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Abstract

Irrigation is an important component of the terrestrial water cycle, but it is often poorly accounted for in models. Recent

studies have attempted to integrate satellite data and land surface models via data assimilation (DA) to (1) detect and quantify

irrigation, and (2) better model the related land surface variables such as soil moisture, vegetation, and evapotranspiration. In

this study, different synthetic DA experiments are tested to advance satellite DA for the estimation of irrigation. We assimilate

synthetic Sentinel-1 backscatter observations into the Noah-MP model coupled with an irrigation scheme. When updating soil

moisture, we found that the DA sets better initial conditions to trigger irrigation in the model. However, large DA updates to

wetter conditions can inhibit irrigation simulation. Building on this limitation, we propose an improved DA algorithm using a

buddy check approach. The method still updates the land surface, but now the irrigation trigger is not based on the evolution

of soil moisture, but on an adaptive innovation outlier detection. The new method was tested with different levels of model and

observation error. For mild model and observation errors, the DA outperforms the model-only 14-day irrigation estimates by

about 30% in terms of root-mean-squared differences, when frequent (daily or every other day) observations are available. The

improvements can surpass 50% for high forcing errors. However, with longer observation intervals (7 days), the system strongly

underestimates the irrigation amounts. The method is flexible and can be expanded to other DA systems and to a real world

case.
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Key Points:8

• Model-driven irrigation estimation has limitations, when solely based on improved9

soil moisture conditions obtained via data assimilation.10

• A new method based on an adaptive outlier detection improves the estimated irriga-11

tion in a synthetic data assimilation setup.12

• The method reduces irrigation errors by 30% for frequent assimilation of backscatter13

observations with reasonable levels of noise.14
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Abstract15

Irrigation is an important component of the terrestrial water cycle, but it is often poorly16

accounted for in models. Recent studies have attempted to integrate satellite data and17

land surface models via data assimilation (DA) to (1) detect and quantify irrigation, and18

(2) better model the related land surface variables such as soil moisture, vegetation, and19

evapotranspiration.20

In this study, different synthetic DA experiments are tested to advance satellite DA for21

the estimation of irrigation. We assimilate synthetic Sentinel-1 backscatter observations into22

the Noah-MP model coupled with an irrigation scheme. When updating soil moisture, we23

found that the DA sets better initial conditions to trigger irrigation in the model. However,24

large DA updates to wetter conditions can inhibit irrigation simulation. Building on this25

limitation, we propose an improved DA algorithm using a buddy check approach. The26

method still updates the land surface, but now the irrigation trigger is not based on the27

evolution of soil moisture, but on an adaptive innovation outlier detection.28

The new method was tested with different levels of model and observation error. For29

mild model and observation errors, the DA outperforms the model-only 14-day irrigation30

estimates by about 30% in terms of root-mean-squared differences, when frequent (daily or31

every other day) observations are available. The improvements can surpass 50% for high32

forcing errors. However, with longer observation intervals (7 days), the system strongly33

underestimates the irrigation amounts. The method is flexible and can be expanded to34

other DA systems and to a real world case.35

Plain Language Summary36

Irrigation has an important impact on the terrestrial water cycle. However, it remains37

poorly simulated by models and it is hard to quantify through satellite observations alone.38

The combination of both models and satellite observations to detect and quantify irrigation39

has been explored in the last few years. Recently, Sentinel-1 radar (microwave) observations40

have been assimilated into the Noah-MP land surface model in order to quantify irrigation,41

and better estimate the related land surface variables, such as soil moisture and vegetation.42

This system has shown benefits but also limitations, which are highlighted and addressed43

in our study using synthetic experiments. We proposed an improved data assimilation44

algorithm and tested it for different levels of model and observation error. The new method45

estimates irrigation more accurately (30%) than the model alone, provided that frequent46

(daily or every other day) observations are available. With further developments, the new47

methodology could be used in a real-world experiment where it could ultimately contribute48

to the complex challenge of irrigation monitoring.49

1 Introduction50

Irrigation represents more than 70% of freshwater withdrawals (Gleick et al., 2009)51

making it the most important human activity impacting the terrestrial water cycle. Over52

the last decades, irrigated areas have expanded almost sixfold (Siebert et al., 2015), and53

contributed significantly to the increase in global crop production over the same time period54

(Foley et al., 2011). Under a growing population, food demand will continue to rise, which55

will inevitably lead to a further expansion and intensification of irrigated agriculture (Foley56

et al., 2011). In parallel, climate change will impact the irrigation water needs as a result57

of the expected rising temperatures and drier periods in many regions (Busschaert et al.,58

2022; Döll, 2002; Fischer et al., 2007). Conversely, irrigation also plays an important role in59

weather and climate dynamics (Bonfils & Lobell, 2007; Hirsch et al., 2017; Mahmood et al.,60

2014; Thiery et al., 2017, 2020), but it is still not or poorly included in Earth system models61

(Cook et al., 2015; Gormley-Gallagher et al., 2022; Valmassoi & Keller, 2022). Not only62

is there a call to monitor irrigation in order to ensure that the available water meets the63
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future irrigation demands, but future climate-related research, and Earth system models in64

general, could significantly benefit from large-scale irrigation estimates.65

In the last years, several methods have been developed to map and quantify irrigation66

by making use of satellite remote sensing data (Massari et al., 2021). These observations67

(optical, microwave and gravimetric measurements) are used alone, combined with each68

other, or with models. Optical observations were first used to map irrigation relying on69

the difference in spectral responses between irrigated and non-irrigated areas (e.g., Ozdogan70

& Gutman, 2008; Pervez et al., 2014; Salmon et al., 2015; Xie & Lark, 2021; L. Zhang71

et al., 2022), and more recently machine learning-based methods have also been suggested72

(e.g., Jin et al., 2016; Magidi et al., 2021; Nagaraj et al., 2021; C. Zhang et al., 2022).73

Optical data have further been used to quantify irrigation amounts, mostly using estimates74

of actual evapotranspiration (ET) based on vegetation indices, sometimes also including75

models (land surface, water and energy balance), or other remote sensing data (e.g., thermal)76

(e.g., Brombacher et al., 2022; Bretreger et al., 2022; Droogers et al., 2010; Le Page et al.,77

2012; Maselli et al., 2020; Olivera-Guerra et al., 2020; van Eekelen et al., 2015; Vogels et78

al., 2020). More recently optical leaf area index (LAI) observations have been assimilated79

into the Noah-MP land surface model (LSM; Niu et al., 2011) with a focus on improving80

irrigation estimations by updating the land surface (Nie et al., 2022).81

While optical-based methods have progressed and shown some promising results, they82

typically rely on proxies, and are limited by cloud cover. By contrast, microwave signals83

can directly be related to water, and are not limited by atmospheric conditions. Despite84

their coarse resolutions, soil moisture retrievals from passive L-band radiometers or from85

active C-band scatterometers can detect wetter moisture when large-scale irrigation water86

is applied. The first microwave-based irrigation estimates were derived by inverting the soil87

water balance (SM2RAIN algorithm; Brocca et al., 2014) using several surface soil mois-88

ture (SSM) products (Soil Moisture Active Passive [SMAP], Soil Moisture Ocean Salinity89

[SMOS], Advanced SCATterometer [ASCAT], Advanced Microwave Scanning Radiometer90

2 [AMSR2]) at a 25-km resolution (Brocca et al., 2018). They found satisfactory results in91

terms of irrigation quantification, but the outcome strongly depended on the revisit and the92

uncertainty of the SSM retrievals. Following the same approach, Dari et al. (2020) achieved93

finer resolution quantification by downscaling SMAP and SMOS data using the Disaggre-94

gation based on Physical and Theoretical scale Change algorithm (DisPATCh; Merlin et95

al., 2008). Jalilvand et al. (2019) applied this method in a more arid climate (Iran). SSM96

retrievals (containing irrigation in the signal) were also contrasted against LSM simulations97

(without irrigation), in order to estimate the amounts of water applied (Zaussinger et al.,98

2019; Zohaib & Choi, 2020). Despite these methodological advances towards irrigation es-99

timation, the currently most accurate microwave-based satellite SSM retrievals are, for the100

time being, only available at resolutions coarser than most irrigated fields in Europe.101

