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Abstract

Floods cause hundreds of fatalities and billions of dollars of economic loss each year in the United States. To mitigate these

damages, accurate flood prediction is needed for issuing early warnings to the public. This situation is exacerbated in larger

model domains for high flows, particularly in ungauged basins. To improve flood prediction for both gauged and ungauged

basins, we propose a spatio-temporal hierarchical model (STHM) to improve high flow estimation using a 10-day window of

modeled National Water Model (NWM) streamflow and a variety of catchment characteristics as input. The STHM is calibrated

(1993-2008) and validated (2009-2018) in controlled, natural, and coastal basins over three broad groups, and shows significant

improvement for the first two basin types. A seasonal analysis shows the most influential predictors are the previous 3-day

average streamflow and the aridity index for controlled and natural basins, respectively. To evaluate the STHM in improving

streamflow in ungauged basins, 20-fold cross-validation is performed by leaving 5% of sites. Results show that the STHM

increases predictive skill in over 50% of sites by 0.1 Nash-Sutcliffe efficiency (NSE) and improves over 65% of sites’ streamflow

prediction to an NSE>0.67, which demonstrates that the STHM is one of the first of its kind and could be employed for flood

prediction in both gauged and ungauged basins.
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Key Points:11

• We present a space-time hierarchical modeling framework to predict flood12

• The model uses antecedent streamflow prediction and hydroclimatic data to show13

major improvements in various basin types across CONUS14

• The method is shown to have good skill in making prediction in ungauged basins15

providing enhanced flood predictions for the country16
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Abstract17

Floods cause hundreds of fatalities and billions of dollars of economic loss each year in18

the United States. To mitigate these damages, accurate flood prediction is needed for19

issuing early warnings to the public. This situation is exacerbated in larger model do-20

mains for high flows, particularly in ungauged basins. To improve flood prediction for21

both gauged and ungauged basins, we propose a spatio-temporal hierarchical model (STHM)22

to improve high flow estimation using a 10-day window of modeled National Water Model23

(NWM) streamflow and a variety of catchment characteristics as input. The STHM is24

calibrated (1993-2008) and validated (2009-2018) in controlled, natural, and coastal basins25

over three broad groups, and shows significant improvement for the first two basin types.26

A seasonal analysis shows the most influential predictors are the previous 3-day aver-27

age streamflow and the aridity index for controlled and natural basins, respectively. To28

evaluate the STHM in improving streamflow in ungauged basins, 20-fold cross-validation29

is performed by leaving 5% of sites. Results show that the STHM increases predictive30

skill in over 50% of sites’ by 0.1 Nash-Sutcliffe efficiency (NSE) and improves over 65%31

of sites’ streamflow prediction to an NSE>0.67, which demonstrates that the STHM is32

one of the first of its kind and could be employed for flood prediction in both gauged and33

ungauged basins.34
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1 Introduction35

Flood, causing major disruptions in urban and rural areas and threatening lives,36

is one of the deadliest and costliest hazards in the United States (National Weather Ser-37

vice, 2022). Extreme flood events severely impact infrastructure and environment (Merz38

et al., 2021; Wallemacq & House, 2018). Both global climate change and local anthro-39

pogenic activities have also been exacerbating these extreme events, particularly in ur-40

banized coastal areas (Arnone et al., 2018; Pörtner et al., 2022). Providing accurate flood41

predictions is one key mechanism to reduce economic impacts and loss of life by provid-42

ing early warnings for the public and agencies to set up contingency measures and evac-43

uation warnings (Emerton et al., 2016; Johnson et al., 2018). The value of flood predic-44

tions are quite significant in providing early warnings and in developing evaluation strate-45

gies, thereby providing indirect benefits to society (Pappenberger et al., 2015).46

Flood predictions are typically of two types – deterministic and probabilistic – with47

the former providing the conditional mean (Sinha & Sankarasubramanian, 2013) and the48

latter providing the entire conditional distribution (Sankarasubramanian & Lall, 2003).49

Deterministic predictions are easier to communicate as it does not provide uncertainty50

in the outcome, but probabilistic predictions are more useful in relating the uncertainty51

to different degrees of contingency measures (Cloke & Pappenberger, 2009). Flood pre-52

dictions are typically developed either physical-process-based modeling approach – forc-53

ing precipitation forecast into a hydrological model – or using a statistical model in which54

precipitation forecast and antecedent watershed conditions are related directly to the ob-55

served streamflow. Uncertainty in flood predictions arises from multiple sources that in-56

clude input uncertainty from precipitation predictions, hydrologic model uncertainty, and57

uncertainty in quantifying the initial conditions (Mazrooei et al., 2021; Mendoza et al.,58

2012). Efforts have focused on reducing these uncertainties ranging from multi-model59

combination (Devineni et al., 2008) on precipitation predictions, on hydrologic models60

(Singh & Sankarasubramanian, 2014), and through correcting initial conditions through61

data assimilation (Mazrooei et al., 2020). However, most of these uncertainty reduction62

techniques have focused primarily on gauged basins with limited/no evaluation of these63

techniques for ungauged basins.64

The main intent of this research is to develop a unified approach that corrects the65

errors in flood predictions for both gauged and ungauged locations over the Coterminous66

United States (CONUS). Predicting streamflow in ungauged basins (PUB) is an estab-67

lished area of research in hydrology (Hrachowitz et al., 2013). Correcting hydrological68

errors in ungauged basins is challenging (Mishra & Coulibaly, 2009) as streamflow vari-69

ability is unknown. Methods to address this challenge to date include spatial proxim-70

ity methods (Tamaddun et al., 2019; Y. Zhang & Chiew, 2009), physical similarity ap-71

proaches (Narbondo et al., 2020), data-driven methods such as artificial neural networks72

(Heng & Suetsugi, 2013), and nonlinear regression models (Parajka et al., 2013). These73

studies mainly focused on regional scaled or seasonal streamflow prediction, but flood74

forecast is typically required at daily-to-weekly time scale. Further, with regard to flood75

prediction, most studies relate the flow attributes available at gauged sites (e.g., 25-year76

return period flood) with the hydroclimate and basin characteristics to develop a sta-77

tistical model and then use that relationship to estimate the corresponding flood values78

at based on basin and climate characteristics available at ungauged locations (see Ta-79

ble 3 in Salinas et al., 2013). However, most of these two-step approaches have focused80

primarily on design flood as opposed to predicting daily flood flows, which are critically81

important for issuing early warnings. Further, these two-step regression modeling can82

be effectively integrated into a single step using a hierarchical model (Das Bhowmik et83

al., 2020; Devineni et al., 2013). To our knowledge, limited/no application of hierarchi-84

cal model has been performed for estimating daily flows at ungauged locations over the85

CONUS.86
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Hierarchical modeling framework (aka., multilevel models) is commonly used to com-87

bine time-varying hydrologic information (e.g., observed streamflow) with the spatially88

varying basin and hydroclimatic characteristics (e.g., Ossandón et al., 2022). Hierarchi-89

cal model frameworks have the advantage of considering both spatio-temporal predic-90

tors and categorical (i.e., spatial or temporal) predictors for estimating a predictand (Gelman91

