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Abstract14

Extricating histories of uplift and erosion from landscapes is crucial for many branches15

of the Earth sciences. An objective way to calculate such histories is to identify calibrated16

models that minimise misfit between observations (e.g. topography) and predictions (e.g.17

synthetic landscapes). In the presence of natural or computational noise, widely used18

Euclidean measures of similarity can have complicated objective functions, obscuring the19

search for optimal models. Instead, we introduce the Wasserstein distance as a means20

to measure misfit between observed and theoretical landscapes. Our results come in two21

parts. First, we show that this approach can generate much smoother objective func-22

tions than Euclidean measures, simplifying the search for optimal models. Second, we23

show how locations and amplitudes of uplift can be accurately recovered from synthetic24

landscapes even when seeded with different noisy initial conditions. We suggest that this25

approach holds promise for inverting real landscapes for their histories.26

Plain Language Summary27

The shapes of Earth’s landscapes tell us about how they were formed by processes28

like tectonic uplift and erosion. Mathematical models are used to predict how landscapes29

change over time due to these processes. However, identifying models that produce the-30

oretical landscapes that resemble reality can be challenging. One way to do so is by com-31

paring model predictions to actual landscapes we observe. To make this comparison, we32

need a way to measure how similar or different predicted and observed landscapes are.33

One common approach is to compare heights of land from both cases. However, this method34

can struggle because a small shift in the position of a theoretical valley, say, can dramat-35

ically change the outcome of a comparison. In this paper, we introduce an alternative36

approach that uses a metric called the Wasserstein distance from the field of ‘Optimal37

Transport.’ The Wasserstein distance is a measure of how different two probability dis-38

tributions are from each other by considering how much ‘work’ is needed to transform39

one distribution into the other. We show that this metric is effective for finding mod-40

els to understand how landscapes were shaped by uplift over time.41

1 Introduction42

Planetary surface topography is shaped by geologic and geomorphic processes op-43

erating on a broad range of spatial and temporal scales (e.g. Davis, 1899; Bishop, 2007;44

Anderson & Anderson, 2010; Wapenhans et al., 2021). A general goal is to identify ge-45

ologic and geomorphic models that can accurately predict observed landscapes. For ex-46

ample, a suite of inverse models have been developed to identify uplift rate histories that47

yield low residual misfits to longitudinal river profiles (e.g. Pritchard et al., 2009; Roberts48

& White, 2010; Goren et al., 2014; Gallen & Fernández-Blanco, 2021). Despite increased49

computational expense, forward and inverse modeling of two dimensional landscapes can50

incorporate geomorphic information that is not captured by river profiles (e.g. Croissant51

& Braun, 2014; Barnhart, Tucker, et al., 2020; O’Malley et al., 2021). They can also be52

used to relax assumptions about drainage planform stability and include other erosional53

processes (e.g. hillslope erosion).54

An important development in this field has been the application of methodologies55

to efficiently search the parameter space of landscape evolution models for those that yield56

low residual misfit, e.g. conjugate direction, linear least squares, neighbourhood algo-57

rithm and Bayesian minimisations (e.g. Roberts & White, 2010; Fox et al., 2014; Crois-58

sant & Braun, 2014; Rudge et al., 2015; Glotzbach, 2015). Fundamental to these approaches59

is deciding how observed and synthetic landscapes should be compared. An obvious and60

commonly used approach is to measure similarities using Euclidean distances such as root61

mean squared misfit (e.g. Roberts & White, 2010; Croissant & Braun, 2014). In special62

cases the objective functions used to search for optimal models can vary smoothly and63
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have single minima when calculated using Euclidean distances. For example, if the land-64

scapes being compared vary smoothly (e.g. approximating Gaussian domes). However,65

most landscapes have complicated shapes (e.g. ridges and valleys, drainage networks),66

which can produce complex objective functions with many local minima. It is challeng-67

ing to automate the search for optimal landscape evolution models when objective func-68

tions are complex and contain local minima.69

As is well known, a related and important issue is that, the location of drainage70

networks in landscape evolution models are sensitive to inserted noise (see e.g. Lipp &71

