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Abstract

Increasing temperature and water cycle changes due to warming climate may increase wildfire activities. Reliable projections of

fire emissions are critical for informing fire management to address fire impacts on societies and ecosystems. Here, we construct

a neural network (NN) model explained by the Shapley Additive explanation (SHAP) to predict fire PM2.5 emissions change

and understand their drivers over the contiguous US (CONUS) in the mid-21st century under a high greenhouse gas emissions

scenario (SSP5-8.5). Using future meteorology and leaf area index (LAI) simulated by eight global climate models from the

Coupled Model Intercomparison Project Phase 6 (CMIP6), future population density, and present-day land use and land cover

(LULC) as input to the NN model, the total fire PM2.5 emissions over CONUS are projected to increase by 4-75% (model

spread). Among different regions, fire emissions in the western US are projected to increase more significantly in June-July-

August (JJA) than in other seasons and regions, with the median ratios of future to present-day fire emissions ranging from

1.67 to 2.86. The increases in fire emissions are mainly driven by increasing normalized temperature (23-29%) and decreasing

soil moisture (2-10%) in the future. When future LULC change is considered, the projected fire emissions further increase by

58%-83% over the western US compared to projections without LULC change because of future increases in vegetation fraction.

The results highlight the important role of warmer temperature, decreasing soil moisture, and LULC change in increasing fire

emissions in the future.
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Key Points: 9 

• Using explainable AI and CMIP6 outputs, total fire PM2.5 emissions over the US are 10 
projected to increase by 4-75% by mid-century. 11 

• Fire emissions will increase by 67-186% in the western US in summer, due to reduced 12 
soil moisture and warmer temperature in the future. 13 

• Land use and land cover change adds an extra ~50% increase of future fire emissions, 14 
driven by increased vegetation in the western US. 15 

  16 
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Abstract 17 

Increasing temperature and water cycle changes due to warming climate may increase wildfire 18 
activities. Reliable projections of fire emissions are critical for informing fire management to 19 
address fire impacts on societies and ecosystems. Here, we construct a neural network (NN) 20 
model explained by the Shapley Additive explanation (SHAP) to predict fire PM2.5 emissions 21 
change and understand their drivers over the contiguous US (CONUS) in the mid-21st century 22 
under a high greenhouse gas emissions scenario (SSP5-8.5). Using future meteorology and leaf 23 
area index (LAI) simulated by eight global climate models from the Coupled Model 24 
Intercomparison Project Phase 6 (CMIP6), future population density, and present-day land use 25 
and land cover (LULC) as input to the NN model, the total fire PM2.5 emissions over CONUS are 26 
projected to increase by 4-75% (model spread). Among different regions, fire emissions in the 27 
western US are projected to increase more significantly in June-July-August (JJA) than in other 28 
seasons and regions, with the median ratios of future to present-day fire emissions ranging from 29 
1.67 to 2.86. The increases in fire emissions are mainly driven by increasing normalized 30 
temperature (23-29%) and decreasing soil moisture (2-10%) in the future. When future LULC 31 
change is considered, the projected fire emissions further increase by 58%-83% over the western 32 
US compared to projections without LULC change because of future increases in vegetation 33 
fraction. The results highlight the important role of warmer temperature, decreasing soil 34 
moisture, and LULC change in increasing fire emissions in the future. 35 

 36 

Plain Language Summary 37 

Climate change has increased fire frequency and size in the United States, particularly in the 38 
western US, causing property damage, threats to human life, and degraded air quality. Frequent 39 
drought, enhanced fuel aridity, and increased fuel accumulation may cause larger and more 40 
frequent fires and emissions in the coming decades. Using explainable artificial intelligence 41 
(XAI) and outputs from global climate models, we show that total fire PM2.5 emissions over the 42 
contiguous US will be around 1.38 times the present-day emissions by the mid-21st century 43 
under a high greenhouse gas emissions scenario. The fire PM2.5 emissions will double in the 44 
western US during summer, mainly driven by drying trends in the soil along with increasing 45 
temperatures. When the future change of land use and land cover is also considered, the fire 46 
emissions in the western US will increase further by 50%, due to the increased vegetation 47 
fractions in a warmer climate.  48 

1 Introduction 49 

 Wildfires have become larger and more frequent across the United States over the past 50 
two decades, with more notable changes in the western US. Several studies have suggested that 51 
the increased wildfire burned areas are driven by increased fuel aridity, warming temperature, 52 
and fuel management (Abatzoglou & Williams, 2016; Burke et al., 2021; Marlon et al., 2012; 53 
Westerling et al., 2006). With the increased fire activities in the recent five years, the burned area 54 
has increased by ~3 times and costs in fire suppression have increased by ~8 times in the recent 55 
decades compared to the 1980s (NIFC, 2022). The fires emitted large amounts of fine 56 
particulates with a diameter of 2.5 μm or less (PM2.5), leading to degraded air quality and 57 
increased exposure to smoke from fires (Jaffe et al., 2020; Kaulfus et al., 2017; Liu et al., 2018; 58 
O’Dell et al., 2019). Understanding how fire emissions will change under future climate and the 59 
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key factors controlling the changes in future fire emissions is important for fire management and 60 
planning to reduce the impacts on human health and air quality in the coming decades. 61 

 Several studies have projected increased fire emissions over the contiguous US (CONUS) 62 
in the future, mainly the western US, using different approaches (Ford et al., 2018; Liu et al., 63 
2021; Neumann et al., 2021; Val Martin et al., 2015; Xie et al., 2022; Yue et al., 2013; Table 1). 64 
One commonly used approach is the process-based fire model embedded in the Dynamic Global 65 
Vegetation Model (DGVM), which uses empirical functions of fire activity and climate, 66 
vegetation, and socioeconomic variables to estimate burned area and fire emissions (Pechony & 67 
Shindell, 2009; Thonicke et al., 2010). For example, Ford et al. (2018) projected 54% and 50% 68 
increases in organic carbon (OC) and black carbon (BC) over CONUS in mid-century under the 69 
Representative Concentration Pathway (RCP) 8.5 scenario, using a process-based fire model 70 
implemented in Community Land Model (CLM) driven by meteorological fields simulated by 71 
Community Earth System Model (CESM). Using the Sixth Coupled Model Intercomparison 72 
Project (CMIP6) multimodel and multiensemble simulations, Xie et al. (2022) projected 130-73 
260% increases in fire CO2 emissions over the western US under the Shared Socioeconomic 74 
Pathways (SSP) 5-8.5 scenario in late 21st century. In addition to DGVM, another widely used 75 
approach is the statistical regression model, which is based on the statistical relationship between 76 
fires and the associated predictors to predict burned area and fire emissions. Yue et al. (2013) 77 
used regression and parameterization driven by climate simulations and projected increases of 78 
80-170% in OC and BC over the western US in the mid-21st century. Recently, Liu et al. (2021) 79 
used an empirical fire model with DGVM and projected 50% increases in fire PM2.5 emissions 80 
over the western US in the mid-21st century, considering the changes in both climate and fuel. 81 