& Hill, 2006). Streamflow prediction studies that used hierarchical models used the river92

basin dendritic structure to predict the flows at a downstream location based on predic-93

tors such as basin-level meteorological variables and observed or hydrologic model pre-94

dicted streamflow (Ossandón et al., 2022; Ravindranath et al., 2019). However, these stud-95

ies have focused on predicting streamflow at gauged locations. Given that the hierarchi-96

cal model is a spatiotemporal model with multi-level predictors, a hierarchical model could97

in principle be extended for predicting streamflow at ungauged locations by consider-98

ing predicted streamflow available from any hydrologic model and other basin charac-99

teristics (e.g., aridity index) that commonly influence the error structure in hydrologic100

model prediction. Based on these underpinnings, we propose a novel hierarchical mod-101

eling structure that uses spatio-temporally varying observed/predicted streamflow in-102

formation and spatially varying basin characteristics (e.g., drainage area) and hydrocli-103

matic information (e.g., aridity index) for estimating flood flows at ungauged basins over104

the CONUS.105

Continental-scale hydrology studies have evaluated parsimonious mechanistic mod-106

els (Archfield et al., 2015), lumped-hydrological models (Vogel & Sankarasubramanian,107

2000), and hybrid (statistical-mechanistic) models for estimating streamflow at differ-108

ent time scales (Evenson et al., 2021). Utilizing distributed hydrological models provide109

a viable alternative to estimating daily streamflow at ungauged locations, but challenges110

remain in accurately predicting streamflow over continental scale (Johnson et al., 2023).111

Frame et al. (2021) evaluated the National Water Model (NWM) for selected virgin basins112

and found that the performance of NWM is poorer compared to the post-processing mod-113

els. Post-processing can often decrease bias in hydrological model outputs and reduce114

systematic errors from forcing and other process representations (Li et al., 2017; Rezaie-115

Balf et al., 2019). Post-Processing methods can be data-driven (e.g. Johnson et al., 2023)116

or physically informed (Wu et al., 2019). Recently, Frame et al. (2021) applied a long117

short-term memory (LSTM) machine learning approach to improve daily NWM stream-118

flow prediction across CONUS and compared its performance with streamflow predic-119

tion using LSTM with just atmospheric forcings. However, this analysis has been per-120

formed only for virgin basins and did not focus on controlled basins. Johnson et al. (2023)121

used random forest models to identify the basin characteristics and hydroclimatic infor-122

mation that influence the NWM performance over the CONUS. They found that exist123

in arid basins and basins with moisture and energy being out of phase exhibit signifi-124

cant bias and reduced Nash-Sutcliffe Coefficient (NSE) (Johnson et al., 2023). They also125

found basin characteristics such as total contributing drainage area and path length also126

influence the NWM performance. Further, variables indicating anthropogenic activities127

- percent imperviousness and upstream storage in dams– also influence the bias and NSE128

in predicting the flood flows (Johnson et al., 2023). This indicates that the NWM per-129

formance depends on basin and hydroclimatic information, thereby exhibiting a regional/spatial130

error structure in predicting flood flows. We intend to consider these basin character-131

istics and hydroclimatic information as a hierarchy in predicting flood flows in ungauged132

basins within the proposed hierarchical model.133

In this study, we propose a spatiotemporal hierarchical modeling framework by us-134

ing hydroclimatic information and basin characteristics as a hierarchy for improving flood135

prediction in ungauged basins under natural and controlled types over the CONUS. For136

demonstration, we consider NWM streamflow prediction as a basin-specific predictor,137

but one could replace this with meteorological forcings (see the discussion for additional138

details) or any other hydrologic model predictions. The proposed hierarchical model is139

evaluated rigorously using a spatio-temporal validation based on its ability to predict140
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in 2,674 gauges, which include both natural and controlled basins, over the CONUS. The141

manuscript is organized as follows: We first describe the datasets used and the formu-142

lation of the hierarchical model. Then the results are presented from overall model per-143

formance analyses through rigorous temporal and spatial validation, which is then fol-144

lowed by a seasonal analysis of the explained variance from each predictor and by a dis-145

cussion. Finally, we summarize the key findings from the study along with implications146

for future work in improving flood prediction in ungauged basins.147

2 Hydroclimatic Data and Hierarchical Model Setup148

To develop a hierarchical model for predicting flood flows in ungauged basins, we149

have obtained several predictors that include daily streamflow from NWM, basin char-150

acteristics and hydroclimatic information. Details on the procedure for obtaining the pre-151

dictors and USGS gaging stations are described below in the following sections.152

2.1 National Water Model153

The National Oceanic and Atmospheric Administration (NOAA) National Weather154

Service (NWS) Office of Water Prediction (OWP) have implemented the operational Na-155

tional Water Model (NWM) to support the operational activities of NWS River Fore-156

cast Centers, the Federal Emergency Management Agency and other government agen-157

cies (National Research Council, 2006). A primary goal of the NWM development is to158

provide flood predictions for any given riverine location within the coterminous United159

States (CONUS). The NWM is a continental-scale distributed high-resolution hydrologic160

model that produces streamflow predictions for 2.7 million stream reaches across the con-161

tiguous United States (CONUS), based on a variety of data ranging from radar-gauge162

observed precipitation to numerical weather prediction (National Research Council, 2006).163

The NWM relies on the Weather Research and Forecasting hydrologic model (WRF-Hydro)164

architecture (Ghotbi et al., 2020) and provides streamflow predictions extending up to165

30 days in advance over the CONUS. NWM provides these predictions at gauged loca-166

tions but still consists of errors, which depend on both hydrologic process representa-167

tion and forcing errors (Viterbo et al., 2020). Furthermore, NWM predictions lack spa-168

tial correlation between predictions available at ungauged locations and nearby gauged169

locations, particularly in estimating high flows because of the spatially uninformed model170

parameters (Brunner et al., 2020; Tijerina et al., 2021). Johnson et al. (2023) highlighted171

that the NWM exhibits systematic errors across space and depends on basin character-172

istics and hydroclimatic information. Due to these shortcomings, studies focusing on im-173

proving the NWM forecasts have been emerging recently using various post-processing174

methods (Frame et al., 2021). For this study, we consider daily flows from NWM (QNWM)175

as a predictor in the hierarchical model.176

2.2 CONUS Basin selection177

Co-located NHDPlusV2 COMIDs and USGS National Water Information System178

(NWIS) gages are extracted from the Routelink file associated with NWM v2.0. The “dataRe-179

trieval” R package (Hirsch & De Cicco, 2017) is then used to identify which of these basins180

have at least 10 years of observed daily flows between 1993 and 2018 for evaluating the181

proposed hierarchical model. Once identified, streamflow data are extracted from NWIS182

by gage ID using “dataReteival”, and NWM v2.0 data are extracted by COMID using183