C-band synthetic aperture radar (CSAR) observations provide data at finer (field scale)102

resolutions, and they are also sensitive to soil moisture, albeit with less penetration depth103

than L-band observations. The Sentinel-1 (S1; Torres et al., 2012) mission from the Euro-104

pean Space Agency (ESA) offers the opportunity for frequent (∼2-3 day revisit in Europe)105

and fine-scale (10 m) observations, which are required for irrigation detection and quantifi-106

cation purposes. The S1 mission comprises a constellation of two satellites (S1-A and S1-B)107

sensing in two polarizations over land: co-polarized VV (vertically transmitted, vertically re-108

ceived), and cross-polarized VH (vertically transmitted, horizontally received). In December109

2021, S1-B has become unresponsive, resulting in fewer observations from that time onwards.110

High-resolution SSM estimates retrieved from S1 backscatter have been developed in the last111

years. Zappa et al. (2021) used the TU Wien S1 SSM product (Bauer-Marschallinger et al.,112

2019) to detect and quantify irrigation at a local scale, based on spatiotemporal variations in113

SSM. The method showed promising results in terms of detection and correlation, but sys-114

tematic underestimations of the irrigation water amounts were found when the observation115

interval was longer than 1 day (in a follow-up synthetic experiment; Zappa et al., 2022). The116
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first regional datasets of high resolution irrigation water use, based on S1 data, have been117

released by (Dari et al., in review) using the soil moisture-based inversion approach. While118

the backscatter itself has already been used in irrigation mapping and timing studies at the119

local scale (Bazzi, Baghdadi, Fayad, Zribi, et al., 2020; Bazzi, Baghdadi, Fayad, Charron, et120

al., 2020), the direct use of S1 data to quantify irrigation is only in its infancy, as changes121

in backscatter are affected by the water in the topsoil, but also by the vegetation (water,122

volume, density, and geometry), and terrain roughness (McNairn & Shang, 2016).123

The most optimal and spatio-temporally complete estimates of irrigation could theoreti-124

cally be expected to result from a combination of observations (e.g. microwave observations)125

with models through data assimilation (DA; De Lannoy et al., 2022). Abolafia-Rosenzweig126

et al. (2019) performed SMAP SSM DA into the variable infiltration capacity (VIC) LSM,127

using a particle batch smoother. With the intent of going to a finer resolution, Das et al.128

(in review) used a similar approach using the S1-SMAP SSM product (Das et al., 2019).129

Ouaadi et al. (2021) assimilated S1-derived SSM data into the FAO-56 (Allen et al., 1998)130

model with a particle filter. In the three aforementioned studies, a series of DA synthetic131

experiments were carried out to evaluate the impact of e.g., time interval between the assim-132

ilated observations and their level of error. They concluded that the proposed techniques133

could accurately estimate irrigation amounts and timing (only for Ouaadi et al., 2021) but134

that small errors (levels of noise) and frequent observations are crucial.135

The above studies assimilated SSM products, but retrievals can introduce errors and136

inconsistencies in the DA system (De Lannoy et al., 2022). Indeed, microwave-based re-137

trievals often rely on ancillary data, and on empirical change detection algorithms in the138

case of active measurements. Moreover, retrievals typically need rescaling to remove the139

bias between the forecast (modeled) and observed soil moisture to achieve an optimal DA140

system. These rescaling approaches sometimes remove irrigation from the signal (Kwon et141

al., 2022). Based on these limitations, Modanesi et al. (2022) decided to directly assimilate142

the S1 backscatter signal into the Noah-MP LSM (Niu et al., 2011) equipped with a sprin-143

kler irrigation scheme (Ozdogan et al., 2010), where irrigation is dynamically modeled and144

triggered based on a soil moisture deficit approach. The DA updated SSM and LAI using145

an Ensemble Kalman Filter (EnKF) and a calibrated Water Cloud Model (WCM; Attema146

& Ulaby, 1978; Modanesi et al., 2021) as observation operator to map between SSM, LAI147

and backscatter. The idea is to provide the model with a better initial state, in terms of148

soil moisture and vegetation, to improve the triggering and estimation of irrigation. How-149

ever, the method has also shown several limitations related to the model (soil texture, crop150

type, irrigation parametrization), and the DA system itself. An important problem is that151

irrigation events could be missed when the DA updates soil moisture to wetter conditions152

and thereby preventing irrigation simulation.153

We set up synthetic experiments based on the system of Modanesi et al. (2022) with the154

goal to investigate the exact benefits and shortcomings of S1 backscatter DA and to improve155

the DA system with irrigation modeling (Section 2). In this context, synthetic backscatter156

observations are generated from a nature run (also called ‘truth’) with a calibrated WCM157

as observation operator (Modanesi et al., 2021). These observations are then assimilated158

into model simulations, for which the forcings are altered compared to the reference nature159

run. We then propose and test a novel method based on a buddy check approach. The160

land surface state is still updated to have better initial conditions to estimate irrigation, but161

the DA system now includes an adaptive innovation (observation minus forecast) outlier162

detection. Anomalous high backscatter observations are not assimilated but used to flag163

an unmodeled process and trigger irrigation when the conditions required for irrigation are164

met, i.e., dry soil moisture and growing season. This new method is evaluated for different165

forcing errors, observation intervals and observation errors in Section 3. Finally, we discuss166

(Section 4) the possible future developments of the method, along with the opportunity to167

bring this system to a real world experiment.168
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2 Data and Methods169

2.1 Land surface model and irrigation scheme170

This study is based on the system developed by Modanesi et al. (2022) in which the171

Noah-MP LSM version 3.6 (Niu et al., 2011), equipped with a sprinkler irrigation module172

(Ozdogan et al., 2010), is run within the NASA Land Information System (LIS) version 7.4173

(Kumar et al., 2006, 2008). The LSM has four soil layers corresponding to the following174

depths: 0-10 cm (surface soil moisture; SSM), 10-40 cm (SM1), 40-100 cm (SM2), and175

100-200 cm (SM3).176

The irrigation scheme, coupled to the Noah-MP LSM, was initially developed by Ozdogan177

et al. (2010) and based on a soil moisture deficit approach. In the case of a fully irrigated178

pixel, the irrigation scheme depends on two conditions for irrigation to be triggered: (1)179

the day must fall within the growing season, and (2) the rootzone soil moisture must reach180

a certain depletion. First, the growing season is defined by a greenness vegetation fraction181

(GVF [-]) threshold, GV Firr, as suggested by Ozdogan et al. (2010):182

GV Firr = GV Fmin + 0.4 ∗ (GV Fmax −GV Fmin) (1)

In this study, GVF is based on a monthly climatology, and GV Fmin and GV Fmax are re-183

spectively the minimum and maximum monthly GVF. Second, the soil must be dry enough,184

meaning that the rootzone soil moisture has to reach a certain depletion. In the irrigation185

scheme, the depletion is defined by the moisture availability (MA [-]) as follows:186

MA =

∑lroot
l=1 θl ∗RDl −

∑lroot
l=1 θPWP ∗RDl∑lroot

l=1 θFC ∗RDl −
∑lroot

l=1 θPWP ∗RDl

(2)

where θl [-] and RDl [m] are the soil moisture content and rooting depth of the lth soil187

layer, and θPWP [-] and θFC [-] are the water contents at permanent wilting point and field188

capacity of the corresponding soil texture. The considered soil layers in the computation of189

MA vary over the growing season given that RD directly depends on the GVF, i.e.190

RD = GV F ∗RDmax (3)

in which RDmax [m] is the maximum rooting depth (a vegetation parameter), and GVF is191

based on a monthly climatology (as in Equation 1). When both conditions (growing season192

and dry soil) are fulfilled, irrigation is triggered and the amount of water required brings193

the rootzone soil moisture back to field capacity. The irrigation rate (Irrrate [mm s−1]) is194

then defined as follows:195

Irrrate =

∑lroot
l=1 (θFC − θl) ∗RDl ∗ 1000

Irrtime
(4)

where the Irrtime (in seconds) corresponds to the period when irrigation is allowed. This196

time frame is set to 06:00 to 10:00 LT following Ozdogan et al. (2010). The Irrrate is197

then added to the precipitation at each model time step. In our study, we report the total198

irrigation amount per day, which is effectively applied at each model time step within the199

4-hour irrigation period.200

2.2 Nature run and synthetic observations201

The Noah-MP with irrigation module was used to create a nature run (also called the202

‘truth’ ) that provides reference data of soil moisture, LAI, and irrigation, along with all203

other variables. This output was also used to generate synthetic γ0
V V observations (via a204

calibrated WCM) that were assimilated in the different synthetic DA experiments.205

–5–



manuscript submitted to Journal of Advances in Modeling Earth System (JAMES)