Roberts, 2021). Noise is often inserted into the starting conditions of landscape evolu-72

tion models to initiate channelisation. Models with slightly different distributions of noise73

can produce landscapes with ridges and valleys in different locations, even when inserted74

uplift histories and erosional parameters are the same (e.g. Kwang & Parker, 2019). Con-75

sequently, Euclidean measures of misfit, which typically calculate pixel-wise differences76

in elevation, are sensitive to noise. As such, automating the search for optimal (‘true’)77

uplift or erosional histories again becomes challenging.78

Here, we introduce a methodology using the Wasserstein distance, a metric from79

the field of Optimal Transport, which resolves many of these issues. We first demonstrate80

the calculation of Wasserstein distances using one dimensional topographic transects. We81

then demonstrate how it can be used to identify optimal two dimensional synthetic land-82

scapes even in the presence of added noise.83

2 Methodology84

2.1 Wasserstein Distance85

2.1.1 Introduction86

The Wasserstein distance, also known as the Earth-mover’s distance, is a statis-87

tical measure of the work required to map or transform one probability distribution to88

another given a specified metric space (e.g. Euclidean space). Intuitively, the Wasser-89

stein distance is considered in terms of moving one pile of material (e.g. sand) into an-90

other pile, with no loss or gain of material. The optimal transport plan is the one which91

transports the material from one pile to another in the least amount of distance. The92

Wasserstein distance is the total cost associated with this optimal transport plan. Orig-93

inating from the work of Monge (1781) on Optimal Transport, calculation of Wasserstein94

distances have been developed by Kantorovich (1942) and Villani (2003). The Wasser-95

stein distance has been applied to a range of problems in computing (Arjovsky et al.,96

2017), chemistry (Seifert et al., 2022), oceanography (Hyun et al., 2022; Nooteboom et97

al., 2020), climate science (Chang et al., 2015; Vissio et al., 2020), geophysics (Engquist98

& Froese, 2014; Métivier et al., 2016a, 2016b; Sambridge et al., 2022), sedimentology (Lipp99

& Vermeesch, 2023), and hydrology (Magyar & Sambridge, 2022). As far as we are aware100

it has not been used to invert landscapes for their properties (e.g. uplift histories, ero-101

sion rates, sedimentary fluxes).102

For one dimensional distributions along the real line, the Wasserstein distance has103

an analytical solution. We consider two 1D distributions f and g where
∫∞
−∞ f(x)dx =104 ∫∞

−∞ g(x)dx = 1. The pth Wasserstein distance between f and g is given by105

Wp(f, g) =

[∫ 1

0

|F−1 −G−1|pdt
]1/p

, (1)

where F and G represent cumulative density functions (CDFs) of f(x) and g(x); F (x) =106 ∫ x

−∞ f dx and G(x) =
∫ x

−∞ g dx. F−1 and G−1 are therefore quantile functions. In one107

dimension, when p = 1, Equation 1 decomposes to represent the area between the two108

inverse CDFs.109

–3–



manuscript submitted to Geophysical Research Letters

2.1.2 Wasserstein distances applied to landscapes110

The Wasserstein distance is, in general, applicable to distributions of N dimensions.111

As a result, the Wasserstein distance between two landscapes, for example two dimen-112

sional rectangular arrays of elevations, z(x, y), could be calculated directly by compar-113

ing their two dimensional density functions (see Supporting Information). Unlike the Wasser-114

stein distance between one dimensional distributions this problem has no known ana-115

lytical solution and is solved via linear programming (e.g. Peyré & Cuturi, 2019). Whilst116

feasible for the problems we address in this manuscript, this approach can be compu-117

tationally expensive, which is undesirable for inverse problems. Whilst we recognise that118

algorithms to efficiently calculate approximate multidimensional Wasserstein distances119

have been developed (e.g. using entropic regularisation; Cuturi, 2013) we opt instead to120

simply compare the one dimensional marginal sums of the two dimensional landscapes,121

following Sambridge et al. (2022)’s demonstration of a similar approach for inverse mod-122

eling of seismogram ‘fingerprints’.123

Two marginal profiles are generated for each landscape by summing elevations along124

the x and y axes. These are transformed into probability distributions by normalisation.125