“nwmTools” (https://mikejohnson51.github.io/nwmTools). For the NWM estimated184

flows, hourly data are converted to daily mean flows. Drainage area for each basin is ob-185

tained from the GAGESII USGS database. Additionally, the GAGESII dataset classi-186

fies each USGS station’s flow into controlled/natural based on the 2009 hydro-climatic187

network (HDCN) database and we consider that classification for developing the hier-188

archical modeling in the region. A coastal classification is applied to those catchments189
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within 150 km of the coastline, as these areas are susceptible to impacts from tides (F. Zhang190

et al., 2018; Ramaswamy et al., 2004). In total, we consider 2,674 controlled USGS gages,191

451 natural gages, and 1,150 coastal gages spanning 1,508 basins (at HUC08 levels) and192

they are grouped into natural, controlled and coastal basins across the 18 HUC02 (Fig-193

ure 1). As the focus of this study is on improving flood flows in ungauged basins, we con-194

sider only the above-normal streamflow condition, which is defined as the flow above the195

67th percentile of daily flow in a given station. Thus, we obtain observed daily high stream-196

flow (Q) (above 67th percentile of daily flow) from NWIS, which will be the predictand197

in setting up the hierarchical model. The corresponding day’s daily streamflow from NWM198

reanalysis runs (v2.0) is considered as a predictor (QNWM) for the selected basin.199

2.3 Upstream Reservoir Storage200

Since streamflow is regulated by reservoirs to meet downstream water demand (Kumar201

et al., 2022), we consider cumulative upstream reservoir storage of a USGS gaging sta-202

tion as a predictor in the hierarchical model. Studies have shown that reservoir storage203

and their retention time significantly alter the downstream flow characteristics (Chalise204

et al., 2021). The dams associated with each gage are obtained from the 2019 United205

States Army Corp of Engineers National Inventory of Dams (NID) database (https://206

nid.usace.army.mil) and the cumulative upstream reservoir storage are obtained for207

each gage. We use the “Maximum Storage” from the NID database for calculating the208

cumulative upstream storage (S) (USACE, 2022). We also obtain the contributing area209

above each dam from NID.210

2.4 Hydroclimate Data211

In addition to dam attributes, we consider the following hydroclimatic attributes212

as predictors for the hierarchical model: a) aridity index b) mean monthly potential evap-213

otranspiration and c) phase difference between moisture (precipitation) and energy (po-214

tential evapotranspiration).215

Monthly potential evapotranspiration (PET ; kg/m2) and precipitation (P ; kg/m2)216

are obtained from phase 2 of NLDAS for January 1993 through December 2018 (https://217

disc.gsfc.nasa.gov/datasets?keywords=NLDAS). For the contributing area to each218

gage, the mean monthly PET and P are computed. The availability of moisture (i.e., pre-219

cipitation) and energy (i.e., PET) together within the seasonal cycles influence the stream-220

flow estimation (Petersen et al., 2012, 2018). The aridity index (AI) is calculated as the221

ratio of mean annual PET to mean annual P (PET/P̄ ) over each basin. is used since222

arid basins are more difficult to calibrate and estimate streamflow compared to humid223

basins (Sankarasubramanian & Vogel, 2002).224

The phase difference between moisture and energy is computed as the Spearman225

correlation between the monthly precipitation and potential evaporation (ρ(P, PET ) ).226

The Spearman correlation coefficient is determined for each NLDAS2 cell using the mean227

monthly PET and P over the 26 years and the basin-wide mean ρ is computed. If ρ is228

negative (positive), it indicates moisture and energy are out of phase (in phase), which229

could result in more (less) potential for runoff generation from the basin. We also con-230

sider mean monthly PET at basin level as an additional predictor in the hierarchical model.231

It is important to note that AI and ρ are not time-varying predictors and quantify the232

climatological interaction between moisture and energy.233

2.5 Land use data234

Since our interest is in developing flood predictions, land use, particularly urban-235

ization, can play an important role in generating runoff and evapotranspiration (Merz236

et al., 2021). Urban imperviousness represents developed surface (e.g., roads, driveways,237
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Figure 1. Spatial distribution of 3,640 USGS stream gages classified as “controlled” and “nat-

ural” based on Hydro-Climatic Data Network (HCDN). These sites are also classified as coastal

sites if they are within 150 km distance of a coastline. The HUC02 regions are grouped into three

regions based on regional hydroclimatology.

sidewalks, parking lots, rooftops) that limit the infiltration into the underlying soil and238

increase the frequency and intensity of downstream runoff (Caldwell et al., 2012). Thus,239

to reflect the development in the basin, urban imperviousness is derived from the U.S.240

Geological Survey (USGS) National Land Cover Database (NLCD) 2019 Impervious data241

layer that quantifies the percent developed impervious surface in each pixel (https://242

www.mrlc.gov). We also use the NLCD 2019 land cover layer to identify the percent-243

age of each basin that is categorized as urban (Anderson level 1 value 2). Additionally,244

we also identify 7% of NWIS sites as urban sites based on the Census Bureau definition245

with densely settled urbanized areas of 50,000 or more people using the 2020 Census data246

(https://www2.census.gov/geo/tiger/TIGER2020).247

2.6 Spatiotemporal Hierarchical Model (STHM) - Formulation248

We use spatial and temporal hierarchies to develop the model for flood prediction249

in ungauged basins. We divide the day-of-year into 37 10-day windows and we denote250

each 10-day window, τ , for the temporal hierarchy. We categorize the 18 HUC02 regions251

into three groups/levels with each group, j, denoting the spatial hierarchy (Figure 1).252

These three groups are based on empirical hydroclimate similarity considering aridity,253

regional landform, climate, and ecosystems (Heidari et al., 2020). Thus, all sites are nested254

under each spatial group k, and each time step is nested under the spatial group k.255

To predict the streamflow (Q) at a specific site in a basin i at daily time step t within256

each temporal cluster τ and spatial cluster k, we have basin-specific terms/coefficients257

and fixed terms (i.e., coefficients are common to all sites under the same spatial and tem-258

poral cluster). The fixed terms include predictors aggregated mean values at the basin259

(HUC08, j) level, and can be separated into two groups: (1) no variation over time, and260
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(2) varying over time. Predictors not varying temporally include the spearman corre-261

lation indicating moisture and energy being in-phase or out-phase (ρ), the total dam stor-262

age (S), the aridity index (AI), and the percent impervious surface (Imp). These pre-263

dictors share the same coefficients with the same 10-day widow and spatial group (i.e.264

same i and j value). Predictors varying over time include mean potential evapotranspi-265

ration in the corresponding basin (PET ) within the same 10-day windows, and HUC08266

level previous 3-day area weighted observed streamflow (Q3d
t ). For PET, the coefficients267

will also vary among different months within the same 10-day window and spatial group.268

For Q3d
t , the coefficients will also vary among different basins (HUC08).269

Thus, for each τ -th 10-day window,

Qt(τ,i,j,k) = Qst(τ,i,j,k) + εt(τ,i,j,k) (1)

at each site level (i):270

Qt(τ,i,j,k) = β0(τ,i,j,k) + β1(τ,i,j,k)Q
NWM
t(τ,i,j,k) + β2(τ,i,j,k)Q

3d
(t(τ,i,j,) (2)

