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Abstract

Induced seismicity observed during Enhanced Geothermal Stimulation (EGS) at Otaniemi, Finland is modelled using both

statistical and physical approaches. The physical model produces simulations closest to the observations when assuming rate-

and-state friction for shear failure with diffusivity matching the pressure build-up at the well-head at onset of injections.

Rate-and-state friction implies a time dependent earthquake nucleation process which is found to be essential in reproducing

the spatial pattern of seismicity. This implies that permeability inferred from the expansion of the seismicity triggering front

(Shapiro, 1997) can be biased. We suggest a heuristic method to account for this bias that is independent of the earthquake

magnitude detection threshold. Our modelling suggests that the Omori law decay during injection shut-ins results mainly

from stress relaxation by pore pressure diffusion. During successive stimulations, seismicity should only be induced where the

previous maximum of Coulomb stress changes is exceeded. This effect, commonly referred to as the Kaiser effect, is not clearly

visible in the data from Otaniemi. The different injection locations at the various stimulation stages may have resulted in

sufficiently different effective stress distributions that the effect was muted. We describe a statistical model whereby seismicity

rate is estimated from convolution of the injection history with a kernel which approximates earthquake triggering by fluid

diffusion. The statistical method has superior computational efficiency to the physical model and fits the observations as well

as the physical model. This approach is applicable provided the Kaiser effect is not strong, as was the case in Otaniemi.
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Abstract6

Induced seismicity observed during Enhanced Geothermal Stimulation (EGS) at7

Otaniemi, Finland is modelled using both statistical and physical approaches. The phys-8

ical model produces simulations closest to the observations when assuming rate-and-state9

friction for shear failure with diffusivity matching the pressure build-up at the well-head10

at onset of injections. Rate-and-state friction implies a time dependent earthquake nu-11

cleation process which is found to be essential in reproducing the spatial pattern of seis-12

micity. This implies that permeability inferred from the expansion of the seismicity trig-13

gering front (Shapiro, 1997) can be biased. We suggest a heuristic method to account14

for this bias that is independent of the earthquake magnitude detection threshold. Our15

modelling suggests that the Omori law decay during injection shut-ins results mainly from16

stress relaxation by pore pressure diffusion. During successive stimulations, seismicity17

should only be induced where the previous maximum of Coulomb stress changes is ex-18

ceeded. This effect, commonly referred to as the Kaiser effect, is not clearly visible in19

the data from Otaniemi. The different injection locations at the various stimulation stages20

may have resulted in sufficiently different effective stress distributions that the effect was21

muted. We describe a statistical model whereby seismicity rate is estimated from con-22

volution of the injection history with a kernel which approximates earthquake trigger-23

ing by fluid diffusion. The statistical method has superior computational efficiency to24

the physical model and fits the observations as well as the physical model. This approach25

is applicable provided the Kaiser effect is not strong, as was the case in Otaniemi.26

Plain Language Summary27

Around 60,000 earthquakes are recorded during a span of 50 days where large vol-28

umes of water were injected underground for the stimulation of a geothermal well at Otaniemi,29

near Helsinki, Finland. We compare the observations with numerical simulations to an-30

alyze the physical processes that have driven these earthquakes. A model based on physics31

finds that it is important to use a friction law that includes friction’s dependence on slip-32

rate and state variables to match the observations. In particular, the model allows re-33

lating the spatio-temporal evolution of seismicity with fluid pressure diffusion in the sub-34

surface. An empirical statistical model is also developed using the recorded catalogue.35

The statistical model is shown to perform well in the particular case of the Otaniemi stim-36

ulations. The models provide insight into the physical processes that govern induced seis-37

micity. The models presented in this study could help safer operations or the design of38

mitigation and optimization strategies that may help improve the efficiency of geother-39

mal energy extraction.40

1 Introduction41

It has long been known that injection of fluids in the subsurface can induce seis-42

micity (e.g., Healy et al., 1968; Raleigh et al., 1976; Aki et al., 1982). This issue has been43

put in the spotlight in recent years due to spikes of induced seismicity in regions with44

previously low levels of risk from earthquakes (Elsworth et al., 2016). While induced seis-45

micity has been linked primarily to hydraulic fracturing for natural gas or ‘fracking’, it46

is also a concern in the context of geothermal energy production (Gaucher et al., 2015;47

Majer et al., 2007; Zang et al., 2014) and potentially carbon sequestration (Villarasa &48

Carrera, 2015; White & Foxall, 2016; Zoback & Gorelick, 2012). A better understand-49

ing of injection-induced seismicity is therefore of great relevance to international efforts50

in limiting or offsetting emissions of CO2 (Bertani, 2012; Sander, 2011; Tester et al., 2006).51

Induced seismicity is of particular relevance to geothermal energy production. Con-52

trolled hydraulic stimulation could unlock the vast geothermal resources that could be53

drawn from deep crustal reservoirs with no natural hydrothermal activity. Hydraulic stim-54
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ulation is used to enhance the heat exchange between the circulating fluids and the reser-55

voir by creating or reactivating fractures which are hydraulically conductive. Induced56

seismicity is an undesirable by-product of this process, and a number of such Enhanced57

Geothermal Systems (EGS) has been stopped due to earthquakes felt by local residents.58

(Häring et al., 2008; Kwiaketk et al., 2019; Schultz et al., 2020). The development of En-59

hanced Geothermal Systems (EGS) would therefore benefit from better methods to fore-60

cast injection-induced seismicity.61

In this study, we address this issue using a seismological dataset acquired by the62

Finnish company St1 Deep Heat Ltd. during an EGS operation at the Aalto University’s63

Otaniemi campus near Helsinki (Hillers et al., 2020; Kwiatek et al, 2019; Leonhardt et64

al., 2021). A large catalogue produced with Machine Learning techniques (Ross et al.,65

2018a, 2018b) revealed that the time evolution of seismicity can be predicted well based66

on a simple convolution model (Avouac et al., 2020). An enhanced catalogue was also67

recently produced by Leonhardt et al. (2021). Building on this previous work, we present68

and assess physical and statistical models to forecast the spatio-temporal evolution of69

seismicity induced by the Otaniemi EGS stimulation.70

2 Injection-Induced Seismicity: Mechanisms And Forecasting Meth-71

ods72

Induced seismicity can result from either a stress or strength change on a fracture73

or fault. The effect of injection is generally assessed by considering pore pressure diffu-74

sion in the medium and the consequent decrease in the effective normal stress as accord-75

ing to Terzaghi’s principle (Skempton, 1984). This first-order description of the stress76

state has been effective in explaining various aspects of induced seismicity, including the77 √
t evolution of the seismicity front (Shapiro et al., 1997, 2006) and general spatiotem-78

poral patterns of induced seismicity (Elmar & Shapiro, 2002; Shapiro et al., 1999, 2002)79

as early as the pioneering study at the Rangely oil field (Raleigh et al., 1976). An ad-80

ditional step in the description of stress changes due to a fluid injection is the theory of81

poroelasticity which describes the coupling between fluid flow and deformation of the82

solid skeleton. Poroelasticity has been shown to play a role in triggering earthquakes in83

addition to pore pressure evolution (Segall, 1989; Segall et al. 1994; Segall & Lu, 2015),84

particularly outside the characteristic pore pressure diffusion length (Goebel & Brod-85

sky, 2018; Zbinden et al., 2020). Although the magnitude of stress changes from poroe-86

lasticity is estimated to account for typically only about a tenth of that from pore pres-87

sure diffusion (Zhai & Shirazei, 2018), its consideration is often required for complete88

explanations of the observed seismicity in space and time.89

A fluid injection can result in ‘hydrofractures’ (Mode-I opening fractures) or shear90

fractures (Mode-II or Mode-III). Induced earthquakes generally result from shear fail-91

ure. While linear elastic fracture mechanics is commonly employed in modeling the growth92

of cracks in Mode-I and the consequent stress changes, modeling shear failure requires93

an appropriate friction law. One kind of models is based on the Mohr-Coulomb failure94

criterion in which slip occurs once the ratio of the shear stress to the normal stress on95

a fault reaches a pre-defined threshold, the static friction coefficient, and drops to the96

dynamic friction coefficient either at the immediate onset of slip or gradually with fault97

slip. However, there is ample evidence from laboratory studies and natural observations98

that the initiation of slip involves in fact a gradual decrease of friction associated with99

asesimic slip, often referred to as the nucleation process. Such an evolution of friction100

is commonly described using the rate-and-state friction law derived from frictional slid-101

ing experiments in the laboratory (Ampuero & Rubin, 2008; Dieterich, 1994; Dieterich102

& Linker, 1992; Marone, 1998; Ruina, 1983).103

The non-instantaneous nucleation process implied by rate-and-state friction can104

explain a number of phenomenological observations such as the Omori decay of seismic-105
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ity rate during aftershocks (Dieterich, 1994) or the low sensitivity of seismicity to solid-106

earth tides (e.g., Beeler and Lockner, 2003). The rate-and-state formalism has also shown107

success in explaining the relationship between stress and seismicity rate due to diking108

(e.g., Toda et al., 2002) and aseismic slip (e.g., Segall et al., 2006). In the context of in-109

duced seismicity, rate-and-state friction has been applied to explain certain non-linear110

features such as the time lag between induced seismicity and stress perturbations (e.g.,111