If we consider a marginal elevation profile z(x) evaluated on N pixels each with width126

∆x, we thus calculate z∗(x), the normalised elevation profile through127

z∗(x) =
zi(x)

∆x
∑

i zi(x)
, (2)

where i ∈ {1, 2 . . . N}. A consequence of this normalisation is that information about128

absolute elevation is lost. Fortunately, additional misfit term(s), which incorporate in-129

formation about absolute elevations, can be straightforwardly incorporated into the ob-130

jective function. Choosing an appropriate term will likely depend on the specific prob-131

lem, for example inverse modeling of two dimensional landscapes may benefit from in-132

corporating hypsometry, which has the added benefit of also being a cumulative density133

function. We note that there are special cases in which identical marginal profiles can134

be produced from different two dimensional distributions, which could be problemati-135

cal for identifying optimal landscape evolution models. For instance, a target synthetic136

‘landscape’ in a square domain with elevation equal to zero everywhere except along a137

diagonal band that extends from one corner to another (e.g., along y = x) will have the138

same marginal profiles as its mirror image (diagonal non-zero band along y = −x). How-139

ever, the presence of noise and non-trivial uplift and erosion of (observed and synthetic)140

landscapes indicates that encountering such marginal distributions is unlikely. Nonethe-141

less, straightforward solutions could be implemented to overcome such scenarios if nec-142

essary (e.g. the inclusion of non-orthogonal marginal profiles in the calculation of the143

objective functions; additional penalty functions), with a small increase in computational144

expense.145

In this study, we test a simple scheme in which squared and scaled differences in146

mean elevation are incorporated as a penalty function, P (z1, z2) = z̄1 − z̄2, where z̄1147

and z̄2 are mean elevations of two landscapes (e.g. Figure 1). Combining the above steps148

we define a misfit function, H, utilising the Wasserstein distance, between a ‘target’ land-149

scape, t, and a ‘source’ landscape s,150

H(t, s) = W x
2 (t, s)

2 +W y
2 (t, s)

2 + µP (t, s)2, (3)

where W x
2 (t, s) and W y

2 (t, s) are the 2nd one dimensional Wasserstein distances (p = 2;151

Equation 1) between the normalised elevation marginals calculated by summing along152

the x and y axes, respectively. The scaling factor µ is a hyper-parameter which is ad-153

justed systematically to test its impact on calculated misfit values. A python script which154

implements Equation 3 is provided at github.com/MatthewJMorris/landscape-wasserstein.155
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In this study we demonstrate the above approach using two simple examples. The156

first demonstrates calculation of the Wasserstein distance by comparing a target, one di-157

mensional, topographic transect, z(x), to systematically translated transects (sources).158

In the second example, we demonstrate a search for an optimal two dimensional, noisy,159

theoretical landscape, z(x, y), using the misfit function defined above (Equation 3).160

2.2 Euclidean distance161

We compare objective functions generated using Wasserstein and more widely used162

Euclidean distances. These include root mean squared (rms) misfit and the L2 norm,163

[
1

N

N∑
i=1

(
zti − zsi

)2]1/2

and

[
N∑
i=1

(
zti − zsi

)2]1/2

, (4)

respectively, where zti and zsi are the respective elevations of the target and source land-164

scapes. N is the number of measurements of elevation, e.g. along a transect.165

2.3 Landscape evolution models166

We demonstrate the use of Wasserstein distances for inverse modeling of two di-167

mensional synthetic landscapes. The calculated landscapes are produced using the sur-168

face process computing package Landlab (Hobley et al., 2017; Barnhart, Hutton, et al.,169