The intercept term β0(τ,i,j,k) in equation (2) is estimated for each τ -th time win-
dow at HUC08 level (j) using mean potential evaporation in the corresponding basin (PET)
within the same τ -th 10-day windows (PET). Thus, at each HUC08 level (j):

β0(τ,i,j,k) = β00(τ,i,j,k) + β01(τ,j,k)PET(τ,j,k)) (3)

The intercept term β00(τ,i,j,k) in equation (3) is estimated at the grouped HUC02
level (k, spatial group shown in Figure 1)

β00(τ,i,j,k) = β000,τ + β001,τAIi(j,k) + β002,τImpi(j,k) + β003,τρi(j,k) (4)

Thus, the proposed spatio-temporal hierarchical model has the final form as fol-
lows:

Qt(τ,i,j,k) = β000,τ + β1(τ,i,j,k)Q
NWM
t(τ,i,j,k) + β2(τ,i,j,k)Q

3d
t(τ,i,j,k)+

β01(τ,j,k)PETτ(j,k) + β001,τAIi(j,k)+

β002,τImpi(j,k) + β003,τρi(j,k) + εt(τ,i,j,k)

(5)

QNWM is the NWM daily flow; ρ is the spearman correlation indicating moisture271

and energy being in-phase or out-phase (ρ); PET is the mean 10-day potential evapo-272

ration as mentioned above; S is the upstream total dam storage; AI is the aridity index,273

and Imp is the percent impervious and ε is the residual.274

Since we are interested in estimating the flow at ungauged basins, we represent the275

antecedent conditions based on previous 3-day average flow at the HUC08-level. Thus,276

if there are ‘m’ gauged basins within the HUC08, for a given basin, then we obtain the277

depth of runoff for the previous 3 days for all the ‘m’ basins. This 3-day average depth278

of runoff is then multiplied by the drainage area of the basin to get the basin-relevant279

average depth of runoff, and then average them 3 days over ‘m’ basins to get previous280

average 3-day flows. For a gauged basin, of course, one can simply use the 3-day aver-281

age flows as a predictor instead of the area-weighted flows. Q3d
t is HUC08 level, previ-282

ous 3-day area weighted observed streamflow. The moving average is calculated as:283

Q3d
t =

1

3
(QA

t−3 +QA
t−2 +QA

t−1) (6)

Q3d
t on the same day is calculated as:284
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QA
t =

∑
Ai

∑ Qt,i

Ai
(7)

where Qt,i is the streamflow at i-th basin within the same HUC08 at date t, A is285

the corresponding drainage area of the i-th basin. t is the corresponding date of the pre-286

diction.287

Thus, equation (5) is set up for nine groups for three basin types (i.e., natural, con-288

trolled and coastal) for three groups (Figure 1). For each of the nine models, coefficients289

are estimated over each 10-day window. To determine the best-fitted model for each group,290

we select the variables using the ℓ1-penalized maximum likelihood method proposed by291

Groll and Tutz (2014) and computed the coefficients using the R package ‘glmmLasso’292

developed by Schelldorfer et al. (2014).293

2.7 Model assessment and validation294

Given that we are interested in assessing the performance of the hierarchical model295

for estimating flows in ungauged locations, we consider both temporal and spatial val-296

idation procedures for assessing model performance. The temporal validation is performed297

to evaluate the STHM performance over a period different from the calibration, whereas298

the spatial validation is performed to evaluate the STHM for application in ungauged299

basins. The temporal validation is performed by calibrating the STHM model using the300

data from 1993 to 2008 with the remaining data from 2009 to 2018 being considered for301

validation. For spatial validation, we use the k(20)-folder cross-validation method (Browne,302

2000). We treat 5% of locations as ungauged within their hierarchical group, fit the STHM303

for the remaining 95% of stations for the period 1993 and 2018, and then evaluate the304

SHTM performance for the period 2009 to 2018 for the left-out 5% of the basins. This305

process of leaving out the 5% basins is repeated until all the considered basins are left306

out and evaluated in a cross-validation mode.307

The Nash–Sutcliffe efficiency (NSE) is widely used to assess the predictive skill of308

hydrological models (McCuen et al., 2006). In a perfect model with an estimation er-309

ror variance equal to zero, the resulting NSE equals 1; a model with an estimation er-310

ror variance equal to the variance of the observed time series, the corresponding NSE311

equals 0. Conversely, an NSE less than zero occurs when the observed mean is a better312

predictor than the model. The model performance criteria recommended by Moriasi et313

al. (2007) are used for evaluating the improvement’s performance. Model prediction is314

considered “acceptable” if NSE scores are greater than 0.5, and considered “good” if the315

NSE is above 0.67.316

To evaluate the impact of each predictor in predicting streamflow, we use the rel-317

ative importance estimator proposed by Grömping (2007), which decomposes the explained318

variance (r2y(xj |x1,...,xj−1,xj+1,...,xp)
, i.e., r2β) of observed streamflow to each predictor. Model319

performance from the temporal validation alone is considered for analyzing the signif-320

icance of each selected predictor. In general, the whole model variance R2
y(x(1,)x2,...,xp)

321

is the sum of r2y(xj |x1,...,xj−1,xj+1,...,xp)
which is the correlation between y and that por-322

tion of xj which is uncorrelated with the remaining predictors of j-th predictor xj with323

the remaining predictors. Thus,324

R2
y(x1,x2,...,xp)

=

p∑
j=1

r2y(xj |x1,...,x(j−1),x(j+1),...,xp)
(8)

r2y(xj |x1,. . . ,xj−1,xj+1,. . . ,xp)
= R2

y(x1,x2,. . . ,xp)
−R2

y(x1,. . . ,xj−1,xj+1,. . . ,xp)
(9)
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3 Results and Analysis325

We first evaluated the STHM performance from the temporal validation (Figure326

2) and then provided a detailed analysis on the role of each predictor (Figure 3). Fol-327

lowing that, we analyzed the performance of STHM in predicting flood flows in ungauged328

basins based on spatial validation (Figures 4-8).329

Figure 2. Cumulative distribution of high flow NSE from the NWM and NWM-HM ap-

proaches, separated by basin classification, during the validation period (2009-2018).

3.1 STHM Performance on CONUS Flood Prediction330

The STHM parameters were estimated over the calibration period (1993-2008) only331

for high flows, which was defined as the 67th percentile of observed daily streamflow for332

a given day obtained from the STHM predicted flows from 2009 to 2018. Thus, all the333

reported results were only for high flows by considering when the observed flows are above334

the respective day’s 67th percentile flow. The validation results, presented as the cumu-335

lative distribution of NSE, showed significant improvement in high streamflows/flood flows336

across the CONUS compared to the flood flows estimated from NWM streamflow reanal-337

ysis (Figure 2). Figure 2 also provided the improvements in NSE from STHM for the338

three groups of basins – natural, controlled and coastal – over the CONUS. Overall, STHM339

improved NSE by 0.1 for more than 65% of sites under temporal validation (Figure 2).340