Dempsey and Riffaut 2019; Candela et al. 2019; Norbeck & Rubinstein 2018; Richter et112

al. 2020). It is important to note that, in principle, the activation of a fault by a pore113

pressure increase doesn’t necessarily imply seismic slip (e.g., Guglielmi et al., 2015). In114

fact, there is observational evidence that injection-induced fault slip is mostly condition-115

ally stable (Bourouis & Bernard, 2007; Calò et al., 2011; Guglielmi et al., 2015; Good-116

fellow et al., 2015; Scotti & Cornet, 1994), as is expected from the nucleation model based117

on rate-and-state friction and that seismicity is in fact occurring outside the zones of high118

pore pressure (Cappa et al., 2019; De Barros et al., 2018; Wei et al., 2015).119

More specifically with regards to hydraulic stimulation of geothermal wells, impor-120

tant questions arise regarding the differences between the Mohr-Coulomb and rate-and-121

state friction-based models considering the rapid stressing rate that is common in such122

operations. Mohr-Coulomb models coupled with linear slip weakening can result in re-123

alistic simulations of seismic ruptures while accounting for the nucleation process (Olsen124

et al, 1997). This is not the case for single-degree-of-freedom spring-slider systems of-125

ten employed for modelling induced seismicity. The commonly used model of Dieterich126

(1994) based on rate-and-state friction can converge to models based on the Mohr-Coulomb127

criterion at the rapid equilibrium limit. It is also possible that rate-and-state effects on128

nucleation may be significant at the relatively short timescale of intense injection cycles129

during stimulation.130

A hysteresis effect, often referred to as the Kaiser effect, is also commonly observed131

in induced seismicity. The Kaiser effect refers to the observation when a material sub-132

mitted to a series of loading cycles of increasing amplitude fails gradually, further fail-133

ure generally occurs at a stress level exceeding the maximum stress reached in previous134

cycles. This effect explains the observation that acoustic emissions during rock failure135

stop if the stress decreases and do not resume until the medium is loaded to its previ-136

ous maximum (Lavrov, 2003). How a nucleation source “remembers” its loading history137

has proven to be essential in reproducing various observations in induced seismicity, such138

as time delays of the seismicity rate in response to perturbations of the injection rate139

and regions of seismic quiescence behind triggering fronts (Baisch et al., 2006, 2010; Dempsey140

& Riffault, 2019).141

Numerous physical models have been developed to incorporate stress changes, pore-142

pressure changes and failure mechanisms in a single framework (Gaucher et al., 2015;143

Grigoli et al., 2017). A notable example of physical models that accounts for rate-and-144

state friction in particular, is presented by Segall & Lu (2015), where changes in stresses145

by fluid injections into an infinite poro-elastic medium were used as input to the model146

of Dieterich (1994), relating seismicity and stress rates among a population of nucleation147

sources. Although the framework was originally used to investigate poroelastic effects148

during shut-in and to address the common observation that maximum magnitude events149

often occur after injections cease (Grigoli et al., 2018; Häring et al., 2008), it can be used150

more generally to study induced seismicity in response to various injection scenarios (e.g.,151

Zhai & Shirzaei, 2018). Finite-fault and fracture network models accounting for rate-and-152

state friction have also been developed (Almakari et al., 2019; Dublanchet, 2018; Larochelle153

et al., 2021; McClure & Horne, 2011) to examine rupture properties and the effect of het-154

erogeneous fault properties on the seismicity rate. Numerous factors make it difficult,155

however, to resort to such models in practice, such as the high computational cost of solvers156

and poor resolution of pre-existing heterogeneities in the sub-surface - in particular, the157

distribution of stress and strength - with a level of detail that cannot be constrained with158

–4–



manuscript submitted to JGR: Solid Earth

observation. Some representations of heterogeneities are essential in reproducing well-159

established statistical properties of earthquakes (Zoller et al., 2005; Dempsey et al., 2016)160

such as the Gutenberg-Richter law which describes the magnitude-frequency distribu-161

tion of earthquakes (Gutenberg & Richter, 1956).162

Due to the complexity of stress-based models along with the difficulty to calibrate163

the model parameters, a number of studies have alternatively explored data-driven sta-164

tistical modeling. Such models often hinge on the Gutenberg-Richter law (Gutenberg165

& Richter, 1956) and the assumption that earthquakes follow a Poisson process. Addi-166

tionally, they often model earthquake triggering as a cascading process based on the Omori167

law (Utsu, 2002) which fits commonly observed patterns of the decay of seismicity rate168

during aftershock sequences. A popular example is the epidemic type aftershock model169

(ETAS) (e.g., Ogata, 1988), which represents the total seismicity as a linear superpo-170

sition of homogeneous Poisson processes, to represent mainshock and aftershock sequences171

(e.g., Bachmann et al., 2011; Lei et al., 2008; Mena et al., 2013). Such models have the172

advantage of resulting in very realistic synthetic catalogs since they incorporate statis-173

tical properties directly derived from observations. However, statistical approaches are174

in principle less transportable from one reservoir to another as they lack explicit con-175

nections to the mechanical and hydro-geological properties of the medium. The devel-176

opment of hybrid models that account for the complex network of physical mechanisms177

while being generalizable and applicable to various injection sites and scenarios is there-178

fore an active area of research (Gaucher et al., 2015).179

3 Data Presentation And Analysis180

The seismic catalogue analyzed in this study comes from a geothermal well stim-181

ulation project operated by St1 Deep Heat Ltd. near the campus of Aalto University in182

Otaniemi, Finland and is compiled by Leonhardt et al. (2021). The injection well (OTN-183

3 in Figure 1) was drilled to a depth of 6.1 km into Precambrian crystalline (gneiss and184

granite) rocks. Approximately 18,000m3 of water was injected over the course of 49 days185

from June 4th to July 22nd in 2018. The injection history was divided into five succes-186

sive stages moving upward from the bottom of the well (Figure 1). Pumping parame-187

ters of the injection such as the injection rate and well-head pressure were tuned as part188

of a Traffic Light System (TLS), the details of which are presented in Ader et al. (2020)189

and Kwiatek et al. (2019). The stimulation consisted of numerous cycles of injections190

and pauses of varying duration. The injection history also included periods of bleed-off’s191

where injection was stopped and backflow out of the well was allowed.192

The stimulations were monitored with surface and borehole seismometers provid-193

ing excellent detection and location of the induced earthquakes (Hillers et al., 2020; Kwiatek194

et al., 2019). Namely, the monitoring network consisted of a seismometer array at 2.20-195

2.65km depth in a separate well (OTN-2), located around 400 m from OTN-3, in addi-196

tion to a 12-station network installed in 0.3-1.15 km deep wells (Figure 1). The catalogue197

consists of 61,150 events in total (Figure 2) and 1986 relocated events with spatial un-198

certainty of ±52m (Figure 3). The magnitude of completeness is estimated to be Mc =199

-1.1.200

A few salient features of the observed seismicity guide our modeling. First, the seis-201

micity rate has a positive correlation to the injection rate in time, accompanied by fi-202

nite periods over which it increases and decreases in response to injections and shut-ins,203

respectively. We indeed note that the seismicity rate reaches a similar magnitude for in-204

jections far apart in time but equal in the flow rate. Second, the decay pattern in the205

seismicity rate, R, during injection pauses is well-matched by the Omori law206

R(t) =
R0

1 + t/tr
, (1)207
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where t is time, tr is the time it takes for the seismicity rate to halve, and R0 is the seis-208

micity rate at the onset of decay. A fit to one of the injection pause periods is shown in209

Figure 4. Note that the more general ‘modified Omori law’ (Utsu, 2002) allows a 1/tp210

decay of seismicity rate; here the p-value is close to 1. The close match to the Omori law211

is consistent with observations of the decay rate in induced seismicity following shut-ins212

reported in a number of previous studies (Almakari et al., 2019; Bachmann et al. 2011,213

2012; Langenbruch & Shapiro, 2010). Lastly, the relocated catalogue (Figure 3) shows214

a rather diffuse distribution of seismicity, suggesting that the injection stimulated frac-215

tures were distributed within a relatively large volume (∼ 1km3) around the open sec-216

tions of the well by diffusion of pore pressure.217

The exact origin of Omori law decay remains poorly understood; it could be due218

to the finite nucleation process governed by rate-and-state friction (Dieterich, 1994) or219

by instantaneous nucleation and postseismic creep that predict a p-value of approximately220

1 (Perfettini and Avouac, 2004). This process was suggested to have occurred during a221

10 MPa stimulation of a geothermal well at ∼ 3km depth at Soultz-sous-Forêt (Bourouis222

and Bernard, 2007). Similarly, stress relaxation by pore pressure diffusion (Nur & Booker,223

1972) predicts a seismicity decay also closely resembling the Omori law with a p-value224

typically between 1 and 2 (Langenbruch & Shapiro, 2010; Miller, 2020). Studying the225

properties of the Omori-like decay provides a valuable opportunity to re-examine its me-226

chanical origins and the physical mechanisms that drive induced seismicity.227

4 Linear Transfer Function and Convolution Model228

The direct relationship between the injection and observed seismicity rate suggests229

that it may be represented by a linear transfer function of the injection history (Avouac230

et al., 2020). To quantify this relationship, we use the algorithm of Marsan & Lengline231

(2008) which was originally designed to determine the kernels characterizing how earth-232

quakes trigger other earthquakes. The algorithm estimates weights as a function of dis-233

tance and time which, after normalization, represent the probability that any earthquake234

was triggered by any previous earthquake. We adapted the algorithm here to determine235

the weight relating earthquakes to injections as the source of trigger. As justified later236

on, secondary triggering is ignored (i.e., aftershocks of triggered events are ignored). We237

assume that the observed seismicity rate density, λ(x, t), or the number of earthquakes238

in unit time can be modelled by a linear superposition of the influence from all previ-239

ous injections such that240

λ(t) = λ0 +
∑
ti<t

λi(t), (2)241

where λ0 is the uniform background rate density, and λi(t) represents the rate density242

at time t incurred by injection i. A non-linear behaviour may in reality arise from the243

possible coupling between fluid pressure and permeability, and from the seismicity model.244