2020). Landscape geometry is governed by the history of uplift, the erosional model, in-170

serted additional noise and time. We assume an advective-diffusive formulation of ero-171

sion, such that,172

∂z

∂t
= −vAm∇zn + κ∇2z + U(x, y, t) + η(x, y, t), (5)

where z is elevation, t is time, v, m, n and κ are erosional constants. A is upstream drainage173

area, x is distance upstream and U is uplift rate. The model is parameterized using a174

uniform grid with dimensions of 300 × 100 km, and cell size of 1 × 1 km. Each start-175

ing condition is generated by the following three steps. First, a central rectangular block176

is assigned an initial uniform elevation, u. Secondly, uniform (white) noise, η, with am-177

plitudes 0–4% of initial elevation is added. Finally, sink-filling is performed once to per-178

mit continuous flowlines to the model boundaries (Barnes et al., 2014). We set m and179

n = 0.5 and 1, respectively, v = 10−3 kyr−1, erosional ‘diffusivity’ κ = 100 m2/kyr. The180

FastScape erosion scheme is used to solve Equation 5 (Braun & Willett, 2013). Flow-routing181

is performed with the ‘D8’ algorithm (O’Callaghan & Mark, 1984). The landscape model182

is run forwards in time for 10 Myr, with flow-routing, and advective and diffusive ero-183

sion calculated at each timestep. In all models U = 0, i.e., no uplift is added beyond184

the initial elevation. The timestep is set to 8 kyr, such that the Courant-Friedrichs-Lewy185

condition for numerical stability is satisfied.186

3 Results and Discussion187

3.1 One dimensional topographic transect188

A simple demonstration of how Wasserstein distances can be calculated and used189

to identify an optimal topographic transect is shown in Figure 1. This transect was cho-190

sen to demonstrate how an optimal source (e.g. theoretical landscape) can be identified191

even for quasi-periodic topography, analogous to ‘cycle-skipping’ problems in seismol-192

ogy. The transect was extracted from the SRTM 1 arc second dataset across the Appalachian193

mountains, USA (Figure 1a: A—A′; horizontal resolution ∼ 30 m). The resultant tar-194

get profile is shown in Figure 1b (black polygon). Source transects are generated by trans-195

lating the target transect (e.g. red polygon in Figure 1b). Initially the source transect196

does not overlap with the target, it is progressively shifted until it fully overlaps, before197
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Figure 1. Wasserstein and Euclidean (rms) misfit between observed (target) and

theoretical (source) topographic transects. (a) Transect A—A′ across the Appalachian

mountains, USA. Red box on inset map indicates region shown in panel (a). Topography ex-

tracted from SRTM 1 arc second dataset. (b) Black polygon shows observed elevation along

transect A—A′; dashed black line = profile mid-point. Theoretical transects were generated

by translating the observed transect left and right (red arrows); red dashed line = mid-point

of example theoretical transect (red translucent polygon). (c) Euclidean (rms) misfit between

observed and theoretical transects. Distance = distance between mid-points of observed and the-

oretical transects. Arrows = local minima. Black dashed line = global minima; centre of observed

transect. Red arrow and circle = misfit of theoretical transect shown in panel (a). (d) Wasser-

stein misfit (Equation 1) between observed and translated transects. Red circle = mid-point of

theoretical transect shown in panel (b). Black dashed line = global minima at mid-point of ob-

served transect shown in panel (a).
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continuing translating until, again, there is no overlap. Euclidean misfit and Wasserstein198

distance are calculated for each translated (source) transect. These transects have iden-199

tical absolute elevations and therefore there is no need to include an additional penalty200

term. Thus, in this scenario we define the Wasserstein misfit simply as the squared one201

dimensional Wasserstein distance between the two normalised elevation profiles (Equa-202

tion 1, p = 2).203

The Euclidean misfit function is complicated and contains several local minima (Fig-204

ure 1c: arrows). However, the Wasserstein misfit function is smooth and quadratic, with205

a single minimum located where the two transects are aligned (Figure 1b-d: dashed lines).206