This suggested that STHM not only reduced the error in NWM systematically but also341

improved the prediction using a limited number of parameters estimated by pooling NWM342
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data and other characteristics from the sites in the grouped region (Figures 2). Over-343

all, during the validation period, 62.7% of controlled basins and 68.4% of natural basins344

improved better in predicting high flows compared to NWM reanalysis prediction of high345

flows (Figure 2). The improvement in natural basins was mainly dependent on climatic346

factors, hence exhibiting better performance. In contrast, controlled basins were more347

complex as their observed streamflow depends on the reservoir operation policies (Turner348

et al., 2020; Zhao & Cai, 2020). Coastal basins also showed limited improvements from349

the STHM as the observed high flows are influenced by high tides (Ramaswamy et al.,350

2004; F. Zhang et al., 2018). The performance of STHM in improving NWM reanaly-351

sis runs was summarized over the CONUS and by season (Figure S1). Overall, our model352

improved mean NSE by at least 0.1 during the validation period for more than 60% of353

the sites (Figure S1).354

3.2 Importance of predictors in the STHM355

Overall, the STHM model with all selected predictors (QNWM, ρ, PET , AI, Q3d,356

Imp) explained more than 74.8% of the variance of the observed high flows during the357

validation period (Figure 3). To be specific, the STHM explained the observed flow vari-358

ance by 74.4%, 76.3%, and 71.1% for controlled, natural, and coastal basins respectively359

(overall average values). The explained variance by each predictor in the STHM equa-360

tion (1) in improving NWM streamflow can be decomposed using the relative importance361

estimator proposed by Grömping (2007). Based on the decomposed explained variance362

(r2β ), NWM reanalysis streamflow accounts for more than 55% of the variance of the ob-363

served streamflow on average across the CONUS. Other predictors at the HUC08 level364

explained an additional 18% to 35% of observed streamflow variance (Figure 3).365

Previous three-day areal-weighted streamflow (Q3d)366

Previous 3-day streamflow (Q3d) was the most important predictor (excluding QNWM)367

in controlled and coastal basins, explaining an average 18% and 16% variability of stream-368

flow, respectively (Figure 3). In natural basins, Q3d is the second most important pre-369

dictor, and explained 12% of the variability in streamflow but showed strong seasonal-370

ity over all the regions (Figure 3). Q3d showed higher importance in controlled basins371

than in natural basins as dam operations highly regulate the observed flow (Gierszewski372

et al., 2020). Based on the variance explained by Q3d , coastal basins showed pronounced373

seasonality particularly in the West region. Further, Q3d was more important in warmer374

regions than in colder regions as higher evapotranspiration results in a more varying an-375

tecedent conditions. The coefficient of Q3d showed strong seasonal changes in the warmer376

regions, but did not have clear seasonality in colder regions since they did not experi-377

ence much change in antecedent conditions due to reduced evapotranspiration.378

Aridity index379

Aridity index (AI) proved to be an important variable in improving the model pre-380

dictions in warmer regions (e.g., Group 1, Figure 3). AI represents the long-term bal-381

ance between water and energy and showed significant seasonality in explaining the vari-382

ance of high flows for all three regions (Figure 3). Among the natural basins, Group 3383

(Group 2) basins had the least (most) improvement when accounting for aridity index,384

since most basins were humid and had little (significant) spatial variability in the arid-385

ity index. AI also played an important role in the west, particularly during the spring,386

which reflects the seasonal water availability from snowmelt (Gudmundsson et al., 2016).387

In the case of controlled basins, a similar seasonality pattern was observed in all three388

regions, but the explained variance was relatively less, which was to be expected as the389

controlled basins dampen the natural hydroclimatic variability (Figure 3). In coastal basins,390

the seasonal variation in AI was minimal. Overall, AI explained NWM streamflow vari-391
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Figure 3. Relative importance of selected predictor variables, expressed as % variance of

streamflow explained by the hierarchical model, for each month for (A) controlled, (B) coastal,

and (C) natural basins over the grouped hydroclimatic regions (Group 1, 2, 3). Note that NWM

flow was not included here.
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ability as around 12-15% for the Group 1 basins all through the year and 2-4% variabil-392

ity for the other two groups.393

Phase correlation between moisture (precipitation) and energy (PET)394

The phase correlation between energy and moisture (ρ) explained a smaller amount395

of streamflow variability but showed strong seasonal dynamics across the CONUS. For396

controlled and natural basins in Group 1 and 2, the phase correlation was less impor-397

tant in summer months, while in Group 3, the phase correlation was more important in398

summer months. Since ρ was estimated by the correlation between monthly PPT and399

PET, it represents the co-occurrence of energy (PET) and moisture (precipitation) and400

the explained variance by it indicated their role in influencing the runoff. The ρ was gen-401

erally negative during the summer months, and it was positive over the Southeast dur-402

ing the winter months (Petersen et al., 2018, 2012). Basins having negative correlation403

(i.e., moisture and energy being out of phase) exhibit strong seasonality in streamflow404

with increased potential for runoff and they were difficult to high streamflows. Further,405

the spatial variability in phase correlation was largest (least) during the winter and fall406

months over Group 1 and 2 (Group 3). On the other hand, phase correlation variabil-407

ity was the largest during the summer months over the Group 3 basins. Hence, it ex-408

hibits higher explained variance in improving the NWM streamflow during the summer.409

Explained variance by ρ over the coastal basins was around 2-4% across all the regions410

and does not seem to play a significant role in improving the high flow prediction. One411

potential reason for this was that the most coastal basins are controlled, hence they had412

limited role due to phase correlation.413

Mean 10-day PET414

Mean 10-day PET (PET) represented the amount of energy available at a given415

time and it displays significant seasonality in the variance explained in improving the416

NWM high flows (Figure 3). As expected, for controlled basins, (PET) had a minimal417

role in improving the NWM prediction seasonally over all three regions. In Group 3, us-418

ing the mean monthly PET in the STHM had minimal impact on improving NWM stream-419

flow, only explaining 2% of the variance for all three different types of basins. This is420

expected since Group 3 covers the northern regions, which exhibited minimal spatial (PET)421

variability in natural basins. The other two regions (1 and 2) exhibited significant spa-422

tial variability in PET, and as a result, including it in the STHM explained around 12%423

of the variance of observed streamflow for natural basins with significant seasonality, par-424

ticularly during the summer. In the case of coastal basins, PET explained the observed425

high flows better during the winter and in the fall over Group 1 and 2. This was primar-426

ily due to the latitudinal gradient in (PET) over these two regions during those seasons.427

Total storage and impervious surface428

As expected, the total upstream artificial/reservoir storage in the basin played an429

important role in controlled and coastal basins, but not in natural ones. Regression co-430

efficients of total upstream storage showed a positive correlation with streamflow through-431

out the year for the three grouped regions (Figure 3). In controlled basins, total stor-432

age in both Group 1 and 2 showed significant seasonality in explaining observed stream-433

flow particularly during the summer months as these are the months significant floods434

occur due to in-phase seasonality (Midwest), snowmelt and hurricanes. However, in the435

coastal basins, explained variance from total upstream storage indicated strong season-436

ality in explaining NWM streamflow, particularly in the summer, explaining around 3-437

9% variance. Explained variance by the basin imperviousness did not show strong sea-438

sonal variability except in the Group 3 controlled basins. Overall, imperviousness accounted439

for 2-4% variance in explaining high flows for coastal basins.440
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3.3 Potential for STHM in predicting high flows in ungauged basins441

Figure 4. Cumulative distribution of high flow NSE from the NWM and NWM-HM ap-

proaches, separated by basin classification, over the period from 1993-2018. These were computed

by treating each basin as an ungauged basin under k-fold cross-validation for each basin type.