Rate-and-state friction and the Kaiser effect are indeed sources of non-linearity, as we245

discuss in greater detail below.246

The kernel λ(∆t) (referred to as the bare rates) that defines λi(t) is found through247

an iterative process: First, we begin with an initial guess for λ(∆t) and compute the trig-248

gering weights between injection i and event j, wi,j = αjλ(tj−ti) and the background249

weight w0,j = αjλ0 where αj is a normalization coefficient to satisfy that
∑j−1

i=0 wi.j =250

1. Here, wi,j = 0 if ti > tj (earthquakes cannot be triggered by future injections). Sec-251

ondly, λ(∆t) is updated as follows252

λ(∆t) =
1

N · δt
∑
i,j∈A

wi,j , (3)253
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where A is the set of pairs such that |tj−ti| ≤ δt, and N is the number of total earth-254

quakes. Thus, δt becomes the discretization parameter of the algorithm. The two main255

assumptions of the model are linearity of the rate density that allows superposition of256

λi and the existence of a mean-field response to injections that is independent of event257

magnitude or injection volume. Demonstration of the algorithm on a simple synthetic258

catalogue and its sensitivity to discretization parameters are illustrated in the Supple-259

mentary Text S1.260

Injections are divided into individual cycles by binning them into regular 10-minute261

intervals. The result reveals a time decay proportional to 1/t (Figure 5). This is con-262

sistent with the observed Omori law decay following shut-ins and also with the period263

of build-up in seismicity at the beginning of injections. It is also possible to use this ap-264

proach to estimate spatial kernels. The results are not presented here as we found the265

size of the dataset and the quality of the locations to be insufficient to get well constrained266

kernels.267

The observation that the response to step-like decrease of injection rate leads to268

a 1/t Omori law decay can be used to estimate a Green’s function, g(t) (Avouac et al.,269

2020). Since the derivative of a step function is a Dirac delta function, g(t) can be found270

by simply differentiating the Omori law in time271

g(t) = − d

dt

(
R0

1 + t/tr

)
=

R0/tr
(1 + t/tr)2

(4)272

The predicted seismicity rate can then obtained from a simple convolution273

R(t) = u(t) ∗ g(t) =
∫ ∞

−∞
u(τ)g(t− τ) dτ, (5)274

where R and u are the seismicity and injection rate, respectively. Bleed-off’s are imple-275

mented as negative injection rates (likewise to all forthcoming models in this study). To276

construct the kernel for the specific case of Otaniemi, tr is chosen by fitting the Omori277

law to the last of the injection pauses of durations significantly longer than the average278

injection cycle (about 20 hours). Then, R0 is determined so as to yield a total number279

of events equal to the number of earthquakes in the catalog. tr and R0 are found to be280

24.1 hours and 208.9 events per hour, respectively. Although Avouac et al. (2020) re-281

ported that the data suggests a systematic increase of tr during the stimulation likely282

due to the increasing volume of the domain of increased pore pressure, we use a constant283

value of tr as the resulting difference to the fit is minor.284

The model result is displayed with the observed catalogue in Figure 6a. It follows285

remarkably well the observed seismicity rate variations; bulk of the observed seismicity286

is included within the 95% confidence interval, calculated by assuming events are gov-287

erned by an non-homogeneous Poisson process following the modelled seismicity rate.288

The model also closely matches the decay rate during injection pauses and the build-up289

rate at the onset of injection cycles.290

To quantify the goodness of fit, we use both the Kolmogorov-Smirnov test (Massey,291

1951) and the Poisson log-likelihood (Dempsey & Suckale, 2017). The Kolmogorov-Smirnov292

test returns the KS-statistic, which is the maximum difference between the cumulative293

distribution functions given by the prediction and the observation. The Poisson log-likelihood294

is the appropriate metric if earthquakes are assumed to result from a Poisson process,295

even if inhomogeneous in the case the rate varies in time and space. So the metric is valid296

as long as secondary aftershocks can be ignored. This assumption is tested by analyz-297

ing the distribution of interevent distances in space and time using the method of Za-298

liapin and Ben-Zion (2013). The result is shown in Supplementary Figure S4, which dis-299

plays a uni-modal distribution instead of the bi-modal distribution that would be expected300
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in case of clustering due to aftershock sequences. This is consistent with the analysis by301

Kwiatek et al. (2019) which shows that aftershocks account for no more than 10% of the302

events in their seismicity catalogue and the observation that aftershock sequences are303

rarely observed in seismicity induced by hydraulic stimulations (e.g., Baisch & Harjes,304

2003). One advantage of the Poisson log-likelihood and the Kolmogorov-Smirnov test305

is also that the metrics don’t require binning of the point process (Dempsey & Suckale,306

2017). Binning is used in the figures only for convenience to represent the data. The log-307

likelihood function is given by308

LLK(θ) =

n∑
j=1

logR(θ; tj)−
∫ tn

0

R(θ; t′)dt′, (6)309

where θ is the set of model parameters and tj is the occurrence time of event j = {1, 2, ..., n}.310

We report the KS-statistic here, preferred to the log-likelihood which is sensitive to the311

choice of units for R, but we see good qualitative agreement between the two measures312

as summarized in Table 2. The KS-statistic for the convolution model returns 0.036. The313

quality of the fit is impressive considering the simplicity of the model – which involves314

only two parameters. It also contradicts the premise that various non-linear mechanisms315

driving induced seismicity, such as the non-linearity of rate-and-state friction, the Kaiser316

effect, and changes in permeability due to high pore pressure and the development of hy-317

draulic fractures, should result in a nonlinear response overall. It may be that non-linear318

effects in Otaniemi are in fact small despite the relatively large stress variations induced319

by hydraulic stimulation, the possibility of which we explore with our physical models320

later on and in the supplementary materials.321

5 Physical Modeling322

We now present a physical model based on stress evolution from pore pressure dif-323

fusion and poroelasticity along with shear failure criterion following rate-and-state fric-324

tion. The medium is treated to be infinite, homogeneous and isotropic. Neglecting the325

effect of the free surface is justified by the relatively large depth of the injections com-326

pared to the dimensions of the seismicity cloud (Figure 3). The induced stresses can then327

be calculated using the analytical solutions for a point source from Rudnicki (1986)328

p(r, t) =
q

4πρ0r

η

ktrue
erfc

(1
2
ξ
)
, (7)

σij(r, t) = − q(λu − λ)µ

4πρ0ctruerα(λu + 2µ)

{
δij

[
erfc

(
1
2ξ
)
− 2ξ−2f(ξ)

]
(8)

+
xixj

r2

[
erfc

(
1
2ξ
)
+ 6ξ−2f(ξ)

]}
,

f(ξ) = erf( 12ξ)−
ξ√
π
exp(− 1

4ξ
2),

ξ =
r√

ctruet
,

ctrue =
ktrue
η

(λu − λ)(λ+ 2µ)

α2(λu + 2µ)
,
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where p and σij are the pore pressure and stress tensor, and r and t the distance from329

injection source and time, respectively; λu = 2µνu/(1–2νu) is the undrained Lamé pa-330

rameter and the drained Lamé parameter without the subscript u; c is the hydraulic dif-331

fusivity which depends on permeability, k and viscosity, η. Here we add the subscript332

”true” to k and c to distinguish between the true and apparent values of the diffusiv-333

ity, the notions of which are explored in greater detail by our following analysis. We as-334

sume the point source is a good approximation of the injections in Otaniemi given the335

length of the stimulated wells relative to the size of the total stimulated volume. The336

model is nearly identical to that introduced by Segall & Lu (2015). Poroelastic proper-337

ties which lack constraints from the field, along with a fixed fault-orientation are cho-338

sen as those in Segall & Lu (2015) to represent a general case. Ambient normal stress339

of 155 MPa is approximated using the average depth of the injection. All fixed param-340

eters and their dimensions are listed in Table 1.341

Stress changes become the input to the ODE formulation of Dieterich (1994), to342

solve for seismicity rate in space and time. The alternative integral formulation of Heimis-343

son & Segall (2018) is used here as it is more tractable numerically for injection scenar-344

ios such as in Otaniemi that consist of abrupt onsets and shut-ins of injections345

R

rb
=

K(t)

1 + 1
ta

∫ t

0
K(t′) dt′

, (9)

K(t) = exp

(
τ(t)

aσ(t)
− τ0

σ0

)
,

ta =
aσ0

τ̇r
,

346

σ = σ − p,

where rb is the background seismicity rate, τ̇r the background stressing rate, a the rate-347

and-state friction parameter, σ the normal stress, σ0 and τ0 the initial effective normal348

and shear stress, and σ and τ the applied effective normal and shear stress, respectively.349

Synthetic catalogues are produced by sampling events from a non-homogeneous Pois-350

son process using the acceptance-rejection method.351

The Kaiser effect is inherent in the formulation of Dieterich (1994) and Heimisson352