This simple one dimensional example suggests that the Wasserstein distance holds promise207

for comparing real topographic data. In particular, that automated techniques for ef-208

ficient locating of global minima (e.g. Brent’s method) are more likely to be successful209

if similarity between topography is measured using Wasserstein, rather than Euclidean,210

statistics.211

3.2 Two dimensional landscapes212

We now extend the problem to two dimensions. In this simple example we first seek213

the location of uplift that was used to generate a synthetic (target) landscape. We wish214

to identify optimal theoretical landscapes even when additional noise is inserted into the215

model, as is common in landscape evolution models when channelisation is required. Fig-216

ure 2b shows the target landscape generated following the procedure described in Sec-217

tion 2.3 (Equation 5). The marginals are shown in Figure 2a and 2c. A separate source218

landscape is generated by changing the distribution of added noise, η, at the initial con-219

dition, all other parameters are held constant. This source landscape is translated along220

the x axis of the model domain (midpoints from 50 to 250 km; 200 translations), illus-221

trated by the red arrows in Figure 2d-e. An example of a translated landscape and its222

marginals are shown in Figure 2d-f. Figure 2g shows the difference in cell elevations be-223

tween the target and source landscapes when fully aligned. This map shows the changes224

in landscape geometry (including elevations and fluvial planform) that are governed by225

changing the initial noise inserted into the landscapes at their inception. Figure 2h il-226

lustrates that despite different initial noise conditions generating different drainage net-227

works (Figure 2g), the Wasserstein distance successfully identifies a global minimum mis-228

fit where the landscapes are fully aligned. In comparison, the Euclidean misfit contains229

local minima and the position of the global minimum is offset from the target. This marginal230

experiment took 0.1 seconds on an Intel i7-6700 desktop computer with 64 gigabytes of231

RAM. Calculating Euclidean distances took 0.03 seconds. In comparison, calculating Wasser-232

stein distances using two dimensional density functions for 7 translations of the source233

landscape took approximately 45 minutes (see Supporting Information for the results of234

this experiment).235

We now extend this test by changing the amplitude of initial uplift, u, used to gen-236

erate the target landscape. Wasserstein and Euclidean statistics are calculated for each237

source landscape. We systematically varied amplitude of uplift by ∆u = 25 m between238

25 to 250 m. For each of these ten landscapes, 100 random distributions of white noise239

with amplitudes 0–4% of uplift were added prior to the initial sink-filling and flow rout-240

ing steps, generating the starting condition for each model. As in the previous example,241

these source landscapes are translated along the x axis. This Monte Carlo style exper-242

iment is designed to test the impact of noisy initial conditions on identifying optimal the-243

oretical landscape evolution models. In short, we perform 100 brute force inversions to244

identify two parameters: the location and magnitude of initial uplift, each with a differ-245

ent initial distribution of noise in the starting condition.246

Figure 3a shows Euclidean (rms) misfit as a function of initial elevation (uplift)247

and position for a more general version of the test shown in Figure 2. In Figures 3a and248
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Figure 2. Misfit between two dimensional, z(x, y), theoretical landscapes. (a)

Marginal elevations (z∗x) of the landscape shown in panel (b). (b) Synthetic, ‘target’, land-

scape (see body text for construction). Filled black triangles point to centre of the domain.