 The approaches mentioned above have their strengths and weaknesses. Process-based fire 82 
models with DGVMs can simulate the non-linear relationships between fires and predictors and 83 
capture the feedback among climate, vegetation, and fires. However, they often assume the same 84 
relationships across the globe or regions and apply universal functions or the same set of 85 
parameters to all the grid cells in a model (Pechony & Shindell, 2009; Thonicke et al., 2010). In 86 
addition, process-based models with DGVMs are more computationally expensive than 87 
regression models, which are computationally efficient and can achieve promising performance. 88 
However, the good performance of regression models is limited by the assumption of linear 89 
relationships between fires and predictors, which work well at large spatial scales (e.g., 90 
ecoregions) but may not be applicable for projecting fire changes considering the non-linear 91 
relationships among multiple factors at finer spatial scales. Combining the advantages of the two 92 
approaches, machine learning (ML) provides a solution to model the non-linear relationships 93 
between fires and predictors at fine spatial scales efficiently. Prior studies have used various ML 94 
approaches to predict fire occurrence, burned area, and fire emissions at different temporal and 95 
spatial scales (Birch et al., 2015; Coffield et al., 2019; Cortez & Morais, 2007; Dillon et al., 96 
2011; Kane et al., 2015; Wang et al., 2021; Wang & Wang, 2020). Recently, to fill the gaps of 97 
interpretability of ML, explainable artificial intelligence (XAI) has been developed and applied 98 
to understand the relationships learned by the ML and identify the key contributing predictors 99 
(Adadi & Berrada, 2018; Arrieta et al., 2020). 100 

 Here, we leverage the power of XAI and the atmospheric forcing and vegetation from the 101 
CMIP6 multimodel simulations to project fire emissions over CONUS in the mid-21st century 102 
(2050-2065) under the SSP5-8.5 scenario. We first construct an artificial neural network (ANN) 103 
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to predict monthly fire PM2.5 emissions using predictors of local and large-scale meteorology, 104 
land surface characteristics, and population density from observations and reanalysis data. We 105 
then evaluate the performance of the ANN model driven by the historical simulations of eight 106 
global climate models (GCMs) and identify the GCM biases that influence the fire emissions 107 
predicted by the ANN model. Two experiments are conducted for future projection. For the first 108 
experiment, future fire emissions are projected by driving the ANN model with the future 109 
climate projections and LAI from the eight GCMs, future population density, and present-day 110 
land use and land cover (LULC) from satellite observations. For the second experiment, we 111 
select four of the eight GCMs that provide future LULC outputs and drive the ANN with future 112 
climate projection, LAI, population density, vegetation distributions, and LULC. We compare 113 
the future projections with and without LULC change for the same four GCMs to isolate the 114 
effects of LULC change on future fire emissions. 115 

Table 1. Prior studies projecting future fire emissions over CONUS 116 

Fire model Region Scenario Perio
d 

# 
GCM
s 

Projected 
changes 

Note Ref 

Regression WUS, 
1980-2004 
 

CMIP3 A1B 
scenario 

2046-
2065 

15 increase~80
% for OC and 
BC 

Climate factor 
only; assume 
fuel 
consumption 
remains 
constant 

Yue et al. 
(2013) 

Parameterizatio
n 

~170% and 
150% 
increase for 
OC and BC 

DVGM (CESM 
fully coupled) 

WUS,200
0 

RCP 4.5 2050 1 60% increase 
for OC 

Online 
computed 
meteorology 
and prescribed 
sea-surface 
and sea-ice 
distributions 

Val 
Martin et 
al. 
(2015) 

RCP 8.5 decrease of 
0.3% for OC 

DVGM (CLM) CONUS, 
2001-2010 

RCP4.5 2040-
2050 

1 ~125%  
increase for 
OC and BC 

Future 
simulations 
were driven 
by 
meteorology 
from archived 
CESM1 
simulation 

Ford et 
al. 
(2018) 2090-

2100 
RCP8.5 2040-

2050 
54% and 50% 
increase for 
OC and BC 

2090-
2100 

150% and 
141% 
increase for 
OC and BC 

Statistical model 
from Prestemon 
et al. (2016) 

SEUS, 
1992-2010 

Scenario A2 2011-
2060 

1 13-62% 
lower for PM 
2.5 

They include 
climate and 
socioeconomi
c variables 

Shankar 
et al. 
(2018) 

Statistical model 
(empirical) and 
DGVM 

WUS, 
2001-2010 

CMIP5 RCP 
8.5 
(meteorology 
for 
number/burne
d area) + 

2050-
2059 

1 50% increase  
for PM2.5 

They used two 
climate 
datasets (with 
different 
scenarios) for 
projection 

Liu et al. 
(2021) 
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CMIP3 SRES-
A2 (fuel 
loading and 
moisture) 

Regression 
(from Yue et al. 
(2013)) 

WUS, 
1996-2005 

RCP 4.5 2046-
2055 

5 Average 8% 
increase for 
OC and BC 
(GISS-E2-R; 
small) 

Climate factor 
only 

Neuman
n et al. 
(2021) 

RCP 8.5 2086-
2095 

Average 17% 
increase for 
BC and OC 
(GISS-E2-R; 
small) 

DVGM (fully-
coupled) 

WUS, 
2000-2014 

CMIP6 SSP1-
2.6 

2080-
2100 

3 60-110% 
increase for 
CO2 (Aug-
Sep) 

 Xie et al. 
(2022) 

CMIP6 SSP2-
4.5 

100-150%  
increase for 
CO2 (Aug-
Sep) 