& Segall (2018). This results from the fact that the nucleation process is delayed if the353

stress decreases and resumes once the stress gets back to its previous peak level. The Kaiser354

effect is clearly demonstrated if we use the model to compute the response of the seis-355

micity rate to a sinusoidal stressing history (Supplementary Figure S5). The different356

injection locations must stimulate new volumes of rock and lead to new hydraulic path-357

ways. So we might expect the Kaiser effect to be significant within a single stage but to358

be less relevant from one stage to the other. The impact of the Kaiser effect may be more359

appropriately represented by resetting the stressing history at the onset of each stage.360

To this effect, we start a new simulation with the same initial conditions and compound361

the results for the final catalogue. This model is hereafter referred to as the rate-and-362

state model. Note that the validity of resetting the stress history could be questioned363

given that the seismicity clouds during the different stages largely overlap (Figure 3) sug-364

gesting overlapping stimulated volumes.365

We use the measured flow rates and pressure to estimate hydraulic diffusivity. An366

estimate of the diffusivity that fits the rate of pressure decay during injection pauses is367
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made by the Horner analysis. Since the analytical solutions of the present model are de-368

rived for spherical flow in a 3-D medium, the conventional Horner analysis originally de-369

rived for 2-D flow into a vertically confined aquifer (Horne, 1995; Zimmermann, 2018)370

is adapted to be consistent with Equations (7) and (8). Details on the adaptation and371

fitting process are presented in the Supplementary Text S2. The analysis gives a diffu-372

sivity of chorner = 0.018 m2/s, and a global fit to the entire pressure history using a Gaus-373

sian likelihood function gives an effective well radius and ambient pore pressure of 44m374

and 43.5MPa, respectively. The model fits the measured pressure history well during the375

entire stimulation, especially during the injection pauses (Figure 7a). A fit to the pres-376

sure history with diffusivity as a free parameter, however, gives a higher value of cbu =377

0.044 m2/s (subscript ‘bu’ standing for ”build-up”) that better matches the rate of pres-378

sure build-up at the onset of injection cycles (Figure 7b) with an effective radius and am-379

bient pore pressure of 31m and 54.9MPa, respectively. cbu also over predicts the rate of380

pressure decay during injection pauses. While constraints on the effective radius - a mea-381

sure of the damage zone surrounding the well that causes pressure drops - are difficult382

to quantify, ambient pore pressure in either cases are close to its bounds considering the383

temperature-dependence of fluid density at injection depth. When comparing the the-384

oretical triggering front derived by Shapiro (1997), i.e. r =
√
4πctf t where ctf is the385

diffusivity chosen to draw the triggering front, chorner appears to fit the spatial extent386

of near-field events better (Figure 3). We therefore use chorner = ctrue as a starting point387

for the models and refer to its theoretical triggering front as the ‘reference triggering front’.388

We revise this assumption later and note that the diffusivity derived from the Horner389

analysis fits the pressure drop at shut-ins, as should be the case by design, but doesn’t390

match the pressure build-up when injections start again (Figure 7a).391

The posterior distribution on the set of parameters associated to the seismicity model392

a, τ̇r, and rb is found using the affine invariant Markov chain Monte Carlo (MCMC) En-393

semble sampler of Goodman & Weare (2010) maximizing the log-likelihood given by Equa-394

tion (6). In order to simplify the sampling process, the sampler computes the posterior395

of a and τ̇r given that rb - which is a simple multiplicative factor to the normalized seis-396

micity rate - is adjusted for each pair of a and τ̇r to match the total number of observed397

events (61,150 events). The sampler conducts 2000 ∼ 5000 iterations of 32 walkers with398

the chain length made to be longer 50 times the auto-correlation length in order to en-399

sure full exploration of the posterior distribution. The prior is assumed to be uniform400

for both variables between the range of 10-5 ∼ 10-2 and 0.1 kPa/yr. ∼ 5 kPa/yr. for401

a and τ̇r, respectively, although the shape of the prior is seen to have little effect on the402

posterior given the large sample size.403

a, τ̇r, and rb of maximum likelihood is found to be 0.0002, 3.05 kPa/yr. and 12.1404

events/days, respectively, and the resulting model is shown in Figure 6b. The model fol-405

lows the observations quite well in time, with a KS-statistic of 0.029, slightly lower than406

the value of 0.036 obtained with the convolution model. The model succeeds in repro-407

ducing the main temporal features of the observed catalogue: 1. direct correlation be-408

tween the injection and seismicity rate and 2. Omori-law decay during shut-ins. In space,409

the fit is much less compelling (Figure 8b). The triggering front lags significantly behind410

the reference triggering front with a much smaller mean of the distribution. Yet in both411

time and space, resetting of the stress history at each injection stage turns out to be es-412

sential in reproducing important features of the observation. The best fit using the model413

without resetting of the stress history (a = 0.0001, τ̇r = 4.89 kPa/year, and rb = 25.9414

events/day) as shown in Figure 6c has relatively minimal seismicity rate during the sec-415

ond half of the injection history due to the Kaiser effect. In space, it is completely de-416

void of any seismicity close to the injection well during this period (Figure 8c). Far-field417

seismicity much beyond the reference triggering front is largely attributed to background418

stressing as poroelastic stress perturbations are small relative to pore pressure changes.419
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6 Adjusting Model Diffusivity to Spatio-temporal Distribution of Seis-420

micity421

Given that the rate-and-state model fails to match the observations in space as-422

suming the diffusivity inferred from Horner analysis, we now examine the possible un-423

derestimation of the diffusivity by the Horner analysis. Following the seminal study of424

Shapiro (1997), it has become common practice to infer the diffusivity from fitting r =425 √
4πctf t to the propagation of the seismicity front, or the triggering front - defined by426

the outline of the outermost events of the seismicity cloud extending from the well. How-427

ever, we note that ctf of the rate-and-state model shows a significant mismatch by a fac-428

tor of ∼3 from ctrue = chorner prescribed in the model (Figure 8b). This discrepancy429

is due to the role of delayed nucleation represented by aσ. As shown by Wenzel (2017),430

the parameter aσ of the rate-and-state model acts as a threshold triggering stress that431

restricts the extent of the triggering front. The sensitivity of the triggering front to aσ432

is clearly visible in Figure 9 which compares two synthetic catalogues that only differ in433

the prescribed values of a. In the scope of the rate-and-state model or stress thresholds434

as commonly used in Mohr-Coulomb models, inference of the diffusivity from the appar-435

ent migration of seismicity requires considerations of both c and a. Additionally, the method436

of inferring the diffusivity from the triggering front may depend on the earthquake de-437

tection thresholds. A higher detection threshold may give a more poorly resolved cat-438

alogue in space that could lead to a different estimation of the triggering front. Further-439

more, the position of the triggering front can be obscured even more by background seis-440

micity and far-field events triggered by poroelastic effects. Fitting the seismicity front441

represented by the envelope of the seismicity cloud, places a lot of weight on potentially442

biased and not particularly well-defined features.443

In consideration of such complications, one would wish for a definition of the seis-444

micity front that is independent of the number of events in the catalogue and robust to445

factors of discrepancy between observations and model predictions. We therefore pro-446

pose an approach to infer ctrue from the spatial distribution of the seismicity as opposed447

to the triggering front. A simple way is to fit the distribution as a function of distance448

and time from the point of injection with a known analytical expression. We recall that449

the half-norm distribution is the solution to the diffusion equation in response to a Dirac450

point source in a 3-D medium where the standard deviation of the distribution, Λ(t), is451

a function of time such that452

fY (y; Λ(t)) =

√
2

Λ(t)
√
π
exp

(
− y2

2Λ(t)2

)
, y ≥ 0 (10)453

This inspires our approach to fit Equation (10) to the rate-and-state model in response454

to a constant injection scenario. The half-norm distribution indeed turns out to provide455

a relatively good fit (Figure 10); it matches well the bulk of the distribution but tends456

to slightly overestimate seismicity rate at larger distances. Indeed, we do not make the457

claim that the half-norm distribution is the best possible fit and acknowledge there may458

be other distributions that could better match the rate-and-state model although they459

are not explored further here. Furthermore, plotting the evolution of Λ versus time re-460

veals that it follows closely
√
ctruet. We make the assumption that the remaining dis-461

crepancy can be modelled as a multiplicative factor such that462

Λ(t) =
√
chgt =

√
γ({l})ctruet, (11)463

where {l} is a set of non-dimensional parameters. Thus, chg is a measure of the radial464

spreading of the seismicity relative to the point of injection (‘hg’ standing for half-Gaussian465

distribution). In order to apply this method to Otaniemi, we attempt to estimate chg466

from the relocated catalogue. One disadvantage of the method is that it requires a set467

–11–



manuscript submitted to JGR: Solid Earth

of relocated events large enough to constrain the evolution of chg with confidence. As468

detailed in the supplementary text S3, we can indirectly estimate from the cumulative469

relocated catalogue giving chg = 0.011 m2/s (Supplementary Figure S6).470

We find the relationship γh(l) empirically by observing the systematic dependence471

of γh on l as reproduced by the rate-and-state model. We assume l depends not only on472

pore fluid transport properties but also rate-and-state properties such as a. We find to473

be relevant the ratio l = aσ/pq, where pq = qη
4πρ0kL

is the characteristic pore pressure474

for given injection rate q, and L is the size of the computational domain. Higher values475

of aσ would produce a stronger threshold effect and suppress seismicity migration, the476

extent of which would depend on its strength relative to the induced pressure, pq. A se-477

ries of single boxcar injections are simulated for a range of c and a. We find a rational478

function of aσ/pq that fits γh as shown in Figure 11. Although the reason for the exact479

functional form of the relationship is not obvious, the quality of the fit is compelling. The480

observed trend is also consistent with the known role of aσ: higher values of a suppresses481

seismicity at further distances, decreasing chg and consequentially γh. The functional482

fit allows new uncertainty estimates of the diffusivity in Otaniemi. Figure 11 shows the483

difference between the predicted and true values of diffusivity for a range of ctrue and484

a, given the estimated value of chg = 0.011 m2/s and an injection rate, q = 10L/min.485