(c) Marginal elevations (z∗y) of the landscape shown in panel (b). (d) Black profile is as per panel

(a). Red dashed profile = marginal generated from synthetic landscape that has different initial

noise but same distribution of uplift used to generate landscape shown in panel (b): red-dashed

rectangle shown in panel (e). Red translucent marginal was generated from the translated,

‘source’, landscape shown in panel (e). (e) Red arrows indicate translation directions. Topog-

raphy = example translated landscape. (f) As per panel (c); red translucent profile = marginal

from landscape shown in panel (e). (g) Elevation differences, ∆z, between the target and source

landscapes when all conditions bar initial noise are constant. (h) Grey curve = rms misfit (Equa-

tion 4) between synthetic landscape shown in panel (b) and translated landscapes (e.g. panel e).

Grey arrows = local minima. Red circle = misfit between target and source landscapes shown

in panels (b) and (e), respectively. Black solid curve = Wasserstein misfit (Equation 3, p = 2).

Black dashed line = target and source landscapes with common mid-points indicated by black

triangles on panels (b), (e) and (g).
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Figure 3. Inverse modeling of noisy synthetic landscapes: Euclidean and Wasser-

stein statistics. (a) Euclidean (rms) misfit (Equation 4) between target landscape (Figure 2b)

and source landscapes as a function of noise and uplift. Uplift was translated as demonstrated

in Figure 2; initial elevations (amplitude of uplift) were systematically varied between 25–250 m.

Amplitudes of initial added white noise were scaled to be 0–4% of initial elevation. White cross =

minimum misfit; error bars = range of misfit minima for 100 different parameterizations of noise.

Outer white triangles point to initial elevation and mid-point of target landscape (100 m, 150

km). (b-c) Black curves = transects through misfit function between white triangles in panel (a).

Shaded grey regions = minimum and maximum misfit for the 100 different distributions of noise.

Black arrows = local minima of the 1D transect; circles = global minimum. (d-f) Wasserstein

(H) misfit (Equation 3). (e) Black curve and grey envelope: µ = 104; dashed and dotted grey

curves: µ = 2.5 × 105 and 106, respectively. (g-h) Loci of misfit minima for the 100 different

distributions of initial noise; E/H = Euclidean/Wasserstein misfit.–9–



manuscript submitted to Geophysical Research Letters

b, ∆u = 3 m, instead of 25 m, in order to produce a more granular misfit space. The249

black curves in Figure 3b-c show slices through the Euclidean misfit function centred on250

the target landscape parameterization (indicated by the white arrowheads in panel a).251

Local minima are indicated by the black arrows in Figure 3c. The error bars in Figure252

3a show the range of global minima for the models examined. These results are summarised253

in the histograms shown in Figure 3g-h. The grey envelope in Figure 3b-c indicates the254

range of misfit values for all initial noise conditions. The global minima from all mod-255

els is shown by the red circles. The Wasserstein-based misfit functions for the same mod-256

els are shown in Figure 3d-h (again ∆u =3 m for d and e, instead of 25 m). The shape257

of the objective function with respect to initial elevation is governed by the value of the258

scaling parameter, µ. Increasing µ increases the contribution of the penalty term, P . A259

value of µ = 104 was used to generate the results shown in Figure 3d-h (e.g. thin black260

curve and grey envelope in panel e). For comparison, the dashed and dotted grey curves261

in panel e show the shape of the objective function as a function of initial elevation when262

µ = 2.5× 105 and 106, respectively.263

Euclidean minima are broadly distributed around a point offset from the expected264

parameter values (Figure 3a). In contrast, minima calculated using Wasserstein distances265

have a smaller spread around the expected value (Figure 3d). These results indicate that266

Wasserstein distances provide means to identify optimal landscape evolution models even267

in the presence of noisy initial conditions that hinder Euclidean-based approaches. We268

note that if source landscapes are, simply, translated versions of the target (i.e. they have269

exactly the same elevations; same inserted noise), the Wasserstein misfit function, H,270

is symmetric about the mid-point of the target landscape.271

4 Conclusions272

Landscape geometries are determined by histories of geologic and geomorphologic273

processes. A corollary is that landscape form contains information about driving pro-274

cesses (e.g. uplift, erosion, climate). A general goal is to identity theoretical landscape275

evolution models that accurately predict landscape form and its history. Here we demon-276

strate the use of the Wasserstein distance for identifying such models. These distances277

are used to quantify similarity between observed and theoretical landscapes. They are278

shown to generate simple, quadratic, objective functions with single (global) minima. Even279

in the presence of noise (which could be computational or real) Wasserstein statistics can280

identify optimal landscape evolution models when equivalent Euclidean statistics (rms,281