CMIP6 SSP5-
8.5 

130-260% 
increase for 
CO2 

 117 

2 Data 118 

2.1 Fire-induced PM2.5 emission data 119 

 Monthly fire PM2.5 emission data for training and evaluating XAI is obtained from the 120 
Global Fire Emissions Database (GFED) version 4, with a spatial resolution of 0.25º available 121 
from 1997 to present. GFED obtains burned area from MODIS (MCD64A1) and provides fire 122 
PM2.5 emissions estimated by the burned area, the emission factors from Akagi et al. (2011), and 123 
the fuel loads and combustion completeness from the Carnegie-Ames-Stanford Approach 124 
(CASA) biogeochemical model (van der Werf et al., 2017). In this study, the GFED fire PM2.5 125 
emission is the predictand of the neural network model. To match the spatial resolutions of the 126 
CMIP6 models, we regrid the fire emissions to 1º × 1º by area-weighted averaging. The target 127 
grid is computed as a weighted mean of all the grids from the source grids that intersect with the 128 
target grid and the weighting factor is the area of the intersection with each of the source grids. 129 

2.2 Predictor data from observations and reanalysis for model training 130 

 We develop a neural network at 1º × 1º grid resolution driven by predictor variables at a 131 
monthly scale from 2000 to 2020. The predictor variables are regridded to 1º × 1º by area-132 
weighted averaging. Table 2 shows the predictors in the model with their sources and original 133 
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spatial and temporal resolutions. Compared to the variables used in Wang et al. (2022), this study 134 
used a subset of the variables that are accessible in the CMIP6 outputs. 135 

 136 

Table 2. Predictor variables used in the NN model 137 

Variables Abbreviation Categories Temporal 
resolution 

Spatial 
resolution 

Data Source References 

Monthly mean relative 
humidity 

RH Local 
meteorology 

monthly 32 km North American 
Reanalysis (NARR) 

Mesinger et 
al. (2006) 

Monthly mean of daily 
precipitation 

apcp Local 
meteorology 

monthly 32 km North American 
Reanalysis (NARR) 

Mesinger et 
al. (2006) 

Monthly mean wind 
speed 

wndsp Local 
meteorology 

monthly 32 km North American 
Reanalysis (NARR) 

Mesinger et 
al. (2006) 

Monthly Standardized 
Precipitation 
Evapotranspiration 
Index 

SPEI Local 
meteorology 

monthly 0.5º×0.5º SPEI Vicente-
Serrano et al. 
(2010) 

Monthly mean vapor 
pressure deficit 

VPD Local 
meteorology 

daily 4 km gridMET Abatzoglou 
(2013) 

Monthly normalized 
meteorology 
(normalized 
temperature, RH, apcp, 
and VPD) 

Nor.temp, 
nor.rhum, 
nor.apcp, 
nor.VPD 

Local 
meteorology 

monthly 32 km/ 4 
km 

North American 
Reanalysis (NARR) 
/gridMET 

Mesinger et 
al. (2006);  
Abatzoglou 
(2013) 

Monthly standard 
deviation of daily SVDs 
for northern California 

SVD1_NCA and 
SVD2_NCA 

Large-scale 
meteorological 
patterns 

monthly Regional North American 
Reanalysis (NARR) 

Wang et al. 
(2021) 

Monthly standard 
deviation of daily SVDs 
for southern Rocky 
Mountain 

SVD1_SRM and 
SVD2_SRM 

Large-scale 
meteorological 
patterns 

monthly Regional North American 
Reanalysis (NARR) 

Wang et al. 
(2021) 

Monthly standard 
deviation of daily SVDs 
for southeastern US 
(with 2-month lag) 

SVD1_SElag2 
and 
SVD2_SElag2 

Large-scale 
meteorological 
patterns 

monthly Regional North American 
Reanalysis (NARR) 

Wang et al. 
(2021) 

Monthly mean surface 
soil moisture 

soilm Land-surface 
properties 

monthly 0.25º×0.25º Global Land Data 
Assimilation System 
(GLDAS-2) 

Xia et al. 
(2012) 

Monthly mean 
vegetation fraction 

Veg_frac Land-surface 
properties 

monthly 0.25º×0.25º Global Land Data 
Assimilation System 
(GLDAS-2) 

Xia et al. 
(2012) 
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 138 

2.2.1 Local meteorology 139 

 Local meteorology includes monthly mean relative humidity (RH) at 2m, total 140 
precipitation, and wind speed at 10 m from the North American Regional Reanalysis (NARR 141 
(Mesinger et al., 2006) and vapor pressure deficit (VPD) from the gridMET dataset (Abatzoglou 142 
& Kolden, 2013). As drought dries the fuels and facilitates fire development, we also include the 143 
monthly Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 144 
2010), which measures the drought severity based on climatic data as predictors. 145 

 To provide more information on the temporal variability of meteorology, we also include 146 
normalized meteorology, which is calculated by subtracting the long-term mean from 2000 to 147 
2020 and dividing it by the standard deviation. We include the normalized monthly mean surface 148 
temperature, relative humidity (RH) at 2m, total precipitation, and VPD. 149 

2.2.2 Large-scale meteorological patterns 150 

 Large-scale meteorological patterns influence wildfire occurrence and intensity by 151 
modulating local meteorological conditions (Crimmins, 2006; L. Dong et al., 2021; Trouet et al., 152 
2009; Zhong et al., 2020). Wang et al. (2021) showed that including predictors of large-scale 153 
meteorological patterns associated with wildfires improves burned area prediction over CONUS. 154 
Therefore, we include predictors representing the synoptic patterns driving fire emission 155 
variability, constructed using the singular value decomposition (SVD) method (Wang et al., 156 
2022). The leading nodes of SVDs were identified for the three regions where large fires 157 
periodically occur, including northern California, southern Rocky Mountains, and the 158 
southeastern US, as defined in Wang et al. (2021). For each region, we calculate the daily mean 159 
fire PM2.5 emissions over the region and compute the day-to-day correlations between the 160 
regional mean fire PM2.5 emissions and the five gridded daily meteorological variables (surface 161 
temperature, 2-meter RH, U-wind and V-wind at surface, and geopotential height at 500 hPa 162 
from NARR) for all 1º × 1º grid cells within the large-scale domain, resulting in a correlation 163 
map for each meteorological variable. The correlation maps are then used to derive the SVD 164 

Monthly mean Leaf 
Area Index 

LAI Land-surface 
properties 

8 days 500 m MODerate resolution 
Imaging 
Spectroradiometer 
(MODIS); LAI 
classification scheme 

Myneni et al. 
(2015) 

Land cover fraction Grass, tree, 
shrub, crop, 
nonveg, resid 

Land-surface 
properties 

Yearly 0.05º×0.05º MODerate resolution 
Imaging 
Spectroradiometer 
(MODIS); LAI 
classification scheme 

Friedl (2015) 

Population density Pop Socioeconomic 
and coordinate 
variables 

Yearly 30 arc Gridded Population of 
the World data 
collection (GPW v4) 

