data and methodology. 101 
Sections 3 to 5 showcase three different classes of applications, namely, Class-I: validating 102 
assumptions (section 3), Class-II: assessing coherence between observations and reanalyses 103 
(section 4), and Class-III: informing users (section 5). Section 6 discusses the results. Finally, 104 
section 7 presents conclusions and prospects for future work. 105 

2 Data and methodology 106 

Satellite observations considered in this paper come from several instruments. The 107 
radiative transfer simulations use reanalysis fields as input, and provide in return brightness 108 
temperatures (or reflectances), for microwave channels and visible, near-infrared, shortwave 109 
infrared, and thermal infrared channels. The differences between the observations and 110 
simulations are hereafter called departures. The methods and data used in the paper are presented 111 
below. 112 

2.1 Radiative transfer simulations 113 

Since the early days of satellite meteorology, the accurate and faithful numerical 114 
simulation of satellite measurements has been a topic of research and active development (e.g., 115 
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Gordon, 1962). From early on, the simulation methods for radiative transfer have involved a mix 116 
of exact solutions and numerical methods (e.g., Hunt & Grant, 1969; Rodgers & Walshaw, 117 
1963). A representation of the so-called direct (or forward) model is an essential tool to exploit 118 
the measurements and map the signals into useful information (e.g., Rodgers, 1990). Also, by 119 
allowing physical quantities to be estimated from the measurements, such as inversion or 120 
retrieval process (e.g., Stephens, 1994), any improvement to the forward models further helps to 121 
enhance the understanding of the observed natural phenomena (e.g., Houborg & McCabe, 2016). 122 

Simulations of satellite observations have proven to bring about additional benefits, in 123 
line with the continuous development in Earth sciences. This is an iterative process where the 124 
lessons learnt from the confrontation of simulation results with actual observations enhance our 125 
understanding of important effects affecting the quality the observations, thereby allowing to 126 
repeat the data processing or simulations with improved algorithms, or to improve future 127 
instrument design. This was shown, in particular, for the physical interactions between the 128 
observed phenomena and the measurement process (e.g., Bell et al., 2010; John & Buehler, 2004; 129 
Joiner & Poli, 2005). These iterative improvements enable researchers to continue extracting 130 
ever-increasing value from these observations for societal applications, such as Numerical 131 
Weather Prediction (NWP) (e.g., Shahabadi et al., 2018). Furthermore, such enhanced 132 
understanding also helps to refine the design of new-generation instruments or data records. This 133 
allows, for example, better understanding instrument ageing processes (e.g., Munro et al., 2016; 134 
Quast et al., 2019), detecting the impact of imperfections that were previously thought negligible 135 
(e.g., Lu & Bell, 2014), or releasing new versions of the data records that correct for observation 136 
sampling effects (e.g., Mears & Wentz, 2017). Another benefit is to enhance our understanding 137 
of discrepancies between models and observations, especially for data assimilation, whose remit 138 
is to exploit these differences to extract information, even when a bias correction procedure is 139 
necessary (e.g., Joiner & Rokke, 2000). On longer timescales, quantifying discrepancies between 140 
models and observations can also help pinpoint effects that are important to consider in models, 141 
such as anthropogenic effects (e.g., De Vrese & Hagemann, 2018). 142 

Alongside all these applications sits also research towards using novel technology 143 
instruments (e.g., Doutriaux-Boucher et al., 1998) or to revisit early satellite data records (e.g., 144 
Poli et al., 2017). However, climate research presents several distinct challenges when it comes 145 
to observation data simulators. First, the time-series covered by climate model and by related 146 
satellite-based CDR products are necessarily long. This makes running a full data assimilation 147 
system (with underpinning Earth-system models and covering many observation types) an overly 148 
computationally-expensive and inadequate venture. This is also partly unnecessary in the face of 149 
the efforts already deployed by large modelling centres to create model-gridded global decadal 150 
datasets, such as reanalyses, which gradually widen their remits to exploit (and hence simulate) 151 
an increasing diversity of satellite-based data records. Secondly, the variety of observation data 152 
that are available exceeds the variety of data encountered in a single data assimilation window 153 
that covers a few hours of a given date. Furthermore, a thorough and relevant assessment of 154 
reprocessed satellite data mandates to use state-of-the-art simulators that can be applied to the 155 
latest versions of the data records quickly. This timing is not compatible with the planning of 156 
reanalyses productions, which take years to prepare and execute. Finally, such assessments 157 
require efficient and traceable simulation tools, while maintaining a strong link to community-158 
driven efforts that continually improve such simulation tools, based on the latest science (e.g., 159 
Swales et al., 2018). 160 
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Owing to these specificities, data simulators can be beneficial in at least three different 161 
points of the climate value chain. The first possibility is to use them during the F(C)DR 162 
development phase, to validate the assumptions made. A second possibility is to use them after 163 
the production of a F(C)DR, but before data release, to assess the realism and coherence between 164 
a new F(C)DR and state-of-the-art Earth system reanalyses. A third possibility is post-165 
production, even possibly after a F(C)DR release, to inform the data users about likely sources of 166 
variability present in the data (e.g., natural variability versus instrumental or sampling artefacts). 167 
These represent many feed-back opportunities. Note this paper does not discuss the issue of 168 
using simulators as integral part of the F(C)DR production chain. 169 

All these potential benefits have contributed to the development of a standalone 170 
RADiance SIMulator (RADSIM) (Hocking, 2022), able to simulate all the satellite sensors 171 
supported by the Radiative Transfer for Television Infrared Orbiting Satellite (TIROS) 172 
Operational Vertical Sounder (TOVS) (RTTOV, Saunders et al., 2018). It must be recalled that 173 
both elements, RADSIM and RTTOV, benefit from a long-term support of the EUMETSAT 174 
climate services and development plan, with activities distributed between the EUMETSAT 175 
central facility and its Satellite Applications Facility (SAF) network, including the NWP-SAF, 176 
for these simulators. The results shown in this manuscript build on an implementation of 177 
RADSIM and RTTOV in the EUMETSAT infrastructure, with massively parallel computations 178 
carried out on a multi-node cluster computing system. 179 

In the present study, we use RADSIM interfaced with RTTOV version 13.0, except for 180 
simulating data from the Medium-Resolution Infrared Radiometer (MRIR) where we used 181 
RTTOV version 12.2. Additional details about the radiance simulation configuration are given in 182 
Supplement Text S1. 183 

2.2 Reanalysis data 184 

Reanalyses are used for their ability to provide temporally and spatially complete fields 185 
of key atmospheric properties. Several global comprehensive reanalyses of the atmosphere have 186 
been produced in the recent past. The following are considered in the present work, cited in the 187 
order they were released: ERA-Interim (Dee et al., 2011; ECMWF, 2009), JRA-55 (Shinya 188 
Kobayashi et al., 2015; Japan Meteorological Agency, 2013), ERA-20C (Poli et al., 2016; 189 
ECMWF, 2014), ERA5 (Hersbach et al., 2020; Copernicus Climate Change Service, 2018), and 190 
JRA-3Q (S. Kobayashi et al., 2021; Japan Meteorological Agency, 2022). Among these, only 191 
ERA5 provides hourly analyses. For all others, the radiative transfer simulator uses 6-hourly 192 
analyses. The reanalyses are used at 0.5o x 0.5o (latitude, longitude) horizontal resolution, except 193 
for MRIR simulations that used ERA5 data at 1ox1o resolution. The geophysical parameters 194 
include temperature, humidity, and ozone (for all available model levels), as well as near-surface 195 
wind speed, temperature, and humidity, and surface air pressure, surface geopotential, skin 196 
temperature, land-sea mask, and sea-ice cover. The reanalysis cloud and precipitation 197 
information is not used in the simulations. 198 

2.3 Satellite data 199 

This work uses data records from 8 different satellite instruments: 200 
• Meteosat Visible Infra-Red Imager (MVIRI), flown on Meteosat First Generation (MFG) 201 

satellites, Meteosat-2 to -7 (EUMETSAT, 2020), 202 
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• Spinning Enhanced Visible and InfraRed Imager (SEVIRI), flown on Meteosat Second 203 
Generation (MSG) satellites, Meteosat-8 to -11 (EUMETSAT, 2015) 204 

• Medium-Resolution Infrared Radiometer (MRIR), flown on several TIROS and Nimbus 205 
satellites, noting that this study only uses data collected by Nimbus-3 (McCulloch, 2014), 206 

• Spektrometer Interferometer (SI-1), flown on Soviet weather satellites Meteor-28 and -207 
29, noting that this study only uses data collected by Meteor-29 (Poli et al., 2023), 208 

• High-resolution Infrared Radiation Sounder (HIRS), flown on NOAA Polar Operational 209 
Environmental Satellites (POES) TIROS/N, NOAA-6 to -19 and EUMETSAT polar-210 
orbiting satellites, Metop-A and -B (EUMETSAT, 2022), 211 