L2 norm) are complex, with global minima offset from the expected value. We suggest282

that Wasserstein statistics show promise for inverse modeling of landscapes to identify283

the processes that drive their evolution, for example, uplift histories.284
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5 Open Research288

We use the Python library POT to calculate Wasserstein distances (Flamary et al.,289

2021). SRTM data can be downloaded from https://earthexplorer.usgs.gov/. Fig-290

ures were generated using GMT 6.3.0 (Wessel et al., 2019). Accompanying code is archived291
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1. Calculation of two dimensional Wasserstein distances for synthetic landscapes

2. Figure S1: Two dimensional Wasserstein distance for a synthetic landscape

Two Dimensional Wasserstein

As stated in the main text, the Wasserstein distance can be applied to distributions of

N dimensions. We explain here the approach to calculate a Wasserstein distance for

N = 2, using a pair of two dimensional density functions, f(x, y) and g(x, y). First, a

cost matrix is calculated, representing the distance from each coordinate point in the

source function (f) to every coordinate point in the target function (g). A choice must

be made about the method used to define the distance between these points, known as
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the cost function. Several approaches exist including the squared Euclidean distance and

Manhattan distance. The cost cij to transport point i to point j using a squared Euclidean

distance is given by

cij = (xi − xj)
2 + (yi − yj)

2, (1)

where xi and yj are the x and y coordinates of the ith and jth discrete points in the

distributions respectively. A map of transport cost, known as the cost matrix may be

constructed by computing the cost function for all coordinates.

There are a number of ways to transport f to g, however some are more efficient than

others. Any chosen method of transport is given by a transport plan, πij, defined as the

mapping of the source distribution onto the target distribution. i.e., entry i, j corresponds

to how much of the source distribution f is translated from point i onto point j. Thus

the total cost, C, of any given transport plan is

C =
nf ,ng∑

i=1,j=1

πijcij. (2)

We seek the most efficient, or optimal, transport plan, which results in the least cost to

transport f to g (i.e. minimises C). This transport plan can be given generally, as per

Kantorovich (1942), by the Linear Programming problem

W p
p = min

πij

∑
i,j

πijcij, (3)

where p is dependent on the exponent of the cost function. In our case for a squared eu-

clidean distance, p = 2. Equation 3 is subject to three constraints. First, and secondly, the

row and column sums of the transport plan are equal to the number of elements in f and
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g respectively, and thirdly, that the optimal transport plan is greater than or equal to zero.

Examples of Wasserstein distances calculated using two dimensional density functions

(Equation 3) are shown in Figure S1. This figure shows the results of an experiment similar

to that shown in Figure 2 of the main manuscript. Due to the computational expense

involved with this approach, only 7 translations of the source landscape are presented,

rather than the 200 translations used for the marginals approach. Nonetheless, Figure

S1c shows that the calculated misfit function correctly identifies the optimal location

of the source landscape. We provide a python script which calculates the Wasserstein

distance between two synthetic landscapes using the methodology described above at

github.com/MatthewJMorris/landscape-wasserstein.
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Figure S1. Two-dimensional Wasserstein distances for synthetic landscapes. (a)

Target landscape, as per Figure 2b of the main manuscript. (b) Source landscape, as per Figure

2e of the main manuscript. (c) Two dimensional Wasserstein distance calculated between the

target and the source landscapes for 7 translations (circles) of the source landscape across the

domain using the two dimensional approach (Equation 3).
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