The model was run at a temporal resolution of 15 min and at a 0.01° x 0.01° lat-lon206

spatial resolution, and the results are only shown for a single sandy loam pixel that is fully207

irrigated in Italy (44.565°N, 11.525°E). The scientific findings are the same for any pixel208

in this synthetic study, and our setup can be readily expanded to a large domain. Mete-209

orological data to force the nature run were extracted from the Modern-Era Retrospective210

analysis for Research and Applications version 2 (MERRA2; Gelaro et al., 2017), which were211

remapped from a spatial resolution of 0.5° x 0.625° to the resolution of this study by bilinear212

interpolation. Soil texture parameters were taken from the 1 km Harmonized Soil World213

Database (HWSD v1.21). Irrigation was triggered when the MA reached 0.45. This nature214

simulation ran over the period from 2010 through end 2019 after a model spin-up starting215

on 1 January 2000. Based on the GVF climatology (0.144° spatial resolution; Gutman &216

Ignatov, 1998) at this location, the growing season was defined as the months covering April217

through September.218

Synthetic γ0
V V observations were generated daily (at 06:00 LT) from the nature run by219

propagating the SSM and LAI estimates through a calibrated WCM, which is considered220

to be perfect (‘true’ ), just like the LSM, in this synthetic study. The WCM describes the221

soil and vegetation scattering processes through semi-empirical formulas (Attema & Ulaby,222

1978) and therefore uses SSM and LAI from the LSM to simulate backscatter. The WCM223

calibration was based on input from a model simulation with irrigation simulation activated224

and real S1 backscatter observations, following Modanesi et al. (2021, 2022). The synthetic225

observations are assimilated after perturbing them with different levels of Gaussian white226

noise, with standard deviations ranging from 0 to 0.7 dB (see Section 2.3).227

2.3 Experiments228

2.3.1 Model-only run229

An overview of all experiments is given in Figure 1. Model-only runs, also called230

open-loop (OL), were performed with the same settings and inputs as the nature run, but231

with an introduction of forcing error. Specifically, the meteorological forcings were altered232

in two different ways: (1) all forcings were kept identical to the nature run (MERRA2)233

except for precipitation which was shifted in time (using 2000-2009, instead of 2010-2019),234

referred to as OLH (high forcing error); and (2) all MERRA2 forcings were replaced with235

the European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5236

(ERA5; Hersbach et al., 2020), referred to as OLM (mild forcing error). For the first case,237

shifting the MERRA2 precipitation (also performed by Girotto et al., 2021) introduces long-238

term errors since the interannual variability of the precipitation deviates from the truth. By239

contrast, the experiments with mild forcing errors will use monthly and annual precipitation240

patterns that are closer to the truth and the errors mostly represent short-term deviations.241

The OL experiments served as a reference to assess the skill gain of the DA experiments.242

2.3.2 Default DA experiments243

In the default DA experiments (DA1), daily synthetic γ0
V V , without any addition of244

noise, are assimilated to update the SSM at all update time steps. The irrigation scheme is245

primarily triggered by the (updated) soil moisture deficit, similar to the OL. In line with the246

OL simulations, the DA1 experiments were also run for a high (DA1,H) and mild (DA1,M )247

forcing error. The aim of DA1 is to identify the strengths and weaknesses of the approach248

by Modanesi et al. (2022).249

2.3.3 Buddy check DA experiments250

The last series of experiments aim at testing the newly proposed buddy check approach251

(DA2) described in Section 2.4.2. Similar to above, the DA was tested for setups of forcing252

error, i.e. DA2,H and DA2,M . The method was tested for daily perfect (no white noise)253
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Figure 1. Overview of the experiments. Note that all experiments are repeated for high forcing

error (OLH , DA1,H , DA2,H) and mild forcing error (OLM , DA1,M , DA2,M ).

observations, as well as for different overpass intervals (one observation every 1, 2, 3, and 7254

days), and different white noise levels in the assimilated observations. White noise is added255

to the observations in time through a Gaussian distribution of mean zero and different256

standard deviations (σ): 0, 0.3, 0.5, and 0.7 dB. This range in total observation error257

(measurement+representativeness error) was chosen considering the fact that the S1 CSAR258

instruments on board of S1-A and S1-B have respective radiometric accuracies (1σ) of259

0.25 dB and 0.32 dB (varying with the acquisition mode and polarization; Miranda et al.,260

2017) and that the observation operator is assumed to be perfectly calibrated (i.e. the261

calibrated WCM is the truth), which limits the representativeness error (van Leeuwen,262

2015). Note that when white noise was added to the signal, experiments were run for three263

different seeds of random noise.264

2.3.4 Ensembles265

For all experiments (OL, DA1, and DA2), a total of 24 ensemble members were used.266

The ensembles were generated by perturbing model forcings (rainfall, incident longwave ra-267

diation, incident shortwave radiation) and the SSM state variable (only, i.e. the uncertainty268

on LAI is assumed to be marginal). For further details on the perturbation parameters,269

the reader can refer to Modanesi et al. (2022). It should be noted that in contrast to the270

setup of Modanesi et al. (2022), a perturbation bias correction method was applied in this271

study. This adjustment was proposed by Ryu et al. (2009) to avoid unintended biases in272

the forecast of soil moisture. To be able to use this option with the soil moisture deficit273

irrigation approach (OL and DA1), the conditions for which irrigation is triggered required274

slight modifications. In the Noah-MP v3.6 LSM, irrigation is triggered by looking at theMA275

of each ensemble member individually. This is not compatible with the perturbation bias276

correction option as the correction can bring the soil moisture of several ensemble members277

sooner to an irrigation state when some other members have not reached the MA threshold278

yet. Therefore, in this study and for all experiments, irrigation was triggered based on279

the ensemble mean MA and the same amount of irrigation water (also calculated from the280

ensemble mean) is applied to each ensemble member. This was already corrected in the281

irrigation module of the latest Noah-MP version (4.0.1).282
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2.4 Data assimilation283

2.4.1 State updating284

Synthetic observations of co-polarized backscatter (γ0
V V ) were assimilated to update the285

SSM, and all other variables via model propagation. An ensemble Kalman filter (EnKF)286

was employed to ingest γ0 observations into an erroneous version of the Noah-MP LSM (i.e.287

different from that of the nature run, see Section 2.3). The 24 ensemble members were used288

to derive the forecast error. The ‘true’ calibrated WCM was used as observation operator289

to produce observation predictions based on the erroneous LSM simulations of SSM and290

LAI. The update equation of the EnKF can be written as follows:291

x̂+
i = x̂−

i +Ki[yobs,i − hi(x̂
−
i )] (5)

for which x̂+
i is an ensemble of the updated model states at time step i, x̂−

i is the ensemble
forecast state, yobs,i is the assimilated observation (γ0

V V ), Ki is the Kalman gain, and hi(.) is
the WCM observation operator. The innovation at time i (innovi) is defined as the residual
between the observed and the forecast γ0

V V and is expressed in decibels (dB):

innovi = yobs,i − hi(x̂
−
i ) (6)

Even though the observation predictions use both SSM and LAI as input, the update is292

limited to SSM here for simplicity (unlike Modanesi et al., 2022).293

2.4.2 Buddy check approach294

Because Modanesi et al. (2022) reported that DA updates to a wetter soil moisture295

could possibly lead to missed simulated irrigation events, we tested a novel approach in296

this study, illustrated in Figure 2 for a case with daily observations. We still update SSM297

as proposed above. However, the triggering of irrigation is now not merely based on a298

modeled soil moisture deficit, but instead always requires a high positive difference between299

the observed and forecast γ0
V V (innovation; Equation 6). In other words, the timing of the300

irrigation is now primarily observation-based. The new method builds on a simple buddy301

check approach, commonly used in atmospheric DA (e.g., Dee et al., 2001), avoiding the302

assimilation of outlier observations. In this case, outliers are detected when the innovation is303

suddenly large and positive, corresponding to a significantly higher observed than forecasted304

γ0
V V (highlighted blue dots in Figure 2a). This ‘jump’ in the innovations can be detected305

by looking at the difference between two successive innovations. This will be referred to as306

∆innovi, defined as:307

∆innovi = innovi − innovi−T (7)

where T is the overpass time interval [days]. For an observation to be detected as an outlier,308

∆innovi should be larger than a certain threshold, expressed in dB. The latter is chosen to be309

adaptive, i.e. a multiple of the standard deviation of the innovations (SDinnov,n) computed310

on the antecedent n days. The choice was made to dynamically compute SDinnov,n with a311

moving window to account for the natural variability of the model and observation errors,312

and thus the innovations. In this study, the buddy check approach was tested for two313

different window sizes, i.e. windows of 20 (SDinnov,20) and 60 days (SDinnov,60) were314

considered. The outlier detection is illustrated in Figure 2b.315

A strong positive innovation (outlier) hints towards an unmodeled process, i.e. irriga-316

tion. Therefore, when an outlier is detected at day i, irrigation can be triggered but only317

when the conditions required for irrigation are met: (1) the day i has to fall in the growing318

season, and (2) the MA should be lower than a certain threshold to avoid unrealistic irri-319

gation events (when the soil is too wet). The latter threshold is set to 0.50 and is slightly320
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Figure 2. Illustration of the buddy check approach. (a) Irrigation time series [mm day−1] of

the nature run and the DA run with buddy check approach with the innovations [dB] in grey. (b)

∆innov [dB] time series with the dynamic threshold (based on a 20-day window, 2.5 ∗SDinnov,20).