CIESIN-
Columbia 
University 
(2017) 
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modes representing the large-scale meteorological patterns related to daily fire emissions. 165 
Finally, we compute the monthly standard deviation of the daily SVD time series for the first two 166 
SVD modes, representing the month-to-month variations of synoptic fluctuations and 167 
atmospheric instability. Note that we use U- and V-wind at the surface rather than at 850 hPa 168 
used in Wang et al. (2022) due to data availability in the CMIP6 archive. The detailed methods 169 
and discussions about the SVDs are provided in Wang et al. (2021) and Wang et al. (2022). 170 

2.2.3 Land-surface properties and socioeconomic variables 171 

 We include predictors of monthly mean surface soil moisture, leaf area index (LAI), and 172 
vegetation fraction from the North American Land Data Assimilation System (NLDAS-2) to 173 
capture the effects of fuel availability and flammability (Xia et al., 2012). Land cover fraction of 174 
the LAI classification scheme is obtained from the Terra and Aqua combined MODIS Land 175 
Cover Climate Modeling Grid (CMG) Version 6 data (Friedl & Sulla-Menashe, 2015). The LAI 176 
classification scheme has 12 land types, including savannas, evergreen and deciduous broadleaf 177 
forest, evergreen and deciduous needleleaf forest, grass, shrub, broadleaf crop, non-vegetated 178 
land, urban, water bodies, and unclassified land. To match the land cover types in CMIP6, we 179 
combine savannas, evergreen and deciduous broadleaf forests as well as evergreen and 180 
deciduous needleleaf forests in the MODIS data to one type, corresponding to the “tree” in the 181 
GCMs; we also combine urban, unclassified, and water bodies to a single type, corresponding to 182 
“residual”. The grass, shrub, broadleaf crop, and non-vegetated lands correspond to the grass, 183 
shrub, crop, and bare soil in the GCMs. This results in six different land cover types matching 184 
the land types defined in CMIP6, including tree, grass, shrub, crop, bare soil, and residual. Note 185 
that the MODIS land cover data starts from 2001, so we use the data of 2001 for 2000. 186 

 Population density is included to represent human effects on wildfires. The population 187 
density data is obtained from the Gridded Population of the World (GPW) data collection for the 188 
years 2000, 2010, 2015, and 2020, with a spatial resolution of 30 arc-second (CIESIN-Columbia 189 
University, 2017). The populations in other years are linearly interpolated between the four 190 
years. 191 

2.3 CMIP6 model data 192 

 We use the monthly output from the eight selected GCMs in the CMIP6 archive, 193 
including the Australian Community Climate and Earth System Simulator Earth System Model 194 
Version 1.5 (ACCESS-ESM 1.5), Community Earth System Model Version 2 (CESM2), Euro-195 
Mediterranean Centre on Climate Change couped climate model standard configuration (CMCC-196 
CM2-SR5), EC-Earth3 coupled Climate-Carbon Cycle (EC-Earth-CC), EC-Earth3 coupled with 197 
the second-generation dynamic global vegetation model LPJ-GUESS (EC-Earth-Veg), EC-198 
Earth-Veg with lower resolution (EC-Earth-VegLR), Geophysical Fluid Dynamics Laboratory 199 
Earth System Model Version 4.1 (GFDL-ESM 4.1), and the Canadian Earth System Model 200 
version 5 (CanESM 5) (Eyring et al., 2016; O’Neill et al., 2016). Model outputs include monthly 201 
mean RH, surface wind speed, total precipitation, LAI, and surface soil moisture. SPEI and VPD 202 
are computed based on monthly meteorology from CMIP6 data. SVDs are calculated from daily 203 
surface temperature, 2-meter RH, U-wind and V-wind at the surface, and geopotential height at 204 
500 hPa. The CMIP6 model outputs are all regridded to 1º × 1º by area-weighted averaging. 205 
Outputs from historical simulations and SSP5-8.5 future scenario from variant r1i1p1f1 are used 206 
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for the present-day (2000-2014) simulation and future (2050-2065) projection. The SSP5-8.5 207 
projects CO2 emissions increasing strongly until 2080 and then slightly declining until the end of 208 
the century, with a radiative forcing peaking at 8.5 W/m2 and a global mean temperature increase 209 
of around 4°C by 2100 compared to the current era (Eyring et al., 2016; IPCC, 2022). The future 210 
population density data is obtained from the Global One-Eighth Degree Population Base Year 211 
and Projection Grids Based on the Shared Socioeconomic Pathways for 2010-2100, with a 212 
spatial resolution of 0.125° (Jones & O’Neill, 2020). We use the projected population density 213 
under the SSP5 scenario. 214 

 As mentioned before, this study includes two projection experiments with four 215 
simulations, as shown in Table 3. The first experiment (land_fix) compares simulations 2 and 1, 216 
representing the impacts of future changes in meteorology, LAI, and population density on future 217 
fire emissions. The second experiment (land change) compares simulations 4 and 3, considering 218 
the effects of changes in meteorology, LAI, population density, as well as LULC on future fire 219 
emissions. The four GCMs are GFDL-ESM4, EC-Earth3-Veg, EC-Earth3-VegLR, EC-Earth-220 
CC, which provide future natural vegetation and land use distribution (Döscher et al., 2022; 221 
Dunne et al., 2020; Hurtt et al., 2020; Lawrence et al., 2019; Song et al., 2021; Swart et al., 2019; 222 
Ziehn et al., 2020). Accordingly, we use the outputs of vegetation distribution and LULC from 223 
the four GCMs to project future fire emissions considering the effects of LULC change. The 224 
outputs of vegetation distribution and LULC include monthly vegetation fraction and yearly land 225 
cover fraction (tree, crop, grass, shrub, bare soil, and residual). Hereafter CMIP6 refers to the 226 
CMIP6 models used in this study. 227 

Table 3. Experiments and simulations with the sources and states of the variables used in this 228 
study 229 