• Advanced Very High Resolution Radiometer (AVHRR) flown on the same satellites as 212 
HIRS as well as Metop-C (EUMETSAT, 2023), 213 

• Scanning Multichannel Microwave Radiometer (SMMR), flown on satellites Seasat and 214 
Nimbus-7, noting that this study only uses data collected by Nimbus-7 (Fennig et al., 215 
2017), 216 

• Special Sensor Microwave Water Vapor Profiler (SSM/T-2), flown on U.S. DMSP 217 
satellites F-11, -12, -14, and -15 (EUMETSAT, 2021). 218 

The first 2 instruments are visible and infrared imagers on geostationary satellites, the 219 
next 4 are visible and/or infrared imagers or infrared sounders on polar-orbiting satellites, and 220 
the last 2 are microwave radiometers on polar-orbiting satellites. Several instruments are 221 
historical sensors, given their early data record. 222 

While it would take too long to expand all details of these instruments, as well as their 223 
detailed configurations, Table 1 provides a summary of some of their key characteristics. Other 224 
references, such as the WMO Observing Systems Capability Analysis and Review tool 225 
(OSCAR) Space database (https://space.oscar.wmo.int), provide further information for these 226 
instruments. Additional instrument information is given later, as relevant, when presenting the 227 
simulation applications. 228 

Table 1 indicates if the data records have been used in one way or another in global 229 
reanalysis, indicating here the situation only for the data sources assimilated in ERA5 (Hersbach 230 
et al., 2020), because it is the only reanalysis used for all comparisons. There are several cases of 231 
indirect data use in ERA5, as indicated in Table 1. There are only three cases of direct 232 
assimilation of the radiance data considered in the present study into ERA5 (Hersbach et al., 233 
2020): (1) MVIRI after 2001, (2) SEVIRI, and (3) HIRS. 234 

 235 
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Sensor Years of 
operation 

IFOV 
sizeb 

Scanning pattern Nb. of channels 
(wavelengths or 
frequencies) 

DOIc 

MVIRI 
a * 

1977-2017 4.5 km Earth disc,  
every 30 minutes 

2 (6.4, 11.5 μm) d 10.15770/EUM_SEC_
CLM_0009 

SEVIRI 
a * + 

2002-2023 3 km Earth disc,  
every 15 minutes 

8 (3.9—13.4 μm) d 10.15770/EUM_SEC_
CLM_0008 

MRIR 
a § 

1969-1970 55 km 85 pixels along 
3000 km swath 

4 (6.5—23 μm) d 10.5067/XTJ53AK84
QRL 

SI-1  
a 

1977, 1979 25 km Nadir only, every 
100 km along-track 

579 (6—25 μm) 10.15770/EUM_SEC_
CLM_0086 e 

HIRS  
a + 

1978-2023 20 km f  56 pixels along 
2200 km swath 

19 (3.7—15 μm) d 10.15770/EUM_SEC_
CLM_0026 

AVHRR 
a * 

1978-2023 1.1 km g 2048 pixels g along 
2900 km swath 

AVHRR/1: 4 
(0.6—11 μm), 
AVHRR/2: 5 
(0.6—12 m), 
AVHRR/3: 6 
(idem) 

10.15770/EUM_SEC_
CLM_0060 

SMMR 
a * 

1978-1987 20—120 
km 

94 pixels along 780 
km swath 

10 (6.6—37 GHz) 10.5676/EUM_SAF_C
M/FCDR_MWI/V003 

SSM/T-2 
a 

1994-2005 48 km 28 pixels along 
1500 km swath 

5 (91—183 GHz) 10.15770/EUM_SEC_
CLM_0050 

Table 1. Overview of selected characteristics for instruments considered in the present study. 236 
Several instruments still operate at the time of writing.  +Radiance data from this instrument 237 
were assimilated in ERA5. *Radiance data from this instrument were indirectly used in ERA5, as 238 
follows, via assimilation of atmospheric motion vector (MVIRI, SEVIRI, AVHRR), or as input 239 
to the sea-surface temperature forcing (AVHRR) or the sea-ice forcing (SMMR). §The 240 
information given here pertains only to Nimbus-3. aMore information about this instrument is 241 
accessible from WMO OSCAR at https://space.oscar.wmo.int. bInstantaneous Field-Of-View 242 
(IFOV), at the sub-satellite point. cDigital Object Identifier (DOI) for the data used in the present 243 
work, accessible at https://doi.org/<DOI>. dVisible channels from this instrument are not 244 
simulated in the present work. eThis is the DOI reserved for future publication of the entire data 245 
record, noting that the subset of data used in the present work are available from 246 
DOI:10.5281/zenodo.7912742. fExcept for HIRS/4 (10 km), noting also HIRS on Nimbus-6 is 247 
not covered here. gNote that AVHRR Global Area Coverage (GAC) data used in the present 248 
work present a lower resolution. 249 

Taking note of this inter-relation between reanalysis and the radiance data records, the 250 
following remediation steps are taken. (1) For MVIRI we only show results before the date when 251 
MVIRI radiances started being assimilated in ERA5. (2) For SEVIRI we do not simply consider 252 
departures (differences between observed radiances and simulations), but consider how they vary 253 
by changing the simulation setup. (3) For HIRS we do not consider the departures alone but 254 
along with AVHRR, and we also exploit the departures at a time-scale for which we believe 255 
there is independence between the satellite data record and the reanalysis. 256 
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2.4 Quality controls 257 

2.4.1 Observations 258 

Observations with missing geolocation, brightness temperatures, or reflectances (in the 259 
case of AVHRR visible and near-infrared channels) are excluded from further analysis. In 260 
addition, specific quality controls are applied to the data records of each instrument, using the 261 
information available. For completeness, the details are reported in Supplement Text S1. 262 

2.4.2 Simulations 263 

The performance of radiative transfer simulations can be degraded in several situations. 264 
These are indicated in this sub-section, along with measures to mitigate these degradations. 265 

Performance degradation of the simulations may occur in situations of Non-Local 266 
Thermal Equilibrium (NLTE) if this effect is not specifically accounted for. Such degradations, 267 
which arise during daytime in modelling short-wave infrared channels, are excluded from the 268 
analysis; for the corresponding HIRS, AVHRR, and SEVIRI channels (with wavelengths in the 269 
region 3—4 μm), we follow a conservative approach, retaining only cases when the sun is below 270 
the horizon by at least 10 degrees. Similarly, the performance of RTTOV may be degraded for 271 
situations of specular reflections. Consequently, in the AVHRR visible and near-infrared 272 
channels simulations, cases in which the sun is low on the horizon are discarded from the 273 
analysis (we retain only cases when the sun is above the horizon by more than 10 degrees). 274 

The performance of radiative transfer simulations is also degraded when the presence of 275 
clouds (infrared and visible) or precipitating clouds (microwave) is not accounted for. As all 276 
simulations are carried out assuming clear sky conditions, we need to apply a filtering to exclude 277 
cloudy situations (infrared and visible) or precipitating clouds (microwave). For simplicity, we 278 
use the generic term ‘cloud mask’ in all cases, even if there are distinct differences in the 279 
implementations. These implementations are described now. 280 

In the absence of a single cloud mask for all instruments at all dates and times, the cloud 281 
filtering approach depends on the instrument. The presence of clouds and/or precipitation is 282 
filtered in three cases in this study.  283 

In the first case, a cloud mask is available for the instrument’s data record. This applies to 284 
AVHRR (Karlsson et al., 2023), MVIRI (Stöckli et al., 2019), SEVIRI (EUMETSAT, 2015), and 285 
SSM/T-2 (EUMETSAT, 2021). In the case of SSM/T-2, the cloud mask uses information 286 
retrieved from SSM/I observations by the EUMETSAT Climate Monitoring SAF (CM-SAF) 287 
(Andersson et al., 2017), albeit only available over oceans.  288 

In the second case, the availability of a window channel (i.e., a channel affected only 289 
weakly by atmospheric absorption) enables use of the departure window method check, similar 290 
to the approach typically employed by data assimilation (Krzeminski et al., 2009). In this 291 
method, a departure outside a predefined range is indicative of the presence of cloud. This 292 
method works better over ocean than over land, affected by greater uncertainties in sea-surface 293 
temperature and emissivity, and is applied over ocean region for filtering out clouds from SI-1 294 
observations. The range of allowed window channel departures is set to [-2 K, 3 K], as the SI-1 295 
instrument operated before the well-observed satellite era, and when the quality of reanalyses is 296 
known to be poorer (e.g., Bell et al., 2021). The SI-1 channels considered for this check are 297 
between 882 cm-1 and 916 cm-1. 298 
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In the third case, when neither of the two approaches above is applicable, but the effects 299 
of clouds or rain need to be filtered out, we devise proxy criteria to identify pixels affected by 300 
these situations. These criteria are presented afterwards, for MRIR and SMMR. 301 