(c) Moisture availability (MA [-]) of the nature run and the DA buddy check run and the corre-

sponding thresholds: 0.45 fixed threshold for irrigation for the nature run, 0.50 upper threshold

to allow irrigation for the buddy check approach. The shaded blue stripes highlight the irrigation

events. The green arrows illustrate the two conditions required to simulate irrigation. The blue

arrow links the irrigation event to the increase in MA.

relaxed compared to the truth’s 0.45 value to give way to an observation-based trigger, e.g.321

when a farmer would irrigate before the uncertain model reaches a critical MA. Further-322

more, unlike the nature (or OL or DA1 case), the DA2 approach allows the MA to decrease323

freely, mimicking the reality that farmers might sometimes irrigate later than expected. The324

condition on the MA is illustrated by Figure 2c. For each irrigation event, the rootzone soil325

moisture is increased to field capacity, corresponding to MA=1. However, this is not visible326

in MA time series (Figure 2c) as the plotted MA is computed based on the daily averaged327

soil moisture contents. For days in the growing season (from April through September for328

the climatological GVF), the conditions to trigger irrigation can thus be summarized as329

follows:330

{
∆innovi ≥ 2.5 ∗ SDinnov,n

MAi ≤ 0.50
(8)

In short, an outlier innovation is not used to update the soil moisture state, but to correct331

the model input by adding water as irrigation. The amount of irrigation water is computed332
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by the irrigation scheme coupled to the Noah-MP LSM described in Section 2.1, and it333

benefits from the updated soil moisture prior to the irrigation trigger. It is important to334

note that this method was implemented in the LIS framework itself, allowing an online335

modeling of irrigation with this approach. However, since irrigation starts at 6:00 LT in the336

irrigation scheme, and the synthetic γ0
V V observations were produced at the same time of337

the day, irrigation is not yet part of the observations when they are checked for assimilation338

(and either assimilated or flagged as outlier): the irrigation of day i is only visible in the339

observation of day i + 1 (see Figure 2). Hence, with this buddy check approach, irrigation340

events are always delayed compared the truth. This technical detail is tied to observation341

and irrigation times, and could be overcome via postprocessing or model rewinding in the342

future.343

2.5 Evaluation metrics344

The experiments were evaluated in terms of irrigation, soil moisture, ET, and LAI.345

Soil moisture was assessed for the different layers (SSM, SM1, SM2, SM3) as defined in346

Section 2.1. The metrics used in this study to evaluate these variables are the Pearson347

correlation (R), the bias, and the root-mean-square difference (RMSD), and are defined as348

follows:349

R =

∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − x̄)2
∑N

n=1(yn − ȳ)2
(9)

bias =
1

N

N∑
n=1

(xn − yn) (10)

RMSD =

√√√√ 1

N

N∑
n=1

(xn − yn)2 (11)

where x is the value of the simulated land surface variable from the OL or DA experiment, y350

is the reference value (from the nature run), and N are the number of reference data in time351

(n = 1, . . . , N). x̄ and ȳ represent the temporal mean values. For LAI, the R is computed352

on the anomalies (anomR), because this land surface variable has a clear climatological353

pattern and naturally results in high R values.354

The normalized information contribution in R (NICR) and RMSD (NICRMSD) is com-355

monly used to describe the improvement or degradation of the estimates compared to a356

model only (OL) run:357

NICR =
RDA −ROL

1−ROL
(12)

NICRMSD =
RMSDOL −RMSDDA

RMSDOL
(13)

Positive NIC values correspond to an improvement while a negative NIC indicates poorer358

estimations than those of the OL.359

Irrigation is evaluated with the same metrics on a daily basis, but also considering360

different levels of smoothing where the antecedent n daily irrigation amounts are averaged.361

Smoothing windows of different lengths (n days) are considered to better grasp for which362

time intervals (e.g., daily, weekly, monthly) the irrigation events can be accurately simulated.363

Additionally, binary metrics are considered to assess the performance to detect (in terms of364
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timing) the irrigation events. The probability of detection (POD) and the false alarm ratio365

(FAR) are computed on a daily basis and were defined by Roebber (2009) as follows:366

POD =
TP

TP + FN
(14)

FAR =
FP

TP + FP
(15)

where TP, FN, and FP are the true positive (detected), false negative (missed), and false367

positive (false) irrigation events. Both metrics range from 0 to 1 and should be equal to 1368

and 0 for the POD and FAR, respectively, in an ideal case. Note that POD and FAR were369

computed on the daily irrigation estimates ± 1 day, therefore accounting for the technical370

delay of irrigation with the buddy check approach (see Section 2.4.2).371

3 Results372

3.1 DA1: soil moisture updating can limit irrigation estimation373

In the default DA experiments (DA1), irrigation is primarily triggered when the modeled374

(or analysis) soil moisture deficit exceeds a threshold. The results are first presented for375

the DA1,H , for which daily γ0
V V observations without noise were assimilated into a model376

forced by precipitation taken from another time period than the truth. Figure 3a illustrates377

some irrigation events of the nature run (‘truth’), OLH , and DA1,H along with the γ0
V V378

innovations. The corresponding MA time series are shown in Figure 3b with the threshold379

that needs to be reached to trigger irrigation (0.45). First, it can be seen that the assimilation380

of γ0
V V observations brings the soil moisture, and consequently the MA, to a state that is381

closer to the nature run, moving the first irrigation event (in June) closer to the nature382

run compared to the OL. In contrast, the last irrigation event (in August) does not occur383

in the DA1,H . The MA of DA1,H does not reach the 0.45 threshold before the true event384

and the irrigation simulation is consequently prevented by updates to wetter soil moisture385

conditions as a result of large positive innovations (Figure 3).386

Figure 3. (a) Time series of the irrigation [mm day−1] of the nature run, OLH , and DA1,H . The

grey dots correspond to the γ0
V V innovations. (b) Time series of the corresponding moisture avail-

ability (MA [-]) for the irrigation months (April through September) along with the corresponding

threshold to trigger irrigation (grey line).
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More generally, over the 10-year experiment, the DA irrigation events that are not es-387

timated before the true irrigation are typically delayed or skipped, similar to what can be388

observed for July and August in Figure 3. For the 10-year period, the daily irrigation esti-389

mates ± 1 day have low POD values of 0.40 and 0.43 for DA1,H and DA1,M , respectively.390

The system compensates for the lack of water in the soil through positive soil moisture391

increments instead of an irrigation application based on an improved initial condition. Fig-392

ure 4 presents the effect of the assimilation on irrigation estimates in terms of NIC values393

for both forcing error (DA1,H and DA1,M ), along with the absolute metrics for the OL.394

Daily irrigation was smoothed for different window sizes before computing the NICR and395

NICRMSD. For the DA1 experiments (green), NIC values are positive for most smoothing396

intervals and peak when irrigation is smoothed over a 14-day window. However, the NIC397

metrics drop to negative values for DA1,M starting from a bimonthly smoothing. This can398

be explained by the difference in forcings. The ERA5 meteorology follows the seasonal399

patterns of the MERRA2 meteorology used for the truth, therefore the seasonal amount of400

irrigation from a model-only OLM run is close to the nature, as indicated by the high R and401

low RMSD values, especially for the longer aggregation windows in Figure 4c and d. The402

effect of (sometimes erroneous) irrigation estimation on other land surface variables is later403

discussed in Section 3.2.3.404

Figure 4. (a) NICR [-] and (b) NICRMSD [-] for irrigation smoothed with different window

sizes. (c) Pearson R [-] and (d) RMSD [mm day−1] of the OL. The dots and the crosses correspond

to the high and mild forcing error experiments, respectively. DA2 were performed by assimilating

daily perfect observations. All metrics were computed on the irrigation months only (April through

September) over the 10-year experiment.