Experiment Simulation 
number 

Meteorology and 
LAI 

Population density LULC 

1. Land_fix 
(using eight 
GCMs) 

1 GCM present-day GPW present-day MODIS present-
day 

2 GCM future GPW future MODIS present-
day 

2. Land_change 
(using four 
GCMs) 

3 GCM present-day GPW present-day GCM present-day 

4 GCM future GPW future GCM future 

 230 

3 Method 231 
 232 

3.1 Artificial neural Network (ANN) 233 

ANN or neural network (NN) consists of several layers with interconnected neurons. The layers 234 
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include input layer, hidden layer, and output layer. Each neuron in the input layer represents one 235 
predictor (e.g., monthly RH, surface soil moisture etc.) and the neuron in the output layer is the 236 
target which is fire PM2.5 emission (g m-2month-1). During the training process, each neuron takes 237 
the weighted average from other neurons in the previous layer and transforms the average by the 238 
nonlinear activation functions. The weights are randomly initialized for all the neurons at the 239 
beginning of the training process. The same process applies to the neurons in the next layer until 240 
the output layer is reached and the errors between the final output and the target are measured 241 
using a loss function. Then the error is backpropagated from the last layer to the front layer to 242 
calculate the contributions of the weights and update the weights to minimize the errors between 243 
the final output and target using an optimization algorithm.  244 

In this study, we construct an NN model with five layers, including one input layers with 245 
25 neurons corresponding to the 25 predictors, three hidden layers with 200, 150, and 80 246 
neurons, and one output layer corresponding to the predicted fire emission. The input variables 247 
are normalized using min-max normalization; that is, we subtract the minimum value of the 248 
predictor from each predictor value and divide the result by the difference between the maximum 249 
and minimum value, resulting in values ranging between -1 to 1. The formula can be presented 250 

as: 𝑥! = "#$%&	(")
$*+(")#$%&	(")

, where 𝑥 is the original value and 𝑥! is the normalized value. The 251 

optimization algorithm is stochastic gradient descent (SGD), the learning rate is 0.01, and the 252 
batch size is 64. The loss function is the mean square error (MSE), and the activation function is 253 
the Rectified Linear Unit (ReLU). 254 

3.2 Model evaluation 255 

To evaluate the model, we apply the 10-fold cross validation (CV) technique. The whole 256 
dataset during 2000-2020 is randomly separated into ten equal-size splits. For each round of CV, 257 
the model is trained with nine splits of the data and the trained model is then used to predict 258 
burned area in the remaining one split. The final evaluation is based on root mean square error 259 
(RMSE). Besides RMSE, we also use the correlation coefficient and the index of agreement 260 
(IoA) between the observed and predicted fire emissions to evaluate our model performance. The 261 
formula of IoA can be expressed as:  262 

IoA = 1 − ∑ (-!#-". )#$
!%&

∑ (|-".#-0|1|-!#-0|)#$
!%&

 263 

where 𝑦2 is the observations, 𝑦3&  is prediction, and 𝑦' is the mean of the observations. The value of 264 
IoA ranges between 0 and 1, with values closer to 1 indicating a better fit. 265 

3.3 Shapley Additive explanation (SHAP) 266 

 SHAP is an innovative approach that uses game theory to explain variable importance 267 
globally (i.e., the whole dataset) and locally (i.e., one sample) (Lundberg & Lee, 2017). Under 268 
the scope of SHAP, the predictors are the “players” in a co-operative game in which the goal is a 269 
prediction for a single target. Each predictor has its “playout” representing its contribution to the 270 
prediction, considering all possible combinations of the predictors. To calculate the predictor 271 
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contribution for predictor i, the SHAP value considers the differences in the model’s predictions 272 
𝑓" made by including and excluding the predictor i for all the combinations of predictors: 273 

 274 

𝜙2 =	 +
|𝑆|! (𝐹 − |𝑆| − 1)!

𝐹!
[𝑓"(𝑆 ∪ {𝑖}) − 𝑓"(𝑆)]

4⊆6\	{2}

	 275 

where 𝜙2 is the weighted average of all marginal contribution of predictor i, F is the total number 276 

of features, S is the subset of predictors from all predictors except for predictor i, |4|!(6#|4|#;)!
6!

 is 277 

the weighting factor counting the number of permutations of the subset S. 𝑓"(𝑆) is the expected 278 
output given the predictors subset S. [𝑓"(𝑆 ∪ {𝑖}) − 𝑓"(𝑆)] is the difference made by predictor i. 279 

 SHAP has been widely used to explain different machine learning models in many fields 280 
(Padarian et al., 2020; Stirnberg et al., 2021; Wang et al., 2021). It has been applied to deep 281 
neural network (“Deep SHAP”) based on DeepLIFT method in Lundberg and Lee (2017), which 282 
approximates the conditional expectations of SHAP values using a selection of background 283 
samples. 284 

 285 

4 Results 286 

4.1 NN performance and variable importance 287 

 Figure 1 shows the maps of the observed and predicted fire emissions averaged over 288 
2000–2020. The model reproduces the spatial patterns of fire emissions and captures the large 289 
fire emissions over northern California. The spatial correlation between the observed and 290 
predicted fire emissions is 0.79, showing a good agreement between the long-term observations 291 
and predictions. Additionally, the model can capture the interannual variability over CONUS, 292 
with a correlation of 0.94 and RMSE of 4.84 g/m2. To assess model performance in different 293 
regions, Figures S1a-d show the time series of observed and predicted fire PM2.5 emissions 294 
averaged over the selected regions. The selected regions include the western forest region 295 
(WFR), Mediterranean southern California (SCA), southwestern US (SWUS), and southeastern 296 
US (SEUS) (color boxes in Figure 1b). These regions frequently burn and share similar fire 297 
regimes and vegetation types. The predicted interannual variability resembles the observed 298 
interannual variability for the selected regions (IoA=0.31-0.95). However, the southwestern and 299 
southeastern US have much smaller IoA and larger RMSE than the other two regions in the 300 
western US (Table 4). The model has larger biases over the regions with much lower fire 301 
emissions (e.g., southeastern US) because the NN is dominated by grid cells that have large fire 302 
emissions (i.e., western US) (Zhu et al., 2022). 303 
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 304 

Fig. 1. The burned area map averaged over 2000 to 2020 for (a) observation and (b) prediction; 305 
(c) Time series of observed (black) and predicted (red) monthly fire PM2.5 emissions averaged 306 
across CONUS. The color boxes in (b) denote four analysis regions: western forest area (WFR, 307 
red), Mediterranean southern California (SCA, blue), southwestern US (SWUS, dusty), and 308 
southeastern US (SEUS, pink). 309 

Table 4. Model performance aggregated over the regions, including the western forest region 310 
(WFR), southern California (SCA), southwestern US (SWUS), and the southeastern US (SEUS).  311 