Given NWM daily streamflows are available for any ungauged locations within the442

CONUS and other predictors of the STHM (i.e., basin characteristics and hydroclimatic443

information) could be estimated for any location based on openly available data sources,444

we evaluated the potential for flood prediction for any ungauged basins using STHM.445

Since STHM could not be evaluated for ungauged basins with no streamflow data, we446

performed k(20)-fold cross-validation under which 5% of the basins were left out and the447

remaining 95% of the basins were used for parameter estimation of the STHM. This pro-448

cess was repeated until all the basins are evaluated at least once in the “ungauged” pre-449

diction mode. Thus, this spatial cross-validation experiment was similar to evaluating450

the STHM in an “ungauged” prediction mode. The cross-validation experiment showed451

promising results for the “ungauged” basin, with 61% of the natural basins improved to452

an “acceptable streamflow prediction” (NSE>0.5), and 63% of natural basins improved453

to a “good streamflow prediction” (NSE>0.67) (Figure 4).454

Seasonal performance of STHM under “ungauged” prediction mode455

Spatially, STHM improved the majority of “ungauged” basins across all groups (Fig-456

ure 5). The biggest improvement occurred in colder regions, with improvements in av-457
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Figure 5. (a) maps the difference in NSE between HM and NWM daily flow by treating 5%

sites as “ungauged” using k(20)-folder cross-validation from 1993-2018. Positive (Negative) values

indicate the hierarchical model (NWM) better predicted high flows. (b) plots seasonal perfor-

mance, indicated as % of sites with improved NSE, shown in for the three regions over the four

basin classifications. Note that DJF, MAM, JJA, and SON are the initials for month, represent-

ing spring, summer, fall, and winter.
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Figure 6. Performance of the NWM v2.0 reanalysis data compared to the hierarchical model

for daily high flows by treating 5% sites as “ungauged” using k(20)-folder cross-validation from

1993-2018. in (a) controlled, (b) natural, (c) coastal, and (d) urban basins in each region. Urban

basins are defined as basins containing 50,000 or more people based on the 2020 U.S. Census.

High flows are defined when the observed daily flows are greater than the 67th percentile of daily

flow.
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erage NSE by at least 0.2 for more than 30% of the sites. The largest improvements oc-458

curred in the northern basins and along the Appalachian Mountains, however significant459

systematic error persisted in the southeastern basins (Figure 5a). The differences in the460

hierarchical model and the NWM performance also showed seasonal differences (Figure461

5b, Figure S2). The highest overall improvement of the STHM occurred in the winter462

(December/January/February, or DJF) and spring (March/April/May, or MAM) sea-463

sons across the CONUS, accounting for 71% of the improvement throughout the year.464

HUC02-regions 14 and 17 (Upper Colorado and Pacific Northwest) had shown the small-465

est springtime improvement (MAM, Figure S2), while basins in HUC02-regions 7 and466

9 (Upper Mississippi and Souris-Red-Rainy) had the worst winter performance (DJF,467

Figure S2). The largest improvement of NSE in Group 3 occurred in summer (June/July/August468

or JJA, Figure S2). The largest improvement of NSE in Group 1 occurred in fall (Septem-469

ber/October/November, SON, Figure S2) and the coastal basins had the highest NSE470

improvement overall. However, Southeast coastal basins showed limited improvement,471

as most basins did not improve over all the seasons. Furthermore, there was no signif-472

icant improvement in skill between controlled and natural basins among different sea-473

sons (Figure S2). But, in Group 3, urban and coastal basins showed significant improve-474

ment in skill in all seasons but fall (SON, Figure 5b).475

Performance of STHM for different basins types under “ungauged” mode476

Among different regions, Group 3 had the highest percentages of basins with sig-477

nificant NSE improvement; Group 1 had the least percentage of sites improved for con-478

trolled and natural basins (Figure 5). The primary reason for limited improvement over479

the west (except Region 17 - Pacific Northwest) was that most basins are arid, and the480

runoff has strong seasonality, hence they are difficult to model (Sankarasubramanian and481

Vogel, 2003). Group 2 had the minimum improvement among coastal and urban basins.482

Contrastingly, Group 1 outperformed other regions under coastal and urban basins, re-483

spectively (Figure 5). Overall, except for Group 2 coastal basins, the STHM improved484

the NWM flood prediction for over 56% of the basins in that category (Figure 6). Ba-485

sically, STHM performance improved NWM prediction from 56% to 75% of the basins486

under each category. It was important that STHM did not improve NWM performance487

in the remaining 25-45% of the basins. In the discussion section, we provided details and488

experiments on how to improve STHM in those basins along with challenges in improv-489

ing the performance of STHM in coastal and urban basins.490

Cross-validating the STHM in predicting flood flows in “ungauged” mode showed491

63% of natural basins, 39% of coastal basins, and 26% of the controlled sites have NSE492

above 0.67 from the STHM (Figure 6). This was a significant improvement in compar-493

ison to the NWM reanalysis runs. The cross-validation results also showed a similar spa-494

tial pattern (Figure 5) with NSE improving in 63% of overall basins (Figure 6). The high-495

est NSE improvement was along the Appalachian Mountain range (Figure 5). The hi-496

erarchical model improved the overall NSE for more than 68%, 63%, and 49% of sites497

in controlled, natural, and coastal basins respectively (Figure 6b). This shows potential498

in utilizing STHM for flood prediction in ungauged locations as the hierarchical model499

uses both NWM streamflow, basin characteristics, and hydroclimatic information by leav-500

ing out the basin in the parameter estimation process. It was important to note that the501

previous 3-day streamflow (Q3d) was the only predictor that depends on observed stream-502

flow. We had considered a simple drainage-area method to estimate the previous 3-day503

streamflow for an ungauged location for quantifying antecedent conditions. We discussed504

alternate approaches for improving that estimate in the next section.505

–17–



manuscript submitted to Water Resources Research

Figure 7. Performance of the NWM v2.0 reanalysis data compared to the hierarchical model

for daily high flows based on HUC02 levels (instead of spatial groups shown in Figure1) for

selected groups. Data defined by treating 5% of the locations sites as “ungauged”and using a

k(20)-folder cross-validation during the period (1993-2018). The results are grouped to be compa-

rable with Figure 6.

Figure 8. Performance of the NWM v2.0 reanalysis data compared to the hierarchical model

for daily high flows using a site-specific model (as a proof of concept) by treating 5% sites as “un-

gauged” locations using k(20)-folder cross-validation during the period (1993-2018), the results

are grouped to be comparable with Figure 6.