The missed or delayed irrigation events can be identified in the innovation time series.405

Large innovations occur on true irrigation days (Figure 3a), highlighting that a process is406

missed by the model. Instead of avoiding or delaying the event in a DA run, the newly407
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proposed buddy check approach, for which the results are described in the next section, can408

identify and trigger such irrigation events.409

3.2 DA2: new buddy check approach410

3.2.1 Assimilation of daily perfect backscatter observations411

The results of the new buddy check approach are first presented for daily assimilation412

of observations without white noise and using a 20-day window to compute the outlier413

threshold (SDinnov,20). Figure 5 shows the innovations and irrigation results of DA2,H for414

the period 2010-2015 (panel a), with the associated MA time series for 2010 in panel b. The415

DA2,H irrigation estimates (dashed blue bars) capture most of the true irrigation events (full416

black lines). During these five years, one event is missed at the end of the irrigation season417

in 2013. This can be explained by (intentionally) erroneous rainfall events in the DA run,418

causing soil moisture that is higher than the irrigation threshold (MA > 0.5). On the other419

hand, two false irrigation events are simulated. Both can be attributed to rainfall events in420

the nature run, leading to an occasional large positive innovation, and since the moisture421

conditions are dry enough, irrigation is consequently triggered. This proves that when the422

forcings are erroneous (i.e. rainfall is missed in the DA run), irrigation cannot be dissociated423

from rainfall in the γ0
V V signal.424

Figure 5. (a) Time series of the irrigation [mm day−1] of the nature run, DA1,H , and DA2,H

for daily observations without noise and an outlier threshold based on SDinnov,20. Innovations

of DA2,H are shown in the background in grey. (b) Time series for the growing season of 2010

(shaded in blue in a) of the moisture availability (MA [-]) of the nature run, DA1,H , and DA2,H

for the irrigation months (April through September). In (b), the dashed grey line corresponds to

the maximum allowable MA for irrigation for DA2,H (0.50) and the full line is the threshold for

the nature run and DA1,H (0.45).

Over the whole 10-year experiment, irrigation estimates are strongly improved by the425

implementation of the buddy check approach, raising the POD of the daily irrigation esti-426

mates ± 1 day from 0.40 for DA1,H to 0.86 for DA2,H , and from 0.43 for DA1,M to 0.80427

for DA2,M . For both forcing errors, the FAR is about 0.17, which is also an improvement428

compared to the values for DA1,H (0.60) and DA1,M (0.42). Figure 4 shows the NICR429

and NICRMSD for the different irrigation smoothing windows for DA2,H and DA2,M (daily430

assimilation without noise). Unlike DA1, the NIC values for all DA2 experiments remain431

above the zero-line, meaning that irrigation estimates are improved for all smoothing inter-432

vals, relative to the OL. Starting from a 3-day smoothing interval, R and RMSD values are433
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improved by more than 30% and 10%, respectively, for all forcing errors and smoothing in-434

tervals. NIC values tend to drop for DA2,H for longer aggregation levels as a consequence of435

the occasional false or missed irrigation events. The poor effect on irrigation quantification436

at a daily scale can be attributed to the timing of the observation and irrigation application437

(see Section 2.4.2).438

3.2.2 Effect of observation interval and white noise439

The buddy check implementation was tested for different observation intervals (1, 2, 3,440

and 7 days) and observation noise levels (0, 0.3, 0.5, and 0.7 dB), to assess which observation441

configuration would be ideally suited for irrigation estimation. The 14-day smoothed daily442

DA2 irrigation estimates are evaluated relative to the OL through the NICR and NICRMSD.443

The bias (difference between the daily simulated and nature irrigation) is also assessed to444

indicate if there is a general over- or underestimation of the irrigation amounts. The results445

for the DA2,H and DA2,M experiments are shown in Figure 6. Two thresholds were tested446

to trigger irrigation, using two different window sizes for the calculation of SDinnov: 20 days447

(SDinnov,20), and 60 days (SDinnov,60). Note that the experiments assimilating observations448

with a 7-day interval could only be performed with a 60-day window in order to compute449

a standard deviation with enough data points. All experiments with white noise in the450

observation signal were performed for three random seeds of added noise and the average451

metric is presented.452

The performance of the buddy check approach degrades with longer observation inter-453

vals, to reach marginal improvements for the DA2,H , and even poorer irrigation estimations454

for the DA2,M than for OLM (Figure 6a,b,d,e). Less frequent observations lead to stronger455

underestimations of the irrigation amounts, as shown by the negative biases (Figure 6f).456

In the worst scenario for DA2,H (7-day observation interval with noise), about half of the457

true irrigation water is missing over the 10 years. Even though DA2 misses more irrigation458

for larger observation intervals compared to the OL, the timing of the remaining detected459

irrigation events is closer to the truth.460

The white noise in the signal mainly affects the performance when observations are461

frequently available (daily or once every 2 days) for DA2,H (Figure 6). Similar to the462

effect of a longer observation interval, noise in the signal tends to cause underestimations463

of irrigation amounts. White noise sometimes amplifies the increase in ∆innov, making an464

outlier easier to detect, and at other times, the noise reduces the ‘jump’ effect, making the465

event undetectable. Observation noise also increases the risk of detecting a false irrigation466

event. The combination of these three effects reduces the skill of the buddy check approach.467

For reasonable levels of noise (≤ 0.5 dB; Figure 6e), the RMSD is reduced by at least 30%468

when assimilating frequent observations, for both forcing errors.469

Increasing the window size for the computation of the SDinnov improves the R and470

RMSD for DA2,M . However, it leads to irrigation underestimation (negative bias) for non-471

daily observations, especially in the case of the DA2,H (Figure 6f). More irrigation events472

remain undetected because the SDinnov considers innovations up to 60 days before the473

event. This is problematic, especially at the beginning of the season as the natural varia-474

tion in the innovations is larger in the late winter or spring (wet season), which are then475

considered in the computation of the SDinnov,60. On the other hand, a small window size476

(SDinnov,20) tends to detect more false irrigation events, keeping the bias closer to zero,477

but not necessarily improving the R and RMSD in terms of irrigation. A window size of478

20 days seems more appropriate, in the sense that this SDinnov should capture the natural479

variation of the innovations which is mainly induced by forcing errors but also vegetation.480

Overall, NIC values for the DA2,H are larger than for the DA2,M , in line with the larger481

forcing errors in DA2,H . The OLM already shows a reasonable performance (Figure 4c,d),482

leaving less space for improvement by the DA2,M .483
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Figure 6. (a,d) NICR [-], (b,e) NICRMSD [-], and (c,d) bias [mm day−1] of 14-day irrigation

amount estimates for the different DA2, for 1, 2, 3, and 7-day observation intervals. The colors

correspond to the level of Gaussian white noise added to the signal (σ, dB), and for all experiments

with noise, the mean metric is taken from the three runs. The rows are associated with the window

size taken to compute the standard deviation for the irrigation threshold, where (a,b,c) are based on

a 20-day window (SDinnov,20), and (d,e,f) relate to experiments with a 60-day window (SDinnov,60).

Dots correspond to DA2,H and crosses to DA2,M .

3.2.3 Impact on other land surface variables484

The quality of irrigation estimates has an impact on the other land surface variables.485

Table 1 shows the R values between daily results for selected OL and DA experiments,486

relative to the truth. The DA2 results are shown for an outlier threshold based on SDinnov,60487

(with irrigation underestimation, Figure 6f) to include the experiments for which weekly488

observations are assimilated. First, the difference between the two forcing errors is reflected489

in the significantly lower R values for OLH than for OLM . For DA2, it can be noticed that490

the novel buddy check approach using daily observations without noise (DA2 1 day, 0 dB)491

performs best and is clearly superior to the DA1 (with daily, perfect observations). The R492

values of the DA2 with a 3-day interval and 0.5 dB observation noise are close to those of493

the DA1 for both the high and mild forcing error experiments. In the worst case evaluated494

in this study (7-day interval and 0.7 dB of noise), the performance remains better than495

the OL when forcings are strongly altered (DA2,H), but under the same circumstances, the496

new method degrades the land surface estimates when forcings are only slightly changed497

(DA2,M ).498
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Table 1. R for the SSM, SM1, SM2, SM3, ET, and anomR for LAI, for selected experiments

calculated on the entire 10-year experiment. All DA2 were performed with the SDinnov,60 threshold.