Additional details on the application of the cloud masks are presented in the relevant 302 
sections hereafter as relevant. 303 

2.5 Departure analysis 304 

The general philosophy for analyzing the results is to follow the split-apply-combine 305 
method (Wickham, 2011), preceded by the quality control steps mentioned previously. Hereafter, 306 
we consider two statistics of the departures (observations minus simulations): the mean (noted μ) 307 
and the standard deviation (noted σ). Both quantities are in K for brightness temperatures, or in 308 
% for reflectances (for visible or near-infrared channels). 309 

3 Class-I applications: Validating an assumption 310 

When developing a dataset or an application, it is common to be faced with the issue of 311 
validating an assumption used in the methodology. The assumption could, for example, relate to 312 
the data themselves, or how to use them. However, a common difficulty is the impracticality of 313 
proving the assumption. One can then revert to demonstrating that the assumption is not violated, 314 
based on the evidence available. If the results obtained violate the assumptions, then the 315 
assumption is proven wrong. If they do not, then the assumption cannot be rejected, and is hence 316 
considered to remain valid. 317 

3.1 Advanced image quality control, example with Meteosat geostationary imagers 318 

The Meteosat First Generation (MFG) satellites started the first series of continuous 319 
imaging over Africa and Europe (e.g., De Jong, 1978). The resulting images brought about new 320 
understanding of the weather patterns, but also uncovered a number of challenges for image 321 
processing that were unforeseen when the instruments were designed. The analysis of the 322 
resulting data record is impacted by so-called “image anomalies” (IA), which, for example, lead 323 
to under- or over-estimation of the radiance at the scene. This term is to be understood distinctly 324 
from its climate counterpart, where an anomaly is defined as the difference of a quantity with 325 
respect to some climatology. In the case of instrument operations, IA refers to an unexpected 326 
behavior that would cause improper interpretation of the image. As there is no reason to expect 327 
that such effects should cancel out, it is important to identify data affected by instrument issues, 328 
to avoid introducing spurious signals into long-term series. Several IA issues were not foreseen 329 
when the MVIRI instrument was initially designed. Methodologies to detect geostationary IA 330 
were developed over the years (e.g., Liefhebber et al., 2020) and cover a wide range of 331 
situations, from simple cases of complete image data corruption to more complex situations of 332 
regional over-illumination. 333 

If these image anomalies are correctly detected, masking out such problematic areas or 334 
images should lead to an improved agreement between images and other sources of information, 335 
such as radiative transfer from simulations. We verify this here in Figure 1 for a randomly picked 336 
date (1996-10-16) among dates when images anomalies were detected, from the MFG data 337 
record of Meteosat-5. Figure 1(a) shows a map of all the departures before any cloud or image 338 
anomaly filtering. Figure 1(b) shows the results after applying a cloud mask (Stöckli et al., 339 
2019). It can be seen that cloud masking improves the agreement between observations and 340 
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simulations significantly, by reducing the standard deviation of differences over the full image 341 
from 5.4 K to 1.9 K and by bringing the mean of differences closer to zero, from -0.7 K to 0.3 K. 342 
Figure 1(c) shows the results after filtering out scenes affected by an IA. In this case, the IA 343 
filtered out is direct stray light and over-illumination as defined by Liefhebber et al. (2020). The 344 
results indicate that this reduces the data count over the entire image by around 10%, but the 345 
agreement between observations and simulations is improved, with a standard deviation of 346 
differences reduced from 1.9 K to 1.4 K, and a mean reduced to near-zero. 347 

In summary, the radiative transfer simulations help us validate the assumption that an 348 
advanced image quality control should improve exploitation of the MVIRI data record. 349 

 350 

Figure 1. Maps of differences (in K) between observations and radiative transfer simulations 351 
using ERA5 for Meteosat-5 MVIRI water vapor channel, 1996-10-16 00 UTC: (a) all data, (b) 352 
results after excluding scenes believed to be cloudy, and (c) results after excluding in addition 353 
the scenes affected by image anomaly (IA). Overall statistics are reported at the top. 354 

3.2 Cloud mask, example with HIRS and AVHRR 355 

An important objective of the assessment of the quality of satellite data records is to 356 
determine the quality of representation of climate time-scales. Such decadal products are of 357 
interest to users to study possibly small-scale variations over a long timeframe. There is a wide 358 
body of literature on data assessment (e.g., National Research Council (U.S.), 2004). However, 359 
from infra-red sounders and imagers, most retrievals schemes are restricted to clear-scenes only. 360 
For this reason, cloud mask validation is important. 361 

Such activities are already performed routinely by cloud mask data producers. We show 362 
an example of how radiative transfer simulations can further assist in this fashion. To this end, 363 
we consider the infra-red and visible data records of two polar-orbiting instruments, the AVHRR 364 
and HIRS instruments, operated both on NOAA and EUMETSAT polar-orbiting satellites, and 365 
compare with clear-sky radiative transfer simulations. 366 

The effects of clouds and aerosols are not included in the radiative transfer simulations 367 
considered here. Consequently, a large disagreement is expected around and after the time of the 368 
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volcanic eruptions that generated considerable amounts of aerosols in the atmosphere. However, 369 
the effects of volcanic eruptions alone may not necessarily stand out because of other effects, 370 
such as spatial variability and clouds (ignored in the simulations). For this reason, we focus the 371 
evaluation on small geographical regions, to avoid potential issues of large-scale 372 
inhomogeneities within the region. The regions are as defined in the IPCC 6th Assessment Report 373 
(Iturbide et al., 2020). 374 

Figure 2 shows, for the Equatorial Pacific Ocean region, the results of differences for the 375 
mode of differences (maximum of the departure distribution within a month) between 376 
observations and clear-sky radiative transfer simulations. The results are shown without any 377 
prior filtering for clouds. To obtain these timeseries, we first construct monthly histograms of 378 
departures, for each satellite and each channel, with a resolution of 0.1 K for brightness 379 
temperatures (HIRS and AVHRR infra-red channels) and of 0.1 % for reflectance (AVHRR 380 
near-infrared channel). For each histogram, we then estimate the mode of the distribution. 381 
Finally, we look on either side of the peak for values that delimit the 88% of the peak maximum. 382 
This allows us to quantify a peak width, which would approximate the standard deviation of 383 
departures if the distributions were normal. This metric is shown with bars around the mode. 384 

We present here window channels, (respectively) HIRS channel 8 (thermal infrared at 385 
11.1 μm), HIRS channel 18 (shortwave infrared at 4.0 μm), and AVHRR channel 4 (thermal 386 
infrared at 11.0 μm). For these channels, the departures generally feature negative biases, as 387 
expected, owing to the presence of clouds. Figure 2(a,b,c) shows the agreement between these 388 
observations and ERA5 improves from 1991 onwards, thanks to Sea-Surface Temperature 389 
information of high quality obtained from the well-calibrated sensors (Advanced) Along Track 390 
Scanning Radiometer ((A)ATSR) on European Remote Sensing satellites ERS-1/2 (and Envisat), 391 
as well as subsequent sensors, such as the Sea and Land Surface Temperature Radiometer 392 
(SLSTR) on Sentinel-3. For the AVHRR near-infrared channel 2, the departures in Figure 2(d) 393 
are generally within 0.5 %, except for some satellite-dependent and volcanic eruptions episodes 394 
indicated by dashed vertical lines. 395 

If the cloud mask is correct, we expect that its application would yield departures that are 396 
possibly closer to zero, depending on the reanalysis intrinsic biases, but also with a reduced 397 
standard deviation. Figure 3 shows this is indeed the case. Outside the volcanic eruption events, 398 
the standard deviations of departures (height of individual bars) are reduced from 0.6-0.8 K to 399 
0.4-0.6 K. The modes of departures for the HIRS channel 8 in Figure 3(a) feature a declining 400 
trend in the 1980s, not seen with the channels shown in Figure 3(b,c). If the root cause of the 401 
trend was only with a trend in biases in the reanalysis (ERA5) used for the simulations, then a 402 
similar behavior would show on the other channels, too, but it is not the case. This would suggest 403 
that the recalibration of HIRS channel 8 may benefit from further refinements. Note the effects 404 
of volcanic eruptions stand out in all timeseries. 405 

The relevance of a cloud mask needing not to be demonstrated further, we now 406 
investigate the departures around the time of the Mount Pinatubo eruption in more details. The 407 
use of AVHRR to monitor volcanic ash is well-established (e.g., Watkin, 2003). For all the 408 
window channels, increased negative departures are observed in Figures 2 and 3 panels (a)-(c) 409 
around the time of the El Chichon and Pinatubo eruptions, as expected, with aerosols scattering 410 
radiation and emitting radiation from above the surface (hence at a colder temperature). For 411 
Pinatubo, the cooling anomaly in terms of brightness temperatures is on the order of 1 K, for 412 
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short-wave and thermal channels alike, although the signatures differ somewhat between 413 
channels. 414 