–18–



manuscript submitted to Water Resources Research

Potential for improving the performance of STHM for gauged and un-506

gauged basins507

The temporal (Figures 2-3) and spatial (Figures 4-??fig:fig6) validation results shown508

from the application of STHM predicted the floods using higher-level three spatial groups509

as shown in Figure 1, which was implemented primarily to support a continental scale510

flood prediction and to reduce the required computation time. (Note that computing all511

the groups’ cross validation costs approximately 6 hours.) Even though the STHM im-512

proved the NWM prediction for more than 55% of the basins, it was important to note513

that the STHM did not improve the flood prediction for the remaining 45% of basins in514

few groups (e.g., Group 1 natural basins, and Group 2 coastal basins) (Figure 6). This515

was primarily because the temporal and spatial hierarchies defined under those groups516

did not aid in improving the model performance as the spatially and temporally vary-517

ing intercept term (β0(τ,i,j,k)), in equation (1) was not explained by the predictors de-518

fined in next two-level hierarchies (equations (2) and (3)). This implies that the spatio-519

temporal variability of β0(τ,i,j,k) was too large or the predictors in the next hierarchies520

do not correspond to that variability. To demonstrate this point, we considered two ex-521

periments for three moderately performing categories – Group-1 controlled and natu-522

ral and Group 2 coastal – under k(20) spatial cross-validation. The first experiment was523

performed by fitting the STHM across basin of similar type (i.e., natural/ controlled/524

coastal) in a given HUC02 (eight HUC02s in Group 1 and four HUC02s in Group 2) un-525

der spatial validation and the results were aggregated to the group level (Figure 7). The526

second experiment was performed by fitting the STHM for each basin under spatial val-527

idation and the results were aggregated to the group level (Figure 8). Thus, in the sec-528

ond experiment, there won’t be any hierarchies as defined by the equations (2) and (3)529

and the intercept term, β0(τ,i,j,k), was simply left as a basin specific-term varying every530

10 days.531

From Figure 7, the performance of STHM fitted at HUC02 levels significantly im-532

proved model prediction performance as a percentage of improved sites for the three se-533

lected groups compared to the performance shown in Figure 6. One could argue this comes534

from the increased number of parameters fitted in explaining the spatio-temporal vari-535

ability of β0(τ,i,j,k). However, this was daily high streamflow prediction, the number of536

data points (i.e., daily high streamflow) available for fitting the STHM across the fitting537

period (1990-2008) was quite large, hence we didn’t interpret this as a result of overfit-538

ting. It implied that the spatio-temporal hierarchies defined in equations (2) and (3) are539

not explained by the selected predictors at the broad group level under that category.540

Under the second experiment, the performance of STHM further improved when the STHM541

was fitted with no hierarchies, but the performance of the basin was still evaluated un-542

der k(20)-folder spatial cross-validation (Figure 8). This implied that observed stream-543

flow at a particular site was not used for fitting the parameters in equation (1), only the544

remaining 80% of those basins in that category was used for fitting the STHM for eval-545

uating the model at a given site. From Figure 8, it was clear that the performance of STHM546

further improved compared to Figure 7. Figure 8 also could also be improved further by547

fitting the STHM directly at each site without spatial validation and the hierarchies in548

equations (2) and (3). We did not perform that experiment as that model will not have549

applicability for ungauged basins. Thus, by redefining the group or regions in fitting the550

STHM, the performance of STHM could be improved further. However, this improve-551

ment also comes with additional limitations. The computational time for running the552

STHM also increased by 6 times and 15 times for obtaining the NSE in Figures 7 and553

8 respectively. Another limitation of at-site evaluation of STHM (Figure 8) was that it554

limits the model applicability for ungauged basins as it will require obtaining the param-555

eters by grouping of basins that are similar to the ungauged basin and developing such556

grouped basin to estimate the STHM for any ungauged basin will be a humongous com-557

putational task. Overall, the improved performance of STHM that we observed in Fig-558

ures 7 and 8 come as a trade-off in fitting the model for regional performance versus at-559
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site performance. Such issues had been addressed in the context of regional versus at-560

site calibration of hydrological models (Fernandez et al., 2000). We discussed these is-561

sues further in the Discussion.562

4 Discussion563

This study focused on developing a spatio-temporal hierarchical model (STHM)564

for flood prediction in gauged and ungauged basins across the CONUS. For this purpose,565

the study used hydroclimatic (e.g., AI, PET) information and basin characteristics (e.g.,566

imperviousness) along with NWM predicted streamflow to estimate the floods in nat-567

ural, controlled and coastal basins. The proposed STHM was evaluated under split-sample568

temporal validation (Figure 2) to understand the role of different multi-level predictors569

(Figure 3) and using k(20)-fold spatial validation (Figure 4) for understanding the util-570

ity in flood prediction in ungauged basins over three grouped regions. Both temporal and571

spatial validation indicated the STHM ability to improve NWM streamflow prediction572

among different basin types (Figure 2, Figure 4). The spatial cross-validation results in-573

dicated the robustness of the model in predicting ungauged basins. The STHM greatly574

improved the performance of NWM predicted high streamflow for more than 52% of basins,575

resulting in a 0.1 improvement in NSE. This improvement is important for flood fore-576

cast systems looking to provide accurate and reliable information to the public. The model577

improved most in control and natural basins, particularly, in Group 2 and 3 during colder578

seasons (SON, DJF). The underperformance in coastal basins could be influenced by lu-579

nar tides forcing a lagged runoff, particularly on the east Coast (Cerveny et al., 2010).580

However, compared to previous studies focusing on improving long-term mean annual581

streamflow predictions (Alexander et al., 2019a, 2019b) and natural basin alone (Frame582

et al., 2021), our model showed strong performance in improving finer-scale, daily stream-583

flow across the CONUS. Instead of including many lagged variables from NWM as pre-584

dictors (e.g., Woznicki et al., 2019), our model only selected a few key drivers of hydro-585

climate that are well founded in the literature on streamflow prediction and considers586

the concurrent NWM streamflow prediction. Further, the proposed STHM also provides587

improved predictions for both controlled and coastal basins. This gives our model the588

flexibility to be easily expanded to predict floods at the CONUS scale for both gauged589

and ungauged basins.590

It is important to note that STHM predictions performed worse than the original591

NWM streamflow in 25%-45% of basins (Figure 4). To address concerns regarding this,592

we performed two experiments that fitted the STHM at each HUC02 (Figure 7) and for593

individual basins (Figure 8) for Group 1 (controlled and natural) and Group 2 coastal594

basins. This resulted in a significant improvement with most basins performing better595

than NWM performance. This indicates that poor performance of STHM in Figure 4596

is primarily due to the trade-off in improving the regional performance of the model at597

the cost of at-site performance (Fernandez et al., 2000). However, fitting the STHM purely598

for at-site would limit its ability to predict in ungauged predictions. In a traditional hi-599

erarchical modeling approach, this would be considered as an “unpooled regression” model600

(Das Bhowmik et al., 2020; Devineni et al., 2013) as such a model will result with no re-601

gional modeling terms. It can be easily understood that post-processing a model’s flow602

would naturally result in improved model performance as regression is expected to re-603

duce the model bias. Thus, our proposed STHM could be fitted after a reasonable group-604

ing of basins or HUC02- regions so that the resulting regional model parameters (i.e.,605

equations 2 and 3) would provide useful information for ungauged basins prediction.606