SSM SM1 SM2 SM3 ET LAI
R [-] anomR [-]

High forcing error

OL 0.32 0.26 0.34 0.49 0.80 -0.12
DA1 0.60 0.60 0.68 0.76 0.86 0.21
DA2 1 day, 0 dB 0.70 0.73 0.79 0.79 0.89 0.31
DA2 3 day, 0.5 dB 0.56 0.53 0.57 0.65 0.83 0.17
DA2 7 day, 0.7 dB 0.49 0.45 0.52 0.60 0.78 -0.01

Mild forcing error

OL 0.73 0.69 0.71 0.82 0.88 0.71
DA1 0.82 0.81 0.81 0.89 0.91 0.78
DA2 1 day, 0 dB 0.86 0.84 0.88 0.93 0.92 0.88
DA2 3 day, 0.5 dB 0.79 0.76 0.79 0.87 0.90 0.84
DA2 7 day, 0.7 dB 0.72 0.66 0.66 0.80 0.86 0.60

For longer observation intervals, the anomR of LAI reduces significantly in the DA2499

runs. When irrigation events are missed in the new DA2 system (e.g. because the next500

observation falls too far in time after the irrigation event, making irrigation undetectable501

in the signal), there is a risk that LAI starts to drop drastically as a response to a water502

shortage in the root zone.503

4 Discussion504

4.1 Novel approach to estimate irrigation in a DA system505

The synthetic setup in this study helps to optimize the DA design for irrigation quan-506

tification. The soil moisture updating via DA can help to improve the initial conditions to507

trigger irrigation and to estimate the right amount of irrigation, but a blind ingestion of all508

observations can update soil moisture to wetter conditions which already reflect the presence509

of irrigation and inhibit irrigation estimation by the model, as in Modanesi et al. (2022).510

This phenomenon was illustrated in Figure 3 where irrigation events were delayed or missed511

because the required water is compensated by strong positive soil moisture increments. The512

idea of the buddy check approach builds on this limitation by preventing these updates to513

wetter conditions and forcing irrigation in the model instead. More specifically, the method514

relies on the fact that a sudden large difference between the observed and forecasted γ0
V V515

can only come from an unmodeled process, which corresponds to irrigation in this synthetic516

experiment. The primary condition is now the detection of an outlier (observation-based)517

and not the soil moisture deficit threshold anymore. This makes the timing of the estimated518

irrigation less model-dependent and more in line with actual practices on the field.519

The new method shows good performances in terms of irrigation estimation when fre-520

quent (daily or every other day) observations are available, which corresponds to the initial521

revisit interval (2-3 days, location dependent) of the S1 constellation over Europe. Reason-522

able performances are still expected for a 3-day observation interval but weekly observations523

would not be sufficient to guarantee the irrigation detection skill and lead to severe underes-524

timations of irrigation water. The failure of S1-B halved the number of available observations525

(one every ∼4 days in Europe, 12 days elsewhere), making the buddy check approach (used526

within a S1 DA system) unsuitable outside of Europe until the launch of the next satellite527
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(S1-C, expected in the spring of 2023). Other synthetic studies assimilating S1-related SSM528

products (Abolafia-Rosenzweig et al., 2019; Das et al., in review; Ouaadi et al., 2021; Zappa529

et al., 2022) also highlighted the importance of frequent observations. Zappa et al. (2022)530

reported large irrigation underestimations when observations are too sparse in time. Similar531

to our study using ∆innov to detect outliers, their approach is based on observed differ-532

ences in soil moisture (∆SM). Both methods are observation-based, making them sensitive533

to observation noise, and to underestimation of the irrigation amounts with less frequent534

observations, because the irrigation signal fades away in the observations with time. In535

short, our buddy check approach underestimates irrigation more for infrequent observations536

or when a large time window is used to compute the ∆innov threshold (SDinnov,60), but the537

remaining detected irrigation events are identified accurately in time and with the correct538

amounts of irrigation water.539

The main advantages of the new buddy check approach are (1) the flexibility of the540

outlier detection method to different situations (and different errors), and (2) the relaxation541

of the model-based soil moisture threshold for irrigation, making the irrigation estimates542

more in line with what happens in reality (as observed by the satellite). First, the standard543

deviation of the γ0
V V innovations for the DAH and DAM experiments reach average values544

of 1.5 dB and 1 dB, respectively, for the adaptive outlier detection (Equation 8) during545

the growing season. These values are in line with the magnitude of the expected high and546

mild forcing errors, with precipitation RMSD values of 5.1 mm day−1 and 3.6 mm day−1,547

respectively. Consequently, the DA results for both experiments were comparable in terms548

of NIC. It is expected that the threshold will also adapt to the location (i.e. the soil texture,549

crop type), which avoids the use of location-dependent thresholds (i.e. a new parameter) for550

the outlier detection. Second, setting an upper boundary to the MA to allow irrigation is551

more realistic than the use of a fixed threshold. For irrigation to be triggered, the threshold552

can slightly be higher (wetter, up to 0.50 in this case) or much lower (drier). This is more553

in line with a real world situation where irrigation is not necessarily determined by a fixed554

soil moisture deficit value, but depends on the agricultural practices and more generally on555

the water availability.556

4.2 Limitations and opportunities557

The main limitation of the buddy check approach is the missing of irrigation events, esp.558

for longer observation intervals. To counter this problem, we need frequent satellite data or559

a hybrid DA system, where the buddy check approach is supplemented with a pure MA-560

based irrigation model trigger, if the observation interval exceeds the surface soil memory of561

an irrigation event. The missed irrigation events have the strongest impact on vegetation,562

with a steep decline in LAI. This issue can be tackled by jointly updating SSM and LAI,563

as done by Modanesi et al. (2022). Vegetation updating would ask for the assimilation564

of backscatter in cross-polarization (γ0
V H) as this signal has shown to be more affected by565

vegetation (Patel et al., 2006; Vreugdenhil et al., 2018). A joint assimilation of γ0
V V and566

γ0
V H would require a combination of both innovations in our buddy check method approach.567

The newly proposed buddy check approach could also be used to estimate irrigation568

with other (e.g. particle) filters or other observations than backscatter data. High res-569

olution L-band soil moisture data would be interesting to guide the estimation of irriga-570

tion amounts. Such data can be obtained from e.g., downscaled SMOS or AMSR-E with571

DisPATCh (Malbéteau et al., 2016) or future missions such as the Copernicus ROSE-L572

(Davidson & Furnell, 2021) and the SMOS-HR (Rodŕıguez-Fernández et al., 2019). Never-573

theless, the outcome would strongly depend on the quality of the retrievals, and an appropri-574

ate bias treatment is needed to avoid the attenuation of the irrigation in the signal (Kumar575

et al., 2015; Kwon et al., 2022). Instead of changing the type of assimilated observations,576

the buddy check method could also be used in systems with other models, possibly crop577

models that are originally designed for agriculture, offering new opportunities in such fields578

of application.579
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4.3 Future real world experiment580

The success of a real world DA experiment with the buddy check approach will depend581

on the observability of irrigation and model-related limitations. First, satellite observations582

need to be available at high spatial and temporal resolution, and the actual type of irrigation583

method needs to be detectable. There is a chance that irrigation is applied for consecutive584

days over different fractions of the observed satellite footprint (one or a few fields receive585

irrigation per day). In that case, ‘jumps’ in the innovations will not be detected and the586

backscatter signal is likely to remain high for these consecutive days. Future research is587

necessary to counter this limitation, or higher resolution input data and observations are588

needed. Similarly, some types of irrigation will be easy to detect, whereas others not.589

Punctual large sprinkler events, as simulated in this study, are more easily detectable than590

e.g., drip irrigation, which is typically applied in smaller amounts and more frequently.591

Second, the LSM and WCM are assumed to be perfect in our synthetic study, but the592

model-related limitations already mentioned in Modanesi et al. (2022) will be important593

when going to a real world experiment. Concerning the LSM, the quality of the input594

data is crucial. Erroneous crop rooting depth, soil texture, or irrigation fraction, would595

automatically lead to a bias in the irrigation amounts since these factors directly influence596

the volumes of irrigation water (see LSM equations in Section 2.1). Though more flexible597

than a rigid soil moisture deficit threshold to trigger irrigation, the upper MA threshold598

of the buddy check approach (set to 0.50 in this study) will need some calibration, as this599

value may vary across regions. Also the reliability of meteorological forcings is essential.600

As demonstrated by DA2, an outlier can occur when there was a true precipitation event601

that was not included in the forcings of the simulation (Figure 5). When the root zone602

is dry enough to allow irrigation, these precipitation events (typically larger than 10 mm)603

cannot be distinguished from an irrigation event in the signal. The observation operator (e.g.604