Although this is a much lower injection rate than the average in Otaniemi there are also486

significant differences between the idealized boxcar injections used to produce Figure 11487

and the much more complex schedule in Otaniemi. One can see that accounting for the488

role of delayed nucleation significantly widens the possible range of diffusivity in Otaniemi.489

Namely, the functional fit considers equally likely much higher values of ctrue than would490

be predicted by the triggering front observed in Otaniemi given sufficient rate-and-state491

effects.492

In light of this finding, we test the possibility that cbu = 0.044 m2/s is in fact closer493

to ctrue in Otaniemi than chorner as the inconsistency between the triggering front us-494

ing cbu = ctf and the relocated catalogue are borne due to rate-and-state effects. We495

test this hypothesis by finding the best fit of the rate-and-state model using cbu = ctrue.496

The effective radius and ambient pore pressure are adjusted to 31.1m and 54.9MPa, re-497

spectively, to best fit the well pressure measurements. The resulting fit for the seismic-498

ity rate in time is shown in Figure 6d, and the corresponding synthetic catalogue in space499

is shown in Figure 8d. a, τ̇r, and rb are found to be 0.00006, 1.29 kPa/yr and 4.7 events/day,500

respectively. The fit in time bears no significant improvement from the fit using chorner =501

ctrue, although the KS-statistic is slightly lower at 0.025. The fit in space is much im-502

proved with a higher mean of the distribution and cluster of events that encompasses503

greater portions of the relocated catalogue. One region the model performs rather poorly504

on is capturing the the back-propagation front starting around the 500-hour mark. It’s505

possible that the back-propagation fronts, whose occurrence in time would correspond506

to the drawdown periods used for the Horner analysis, is still governed by the lower dif-507

fusivity chorner. It could be that the back-propagation consists of two separate migra-508

tion patterns, based on the observation that the initial portions of the back-propagation509

front are predicted quite well by the model (starting at around the 450-hour mark). This510

could be due to a propagation of the seismicity governed by different mechanisms than511

pore pressure diffusion, such as stress transfer by aseismic slip (Dublanchet & De Bar-512

ros, 2021), although it is difficult to constrain the exact mechanism of seismicity migra-513

tion given their possibly similar characteristics (r ∼
√
t).514

The differences between cbu and chorner may be indications of distinct hydraulic515

processes that govern the well-head pressure and the spatial distribution of seismicity.516

One could imagine that the well-head pressure is more representative of the diffusivity517

of the medium immediately surrounding the well. On the other hand, the spatial dis-518

tribution of seismicity may be more dependent on the path of highest hydraulic conduc-519

tivity within the entire stimulated volume. The abrupt cessation of seismic activity close520
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to the injection well following shut-in could be associated to a decrease in the diffusiv-521

ity due to fracture healing, leading to the lower estimate of chorner. It is also important522

to note that the two diffusivities require different values of a, τ̇r, and rb, such that their523

independent measurements would provide stricter constraints on ctrue. We see that the524

higher estimate cbu inferred from this analysis yields synthetic catalogues in better agree-525

ment with the observed seismicity in time and space. We conclude using the triggering526

front to infer the diffusivity may yield a significantly biased estimate if the effect of earth-527

quake nucleation is ignored.528

7 Design of the Spatio-temporal Convolution Kernel529

We now use the physical model as a basis to extend the temporal convolution model530

to space. We look for a new kernel with spatial dependence such that the convolution531

is as follows532

R(t, x) = u(t) ∗ g(t, x) =
∫ ∞

−∞
u(τ)g(t− τ, x) dτ (12)533

The spatial component of the kernel is constructed by using the half-norm distri-534

bution, as identified in Section 6, with a shape parameter increasing as
√
chgt. Combin-535

ing with the Omori law as the temporal component as previously gives the integral of536

the kernel537

∫ t

−∞
g(r, t′) dt′ =

√
2

√
πchgt

exp
(
− r2

2chgt

)
·
(

R0

1 + t/tr

)
, (13)538

which is differentiated in time to obtain the response to Dirac forcing539

g(r, t) =

√
2

2
√
πt(chgt)3/2

exp
(
− r2

2chgt

)
· (−2chgt

2 − chgt(t+ tr) + r2(t+ tr))R0

tr(1 +
t
tr
)2

(14)540

The three parameters of the model are chg = 0.011 m2/s, R0 = 213.5 events/hr.,541

and tr = 28.5 hours, as estimated from the data. The fit to the temporal evolution of542

seismicity is, by design, identical to the fit obtained with the kernel in time introduced543

earlier (Figure 6a). The model provides now in addition a good match to the observa-544

tions in space, especially with regards to the triggering and back-propagation fronts (Fig-545

ure 8a). Overall, the convolution method approximates the physical model and fit the546

observations quite well, albeit with a drastically shorter computing time - by at least an547

order of magnitude - thanks to the use of the fast Fourier transform (the convolution is548

transformed into a simple product in the Fourier domain).549

8 Discussion550

8.1 Comparisons of Coulomb and Rate-and-State Models551

Both rate-and-state and Mohr-Coulomb models are widely used in modelling in-552

duced seismicity. The standard Coulomb model assumes a population of faults with a553

uniform distribution of initial stress up to the maximum shear stress allowed by static554

friction (e.g., Ader et al, 2014). We show in supplement that this simplest version of the555

Coulomb model doesn’t fit the observations neither in time nor in space (Text S4 and556

Figure S7). A number of studies which have tested the applicability of the Coulomb model557

to induced seismicity found it necessary to introduce a stress threshold that needs to be558

exceeded for earthquake triggering (e.g., Bourne et al., 2018; Dempsey & Suckale, 2017;559
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Dempsey & Riffault, 2019; Langenbruch & Shapiro, 2010; Rothert & Shapiro, 2003). The560

physical justification for the inclusion of the threshold, hereafter referred to as Ccpt, is561

to account for the population of faults activated during the stimulation that were ini-562

tially in a relaxed state of stress, not close to failure. In this case, triggering would be563

delayed due to their initial strength excess rather than due to the nucleation process. The564

explanation is probably relevant in stable tectonic areas (e.g., Bourne et al., 2018; Dempsey565

& Suckale, 2017; Dempsey & Riffault, 2019; Langenbruch & Shapiro, 2010). Wenzel (2017)566

demonstrates the response of the Dieterich (1994) rate-and-state model, which assumes567

a population of faults above steady-state (initially already on their way to failure), can568

be approximated with such a threshold Coulomb model due to the tendency of aσ to act569

as a stress threshold. On the other end, the application of the rate-and-state model to570

a population of faults below the steady-state regime also results in introducing a thresh-571

old in the rate-and-state model as well (Heimisson et al., 2022), accounting for the pop-572

ulation of earthquake sources that are initially far from instability which is assumed neg-573

ligible by Dieterich (1994). In this case, the question remains whether Ccpt is indeed solely574

representing the initial stress state, or rather acting as a proxy variable that also encom-575

passes effects of time-dependent nucleation.576

To address these questions, we consider a Coulomb model with a stress threshold577

representing the initial strength excess on the triggered faults. The Coulomb model is578

formulated as follows579

R(t) =
1

αc

∫
V

fc

(
p(r, t)

)
· ∂p
∂t

(r, t) dV, (15)580

∂p

∂t
(r, t) =

q(λu − λ)(λ+ 2µ)

8π
3
2 ρ0r3α2(λu + 2µ)

ξ3 exp
(
−1

4
ξ2
)
, (16)581

where V is the representative volume over which seismicity is recorded, αc is a scaling582

factor defined as the change in pore pressure per slip event per unit volume (Nur & Booker,583

1972), and fc is the probability density function representing the distribution of thresh-584

old triggering pressure needed for the Coulomb stress change to exceed the initial strength585

excess. Following the observation that poroelastic stress changes are minimal compared586

to pore pressure changes, they are ignored hereafter for simplicity. The derivation of equa-587

tion (16), which is the time derivative of equation (7), is given in Appendix A of Segall588

& Lu (2015). The integral is restricted to where stress changes are positive, and to ac-589

count for the Kaiser effect, the integral is further limited to where the past maximum590

pore pressure has been exceeded. Following Bourne et al (2018) and Smith et al. (2022),591

we next assume a population of faults with randomly distributed strength excess using592

a formulation that has been found to provide a good model of seismicity induced by gas593

extraction from the Groningen gas field. Seismicity starts once the Coulomb stress change594

exceeds the lowest value of the initial strength distribution. According to the extreme595

value theory, the tail of the distribution can be represented by a Generalized Pareto dis-596

tribution, leading to an exponential increase of seismicity for a constant loading rate (Bourne597

et al., 2018). This general formulation is valid to simulate the onset of seismicity but it598

does not allow the transition to a steady state regime where seismicity rate would be pro-599

portional to the loading rate. We therefore assume a Gaussian distribution of initial strength600

to allow for the transition to steady-state (Smith et al., 2018), and express it in term of601

the distribution of threshold pressure602

fc(p) =
1

θ2
√
2π

exp

(
− 1

2

(
p− θ1
θ2

)2
)
, (17)603

where θ1 and θ2 are the mean and standard deviation of the distribution, respectively.604