It is important to note that our model mainly relies on basin characteristics (e.g.,607

imperviousness) and hydroclimatic information (e.g., AI, phase correlation), which could608

be obtained based on widely available database mentioned in the data section for any609

ungauged basin. However, obtaining antecedent streamflow conditions, Q3d, of the basin610

is difficult for ungauged basins. Hence, in our study, we obtained Q3d purely based on611
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gauged basins available at the HUC08 level to get the depth of runoff and convert it to612

runoff based on the ungauged basins’ drainage area (equations 5 and 6). However, this613

step could be eliminated for gauged basins as one could use the observed 3-day stream-614

flow itself for estimating the antecedent conditions. We also would like to mention that615

this 3-day could be improved using the stage information available from remote-sensing616

satellites, e.g., the Global Flood Detection System ( https://www.gdacs.org/flooddetection/).617

This also could also potentially extend the STHM into a forecasting model if one were618

to use the real-time NWM forecasts. Thus, STHM could be utilized for real-time flood619

forecasting for both ungauged and gauged basins.620

We utilized NOAA’s NWM reanalysis runs for evaluating the proposed STHM abil-621

ity in predicting the ungauged basins as these are immediately available over the entire622

CONUS. However, in principle, STHM could be fitted with any other hydrologic model623

outputs such as Variable Infiltration Capacity model (Liang et al., 1996) or SWAT (Arnold624

et al., 2012). Similarly, the NWM prediction could also be replaced with basin-level pre-625

cipitation. Recently, Frame et al. (2021) utilized atmospheric forcings alone, instead of626

NWM streamflow predictions, as a predictor for predicting streamflow and found that627

the Long Short-Term memory model (LSTM) performed equally well as that of LSTM628

trained with NWM streamflow. The proposed STHM modeling structure is also hier-629

archical and semi-parametric as its parameters vary over 10-day moving window, which630

makes it to estimate the non-linear dependencies between streamflow and the relevant631

predictors consisting of basin characteristics and hydroclimatic information. This indi-632

cates that there is potential for extending the STHM with other distributed hydrologic633

model outputs and/or with atmospheric forcings that drive the hydrologic models.634

5 Summary and Conclusions635

We describe a hierarchical spatial-temporal post-processing model for improving636

flood prediction in both gauged and ungauged basins across the CONUS. The proposed637

STHM is hierarchical and semi-parametric, thereby having the ability to predict non-638

linear dependencies between streamflow and the predictors – NWM streamflow, basin639

characteristics, upstream reservoir storage and hydroclimatic information – for estimat-640

ing floods in natural, controlled and coastal basins over the CONUS. Performance eval-641

uation of the hierarchical model showed that increased predictive skill in over 50% of sites’642

by 0.1 NSE, and improved over 65% of sites’ streamflow prediction to “good” (NSE>0.67).643

For controlled basins, the primary improvement was due to the inclusion of areal aver-644

aged previous 3-day flow, which accounts for 18% of the variability of high streamflow645

over all regions. But the explained variability of high streamflow for coastal basins are646

only limited to 10% due to other unconsidered factors, e.g., tidal influence. For natu-647

ral basins, the biggest improvement by the models is due to the inclusion of predictors648

such as aridity index and phase correlation for extending the STHM for ungauged pre-649

diction. We also demonstrated that the reduced performance of STHM in several basins650

also stem the trade-off in parameter estimation between at-site improvement versus the651

regional performance, which is required particularly for ungauged basins prediction. Per-652

formance evaluation of the STHM under temporal and spatial the cross-validation re-653

sults has shown robustness in predicting floods under “ungauged” prediction mode.654

In addition to improved flood prediction, the developed model was also rigorously655

evaluated in predicting floods for ungauged basins through k-fold spatial validation. Even656

though the STHM used NWM streamflow as a predictor, the model could be recalibrated657

with any other hydrologic model outputs or with precipitation and relevant atmospheric658

forcings. Further, the proposed STHM also post-processes the NWM prediction, thereby659

reducing the systematic biases in the model prediction. Since the STHM predictors are660

widely available for both any given site (e.g., NWM prediction and previous 3-day stream-661

flow) with spatially and temporally varying predictors, we can apply the estimated model662

coefficients to any ungauged site using the corresponding HUC08 level parameters.Given663
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that the NWM for real-time streamflow forecasts are available for any locations within664

the US, the proposed STHM could be employed for real-time streamflow forecasts for665

both gauged and ungauged basins. The proposed modeling approach is also hybrid as666

it combines physical modeling outputs with statistical modeling for developing stream-667

flow prediction across the CONUS. These hybrid approaches are essential as real-time668

weather forecasts always have considered both dynamical model predictions with sta-669

tistical correction scheme, which is popularly known as Model Output Statistics, in the670

weather forecasting community (Antolik, 2000). Thus, the STHM could be eventually671

employed for both ungauged flood prediction as well as for issuing real-time flood fore-672

casts.673
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Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., . . . Bies-856

broek, R. (2022). Climate change 2022: impacts, adaptation and vulnerability857

[Journal Article]. IPCC Sixth Assessment Report .858

Ramaswamy, V., Rao, P. S., Rao, K. H., Thwin, S., Rao, N. S., & Raiker, V. (2004).859

Tidal influence on suspended sediment distribution and dispersal in the north-860

ern andaman sea and gulf of martaban [Journal Article]. Marine Geology ,861

208 (1), 33-42. doi: https://doi.org/10.1016/j.margeo.2004.04.019862

Ravindranath, A., Devineni, N., Lall, U., Cook, E. R., Pederson, G., Martin, J., &863

Woodhouse, C. (2019). Streamflow reconstruction in the upper missouri river864

basin using a novel bayesian network model [Journal Article]. Water Resources865

Research, 55 (9), 7694-7716.866

Rezaie-Balf, M., Fani Nowbandegani, S., Samadi, S. Z., Fallah, H., & Alaghmand, S.867

(2019). An ensemble decomposition-based artificial intelligence approach for868

daily streamflow prediction [Journal Article]. Water , 11 (4), 709.869

Salinas, J. L., Laaha, G., Rogger, M., Parajka, J., Viglione, A., Sivapalan, M., &870
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Figure S1. (a) maps the difference in NSE between the HM predicted daily high flows and

NWM v2.0 over the validation period (2009-2018). Positive (Negative) values indicate that the

hierarchical model (NWM) performed better (worse) in predicting high flows. (b) plots seasonal

performance, indicated as 5% of sites with improved NSE during the validation period for the

three regions over the four basin classifications.
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Figure S2. Differences in NSE between the hierarchical model and NWM v2.0 for four seasons

(DJF, MAM, JJA and SON) in natural and controlled basins. Data was generated by treating

5% sites as “ungauged” using k(20)-folder cross-validation and NWM daily flows over the period

1993-2018
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Figure S3. (a) Sites where the HM predicted daily high flows performed worse (in terms of

NSE) than NWM high. (b) Unconditional bias difference between STHM and NWM relationship

with NSE difference between STHM and NWM for the corresponding sites in figure (a).
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