For the AVHRR near-infrared channel 2 (0.8 μm), reflectance departures are positive for 415 
2 to 3 years after the event, between 2 and 5%, in Figure 2(d). This is also as expected, due to 416 
scattering caused by the aerosols (and not simulated here). Unfortunately, the combination of 417 
rejection of high solar zenith angles with the selection of only clear scenes leads to discard most 418 
of the data for AVHRR channel 2, resulting in the prevalent absence of results for clear-scene 419 
reflectances in Figure 3(d). We now turn to the spatial variability of this global event, by 420 
considering other IPCC regions. 421 

Zooming in over a shorter time period (December 1990 – January 1994), Figure 4 shows 422 
that the plume of aerosols took several months to propagate away from its origin in South-East 423 
Asia. Considering the minimum observed in brightness temperature departures by the infrared 424 
window channels (rows (a) to (c)), the effect of the eruption was most pronounced over the 425 
Tropical Indian Ocean 3 months after the eruption (column (i)), and then over the Tropical 426 
Pacific 4 to 5 months after the eruption (column (ii)), and again later in the southern latitudes (6 427 
to 8 months, columns (iii),(iv)), with a further delay in the Mediterranean (up to a year, column 428 
(v)). Considering the maximum observed in reflectance departures by the near-infrared channel, 429 
the effect of the eruption was most pronounced over the Tropical Indian Ocean, and was felt in 430 
southern latitudes 2 to 3 months later, or in the Mediterranean 5 to 6 months later. The effects of 431 
this eruption were analyzed in detail previously (Stenchikov et al., 1998). However, the results 432 
shown here quantify the relevance of this episode with respect to the HIRS and AVHRR data 433 
records. 434 

To summarize, this example validates the hypothesis that the CLARA-A3 cloud mask 435 
can help to a) filter out cloudy scenes, and b) quantify the radiative effects of the Mount Pinatubo 436 
eruption in the HIRS and AVHRR data records, with a separation between regional and temporal 437 
variations, at the wavelengths covered by the channels selected here. 438 
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 439 

Figure 2. Monthly departures (modes as squares ± vertical bars to indicate spread estimates, see 440 
text) between HIRS, AVHRR and clear-sky radiative transfer simulations using ERA5, for the 441 
Equatorial Pacific Ocean region, between 1979 and 2020. Note two important volcanic 442 
eruptions: El Chichon (Mexico, 1982) and Mount Pinatubo (Philippines, 1991), with onsets 443 
indicated by vertical lines. Departures are shown for brightness temperatures (in K) for three 444 
infrared channels (a-c), and for reflectances (in %) for one visible channel (d). There is one color 445 
per satellite (from left to right, see top: T-N: TIROS-N, N-6 to N-19: NOAA-6 to -19, M-A and 446 
M-B: Metop-A and Metop-B). 447 
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 448 

Figure 3. Similar to the previous figure, but restricting to scenes that are clear according 449 
to the cloud mask. 450 
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 451 

 452 

Figure 4. Similar to the previous figure, but showing several IPCC regions (see top, columns (i) 453 
to (v) from left to right) and zooming in on a time period starting six months before the Mount 454 
Pinatubo eruption (timing indicated by a vertical dotted line) and ending approximately 2.5 years 455 
after it. Note row (e) shows similar information as row (d) but for all scenes (i.e., without 456 
application of the cloud mask). There is one color per satellite (see top right, N-11 and N-12 for 457 
NOAA-11 and -12). 458 
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4 Class-II applications: Assessing coherence between reanalyses and observations 459 

4.1 Synoptic timescales coherence, example with SI-1 460 

The SI-1 instrument was a Michelson interferometer developed in the former German 461 
Democratic Republic, pursuing similar scientific objectives as the Infrared Interferometer 462 
Spectrometer (IRIS) instruments on-board Nimbus satellites covering the wavenumber range 463 
from 400 cm-1 to 1600 cm-1 (Hanel et al., 1970, 1972). The first IRIS instrument was launched a 464 
few years earlier than the SI-1 instrument . More particularly, the SI-1 instrument was designed 465 
to allow identification of atmospheric constituents, clouds, as well as temperature sounding 466 
(Kempe, 1980; Kempe et al., 1980) as well as planetary exploration, as a similar instrument was 467 
deployed in the atmosphere of Venus (Oertel et al., 1985). 468 

Most of the 579-channel data record from this instrument has been rescued by 469 
EUMETSAT (Théodore et al., 2015), and the comprehensive data record is being prepared for 470 
public data release with support from the European Union Copernicus Climate Change Service 471 
(C3S) at the time of writing. Figure 5 shows the spectral range covered by the instrument, and 472 
the vertical sensitivity of the channels to atmospheric information. The SI-1 instruments operated 473 
discontinuously in time and the resulting data record is too sparse to support consistent data 474 
assimilation in a global reanalysis. However, high-resolution spectral features are potentially 475 
useful to better understand subtle changes in the climate (e.g., Brindley & Bantges, 2016).  476 
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 477 

Figure 5. SI-1 wavelengths (top horizontal axis), wavenumbers (bottom horizontal axis), and 478 
RTTOV channel numbers (from left to right, in increments of 20). Each bar shows, horizontally, 479 
the nominal spectral resolution, and, vertically (bottom and top) the 5th to 95th percentiles 480 
(respectively) of the integrated weighting function, to help visualize where most of the 481 
atmospheric information comes from, for each channel, assuming clear-sky radiative transfer. 482 
Colors indicate the simulated brightness temperatures (in K, see scale). Calculations carried out 483 
from ERA5 data for a profile in the Spring over the Atlantic at the location (30oN, 30oW). 484 

Another potential application of the SI-1 brightness temperatures is to use these to 485 
validate different reanalyses. We show an example here by considering a subset of the data 486 
record. Figure 6(a,b) shows the comparison of brightness temperature between observations and 487 
different reanalyses, for data at wavenumbers 400—1200 cm-1 collected by Meteor-29 over sea 488 
during the month of February 1979, for scenes to be believed free of clouds (123 spectra in 489 
total). The two panels separate between spectra that feature sharp departures (spikes) at 490 
wavenumbers 840—860 cm-1 and 765—810 cm-1, across all reanalyses considered here. The 491 
reanalyses are ERA5, ERA-20C, JRA-55, and a preliminary version of the JRA-3Q reanalysis (a 492 
newer reanalysis as compared to JRA-55). For a fair comparison of the results, the ERA5 493 
reanalysis profiles are considered every 6-hours, with a validity time window of ± 3 hours, like 494 
the other reanalyses (hourly ERA5 profiles at non-synoptic hours are ignored). The lower panels 495 
in Figure 6 show these departures. In a given column, the use of the same color across plots 496 
enables to appreciate that some degree of agreement exists sometimes between the reanalyses. 497 

Considering all the spectra shown in Figure 6, Figure 7(a) shows mean differences 498 
between SI-1 brightness temperatures and the reanalyses. The standard deviations of departures 499 
are shown in Figure 7(b). The dotted lines in these figures show statistics of departures between 500 
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observations and simulations in radiance space, converted from difference radiance to equivalent 501 
difference brightness temperature at a nominal temperature of 280 K. Small differences with 502 
brightness temperature statistics are mostly visible where the brightness temperatures vary 503 
notably from this nominal temperature (see Figure 5), i.e., for the top-peaking channels in the 504 
middle of the 1041 cm-1 ozone absorption line or 667 cm-1 CO2 absorption line, both sensitive to 505 
stratospheric temperatures. In this region, we find an agreement around 0.7—0.8 K in terms of 506 
equivalent difference brightness temperature (at 280 K) standard deviation. 507 

Spikes are believed to be due to improper assumptions for trace gas concentrations in 508 
1979 in our simulations. This is the case in particular near 845 cm-1, an absorption line of 509 
trichlorofluoromethane, also known as CFC-11 (e.g., Harrison, 2018). Similarly, a bulge in 510 
standard deviations is visible between 765 and 810 cm-1. Zenith absorption spectra, such as 511 
reported in the Atmospheric Infrared Spectrum Atlas (King & Dudhia, 2017), indicate strong 512 
absorption features near 775 cm-1 (COF2), 780 cm-1 and 810 cm-1 (ClONO2), 785 cm-1 (CClF3, 513 
also known as CFC-13), 795 cm-1 (CCl4), 810 cm-1 (CHClF2, also known as HCFC-22), and 514 
780—805 cm-1 (peroxyacetyl nitrate, CH3C(O)OONO2 , also known as PAN). All these 515 
chemical constituents have seen large changes in concentrations over past decades owing to 516 
industrial emissions. Differences between present-day concentrations and those actually present 517 
in 1979 may be responsible for the departures reported here. Additional radiative transfer 518 
simulations, varying the absorber amounts, would help support investigations of such an 519 
hypothesis. 520 