The best fitting model is found with respect to θ1 and θ2 within the range of 0.01 ∼ 5605
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MPa for both parameters. αc is adjusted to match the total number of events, much like606

rb of the rate-and-state model. This model is hereafter referred to as the Coulomb model.607

The model fit in time and space are shown in Figure 6e and 8e, respectively, with608

θ1 = 0.66 MPa, θ2 = 0.28 MPa, and αc = 14.3 kPa/event · m3. The model fits the ob-609

servations well in time, with a KS-statistic of 0.029 but significantly overestimates the610

extent of seismicity in space, which was also a main issue with the standard Coulomb611

failure mode (Supplementary Figure S7). The model is also less sensitive to rapid vari-612

ations of the injection rate compared to the rate-and-state models, with relatively muted613

changes in the seismicity rate in-between injection cycles. Such sensitivity is seen to grow614

with the time scale of stressing rates; Figure 12 shows the response of the both the Coulomb615

and rate-and-state models with the duration of injections and pauses multiplied by fac-616

tors of 0.1 and 10 (parameters are fixed to those that produced figures 6d&e). While both617

models show more rapid variations of the seismicity rate relative to the injection rate618

for longer injection duration, the tendency is significantly greater in the Coulomb model.619

For longer injection duration, the models show rather good agreement between each other620

although the Coulomb model predicts lower tr with increasing time. Similar sensitivi-621

ties may be observed with respect to the choice of θ1. While both the Coulomb and rate-622

and-state models may provide sufficient hindcasting tools for the same observation, the623

calibrated models produce very different forecasts for injection scenarios with duration624

of injection different from those used for calibration. In addition, they may produce dif-625

ferent predictions in space for similar predictions in time. The comparisons suggest that626

the stress state with respect to failure and nucleation effects must be modelled separately,627

as done for example in the threshold rate-and-state model of Heimisson et al. (2022),628

especially for fast injection cycles commonly employed in EGS operations where the ef-629

fect of delayed nucleation may not be appropriately represented by the inclusion of a stress630

threshold in Coulomb models.631

We remark that our modeling allows estimation of the best fitting values of a to632

between 0.00006 and 0.0002, which is significantly lower than the values inferred from633

laboratory measurements, generally ranging between 0.01 and 0.001 (Marone, 1998). Yet,634

the importance of rate-and-state effects in matching the observations in both space and635

time suggest that even such low values do not yield, for the injection schedule studied636

here, the rate-independent behavior that could be matched with a Coulomb model. The637

reconciliation of field-inferred values of aσ and laboratory measurements is still paramount638

for eventual application of such models towards seismicity forecasting. One possible ex-639

planation is that spatial heterogeneities lead to elastic interactions that produce glob-640

ally inferred values lower than that in a homogeneous equivalent (Dublanchet et al., 2013).641

It is also important to note that the model of Dieterich (1994) is a rather limited rep-642

resentation of the full complexity of rate-and-state friction. For example, the model sim-643

ulates a population of spring-slider nucleation sources, whose qualitative differences in644

their behavior to more realistic finite fault models have been displayed for numerous as-645

pects of rupture characteristics. Additionally, the model neglects the effect of variable646

effective normal stress on nucleation size, as the number of active nucleation sources re-647

mains constant throughout (Alghannam & Juanes, 2020). Further development of the648

model with a more holistic representation of rate-and-state friction would prove valu-649

able for induced seismicity forecasting.650

8.2 Origin of Omori-Law Decay Following Hydraulic Stimulation651

The rate-and-state model reveals that the post shut-in Omori-law decay at Otaniemi652

depends strongly on the stress relaxation process by pore-fluid diffusion and cannot be653

explained solely by nucleation effects. The dependence on both nucleation and stress re-654

laxation can be demonstrated by a sensitivity analysis of the relaxation timescale of the655

Omori law, tr, to parameters a, the rate-and-state friction parameter and k, the perme-656

ability. We find the most direct relationship to be that between the ratios of tr and the657
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characteristic diffusion time, tc =
L2

c , to ta as shown in Figure 13 where tr is measured658

by fitting the Omori law to shut-ins following single boxcar injections under the rate-659

and-state model. Thus, tr is more strongly dependent on tc. The positive relationship660

tr and tc follows the intuitive reasoning that higher diffusivity would result in more rapid661

relaxation of induced pressure and consequently a faster decay of the seismicity rate. Our662

observations are consistent with the suggestion that the empirical Omori-law would be663

a result of stress relaxation by pore pressure diffusion (Almakari et al., 2019; Langen-664

bruch & Shapiro, 2010; Miller, 2013). This explanation seems certainly reasonable in the665

context of EGS stimulations where pore pressure variations are particularly large.666

The dependence on stress relaxation implies that tr also depends on injection du-667

ration (Figure 13). where the sensitivity analysis is performed with a and k fixed at 0.001668

and 10−16 m2, respectively, while the injection duration varies between factors of 0.1 to669

100 of tc. The plot shows a non-linear relationship between tr and the injection dura-670

tion, tI , with an initial increase followed by a decrease. The trend exhibits a strong cor-671

relation with the seismicity rate at the time of shut-in. For shorter injections, the seis-672

micity rate continuously increases prior to shut-in, increasing the time to relax to back-673

ground levels. This is until the seismicity rate begins to decrease for continued injection,674

as pore pressure reaches steady-state conditions, and further nucleation is suppressed by675

the Kaiser effect (Supplementary Figure S5). Consequently, tr decreases as well, as it676

takes less time to relax the lower seismicity rate. A similar effect arises due to the finite-677

ness of the computational domain – the further distances where the seismicity rate would678

continue to increase at later times are cut-off. The sensitivity of tr to the total injected679

volume is consistent with the observation that the Omori law relaxation time at shut-680

in increases with time during the EGS stimulation at Otaniemi (Avouac et al., 2020).681

8.3 Application of Models to Seismicity Forecasting682

The models so far have only been applied in a hindcasting sense such that the data683

has been used in its entirety in order to tune the model parameters. We test the abil-684

ity of the models to truly forecast induced seismicity in Otaniemi by limiting the range685

of the data used for training the models. Forecasts from the best fitting physical model686

(rate-and-state model with ctrue = cbu - Figure 6d & 8d) and the spatio-temporal con-687

volution model are shown in Figure 14 & 15, respectively. The rate-and-state model is688

able to produce a forecast comparable to the hindcast using just the first injection stage689

as the training period with a similar value of a = 0.00005 although with significantly lower690

τ̇r = 0.1kPa/year and rb = 0.39 events/day. With the same training period, the convo-691

lution model performs rather poorly, largely due to the estimation of tr at the end of first692

injection stage substantially lower (2.9 hours) than the average value throughout the en-693

tire injection schedule. The forecast is significantly improved by including the second in-694

jection stage within the training period, which now consists of the Omori decay observed695

during the injection pause at around the 450-hour mark that significantly increases the696

estimated value of tr to 10.4 hours.697

It is likely that the rate-and-state model is more robust to the length of the train-698

ing period than the convolution model due the fact that ctrue is fixed at cbu which matches699

the pressure history of Otaniemi in its entirety (Figure 7b). As discussed in Section 8.2,700

diffusivity plays a significantly stronger role in governing the rate of Omori decay than701

the tuning parameters of the rate-and-state model, namely a and τ̇r. Thus, the rate-and-702

state model seems suited to perform well in forecasting applications given an accurate703

estimation of the diffusivity. Forecasts from the convolution model could also be improved704

by accounting for the increase in tr with cumulative injected volume as observed in Otaniemi705

(Avouac et al., 2021).706
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8.4 Influence of the Kaiser Effect707

We have seen that the fit to the temporal evolution of seismicity is improved when708

the Kaiser effect is reset at each new stimulation stage. Although the clouds of seismic-709

ity generated during each stimulation stage overlap largely (Figure 3), this reset is jus-710

tified as each new stage implied the stimulation of a new volume near the wellbore. With-711

out such an adaptation, the seismicity rate is predicted to significantly lower during the712

second half of the injection history (Figure 6c) along with large regions of seismic qui-713

escence near the injection well (Figure 8c). This also implies that the efficacy of the con-714

volution model - which does not account for the Kaiser effect at all - depends strongly715

on the apparent absence of the Kaiser effect in Otaniemi.716

The physical mechanism behind the activation of new volumes is unclear given the717

diffuse and rather random structure of the relocated catalogue (Figure 3). If this argu-718

ment is dismissed based on relocation uncertainties, one could pose that a low diffusiv-719

ity stimulated non-overlapping volumes from one stage to the other. However, such a low720

diffusivity should manifest in inconsistencies with the observed catalogue in time, for in-721

stance a longer apparent relaxation time during shut-ins. Rather, the need to reset the722

stressing history for the models to reproduce the observations in Otaniemi more likely723

implies the creation of new hydraulic pathways due to the fracturing nature of the stim-724

ulation that activated new nucleation sources (Cladouhos et al., 2016). Such phenomenon725

would depend on both the physical properties of the injected medium such as its fluid726

transport properties and fracture toughness, and the injection scenario, especially any727

spatial variation of the injection location.728

8.5 Validity of the Convolution Model729

Our study show that, in the context of the Otaniemi injection schedule, the seis-730

micity response to injections in time and space can be approximated with a simple con-731

volution model. This model ignores all the sources of non linearity that may arise from732

the coupling between fluid flow and deformation, the earthquake nucleation process, the733

initial strength distribution and Kaiser effect. It is therefore not obvious that this ap-734

proximation would be applicable to other induced seismicity context or for other injec-735

tion schedules. We have therefore used our physical model to explore the parameter regimes736

under which the the linear convolution method is able to match the rate-and-state model.737