 CONUS WFR SCA SWUS SEUS 

IoA 0.94 0.88 0.95 0.31 0.44 

RMSE (g m-2) 4.84 5.02 0.73 0.37 0.94 

 312 

 To understand the leading variables in the NN model at different time scales, we analyze 313 
the absolute SHAP values at seasonal and interannual scales by averaging the SHAP values of all 314 
the grids over CONUS for each year and month and take the absolute values. Predictors with 315 
larger |SHAP| have greater contribution and therefore, more important to fire emission. Figure 2 316 
shows the mean |SHAP| values at seasonal and interannual time scales for CONUS. At both time 317 
scales, local meteorology and land-surface variables are critical, as most of them are included in 318 

R=0.79

Observation NN prediction g m-2 month-1
(a) (b)

(c)
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the top 10 variables. Specifically, normalized temperature, normalized RH, RH, SVD2_sElag2, 319 
and soil moisture are the predominant variables controlling both interannual and seasonal 320 
variability of the fire emissions. Land-surface variables (LAI, vegetation fraction, and grass 321 
fraction) and VPD have larger contributions to fire emissions at the seasonal scale, as they have 322 
strong seasonality. Some variables, including SVD1_NCA, SVD1_SElag2, and SPEI, are more 323 
important at the interannual time scale. 324 

 325 

Fig. 2. Variable importance represented by the mean |SHAP| values at seasonal and interannual 326 
time scale. 327 

 328 

4.2 GCM-NN present-day performance 329 

 Before utilizing the NN and GCM outputs to project future fire emissions, it is helpful to 330 
evaluate the prediction of present-day fire emissions by the NN with GCM meteorology and 331 
LAI, GPW population density, and MODIS land cover from 2000 to 2014 as predictors. The NN 332 
driven by GCM outputs is referred to as GCM-NN. Figure 3 shows the ratios of predicted to 333 
observed total fire emissions for CONUS and the four regions for the eight GCMs. The GCM-334 
NN reproduces the present-day fire emissions well for CONUS, with a median ratio of 1.27. 335 
Focusing on the four regions where fires frequently occur, GCM-NN slightly overestimates fire 336 
emissions over southwestern US and southeastern US where the median values of the ratios are 337 
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1.18 and 1.12, respectively. The fire emissions over the western forest region are underestimated 338 
by the GCM-NN (Table 5 and Figure 3). To better understand the model performance, we also 339 
evaluate the seasonal variability and spatial distributions of the GCM-NN predicted fire 340 
emissions. Figure 4 shows the seasonal distribution of the observed and predicted fire emissions 341 
driven by the observation and reanalysis meteorology (red line in Figure 4) and GCM 342 
meteorology (purple line in Figure 4). The GCM-NN predictions generally reproduce the 343 
observed seasonality of fire emissions and capture the peak in August. Although the seasonality 344 
is well reproduced, the predicted spatial distributions of GCM-NN are inconsistent with the 345 
GFED fire emissions (Figure 5). For instance, the NN predictions driven by ACCESS, CESM, 346 
and CMCC outputs are overestimated over the Central Great Plains (Figures 5c-e). The NN 347 
driven by the outputs of CanESM and EC models overestimates fire emissions in the western 348 
forest region, mainly over the Rocky Mountains (Utah, Colorado, and Wyoming), and the NN 349 
with GFDL outputs overestimates fire emissions over the southeastern US (Figures 5f-j). 350 

 351 

Fig. 3. Ratio of the GCM-NN predicted to the GFED observed fire PM2.5 emissions over 352 
CONUS and the four selected regions. 353 

 354 

Table 5. Observations (mean of GFED fire emissions) and multi-model projections of fire 355 
emissions (Gg yr-1) (median values of the 8 GCMs; 1Gg = 109 g). The regions include western 356 
forest region (WFR), southern California (SCA), southwestern US (SWUS), and southeastern US 357 
(SEUS). 358 
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 Observed (2000-
2014) 

Present-day (2000-
2014) NN model 

Future (2050-2065) 
NN model 

WFR 0.082 ± 1.006 0.061 ± 0.292 0.099 ± 0.336 

SCA 0.051 ± 0.571 0.050 ± 0.097 0.070 ± 0.153 

SWUS 0.029 ± 0.682 0.034 ± 0.063 0.069 ± 0.171 

SEUS 0.044 ± 0.266 0.050 ± 0.245 0.055 ± 0.204 

CONUS 0.041 ± 0.550 0.052 ± 0.266 0.062 ± 0.215 

 359 

 360 
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 361 

Fig. 4. Seasonal cycle of the averaged fire PM2.5 emission from GFED (black line), the NN 362 
model driven by reanalysis (red line), and the GCM-NN models (purple lines). The fire PM2.5 363 
emissions are averaged over CONUS during 2000-2014 by month. 364 

 365 

Fig. 5. Spatial distributions of the mean fire PM2.5 emissions (g m-2 month-1) averaged over 2000-366 

(a) ACCESS

(b) CESM

(c) CMCC

(d) EC3Veg

(e) EC3VegLR

(f) EC3CC

(g) GFDL

(h) CanESM

GCM_NNNNObs
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2014 from (a) GFED) and the NN model driven by observations (b) and different GCMs (c-j). 367 

 The inconsistency of the spatial patterns between GCM-NN and observations is 368 
dominated by the spatial biases in summer (June-August), which is the peak season of fire 369 
emissions (Figure S2). The spatial biases of the GCM-NN predicted fire emissions in summer 370 
may be contributed by biases of the NN model, biases of the GCM outputs used as predictors for 371 
the model, and interactions between these biases. To determine the relative contributions of the 372 
NN model biases (reanalysis-NN minus GFED) and the GCM predictor biases (GCM outputs 373 
minus reanalysis/observation), linear regression models are fitted to the model biases (GCM-NN 374 
minus GFED) in June-July-August (JJA) for different regions using NN biases and predictor 375 
biases at each grid point within the regions as predictors. Figure S3 shows the coefficient of the 376 
predictors for each GCM and region and only the predictors with p<0.05 are shown. Predictors 377 
with larger coefficients have larger contributions to the GCM-NN biases. For ACCESS, CESM, 378 
and CMCC, the positive biases in the Central Great Plains are mainly contributed by the NN 379 
biases (Figure S3e). The overestimations in the western forest region are due to biases in 380 
precipitation for CanESM while for the two EC models the fire emission biases are caused by 381 
biases in normalized temperature and SPEI (Figure S3a). For the GFDL model, the 382 
overestimations over southeastern US are mostly attributed to the NN biases (Figure S3d).      383 