WCM) could also pose a limitation, when directly assimilating microwave signals. Rather605

than calibrating an empirical model, novel machine-learning based observation operators606

could improve the system (de Roos et al., in review; Rains et al., 2022), but in both cases,607

the observation operator training might suffer from an inaccurate match between irrigation608

simulation (and the effect on soil moisture) and irrigation observed in the satellite signals.609

5 Conclusions610

Irrigation detection and quantification are major challenges. New methods based on611

remote sensing data are now emerging, including the use of microwave observations in com-612

bination with models through data assimilation (DA). Modanesi et al. (2022) assimilated613

Sentinel-1 backscatter observations into the Noah-MP version 3.6, coupled to a sprinkler614

irrigation scheme. The soil moisture and vegetation state were updated to set better ini-615

tial conditions to trigger irrigation simulation, but the system also had limitations, esp.616

when large updates to wetter conditions delayed or completely inhibited the process-based617

modeling of irrigation events. This hampers the irrigation quantification by the process618

model.619

In this study, we conducted synthetic experiments for the assimilation of backscatter620

observations (γ0
V V ) to update soil moisture in a system with erroneous meteorological forc-621

ings. After illustrating the shortcoming of blindly assimilating all data for state updating, a622

new method was developed based on a buddy check approach, in which innovation (observa-623

tion minus forecast) outliers are detected and not assimilated. The method still updates the624

land surface to guarantee the best possible initial conditions to estimate irrigation amounts,625

but when an outlier in the innovations is detected, an unmodeled process is assumed and626

the large innovation is not assimilated. Consequently, the ‘missed’ irrigation is triggered, if627

the rootzone soil moisture is dry and it is a day in the growing season. The new method is628

now primarily observation-based, and better adapts to the timing of real irrigation events.629

The threshold value to identify outlier innovations was made dependent on the locally and630
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temporally varying errors in the system. The method was tested for several observation631

intervals (1, 2, 3, and 7 days) and levels of observation noise, added as Gaussian white noise632

of mean zero and variable standard deviations (0, 0.3, 0.5, and 0.7 dB). The main results633

can be summarized as follows:634

1. For biweekly aggregated irrigation estimates, and compared to a model-only run, the635

new DA method reaches 50–80% and 20–50% of improvement in terms of Pearson636

R and RMSD, respectively, when frequent observations (daily or every other day)637

are available. From a 3-day observation interval onward, the performance degrades638

but remains reasonable (NICR: 20–40%, NICRMSD: 15–35%), and for weekly obser-639

vations, there is no improvement compared to a model-only run (NICR: -10–10%,640

NICRMSD: -10–15%).641

2. The largest improvements from the DA can be seen when the forcing error is large642

(strongly altered meteorological forcings) with a maximum performance for a biweekly643

aggregation of irrigation. When forcing errors are mild (meteorological forcings closer644

to the truth), the improvement peaks for the seasonal irrigation estimates.645

3. Observation error has less impact on the irrigation estimations than the observation646

interval. The NICR drops on average by ∼10% when going from perfect observations647

to random noise levels with a standard deviation of 0.7 dB. Noise negatively impacts648

the performance, especially for frequent observations where irrigation events remain649

undetected or false events are encountered.650

4. The DA improves other land surface variables, such as soil moisture, ET, or LAI651

along with the irrigation estimates. However, the DA cannot recover the LAI when652

the assimilated observations are too sparse in time. The LAI drops as a response to653

the dry soil moisture when irrigation events are missed.654

The adaptive buddy check approach is flexible and offers new opportunities. The655

method was tested for two very different sets of erroneous forcings and the results were656

similar in terms of improvement compared to a model-only run, suggesting that the method657

indeed adapts to different situations. Furthermore, the buddy check approach can easily658

be implemented in other systems: with another assimilated product (high resolution soil659

moisture retrievals) or with another LSM (or a crop model). After this synthetic evaluation660

of the method, the system is ready to be tested in the real world, but future developments661

(e.g. a hybrid observation- and model-based triggering of irrigation, in case of infrequent662

observations) will be required to obtain a mature DA system for irrigation estimation. The663

localized nature of irrigation in space and time asks for high resolution satellite data, ef-664

ficient modeling, and continued DA advances to accurately quantify the most important665

human use of water.666

6 Open Research667

The new method implemented in the Land Information System version 3.4 will be made668

available on GitHub after acceptance of this paper, along with the output of the synthetic669

experiment runs in the form of netCDF files, that will be published on Zenodo. The code670

and data can be provided during the review process upon request to the author.671

The LIS parameters and source code are freely available at https://lis.gsfc.nasa672

.gov/ and https://github.com/NASA-LIS/LISF. The MERRA-2 data (Gelaro et al., 2017)673

were obtained from: https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2/. In674

order to access the data, an account at https://urs.earthdata.nasa.gov/home is needed.675

The ERA5 data used in this study have been processed and provided by Météo-France.676

Publicly available ERA5 data can be accessed via the Copernicus Climate Data Store at677

https://cds.climate.copernicus.eu/ (Hersbach et al., 2020).678
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Malbéteau, Y., Merlin, O., Molero, B., Rüdiger, C., & Bacon, S. (2016, March). Dis-889

PATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized890

in situ measurements: Application to SMOS and AMSR-E data in Southeastern Aus-891

tralia. International Journal of Applied Earth Observation and Geoinformation, 45 ,892

221–234. Retrieved 2022-12-06, from https://www.sciencedirect.com/science/893

article/pii/S0303243415300386 doi: 10.1016/j.jag.2015.10.002894

Maselli, F., Battista, P., Chiesi, M., Rapi, B., Angeli, L., Fibbi, L., . . . Gozzini, B.895

(2020, December). Use of Sentinel-2 MSI data to monitor crop irrigation in Mediter-896

–23–



manuscript submitted to Journal of Advances in Modeling Earth System (JAMES)

ranean areas. International Journal of Applied Earth Observation and Geoinforma-897

tion, 93 , 102216. Retrieved 2022-11-04, from https://www.sciencedirect.com/898

science/article/pii/S0303243420302531 doi: 10.1016/j.jag.2020.102216899

Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J. M., Girotto, M., . . .900

Brocca, L. (2021, January). A Review of Irrigation Information Retrievals from901

Space and Their Utility for Users. Remote Sensing , 13 (20), 4112. Retrieved 2021-10-902

20, from https://www.mdpi.com/2072-4292/13/20/4112 (Number: 20 Publisher:903

Multidisciplinary Digital Publishing Institute) doi: 10.3390/rs13204112904

McNairn, H., & Shang, J. (2016). A Review of Multitemporal Synthetic Aperture Radar905

(SAR) for Crop Monitoring. In Y. Ban (Ed.), Multitemporal Remote Sensing: Methods906

and Applications (pp. 317–340). Cham: Springer International Publishing. Retrieved907

2023-01-23, from https://doi.org/10.1007/978-3-319-47037-5 15 doi: 10.1007/908

978-3-319-47037-5 15909

Merlin, O., Chehbouni, A., Walker, J. P., Panciera, R., & Kerr, Y. H. (2008, March).910

A Simple Method to Disaggregate Passive Microwave-Based Soil Moisture. IEEE911

Transactions on Geoscience and Remote Sensing , 46 (3), 786–796. (Conference Name:912

IEEE Transactions on Geoscience and Remote Sensing) doi: 10.1109/TGRS.2007913

.914807914

Miranda, N., Meadows, P., Piantanida, R., Recchia, A., Small, D., Schubert, A., . . . Vega,915

F. C. (2017, July). The Sentinel-1 constellation mission performance. In 2017 IEEE916

International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5541–5544).917

(ISSN: 2153-7003) doi: 10.1109/IGARSS.2017.8128259918

Modanesi, S., Massari, C., Bechtold, M., Lievens, H., Tarpanelli, A., Brocca, L., . . . De Lan-919

noy, G. J. M. (2022, September). Challenges and benefits of quantifying irrigation920

through the assimilation of Sentinel-1 backscatter observations into Noah-MP. Hy-921

drology and Earth System Sciences, 26 (18), 4685–4706. Retrieved 2022-10-27, from922

https://hess.copernicus.org/articles/26/4685/2022/ (Publisher: Copernicus923

GmbH) doi: 10.5194/hess-26-4685-2022924

Modanesi, S., Massari, C., Gruber, A., Lievens, H., Tarpanelli, A., Morbidelli, R., &925