The results are presented in the Supplementary Text S6. We found the success of the738

convolution model to depend strongly on the impact of the Kaiser effect on the linear-739

ity of stress evolution for the given injection schedule although it is also seen to be ro-740

bust to non-linear effects from delayed nucleation.741

9 Conclusion742

Physical models based on rate-and-state friction and stress changes due to pore-743

pressure diffusion and poroelasticity can successfully reproduce the seismicity observed744

during the EGS simulation which were carried out on the Otaniemi campus near Helsinki,745

Finland. While pore pressure measurements at the well indicate two possible diffusiv-746

ities that fit either the build-up of pressure or its drawdown, the physical model suggests747

that the diffusivity of the medium is likely closer to the higher diffusivity fitting the build-748

up. We find that the effect of time-dependent nucleation is crucial in reconciling the higher749

diffusivity with the spatio-temporal distribution of triggered seismicity. Namely, the ten-750

dency of the parameter aσ to act proportionally to a triggering threshold significantly751

affects the apparent diffusivity inferred from the triggering front in Otaniemi. However,752

the effect of nucleation cannot be approximated well by introducing a stress threshold753

in the standard Coulomb friction model, at least in the context of rapid variations of in-754

jection rates common in EGS operations. We remark that there are significant portions755

of the relocated catalogue that the models do not fully capture in space, such as the back-756
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propagation front or far-field seismicity, although a significant portion of the observed757

far-field seismicity may have been due to leaks in the well casing. The Omori law decay758

observed in Otaniemi is seen to depend strongly on fluid transport properties in the phys-759

ical model. Lastly, the physical model indicates that the Kaiser effect is present in Otaniemi,760

weakened by the successive variation of injection locations between different stages.761

We show that a statistical model whereby the seismicity rate is predicted in time762

and space by convolution of a kernel function inspired by Omori law decay with the in-763

jection rate can provide a good match to the seismicity observed in Otaniemi. The ex-764

istence of such linear convolution kernels is consistent with the identification of system-765

atic decay patterns in the rate densities calculated by adaptation of the cascading algo-766

rithm of Marsan & Lengline (2008) to induced seismicity. The statistical model is ex-767

tended to space by incorporation of a half-norm distribution component to the kernel768

mimicking the behavior of the physical model. We find that the validity of the method,769

which assumes a linear relationship between the injection history and the induced seis-770

micity rate, depends strongly on the presence of the Kaiser effect. The convolution model771

would be applicable towards injection schedules that minimize the impact of the Kaiser772

effect by decreasing injection durations relative to the local diffusion time or by varia-773

tion of injection locations in space.774

The physical model presented in this study makes a number of assumptions. One775

assumption is that it is appropriate to use Darcy’s Law, which was established for a ho-776

mogeneous porous medium, to model the flow in the fractured crystalline bedrock. Al-777

though the assumptions largely stem from the lack of data on local heterogeneities or778

anisotropy, neglecting presence of vertical or horizontal geological layers may be appro-779

priate for Otaniemi where the objective is to fracture a largely crystalline medium. The780

model also ignores the effect of pore-pressure change on permeability. This is clearly an781

oversimplification as, in the case of fractured flow, the permeability increases substan-782

tially with pore pressure (Acosta & Violay, 2019; Cappa et al., 2014; Cornet & Jianmin,783

1995; Evans et al., 2005). Common values of in-tact granite under comparable pressure784

are documented to be closer to 10−21 m2 (Brace, Walsh & Frangos, 1968), several or-785

ders of magnitude lower than that of the best fitting model (10−16 m2). Indeed, there786

are indications of changes in the diffusivity from the evolution of the injectivity index,787

or the ratio of injection rate to the well-head pressure (Supplementary Figure S10). Pe-788

riods of heightened injectivity are well-correlated with periods of high seismicity rates,789

likely due to seismicity-induced increase in permeability. Reconciling the full scope of790

pressure variations at the well and the spatio-temporal patterns of observed seismicity791

would probably require an explicit account for the role of fractures and seismicity on per-792

meability. Lastly, stress perturbations due to thermoelasticity can also be significant for793

EGS operations where temperature gradients between the injected fluid and surround-794

ing medium are large (e.g., Gens et al., 2007; Rutqvist & Oldenburg, 2008; Im et al., 2017).795

The modeling methods presented here could be useful in designing EGS operations796

or to interpret induced seismicity observations in terms of transport properties within797

the stimulated volume. They could additionally serve as a basis for a probabilistic traf-798

fic light system (TLS) or be incorporated in a control and optimization framework such799

as the one presented by Stefanou (2019). At the moment, TLS are deterministic and based800

entirely on the observed maximum magnitude (Ader et al. 2020; Bommer et al. 2006;801

Kwiatek et al., 2019; Majer et al. 2007). As such, a red light event can be triggered by802

the occurrence of a rare event, with improbably large magnitude, that might not nec-803

essarily reflect an increased hazard level. In addition, such TLS don’t provide a way to804

anticipate the response to possible mitigation strategies. This is important as many op-805

erations have been terminated as the original TLS design proved to be insufficient in pre-806

venting ”red-light” incurring events (Grigoli et al., 2017; Majer et al. 2007). To allevi-807

ate that issue, our forecasting methods could for example be incorporated in ”Adaptive808
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Traffic Light Systems” (ATLS) (Wiemer et al., 2015), which are based in a real-time as-809

sessment of probabilistic hazard.810
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Table 1: Constant Parameters

[t] [t]811
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Table 2: Model Parameters

Figure 1: Well-Stimulation Operation in Otaniemi, Finland (Kwiatek et al., 2018): The
observation well (OTN-2) and stimulation well (OTN-3) are indicated by lines extending
into depth at the center of the schematic. Locations of various geophones within the area
are indicated by the yellow triangles. Locations of stimulation stages S1 to S5 vary along
OTN-3. Basic stimulation parameters are shown in the inset.

–21–



manuscript submitted to JGR: Solid Earth

Figure 2: Earthquake Catalogue in Otaniemi: The complete catalogue of Leonhardt et
al. (2021) is plotted in dark blue as a histogram. The injection rate history is plotted in
orange. The background colors represent the timing of the individual injection stages.
The seismicity rate shows a strong positive correlation to the injection rate.

[t]812
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Figure 3: Relocated Catalogue of Leonhardt et al. (2021): 1986 relocated events are in-
dicated as black dots according to their distances from the injection source and time of
occurrence (top). The red curve outlines the theoretical triggering front of Shapiro (1997),√

4πctf t, with ctf = chorner = 0.018 m2/s. It is difficult to assess a level of agreement be-
tween the triggering front and the relocated catalogue given the limited sample size. Yet,
clusters of events far beyond the curve suggest poroelastic triggering. It is also possible
that they are due to leaks in the casing, as evidenced by their locations close to the well
path shown in the vertical section view (bottom-left). In the map (bottom-right) and and
vertical section views, the well is drawn in black with stimulated sections of the well and
occurrence time of events color-coded correspondingly. MHEL refers to the local Helsinki
magnitude scale. The color-coding reveals little correlation in space between events and
stimulation stages.
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Figure 4: Omori Law (p=1) Decay During Shut-in: The recorded catalogue in time is
zoomed-in on an interval during which injection has largely stopped (around 450-hour
mark in Figure 2). A Short period prior to shut-in is shown with a sky blue background.
The shut-in period is indicated with a grey background. The decay pattern in seismic-
ity rate during the shut-in is matched well with an Omori decay function (modified
Omor-Utsu law with p=1), plotted in light purple. The dotted lines and shaded areas
in-between indicate the 95% confidence interval of the fit. The fitted value of tr and the
bounds of the confidence interval of the fit are indicated in the legend.
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Figure 5: Marsan & Lengline (2008) Rate Densities: Rate densities measuring the weight
of influence from individual injections onto induced events are computed through an adap-
tation of the cascading algorithm from Marsan & Lengline (2008). The densities follow a
1/t type of decay in time, consistent with the Omori-law decay observed during shut-ins
(Figure 4) and suggestive of the possibility for a convolution kernel relating injections to
induced seismicity.
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Figure 6:
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Figure 6: Model Predictions in Time: Model predictions are plotted in different colored
shading over the observed catalogue in dark blue. The dotted-lines and shaded areas in-
between indicate the 95% confidence interval of the prediction. Posterior distributions
of fitted parameters are shown on the right for applicable models. Rest of the param-
eters are as listed in Table 1. a) Linear convolution of the injection history with tr =
24.1 hours and rb = 208.9 events/hr. (b) Rate-and-state model with ctrue = chorner =
0.018m2/s, a = 0.0002, τ̇r = 3.05 kPa/year and rb = 12.1 events/day. (c) Rate-and-state
model without resetting of stress history with a = 0.0001, τ̇r = 4.89 kPa/year and rb =
25.9 events/day performs progressively worse with significant lags during the latter half,
largely due to the Kaiser effect inherent in the rate-and-state model (Figure S5). (d)
Rate-and-state model with ctrue = cbu = 0.044m2/s, a = 0.00006, τ̇r = 1.29 kPa/year and
rb = 4.7 events/day. (e) Coulomb model with ctrue = cbu = 0.044 m2/s, θ1 = 0.66 MPa,