If the quality of JRA-3Q reanalysis improved as compared to the prior JRA-55 reanalysis, 521 
one would expect to see a better agreement with the simulations. The JRA-3Q improvements 522 
relative to JRA-55 in stratospheric ozone and stratospheric temperatures are clearly visible in 523 
Figure 7(a,b) around wavenumber 1041 cm-1 (sensitivity to stratospheric temperature and ozone) 524 
and wavenumber 667 cm-1 (sensitivity to stratospheric temperature). The standard deviations of 525 
departures in the region 600-700 cm-1 in Figure 7(b) also show that ERA-20C is an outlier, as 526 
compared to the other reanalyses, in terms of its fit to stratospheric-peaking channels located 527 
near the center of the line. 528 

Having noticed in Figure 6 that spectral departures are sometimes similar across 529 
reanalyses, we apply similar concepts as those that underlie common uncertainty diagnostics 530 
(Desroziers et al., 2005). Assuming that all random uncertainties are independent from one 531 
another, we can estimate random uncertainties (see Supplement Text S2). Figure 7(c) shows the 532 
combined random uncertainties in the observations and radiative transfer (or representativeness), 533 
with a floor level in the range 0.8—1.0 K for most channels between 600 cm-1 and 1200 cm-1. 534 
We interpret spectral sharp departures above that floor level as deficiencies in the radiative 535 
transfer assumptions (e.g., incorrect absorber concentration, which yields departures that are 536 
correlated across all reanalyses, even though departures differ between different profile locations 537 
and dates and times). 538 

Going from high to low wavenumbers, we observe an increase of the combined random 539 
uncertainties in the observations and radiative transfer (or representativeness). One may postulate 540 
that this increase is related to instrument noise. However, our random uncertainty estimation 541 
method does not separate between random instrument noise and random uncertainties in the 542 
radiative transfer model. Consequently, it could also be that the radiative transfer model is 543 
deficient in this region of the spectrum. There is indeed far less experience with observations of 544 
this far-infrared region of the spectrum than at wavenumbers in the range 650—1600 cm-1. This 545 
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situation should improve in future years with the Far-infrared Outgoing Radiation Understanding 546 
and Monitoring (FORUM) (Pachot et al., 2021). The FORUM instrument will indeed cover the 547 
spectral range between 100 and 1600 cm-1 (wavelengths between 6.2 and 100 μm) at 0.3 cm-1 of 548 
spectral sampling (5001 spectral elements). 549 

Regarding the reanalyses, the estimates of random uncertainties are marked with crosses 550 
when the sum of squared uncertainties does not match the observed departure variance within a 551 
margin of 1% (this only occurs for some wavenumbers, in the region 620—750 cm-1). Overall, 552 
we note that in most cases the findings agree with the considerations above, i.e. the expectation 553 
that the ERA-20C reanalysis contains much less pertinent information in terms of thermal 554 
vertical structure than the other reanalyses shown here, and that JRA-3Q made significant 555 
improvements regarding stratospheric representation quality as compared to JRA-55. 556 

An important caveat of our method is the assumption of independence of random 557 
uncertainties, i.e., that cross-correlations between different uncertainty sources are zero. This 558 
may not be the case for a number of reasons, explained in the Supplement Text S2. In particular, 559 
the small spread between reanalyses may not reflect the true uncertainty but rather that these 560 
reanalyses share common uncertainties. For this reason, we believe that departures from this 561 
assumption are responsible for the very low level of random uncertainties (sometimes under 0.5 562 
K) found for reanalyses. Conversely, some the uncertainties attributed to observations and 563 
radiative transfer (blue curve in Figure 7(d)) may actually come from uncertainties that are 564 
shared across the reanalyses, and hence may be over-estimated. Overall, we acknowledge that 565 
our method is not perfect but it still provides some initial insight into the uncertainties, which is a 566 
first for data collected by this early interferometer. 567 

To summarize, this example illustrates how a high spectral resolution record, even when 568 
it is only short, can assist to measure progress in reanalyses. 569 
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 570 

Figure 6. (a) Map of 19 Meteor-29 SI-1 observations in February 1979 without significant 571 
spectral spikes in regions 840—860 cm-1 and 765—810 cm-1, and (b) map of 104 other Meteor-572 
29 SI-1 observations presenting such spectral features. Bottom plots show corresponding 573 
differences in brightness temperature between observations and simulations, using (c,d) ERA5; 574 
(e,f) ERA-20C; (g,h) JRA-55; (i,j) a preliminary version of JRA-3Q.  575 
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 576 

Figure 7. Departure (a) means (μ) and (b) standard deviations (σ) of Brightness Temperature 577 
(BT) differences between 123 Meteor-29 SI-1 spectra shown in the previous figure and 578 
corresponding radiative transfer simulations using ERA5, ERA-20C, JRA-55, and a preliminary 579 
version of JRA-3Q (see legend). Dotted lines show similar statistics but based on radiance 580 
(RAD) differences, converted from difference radiance to difference brightness temperature at a 581 
nominal temperature of 280 K. Bottom plot (c) shows estimates of random uncertainties (u), 582 
separating between each reanalysis random uncertainty, and combined observation and 583 
representativeness random uncertainty (see legend, and refer to text for details). 584 

4.2 Understanding differences via bias correction linear predictors, example with MRIR 585 

Bias correction methods aim at removing low-frequency variability in differences 586 
between observations and models, believed to be caused by systematic errors, for example, in the 587 
radiative transfer model or the instrument calibration (e.g., Dee & Uppala, 2009). In data 588 
assimilation, where radiance simulations are based on atmospheric profiles provided by a 589 
background, the methodology for such bias correction is now well-established. The bias is 590 
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modelled as a linear combination of a set of predictors. Based on linear regression models, i.e., 591 
one of many methods used in machine learning (e.g., Mitchell, 1997), bias corrections are thus 592 
effective tools to understand patterns of differences between observations and simulations. 593 

For the infrared channels of the MRIR instrument, we investigate here the performance of 594 
extending the predictor set to include parameters believed to be at least in part related to 595 
instrument error. This analysis is restricted to daytime and ocean data only. Observations of the 596 
visible channel of MRIR are used to screen clouds, by excluding observations with an albedo 597 
greater than 0.1. 598 

We compare the bias correction performances of three different bias predictor sets. The 599 
first predictor set is similar to that used in ERA-Interim and ERA5. This set includes four air 600 
mass predictors, in the form of geopotential layer thicknesses (1000—300 hPa, 200—50 hPa, 601 
10—1 hPa, and 50—5 hPa). One notes that corrections related to air mass are unlikely to be 602 
instrument-related, and may more closely relate to errors in the simulations (i.e., reanalysis in the 603 
present case). This predictor set also includes an offset, as well as the satellite viewing angle and 604 
its squared and cubed values. These four additional predictors are all expected to capture 605 
instrument and simulation errors, although noting the cubed value may capture foremost 606 
simulation errors. Note, the viewing angle is a parameter which may partly absorb calibration 607 
errors (e.g., Buehler et al., 2005).   608 

The second predictor set is the so-called instrument predictor set. It excludes some of the 609 
predictors mentioned above that are believed to capture mostly simulation errors (layer 610 
thicknesses and satellite viewing angle cubed). However, it adds scene brightness temperature 611 
and instrument internal temperature. These two additional predictors are introduced to account 612 
for instrument errors due to uncertainties in gain and non-linearity effects, and instrument-613 
temperature-related errors (respectively). Note, the scene brightness temperature is also expected 614 
to absorb some of the simulation errors.  615 

Finally, the third predictor set considered combines all predictors of the first and second 616 
predictor sets.  617 

Figure 8 shows the effects of applying the three bias predictor sets. The metric that is 618 
chosen for this assessment is the standard deviation of the Nimbus-3 MRIR departures (σ). The 619 
mean departures, not shown, are reduced to near-zero in all cases, by design of the bias 620 
correction. The figure shows results without bias correction (blue), after applying the ECMWF 621 
predictor set (orange), the instrument predictor set (green), and the combined predictor set (red). 622 
As might be expected, all bias-corrected results fare better than the uncorrected case. In addition, 623 
the ECMWF and instrument predictor sets have similar impacts. The combined predictor set 624 
performs best of all. Especially for 10.5 µm and 15 µm channels there are significant 625 
improvements to the standard deviations (note the factor two improvement for the 15µm 626 
channel). This indicates that both simulation and observation errors are significant. This also 627 
suggests that further studies of instrument-related departures should provide useful insights into 628 
the state of the instrument calibration. 629 

In the case of the MRIR it is difficult to go beyond the bias correction models shown in 630 
Figure 8 as we lack the low level telemetry data (Level 0 data) that are needed to correct for 631 
instrument calibration errors at source. 632 
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In summary, this example shows that improvements may be made for MRIR to the bias 633 
correction models generally used in data assimilation, by considering likely instrument sources 634 
of uncertainties. 635 