4.3 Future fire emission projection 384 

 We use the NN model with the future climate and LAI from the eight GCMs, future 385 
population density from GPW, and present-day LULC from MODIS as predictors to project the 386 
future fire emissions in 2050-2065 under the SSP5-8.5 scenario and compare with the GCM-NN 387 
simulation driven with present-day GCM meteorology, GCM LAI, GPW population density, and 388 
MODIS LULC (i.e., land_fix experiment in Table 3). This method assumes stationarity of the 389 
relationships between fire emissions and their predictors learned by the NN model trained using 390 
observations. The projections only consider the effects of changes in meteorology, LAI, and 391 
population density and neglect the impacts of LULC changes. Figure 6 shows the spatial 392 
distributions of the ratio of future to present-day fire emissions. All GCM-NN models project 393 
increased fire emissions across the western US, with the largest enhancement over Pacific 394 
Northwest, northern California, and the southwestern US. For the southeastern US, five GCM-395 
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NN models project decreased fire emissions in the future, while CMCC, GFDL, and CanESM 396 
project increased fire emissions. 397 

 398 

Fig. 6. Spatial distributions of the ratio of future (2050-2065) to present-day (2000-2014) fire 399 
PM2.5 emissions. The ratio is shown in the base 10 logarithmic scale. 400 

 401 

   Over CONUS, the GCM-NN projects a median ratio of future to present-day fire 402 
emissions of 1.38, showing increased future fire emissions (Figure 7a). Across the four regions, 403 
the GCM-NN projects an increase in fire emissions of 13-115%, with the largest median ratio of 404 
1.85 in the southwestern US (Figure 7a). Generally, more significant enhancement in fire 405 
emissions is found over the western US, where the western forest region and southern California 406 
have median ratios of 1.40 and 1.22, respectively. As for the southeastern US, different models 407 
project increases and decreases in fire emissions, resulting in a relatively small median ratio of 408 
1.11. We further analyze the median ratios of future to present-day fire emissions for each region 409 
and season in Figure 7b. For CONUS, September-October-November (SON) and June-July-410 
August (JJA) have the largest enhancement of fire emissions, with a median ratio of 1.7 and 411 
1.58, respectively. Like CONUS, the western forest region is projected to have the largest 412 
enhancement of fire emissions in SON (median ratio = 2.29) and the second largest enhancement 413 
in JJA (median ratio = 1.67). For other regions, including southern California, southwestern US, 414 

(a) ACCESS (b) CESM

(e) EC3VegLR (f) EC3CC (g) GFDL (h) CanESM

(c) CMCC (d) EC3Veg
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and the southeastern US, the GCM-NN projects the greatest enhancement in JJA, with a median 415 
ratio of 1.82, 2.86, and 1.33, respectively (Figure 7b). 416 

 417 

 418 

Fig. 7. (a) The ratio of future (2050-2065) to present-day (2000-2014) fire PM2.5 emissions for 419 
CONUS and the four regions; (b) the median values of the ratios from 8 GCMs in CONUS and 420 
the four regions for each season. 421 

 Compared to the projections of fire carbon emissions by the GCMs (CESM2, EC3-Earth-422 
CC, EC3-Earth-Veg, EC3-Earth-VegLR, and GFDL-ESM4.1) from CMIP6, the spatial patterns 423 
predicted by GCM-NN are very similar for present-day and future (Figure S4). Although the 424 
GCM-NN projection of PM2.5 emissions is driven by the changes in meteorology, LAI, and 425 
population density, while the GCM projection of carbon emissions considers the changes in all 426 
factors including LULC changes, the predicted ratios of future to present-day fire emissions by 427 
the GCM-NN are within a similar range as the GCMs (Figures S5a and 5b). For the seasonality, 428 
since only CESM2 and GFDL-ESM1.4 provide monthly output, we compare the mean values of 429 
the two ratios for the four seasons over CONUS and the four regions. Both GCM and GCM-NN 430 
project the largest enhancement in JJA over CONUS (Figures S5c and 5d). However, there are 431 
differences in the peak seasons of enhancement for the four regions. For example, GCM-NN 432 
projects the largest enhancements of fire emissions in JJA, while GCM projects the largest 433 
enhancements in MAM for the western forest region and the southeastern US. The comparisons 434 
demonstrate the GCM-NN projections are generally consistent with the process-based models 435 
with DGVM embedded in GCMs despite the differences in the emitted species and peak fire 436 
seasons. 437 

 Lastly, we utilize the four GCM-NN models, which provides outputs of future vegetation 438 
distribution and LULC (GFDL-ESM4, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR), to 439 
project fire emissions considering the effects of land use and land cover change in 2050-2065. 440 
These GCM-NN results (land_change) are compared with those predicted using the same LULC 441 
derived from MODIS for both the future and the present-day (land_fix) (Table 3). Figure 8a 442 
shows the median ratio of future to present-day fire emissions for CONUS and four regions 443 
based on the four GCMs. The projected median ratios increase for CONUS and the western US 444 
(WRF, SCA, and SWUS) by 58-83% when LULC changes are considered, which may be 445 
attributed to increases in vegetation, tree, and grass fraction in the future (Figure 8b) and these 446 

(a) (b)
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three land types are the predictors with larger contributions to the fire emissions (Figure 2). Note 447 
that vegetation fraction is the sum of tree, grass, shrub, and crop fraction. The results indicate the 448 
importance of land use and land cover in controlling future fire emissions. Meanwhile, large 449 
uncertainties exist in the projected land use and land cover change (Prestele et al., 2016). 450 

 451 

Fig. 8. (a) The median values of the ratio of future to present-day fire emissions from the four 452 
GCM-NN for CONUS and the four regions with and without including land use and land cover 453 
changes; (b) the percentage change of tree, grass, and vegetation fraction calculated as the 454 
differences in the average of the four models between 2050-2065 and 2000-2014 divided by the 455 
average of the four models over 2000-2014. 456 