θ2 = 0.28 MPa, and αc = 14.3 kPa/event · m3. While the global fit to the observations
are comparable to other models, it lacks rapid variations of the seismicity rate in-between
injection cycles compared to the rate-and-state models - evident of qualitative differences
in modelling the stress state relative to failure and delayed nucleation mechanisms. All
models (besides (c)) consistently capture temporal trends of the seismicity rate, such as
the Omori-law decay during shut-ins and build-up periods at the onset of injections, with
the linear convolution model requiring the fewest parameters and lowest computational
cost. Model parameters and goodness-of-fit metrics are summarized in Table 2.
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Figure 7: Well-Pressure Measurements and Modelled Fit: Observed well-pressure and the
modelled fits are plotted in red and blue, respectively. The top fit corresponds to ctrue =
chorner = 0.018 m2/s, effective well radius, wr, of 44m and ambient pore pressure, p0, of
43.5 MPa while the bottom fit corresponds to ctrue = cbu = 0.044 m2/s, wr = 31m and
p0 = 54.9 MPa. The posterior distributions of wr and p0 for ctrue = chorner are shown
on the bottom-left and those for cbu, wr and p0 are shown on the bottom-right. While
both models provide a good global fit to the data, chorner and cbu tend to fit better either
the drawdown of pressure during shut-ins or the build-up of pressure at injection onsets,
respectively.
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Figure 8:
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Figure 8: Model Predictions in Space: The synthetic catalogue is plotted as black dots
in space and time with the relocated catalogue of Leonhardt et al. (2021) superposed as
red dots. The red curve outlines

√
4πctf t with ctf = ctrue for each model. Histograms of

the observed event distribution in space is plotted in red along with randomly sampled
distributions of the synthetic catalogues in black. (a) The extension of the convolution
model to space gives a good fit to the observations using the estimate of chg = 0.011
m2/s. (b) The rate-and-state model with ctrue = chorner = 0.018 m2/s underpredicts the
mean distance substantially with an apparent triggering front much closer to the injection
source. (c) Rate-and-state model without resetting of stress history with a = 0.0001, τ̇r
= 4.89 kPa/year and rb = 25.9 events/day shows manifestations of the Kaiser effect from
large regions of seismic quiescence in stress shadows near the injection source. (d) The
fit to space in the rate-and-state model is significantly improved with ctrue = cbu = 0.044
m2/s. The rate-and-state models consist of far-field seismic activity, although mostly from
background stressing distributed uniformly in space rather than through a systematic
variation from poroelastic stress perturbations. (e) The Coulomb model with ctrue = cbu
= 0.044 m2/s significantly overpredicts the distribution of seismicity in space as does the
theoretical triggering front for ctf = cbu, suggesting that the role of delayed nucleation on
seismicity migration is essential in reproducing the observed spatio-temporal evolution of
seismicity in Otaniemi given the likely diffusivities. Model parameters and goodness-of-fit
metrics are summarized in Table 2.

Figure 9: Sensitivity of Triggering Front to Delayed Nucleation: Synthetic catalogues for
two parameter sets only differing by a (0.0001 and 0.001 in top and bottom, respectively)
are shown. Lower a, which translates to lower aσ, results in a much further extent of the
triggering front, due to the role of delayed nucleation that acts proportionally to a thresh-
old stress for the triggering of events as explained in detail by (Wenzel, 2017). Along with
the reference triggering front in red, an additional

√
4πctf t curve is drawn in orange for a

= 0.001, with ctf modified by a factor of 0.3 that better matches the apparent triggering
front.
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Figure 10: Evolution of Spatial Distribution of Seismicity for Rate-and-State Model:
Spatial profiles of the seismicity rate are plotted in blue at various times for the rate-and-
state model in response to a single boxcar injection. Half-norm distributions, in green,
are used to fit the model-generated distribution. The line style is alternated between solid
and dashed between each time step for clarity. The half-norm distributions evolve with a
time-dependent shape parameter, Λ(t), which closely follows

√
ctruet as shown in the inset

of the top figure.

Figure 11: Inference of Diffusivity Accounting for Role of Delayed Nucleation on Seis-
micity Migration: An empirical relationship for the multiplicative factor, γh, of Λ(t) =√
γhctruet is found in terms of the non-dimensional ratio aσ/pq (left). The fit can be

used to infer new uncertainty estimates on the diffusivity of the medium given appar-
ent spreading of the radial distribution of the seismicity in Otaniemi, i.e. chg = 0.011
m2/s. Contour plot on the right shows the percent difference between the true diffusivity
and the predicted diffusivity from the functional fit γh(aσ/pq) for a range of a and ctrue.
Considerations of the role of delayed nucleation on seismicity migration makes higher dif-
fusivities more likely than previously considering solely the theoretical triggering front of
Shapiro (1997).
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Figure 12: Comparison of Rate-and-State and Coulomb Model For Varying Time Scale of
Injections: The rate-and-state and coulomb models that produced best fitting predictions
of Figure 6d&e, respectively, are compared in their response to the injection scenario of
Otaniemi with injection durations lengthened (top) and shortened (bottom) by 10 times.
The injection rate is shown in light orange. The Coulomb model shows significant dis-
agreement with the rate-and-state model for shorter injections, illustrating the differences
in modelling the stress state with respect to failure and delayed nucleation at shorter time
scales.
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Figure 13: Dependence of Omori Law Decay on Fluid Transport Properties: tr of Omori
Law Decay in response to single boxcar injections under the rate-and-state model are
plotted in terms of tc and ta (left). tr, shows a stronger dependence on tc, or the diffu-
sivity, than on ta. Namely, longer diffusion times result in longer relaxation times of the
seismicity rate. tr also shows strong dependence on injection duration, tI (right). tr first
increases with increasing seismicity rate at time of shut-in, before decreasing as steady-
state stress conditions are reached when the seismicity rate decreases as well due to the
Kaiser effect (Supplementary Figure S5).

Figure 14: Partial Forecasting of Induced Seismicity by Physical Model: Ability of the
physical model to forecast induced seismicity is tested by limiting the portion of the
data used for model tuning. The rate-and-state model with ctrue = cbu = 0.044 m2/s is
trained using only the first injection stage. The training results in a, τ̇r, and rb of 0.00005,
0.1kPa/year, and 0.39 events/day. The forecast is comparable to the hindcast of Figure
6d & 8d, with only a marginally higher KS-statistic of 0.040 and lower log-likelihood of
169,076.
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Figure 15: Partial Forecasting of Induced Seismicity by Convolution Model: Ability of
the convolution model to forecast induced seismicity is tested by limiting the portion
of the data used for model tuning. The top two rows compare forecasts using the first
one and two injection stages as training periods where tr is estimated to be 2.9 and 10.4
hours, respectively. The forecast using solely the first injection stage as the training pe-
riod significantly underestimates tr and underpredicts the seismicity rate for the rest
of the injection history. The forecast using the first two injection stages as the training
period is comparable to the hindcast of Figure 6a & 8a, with only a marginally higher
KS-statistic of 0.047 and lower log-likelihood of 175,430.
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Symposium in Print , 2007 , 123-144.951

Goebel, T. H., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a952

global compilation of induced earthquake sequences. Science, 361 (6405), 899-953

904.954

Goodfellow, S. D., Nasseri, M. H. B., Maxwell, S. C., & Young, R. P. (2015). Hy-955

draulic fracture energy budget: Insights from the laboratory. Geophysical Re-956

search Letters, 42 (9), 3179-3187.957

Goodman, J., & Weare, J. (2010). Ensemble samplers with affine invariance. Com-958

munications in applied mathematics and computational science, 5 (1), 65-80.959

Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., &960

Dahm, T. (2017). Current challenges in monitoring, discrimination, and man-961

agement of induced seismicity related to underground industrial activities: A962

european perspective. Reviews of Geophysics, 55 (2), 310-340.963

Grigoli, F., Cesca, S., Rinaldi, A. P., Manconi, A., Lopez-Comino, J. A., Clinton,964

J. F., & Wiemer, S. (2018). The november 2017 mw 5.5 pohang earthquake:965

A possible case of induced seismicity in south korea. Science, 360 (6392),966

1003-1006.967

Guglielmi, Y., Elsworth, D., Cappa, F., Henry, P., Gout, C., Dick, P., & Durand,968

J. (2015). In situ observations on the coupling between hydraulic diffusivity969

and displacements during fault reactivation in shales. Journal of Geophysical970

Research: Solid Earth, 120 (11), 7729-7748.971

Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy,972

and acceleration: (second paper). Bulletin of the seismological society of Amer-973

–37–



manuscript submitted to JGR: Solid Earth

ica, 46 (2), 105-145.974

Healy, J. H., Rubey, W. W., Griggs, D. T., & Raleigh, C. B. (1968). The denver975

earthquakes. Science, 161 (3848), 1301-1310.976

Heimisson, E. R., & Segall, P. (2018). Constitutive law for earthquake production977

based on rate-and-state friction: Dieterich 1994 revisited. Journal of Geophysi-978

cal Research: Solid Earth, 123 (5), 4141-4156.979

Heimisson, E. R., Smith, J. D., Avouac, J. P., & Bourne, S. J. (2022). Coulomb980

threshold rate-and-state model for fault reactivation: application to induced981

seismicity at groningen. Geophysical Journal International , 228 (3), 2061-2072.982

Hillers, G., Vuorinen, T., A., T., Uski, M. R., Kortström, J. T., Mäntyniemi, P. B.,983

. . . Saarno, T. (2020). The 2018 geothermal reservoir stimulation in es-984

poo/helsinki, southern finland: Seismic network anatomy and data features.985

Seismological Research Letters, 91 (2), 770-786.986

Horne, R. N. (1995). Modern well test analysis. Petroway Inc, 926 .987
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