 636 

Figure 8. Time-series of daily Nimbus-3 (1969-1970) MRIR departure standard deviations (σ, in 637 
K), for four different channels, without bias correction (blue dots), and with different bias 638 
correction schemes applied: ECMWF predictor set (orange dots), instrument predictor set (green 639 
dots) and combined predictor set (red dots). See text for details.  640 

5 Class-III applications: Informing users 641 

5.1 Unexplained observation variability, example with SMMR 642 

The microwave radiometer SMMR was a pioneering instrument for several fields in the 643 
Earth sciences. Two flight models were launched in 1978. The satellite carrying the first SMMR 644 
unit, Seasat, malfunctioned a few months after launch. The second SMMR unit, on Nimbus-7, 645 
operated for nearly 9 years, until August 1987. It offers an overlap, albeit limited, with the SSM/I 646 
(from July 1987). This particular time period is often looked at to enable inter-calibration of the 647 
two instruments’ data records (e.g., Dai et al., 2015). 648 

The SMMR instrument collected measurements at five microwave frequencies and two 649 
polarizations (vertical and horizontal). The complexities of this instrument and the resulting data 650 
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record stem from the use of six radiometers to monitor ten channels. This prevented continuous 651 
monitoring of all ten channels for all footprints. Instead, the instrument used four radiometers to 652 
monitor the lower frequencies (6.6 GHz, 10.7 GHz, 18 GHz, and 21 GHz), by alternating 653 
polarization at each half-scan, while two other radiometers continuously monitored the 37 GHz 654 
frequency, at vertical and horizontal polarizations. However, most physical retrieval schemes 655 
were devised assuming data available from all channels. For this reason, the data processing 656 
includes a re-sampling of the data to cover all footprints.  657 

NASA carried out the first and only full SMMR reprocessing within the Pathfinder 658 
project that was completed in the late 1990s (Njoku, 2003). This reprocessing included 659 
corrections for antenna pattern and polarization mixing. The reprocessing also revisited 660 
important components of the processing and applied lessons learnt from the mission. This effort 661 
also unveiled new elements to address, such as a sharp change in Nimbus-7 spacecraft attitude in 662 
1984, unaccounted for in this first reprocessing, as this issue was detected afterwards. 663 

The CM-SAF (Fennig et al., 2017) further attempted to reprocess the SMMR data. 664 
However, they could not start from the original low-level sensor data, as these data could not be 665 
located at the time. This means that several of the benefits expected from a full reprocessing 666 
could not be realized. 667 

In this section, the reprocessed SMMR data from the CM-SAF are compared against 668 
radiative transfer simulations from two reanalyses, ERA-Interim and ERA5. Figure 9 shows that 669 
all frequencies present mean departures that are similar for ERA-Interim and ERA5, on the 670 
monthly timescales shown here, for the horizontal polarization. The data counts differ from 671 
ERA-Interim and ERA5 as approximately 4 times more data are being assessed in the case of 672 
ERA5 (hourly) than in the case of ERA-Interim (six-hourly). 673 

Over oceans, SMMR data with rainy situations are excluded by checking distributions of 674 
departures (heuristic approach). Observations are considered rainy if the difference between 675 
horizontally polarized channels 37 GHz minus 18 GHz is outside the range [30 K, 50 K], if the 676 
difference between horizontally polarized channels 6.6 GHz minus 10.7 GHz is outside the range 677 
[-15 K, -5 K], if the polarization difference (vertical minus horizontal) at 37 GHz is less than 35 678 
K, or if the brightness temperature at 18 GHz (6.6 GHz), horizontal polarization, exceeds 160 K 679 
(95 K, respectively). Data over land are not further analyzed here. 680 

Figure 9(d) indicates spurious oscillations in the mean departures with respect to both 681 
reanalyses, before the 21 GHz radiometer (channel 9) failed in 1985. The magnitude of these 682 
oscillations grows over time, as well as the standard deviations of departures. Until such a 683 
behavior can be explained, these features can be interpreted as symptoms of a degradation over 684 
time of the horizontally-polarized 21 GHz channel. 685 

During a Special Operations Period (SOP) that lasted from 3 April to 6 June 1986, the 686 
SMMR instrument was operated in a different mode. Instead of functioning every other day, the 687 
instrument was switched on and off more frequently, up to several times per day. The statistics 688 
indicate that it took some time after the SOP for the instrument to recover to its pre-SOP status. 689 
The exact cause for this behavior is unknown, but is suspected to be related to the SOP. The 690 
observed degradation is reported by Njoku (2003) to have lasted “during and for some time after 691 
the Special Operations Period”. This element is apparent for all channels as shown in Figure 9. 692 
The difference in statistics before and after the SOP is indeed evident for most channels shown. 693 
This points to a change in the calibration performance of the instrument after the 1986 SOP. In 694 
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other terms, the data collected in 1987 may not be taken as representative of the instrument 695 
performance beforehand. Yet, the data from 1987 remain important as they are compared with 696 
SSM/I in order to inter-calibrate both records, as indicated above.  697 

To summarize, we find issues of channel performance degradation, large oscillating 698 
biases, and changes in calibration performance after the 1986 SOP. This information is 699 
potentially important information for users interested in climate applications. These issues are 700 
however difficult to address at the level of retrieval into geophysical quantities. This would 701 
rather need addressing with a new recalibration and reprocessing activity. 702 
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 703 

Figure 9. Time-series of monthly mean departures (μ, orange) and standard deviations (σ, blue) 704 
between SMMR brightness temperatures and simulations using 6-hourly ERA-Interim and 705 
hourly ERA5 fields (see legend), for horizontally-polarized channels at frequencies (a) 6.6 GHz, 706 
(b) 10.7 GHz, (c) 18.0 GHz, (d) 21.0 GHz, and (e) 37.0 GHz, in K (left-hand-side vertical axis). 707 
The data counts per month (green) are reported (in millions, M) on the right-hand-side vertical 708 
axis. 709 
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5.2 Explained observation variability, example with MSG 710 

The SEVIRI instruments on-board MSG satellites extend the data records started by 711 
MVIRI instruments on-board MFG satellites for the 3 heritage channels, i.e., the water vapor, 712 
infrared, and visible channels. Furthermore, SEVIRI includes 6 additional channels in the 713 
infrared region as compared to MVIRI. When the MFG and MSG satellites are positioned near 714 
0-degree longitude, the field of view of the instruments covers Africa and Europe. Thus, the 715 
observed radiances of these satellites allow patterns of variability to be inferred over areas with 716 
important societal applications (e.g., Barbosa et al., 2019; Harrison et al., 2019). 717 

Satellites in geostationary orbit are subject to small displacements around their nominal 718 
positions around the Equator. These satellites are affected by gravity pulls from the Earth and the 719 
Moon. This so called three-body system, or Lissajous track, results in figure-of-eight 720 
displacements (e.g., Hubert & Swale, 1984). In addition, geostationary satellites may see 721 
displacements during their lifetime when the nominal longitude changes. This section shows the 722 
importance for climate applications of these displacements (even if seemingly small), through an 723 
analysis of subsequent satellite data records that appear as originating from a single longitude 724 
position at the Equator. 725 

The 15-minute MSG All-Sky Radiances (ASR) products are simulated here only for the 726 
two observation times closest to the hour (i.e., two images per hour are simulated, and two 727 
images are not). The quality controls applied selects only pixels that are believed to be free of 728 
clouds (so-called Clear-Sky Radiances, CSR), and for which the radiances are computed from an 729 
average of at least 10 pixels. These radiances are indeed horizontal averages of higher-resolution 730 
measurements. 731 

The mean differences per month, as well as the standard deviations, between the MSG 732 
SEVIRI observations and the simulations based on ERA5, are shown for the whole observation 733 
area and for the two water vapor channels in Figure 10. In a first set of simulations, the nominal 734 
satellite position, at 0-degree longitude, is assumed. The resulting departures vary over time. 735 
Without any further indication to the contrary, a large part of these variations may be attributed 736 
to variations in the quality of the ERA5 reanalysis. In a second set of simulations, the radiative 737 
transfer simulations use as input the actual satellite position, as reported in the data, and thus can 738 
account for the effect of changing the viewing angle. This accounting has little impact on 739 
window channels (transparent to the atmosphere), but has some impact for channels measuring at 740 
the water vapor wavelengths. At these wavelengths the transmission is affected by the 741 
atmospheric optical depth. The comparison between Figure 10(c) and Figure 10(d) indicates that 742 
the actual satellite position gives a slightly better agreement with the data record. However, the 743 
magnitude of the changes may appear negligible at first sight. 744 