De Lannoy, G. J. M. (2021, June). Optimizing a backscatter forward operator us-926

ing Sentinel-1 data over irrigated land. Hydrology and Earth System Sciences Discus-927

sions, 1–39. Retrieved 2021-10-20, from https://hess.copernicus.org/preprints/928

hess-2021-273/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-2021-273929

Nagaraj, D., Proust, E., Todeschini, A., Rulli, M. C., & D’Odorico, P. (2021, June).930

A new dataset of global irrigation areas from 2001 to 2015. Advances in Water Re-931

sources, 152 , 103910. Retrieved 2022-11-03, from https://www.sciencedirect.com/932

science/article/pii/S0309170821000658 doi: 10.1016/j.advwatres.2021.103910933

Nie, W., Kumar, S. V., Peters-Lidard, C. D., Zaitchik, B. F., Arsenault, K. R.,934

Bindlish, R., & Liu, P.-W. (2022). Assimilation of Remotely Sensed Leaf Area935

Index Enhances the Estimation of Anthropogenic Irrigation Water Use. Journal936

of Advances in Modeling Earth Systems, 14 (11), e2022MS003040. Retrieved 2022-937

11-17, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003040938

( eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003040) doi: 10939

.1029/2022MS003040940

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., . . . Xia,941

Y. (2011). The community Noah land surface model with multiparameterization942

options (Noah-MP): 1. Model description and evaluation with local-scale measure-943

ments. Journal of Geophysical Research: Atmospheres, 116 (D12). Retrieved 2022-944

02-08, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2010JD015139945

( eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010JD015139) doi: 10946

.1029/2010JD015139947

Olivera-Guerra, L., Merlin, O., & Er-Raki, S. (2020, March). Irrigation retrieval from948

Landsat optical/thermal data integrated into a crop water balance model: A case949

study over winter wheat fields in a semi-arid region. Remote Sensing of Environ-950

ment , 239 , 111627. Retrieved 2022-11-08, from https://www.sciencedirect.com/951

–24–



manuscript submitted to Journal of Advances in Modeling Earth System (JAMES)

science/article/pii/S0034425719306479 doi: 10.1016/j.rse.2019.111627952

Ouaadi, N., Jarlan, L., Khabba, S., Ezzahar, J., Le Page, M., & Merlin, O. (2021, January).953

Irrigation Amounts and Timing Retrieval through Data Assimilation of Surface Soil954

Moisture into the FAO-56 Approach in the South Mediterranean Region. Remote Sens-955

ing , 13 (14), 2667. Retrieved 2021-10-20, from https://www.mdpi.com/2072-4292/956

13/14/2667 (Number: 14 Publisher: Multidisciplinary Digital Publishing Institute)957

doi: 10.3390/rs13142667958

Ozdogan, M., & Gutman, G. (2008, September). A new methodology to map irri-959

gated areas using multi-temporal MODIS and ancillary data: An application example960

in the continental US. Remote Sensing of Environment , 112 (9), 3520–3537. Re-961

trieved 2022-11-03, from https://www.sciencedirect.com/science/article/pii/962

S0034425708001338 doi: 10.1016/j.rse.2008.04.010963

Ozdogan, M., Rodell, M., Beaudoing, H. K., & Toll, D. L. (2010, February). Simulat-964

ing the Effects of Irrigation over the United States in a Land Surface Model Based965

on Satellite-Derived Agricultural Data. Journal of Hydrometeorology , 11 (1), 171–966

184. Retrieved 2022-11-07, from https://journals.ametsoc.org/view/journals/967

hydr/11/1/2009jhm1116 1.xml (Publisher: American Meteorological Society Sec-968

tion: Journal of Hydrometeorology) doi: 10.1175/2009JHM1116.1969

Patel, P., Srivastava, H. S., Panigrahy, S., & Parihar, J. S. (2006, January). Compara-970

tive evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter971

to plant density. International Journal of Remote Sensing , 27 (2), 293–305. Re-972

trieved 2022-12-06, from https://doi.org/10.1080/01431160500214050 (Pub-973

lisher: Taylor & Francis eprint: https://doi.org/10.1080/01431160500214050) doi:974

10.1080/01431160500214050975

Pervez, S., Budde, M., & Rowland, J. (2014, June). Mapping irrigated areas in Afghanistan976

over the past decade using MODIS NDVI. Remote Sensing of Environment , 149 ,977

155–165. Retrieved 2022-11-04, from https://www.sciencedirect.com/science/978

article/pii/S0034425714001461 doi: 10.1016/j.rse.2014.04.008979

Rains, D., Lievens, H., De Lannoy, G. J. M., Mccabe, M. F., de Jeu, R. A. M., & Miralles,980

D. G. (2022). Sentinel-1 Backscatter Assimilation Using Support Vector Regression981

or the Water Cloud Model at European Soil Moisture Sites. IEEE Geoscience and982

Remote Sensing Letters, 19 , 1–5. (Conference Name: IEEE Geoscience and Remote983

Sensing Letters) doi: 10.1109/LGRS.2021.3073484984
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& Strauss, P. (2018, September). Sensitivity of Sentinel-1 Backscatter to Vegetation1050

Dynamics: An Austrian Case Study. Remote Sensing , 10 (9), 1396. Retrieved 2022-1051

12-06, from https://www.mdpi.com/2072-4292/10/9/1396 (Number: 9 Publisher:1052

Multidisciplinary Digital Publishing Institute) doi: 10.3390/rs100913961053

Xie, Y., & Lark, T. J. (2021, July). Mapping annual irrigation from Landsat imagery and1054

environmental variables across the conterminous United States. Remote Sensing of1055

Environment , 260 , 112445. Retrieved 2022-11-04, from https://www.sciencedirect1056

.com/science/article/pii/S0034425721001632 doi: 10.1016/j.rse.2021.1124451057

Zappa, L., Schlaffer, S., Bauer-Marschallinger, B., Nendel, C., Zimmerman, B., & Dorigo,1058

W. (2021, January). Detection and Quantification of Irrigation Water Amounts at1059

500 m Using Sentinel-1 Surface Soil Moisture. Remote Sensing , 13 (9), 1727. Re-1060

trieved 2021-10-20, from https://www.mdpi.com/2072-4292/13/9/1727 (Number:1061

–26–



manuscript submitted to Journal of Advances in Modeling Earth System (JAMES)

9 Publisher: Multidisciplinary Digital Publishing Institute) doi: 10.3390/rs130917271062

Zappa, L., Schlaffer, S., Brocca, L., Vreugdenhil, M., Nendel, C., & Dorigo, W. (2022,1063

September). How accurately can we retrieve irrigation timing and water amounts1064

from (satellite) soil moisture? International Journal of Applied Earth Obser-1065

vation and Geoinformation, 113 , 102979. Retrieved 2022-08-24, from https://1066

www.sciencedirect.com/science/article/pii/S1569843222001704 doi: 10.1016/1067

j.jag.2022.1029791068

Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., & Brocca, L. (2019,1069

February). Estimating irrigation water use over the contiguous United States by1070

combining satellite and reanalysis soil moisture data. Hydrology and Earth System1071

Sciences, 23 (2), 897–923. Retrieved 2022-11-07, from https://hess.copernicus1072

.org/articles/23/897/2019/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-231073

-897-20191074

Zhang, C., Dong, J., & Ge, Q. (2022, October). IrriMap cn: Annual irrigation1075

maps across China in 2000–2019 based on satellite observations, environmental vari-1076

ables, and machine learning. Remote Sensing of Environment , 280 , 113184. Re-1077

trieved 2022-08-02, from https://www.sciencedirect.com/science/article/pii/1078

S0034425722002966 doi: 10.1016/j.rse.2022.1131841079

Zhang, L., Zhang, K., Zhu, X., Chen, H., & Wang, W. (2022, October). Integrat-1080

ing remote sensing, irrigation suitability and statistical data for irrigated crop-1081

land mapping over mainland China. Journal of Hydrology , 613 , 128413. Re-1082

trieved 2022-11-04, from https://www.sciencedirect.com/science/article/pii/1083

S0022169422009830 doi: 10.1016/j.jhydrol.2022.1284131084

Zohaib, M., & Choi, M. (2020, April). Satellite-based global-scale irrigation water use1085

and its contemporary trends. Science of The Total Environment , 714 , 136719. Re-1086

trieved 2022-11-07, from https://www.sciencedirect.com/science/article/pii/1087

S0048969720302291 doi: 10.1016/j.scitotenv.2020.1367191088

–27–



Figure 1.





Figure 2.





Figure 3.





Figure 4.





Figure 5.





Figure 6.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6