For this reason, it is important to investigate in more detail how these changes manifest 745 
themselves. To this end, we compute mean differences per month between the two sets of 746 
simulations, at a resolution of 1ox1o latitude, longitude. This enables a Principal Component 747 
Analysis (PCA) to be carried out, using the differences between the two simulations. Prior to this 748 
analysis, these differences are normalized to zero-mean and unit standard deviation for each 749 
given satellite and each given channel (e.g., Aires et al., 2002). Figure 11(a) indicates that the 750 
first eigenvectors (EOFs) explain most of the variability in the differences. The maps of these 751 
differences in Figure 11(b,c,d) for the first three EOFs show the patterns of the differences. The 752 
temporal variations are also shown in Figure 11(e), showing distinct cycles. 753 
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Because of the prior normalization of differences, the patterns evident in Figure 11 754 
appear more important than they manifested in observation departure space analysis (in K) of 755 
Figure 10. These patterns present distinct spatial and temporal aspects that may easily be 756 
misinterpreted in terms of climate evolution terms, should they appear from an analysis of the 757 
observed geostationary radiance data after removal of other effects. 758 

In summary, this example stresses the importance of correctly accounting for the satellite 759 
viewing angles when considering geostationary radiance data from water vapor channels, for 760 
climate applications. If this is not done, then erroneous signals will propagate into downstream 761 
applications, and get aliased into the findings, possibly affecting conclusions that may be drawn 762 
about regional patterns of changes. 763 

 764 

Figure 10. Time-series of (a,b) mean (μ) and (c,d) standard deviation (σ) of departures for 765 
SEVIRI water vapor channels, using two different methods for the simulations: (a,c) assuming 766 
nominal satellite position at 0 degrees longitude; (b,d) assuming the actual satellite position, as 767 
reported in the data. 768 
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 769 

Figure 11. Results of PCA analysis of normalized differences between radiative transfer 770 
simulations (assuming actual satellite position minus assuming nominal satellite position), for 771 
two water vapor channels indicated in columns (1) and (2), as follows: row (a) shows the 772 
percentage of explained variance by PCA EOF, rows (b) to (d) show the spatial projections of 773 
the first 3 EOFs, and row (e) shows these EOFs’ time-varying amplitudes. Note that because of 774 
normalization the patterns of amplitudes are to be interpreted qualitatively in spatial terms or 775 
temporally (e.g., frequency and phase). To further avoid mis-interpretation into actual departures 776 
(in K) the normalized amplitudes of EOFs are shown without numerical axes. 777 
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5.3 Relevance of uncertainty and observation horizontal local variability in a data record, 778 
example with SSM/T-2 779 

The SSM/T-2 microwave sounder data record was reprocessed by Hans et al. (2017), 780 
including estimates of uncertainty for the antenna temperatures. A later release of these 781 
reprocessed data included a cloud and rain mask (EUMETSAT, 2021), as these phenomena are 782 
known to hamper the ability to use the 183 GHz data for water vapor retrieval. The analysis 783 
presented in this section focuses on these channels. 784 

The Quality Evaluation Report associated with the SSM/T-2 data record (EUMETSAT, 785 
2021) shows that data present a few episodes of larger noise, most notably for the F-14 satellite 786 
after 2001. This total uncertainty information is shown in Figure 12. Using this information, 787 
episodes of increased noise may be removed by excluding all observations where the average 788 
total uncertainty exceeds twice the pre-launch noise equivalent delta temperature (NEDT) 789 
specifications of the given channel. The time periods that are removed by this procedure are 790 
shown in the same figure. 791 

Hereafter we show that the uncertainty information helps to pinpoint other effects in the 792 
data. To this end, we consider the observation horizontal local variability (Δ), computed as the 793 
standard deviation of the observations over a 3x3 horizontal array of neighboring pixels. We 794 
further restrict our analysis to latitudes between 40oS and 40oN. This is to ensure the data large-795 
scale variability is driven by water vapor content and not by surface-induced emissivity, which 796 
may be more poorly simulated in some situations, e.g. over sea-ice. We then bin all the results 797 
according to the observation horizontal local variability (Δ), in bins of 0.1 K. For each bin, we 798 
compute the data distribution (number of results found), as well as the mean and standard 799 
deviation of departures. The results are shown in Figure 13. The peaks in the data distributions 800 
indicate that the instruments have comparable noise characteristics. These peaks are situated in 801 
the region of 0.6 to 0.8 K, which is in line with the instrument NEDT specifications. The gradual 802 
increase in standard deviations as a function of observation horizontal local variability is also to 803 
be expected. 804 

The mean departures in Figure 13(a)-(c) are not all aligned with each other, but present 805 
some (steady) offsets, depending on the satellites. This is most probably caused by the fact that 806 
Antenna Pattern Corrections (APCs) were unknown and thus were not be applied during the 807 
reprocessing. An alternative explanation for these offsets could be varying amounts of humidity 808 
biases (over time) in the ERA5 reanalysis. Such small inter-satellite differences are not believed 809 
to be a problem for applications of the SSM/T-2 data into reanalysis, which generally applies 810 
bias corrections to such data when assimilating them. However, this does require further 811 
attention, to enable, for example, direct use of the data to retrieve humidity information, unless 812 
applying a priori approaches such as harmonization (e.g., Giering et al., 2019). 813 

Finally, Figure 13 shows that the increase in observation horizontal local variability is 814 
associated with a slow but steady decrease of the bias towards negative values in the departures. 815 
This effect is most pronounced for the lowest-peaking channel in Figure 13(c), and consistent 816 
with the findings of Calbet et al. (2018). 817 

In summary, our simulation results indicate that the information about uncertainty and 818 
observation horizontal local variability should be of interest for users of the SSM/T-2 data 819 
interested, for example, in clear-sky humidity retrievals.  820 
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 821 

 822 

Figure 12. Total uncertainty (monthly mean) associated with the SSM/T-2 antenna temperatures, 823 
as a function of time, for the three 183.31 GHz channels, ordered from highest-peaking (a) to 824 
lowest-peaking (c), for all satellites (F-11, F-12, F-14, F-15, see colored labels). Dots indicate 825 
time periods excluded in subsequent data analysis because the uncertainty estimate exceeds twice 826 
the pre-launch NEDT specification. 827 
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 828 

Figure 13. For the three SSM/T-2 183.31 GHz channels, (a) to (c), mean (μ, solid lines) and 829 
standard deviation (σ, dashed lines) of departures (in K, left-hand-side vertical axis), as a 830 
function of the observation horizontal local variability (Δ, horizontal axis, in bins of 0.1 K), with 831 
dotted lines showing the data distribution (f, normalized in percent, right-hand-side vertical axis). 832 

6 Discussion 833 

There are several factors that could explain the departures between instrument data 834 
records and simulations from reanalyses reported and analyzed in this paper.  835 

First, there is the issue of data independence. One needs to assess, for each comparison, if 836 
the observational data record was assimilated in the reanalysis that is used for the simulations. 837 
The data of several data records used in this paper were independent (SI-1, SSM/T-2, MRIR). 838 
Other data were partly or indirectly used in the reanalysis. As for example is the case for the 839 
MVIRI radiances, which were indirectly assimilated as another variable or derived product (such 840 
as atmospheric motion vector, or to construct the sea-ice or sea-surface temperature that was 841 
used as forcing in reanalysis). The HIRS data, on the other hand, were fully assimilated. 842 
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However, our analysis only considers the low-frequency variability of departures. This 843 
variability is known to remain distinct between reanalysis and the assimilated data, thanks to the 844 
mechanism of the variational bias correction, even if the possibility of aliasing the signals cannot 845 
be ruled out completely. 846 

Second, there are changes in reanalysis quality over time. These may be due to general 847 
improvement of the observing system (e.g., Dee et al., 2011), or related to instances of degraded 848 
performance owing to suboptimal data use or more challenging natural variability, insufficiently 849 
observed, or suboptimal data use. When such changes occur, they will affect all comparisons, to 850 
all sensors, making it easier to identify whether or not the problem stems from the reanalysis or 851 
the satellite data record. 852 

Third, even if different reanalyses (such as ERA5 and ERA-Interim) are from different 853 
generations, they often used very similar observations input (especially in the early years). This 854 
limits the degree of independence between comparisons to several reanalyses. For this reason, 855 
global reanalyses from a wider diversity of producers should be selected in future work. 856 

Fourth, there are instrument-induced effects that are not all understood or simulated. A 857 
few of these effects are listed by Fennig et al. (2017), for example, for the Nimbus-7 SMMR data 858 
record. These effects include unknown variations in the satellite zenith angle, errors in the 859 
satellite attitude control, potential errors in the underlying level 1B processing and, more 860 
generally, insufficient correction of instrument-induced effects (such as calibration, spill-over, 861 
and polarization mixing). These are all effects that are best addressed at the source, and for 862 
which the simulations can help quantifying the overall cumulated effects. Even in cases where 863 
instrument errors cannot be corrected at the source, such as the case of the MRIR data record, 864 
improvements in bias correction predictors will help in including early satellite data into either 865 
data assimilation systems, or at least in its use as a check on aspects of a reanalysis for periods 866 
with limited or no satellite data. 867 

Fifth, the quality of radiance simulations to reproduce the variability in the observations 868 
is not equal for all channels/instruments. This originates in the spatio-temporal scale and 869 
magnitude of natural phenomena responsible for the variability, differing by instrument and 870 
channel, as compared to instrument and simulation resolutions and uncertainties. One may cite as 871 
an example MVIRI, an instrument whose IFOV (see Table 1) is much smaller than the horizontal 872 
resolution of global reanalyses. The simulation of the MVIRI infrared window channel generally 873 
performs better over ocean than land, but on the other hand, the simulation of the MVIRI water 874 
vapor channel features larger spreads in departures than those of the window channels, owing to 875 
the upper-air water vapor coarse-resolution and corresponding variability representation in the 876 
reanalyses. Another example is when a satellite data record contains signals that originate from 877 
changes not contained in the simulations, such as volcanic aerosols (AVHRR) or possible 878 
changes in trace gases whose concentrations have evolved due to industrial emissions (SI-1). All 879 
these cases can be summed up by the issue of representativeness uncertainty between 880 
observations and reanalysis. 881 

Overall, the general approach followed here can be summarized by three principles: (a) 882 
“all else being equal, an improved reprocessing should lead to an improved fit of the observed 883 
data to simulations”, and so should also (b) an improved simulation setup, and (c) an improved 884 
reanalysis. While this work is not a proof of these principles, we note that we have not found 885 
examples to the contrary in our investigations. However, one must remember that, under special 886 
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circumstances, the situation of two observations and simulations agreeing for the wrong reason 887 
cannot be ruled out (e.g., Joiner et al., 2004). To reduce the chances of such mishap, we 888 
emphasize that the comparisons as shown here should, as much as possible, draw on a large 889 
number of data samples. 890 

Another important element to consider, when analyzing departures between observations 891 
and simulations, are the quality controls (Supplement Text S1). They may appear as trivial to 892 
some readers, but far less obvious to others. While it should normally suffice to read the 893 
documentation that accompanies every data record, and then to apply the quality flags suggested 894 
by the documentation after reading the data, our experience suggests that more should be done in 895 
the future to ease the application of quality flags. The aim should be to preserve the flexibility for 896 
expert users but also to guide less-expert users and leave less room to interpretation. 897 

Finally, an issue encountered during the course of this work was that each climate data 898 
record tends to adopt a data representation that is contemporary to the time of the mission, 899 
reflecting in general the data transmission constraints imposed by radio transmission bandwidth 900 
and digitization. This is no different to practices followed to disseminate in-situ observation data. 901 
However, if one priority is to improve inter-operability of datasets for comparisons and other 902 
applications, the multitude of data models to represent observations is a barrier to integration. 903 
Indeed, it requires, in each case, to adapt computer code. To circumvent this issue, initiatives 904 
have been proposed, to promote a single data model (Nativi et al., 2008). Such initiatives will 905 
greatly simplify the data integration and data comparisons, for example with other observations 906 
or with models, possibly via simulations as shown here. 907 

7 Conclusions 908 

This paper applies radiance simulators to the Fundamental (Climate) Data Records 909 
(F(C)DRs of several satellite instruments, using as input global climate reanalyses. While the 910 
methodology of radiance simulators is not new, we demonstrate that their application enables 911 
three classes of applications. 912 

In the first class of applications, assumptions about a data record organization (order of 913 
channels), its quality, or data corrections, may be verified. For this, we mostly draw from 914 
examples where the data have been characterized long ago, such as the MVIRI and HIRS data 915 
records, and much progress has been made since then. We use examples where the 916 
methodological advance of reprocessing is on a level that benefits from a high-quality a priori 917 
comparison to validate the impact, such as identifying image anomalies in geostationary images 918 
or improving the coherence between data records and reanalyses with modern cloud masks. 919 

Regarding the volcanic eruption of Mount Pinatubo, we find a cooling on the order of 1 920 
K for brightness temperatures from AVHRR and HIRS window channels (short-wave and long-921 
wave alike), with concomitant increase in reflectance for the AVHRR near-infrared channel of a 922 
few percent. We also revisit how fast the atmospheric effects of the eruption propagated away 923 
from the Tropics. In line with previous findings, we confirm differences in the timing of peak 924 
radiative effects of several months between the Mediterranean and the Southern Oceans as 925 
compared to the Tropics, where the volcanic eruption had taken place. 926 

In the second class of applications, coherence between global datasets of different natures 927 
can be assessed. The high spectral resolution data collected by the SI-1 instrument allows 928 
confirmation of improvements in the quality of the latest Japanese global reanalysis, JRA-3Q, for 929 
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stratospheric ozone. Spectral spikes in departures, observed for all reanalyses, also suggest that 930 
several trace gases’ (in particular halocarbons) concentrations assumed in the radiative transfer 931 
may differ from actual concentrations in 1979. Furthermore, we present first estimates of SI-1 932 
random uncertainty, assuming independence of random uncertainty between the sources of error. 933 
Given such caveats, our findings suggest the combined instrument noise and radiative transfer 934 
random uncertainties increase in the far-infrared region. In this respect, observations from the 935 
future FORUM instrument will be useful to enhance general experience and understanding of the 936 
performance of radiative transfer models in the far-infrared. At higher wavenumbers (600—1200 937 
cm-1), we find combined SI-1 instrument noise equivalent delta temperature (NEDT) and 938 
representativeness uncertainties at 280 K to be generally in the range 0.8—1.0 K. 939 

Another example shown, with MRIR, illustrates how differences, which could be 940 
interpreted as incoherencies between reanalyses and observations, can be differently reduced 941 
numerically, depending on the set of bias predictors chosen. While this can minimize systematic 942 
differences, another importance of this approach is to gain understanding about the potential 943 
sources of errors in the satellite data. This ties the present study to a third class of applications: 944 
informing users on key characteristics of a data record. 945 

In this third class of applications, we show cases of simulations of, and comparisons with, 946 
data records from SMMR, SSM/T-2, and Meteosat second-generation. For SMMR, the findings 947 
are that the existing data records suffer for the horizontally-polarized 21 GHz channel from large 948 
oscillating biases, and that all channels exhibit a different behavior after a Special Observing 949 
Period in 1986. Given the value of the SMMR data in bridging with the SSM/I data record, this 950 
calls to consider a potential new reprocessing of the SMMR data record from the original data. 951 

For SSM/T-2, we find that uncertainty information and horizontal local variability in the 952 
observations make a large difference to improve the agreement between reanalysis and clear-sky 953 
simulations. This suggests that these parameters would need to be taken into account in 954 
applications, such as clear-sky humidity retrievals. 955 

For Meteosat Second Generation, we find that the variability of the satellite position 956 
around its nominal position has most likely left a signature in the data record. For climate 957 
applications, such changes in position are needed to take into account or else they may get 958 
aliased into regional patterns of changes in the downstream products. 959 

For all cases of the third class of applications, the results do not constitute final 960 
conclusions, but, instead, provide information for users and applications to take into account. 961 

In all the examples shown in the study, the effort consists in bringing all the sources of 962 
information into the same observation space (times, locations, instrument channel, and viewing 963 
geometry), after having applied quality controls following the data records’ user documentation. 964 
Notwithstanding the particular issue posed by the diversity of observation data models, this 965 
approach, if generalized and made more systematic, would aid tracking of progress in climate 966 
reanalyses and satellite climate data records alike. This would help to accelerate the delivery of 967 
high-quality climate data records to serve climate services. The prospects for such an activity are 968 
not identified specifically in the GCOS Implementation Plan (World Meteorological 969 
Organization (WMO) et al., 2022). However, this plan identifies an action to co-locate in-situ 970 
and satellite measurements. The present paper demonstrates that there may be great benefits in 971 
considering also state-of-the-art reanalyses in such co-locations. 972 
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The data records discussed in this paper are mostly limited to the representation of 973 
atmospheric phenomena and corresponding satellite observations. In parallel, today’s Earth 974 
system models are developed to encompass more components, including anthropogenic effects. 975 
One may thus expect the same methods as presented here to be applicable to support the 976 
development of data records related to other observables that impact our environment, such as 977 
human activity and biodiversity. These two fields are of utmost importance, provided that 978 
physical methods are developed to relate these fields to satellite measurements via simulators. 979 
For both fields, there have already been key developments (e.g., Gao et al., 2015; Schweiger & 980 
Laliberté, 2022, respectively). The methods set forth in the present paper may serve to continue 981 
progress in these areas and to support advances in long data records and corresponding models 982 
that describe human activity and biodiversity. 983 

Thirty years after the 1992 Earth Summit, it is worth remembering that its participants 984 
had identified three topics to be tackled within regular meetings of Conventions Of the Parties 985 
(COP), i.e., climate change, biodiversity collapse, and desertification. Today, these three topics 986 
appear to be on a collision course, notwithstanding increasing demands for resources from a 987 
growing world population. This calls for more urgent action to understand the inter-relations 988 
between all these application areas, through better exploitation of environmental measurements, 989 
models, and reanalyses, which integrate the most diverse sources of data for our environment. 990 
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