 457 

4.4 Factors driving increased fire emissions in the future 458 

 Figure 9 shows the differences in seasonal mean SHAP values between 2050-2065 and 459 
2000-2014 from the eight GCM-NN for the four regions based on the projection excluding 460 
effects of future LULC changes (land_fix experiment). The SHAP values represent the 461 
contributions of the predictors, and the positive difference in SHAP values indicates increasing 462 
contribution to the future fire emissions. We show the changes in SHAP values for the summer 463 
(JJA) and fall (SON), as the larger enhancement of fire emissions is projected to occur in the two 464 
seasons for all the regions. For the western forest region, the increased fire emissions in JJA are 465 
driven by increasing normalized temperature and LAI and decreasing normalized RH and soil 466 
moisture (Figure 9a and Figure S6a). All of the GCMs show increased normalized temperature 467 
and LAI over the western forest region, with a median change of 29% and 20%, while the 468 
normalized RH and soil moisture only slightly decrease by 2.19% and 0.39% (Figure S6). 469 
Similar to the western forest region, the growing fire emissions in JJA in Southern California 470 
result from increasing normalized temperature and decreasing soil moisture, with a median 471 
change of 29% and -1.8%, respectively (Figure 9b and Figure S6b). For the southwestern US, 472 
decreased normalized RH (-4.6%) and soil moisture (-2.6%) as well as increased normalized 473 
temperature (+24%) and VPD (+18%) contribute to the enhanced fire emissions in summer 474 
(Figure 9c and Figure S6c). Lastly, increased normalized temperature and decreased normalized 475 
RH are the drivers of the increased fire emissions in JJA for the southeastern US (Figure 9d and 476 
Figure S6d). In the mid-21st century, normalized temperature is projected to increase by 23% and 477 

(a) (b)
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normalized RH is projected to decrease by 13% in JJA over the southeastern US. Interestingly, 478 
the changes in VPD contribution to fire emissions are much smaller than the changes in 479 
normalized temperature for the western US (Figures 9a-c). This can be explained by the fact that 480 
the increase in future VPD over western US is mainly driven by increasing temperature (Figures 481 
S6 and S7), so the NN model shows larger contributions from normalized temperature (Figure 2 482 
and Figure 9).  483 

 484 

Fig. 9. The distributions of the changes in seasonal mean SHAP values from the eight GCMs 485 
between 2050-2065 and 2000-2014 for JJA and SON for the (a) western forest region, (b) 486 
Southern California, (c) southwestern US, and (d) southeastern US. 487 

 SON also shows larger fire emissions in the future, particularly over the western forest 488 
region and southern California, which are mainly contributed by increased normalized 489 
temperature and decreased soil moisture (Figures 9a and 9b). Normalized temperature is 490 
projected to increase by 336% and 164% in SON for the western forest region and southern 491 
California, respectively (Figure S8). The soil moisture in the two regions is projected to decrease 492 
by 3.2%. In summary, reduced soil moisture is the key common factor driving the increased fire 493 
emissions in both summer and fall across the western US (the western forest region, Southern 494 
California, and the southwestern US). Normalized temperature here represents the temporal 495 
variation of temperature. When we look at the actual changes in temperature across the 8 GCMs, 496 

(a) (b)

(c) (d)
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the median temperature is projected to increase by 2.25~3.23 K in JJA and 2.60~2.80 K in SON 497 
for the four regions.  498 

5 Discussions and conclusions 499 

 This study constructs a NN model explained by the SHAP to predict fire emissions and to 500 
understand factors driving the changes in fire emissions over CONUS in the mid-21st century 501 
under a high greenhouse gas emissions scenario (SSP5-8.5). The NN model shows promising 502 
results, with an RMSE of 0.085 g/m2 and an IoA of 0.53 at 1° grid level, and it reproduces the 503 
interannual variability of the fire emissions over CONUS and selected regions (IoA=0.31-0.95). 504 
Although the NN model performance slightly degrades compared to the XGBoost model 505 
developed in Wang et al. (2022) due to coarser resolution and differences in the ML approaches, 506 
the NN model still outperforms other process-based models in simulating the spatial distribution 507 
and temporal variability of fire emissions. This study uses NN instead of XGBoost because the 508 
XGBoost cannot discriminate between the present-day and future meteorology simulated by the 509 
GCMs as both of their probability distributions fall within the probability distributions of the 510 
observations used for training, so the samples from the two periods would fall into the same 511 
node. On the other hand, NN can reflect the small changes in the inputs through the combination 512 
of weights and activation function. 513 

Driven by the GCM outputs (i.e., GCM-NN) for the present-day, the GCM-NN 514 
predictions generally reproduce the observed seasonality of fire emissions, but the predicted 515 
spatial distributions of GCM-NN deviate from the GFED fire emissions. When we consider the 516 
contributions from NN biases and predictor biases, for ACCESS, CESM2, and CMCC, the 517 
overestimation of fire emissions over the Central Great Plains can be attributed to the NN biases. 518 
The overestimation in western forest region is due to biases in precipitation for CanESM and 519 
biases in normalized temperature and SPEI for the EC-Earth models, consistent with the warm 520 
and dry biases identified in the GCMs in CMIP6 (J. Dong et al., 2022; Srivastava et al., 2020). 521 
The positive biases over the southeastern US in GFDL-ESM can be mainly attributed to the NN 522 
biases. 523 

The GCM-NN models project that fire emissions will increase by 38% (median value) in 524 
the mid-century under the SSP5-8.5 scenario, with a larger increase over the southwestern US 525 
(85%; median value) and western forest region (40%; median value). The largest enhancements 526 
are projected to occur in JJA for most selected regions, including southern California, 527 
southwestern US, and the southeastern US, with increases of 33-186%. As for the western forest 528 
region, fire emissions are projected to increase most in SON (129%). The projected increasing 529 
trends are consistent with the projections from prior studies (Table 1). For instance, Xie et al. 530 
(2022) showed that the fire CO2 emissions are projected to increase by 130 to 260% over western 531 
North America under the SSP5-8.5 scenario using three CMIP6 earth system models. Although 532 
the emission species are different, our GCM-NN projects smaller increases in fire PM2.5 533 
emissions in summer over the western US (33-186%), as the GCM-NN does not consider the 534 
changes in LULC as well as the feedback between fire and climate. More recently, Liu et al. 535 
(2021) showed that the fire PM2.5 emissions over the western US are projected to increase by 536 
50% in the mid-21st century under the RCP8.5 scenario, which is close to the median value of the 537 
enhancement over the western US by our GCM-NN (~50%). Their projection considering future 538 
changes in fuel is roughly equal to the GCM-NN projection while our GCM-NN projection does 539 
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not include future changes in fuel load. The smaller projected enhancements considering the 540 
changes in fuels may be due to fire model biases and smaller projected fuel changes (Liu et al., 541 
2021). Considering the LULC change simulated by the four GCM models, the projected fire 542 
emissions by GCM-NN increase by 58-83% over the western US, compared to the future 543 
projection without LULC change. The projection considering future LULC change is close to the 544 
projection estimated by Xie et al. (2022), while the projected LULC change contains certain 545 
uncertainties (Prestele et al., 2016). Recent studies suggest that the climate sensitivity is 546 
substantially higher in CMIP6 than in CMIP5, showing more than one-quarter of models 547 
projecting warming larger than 4.7°C when doubling atmospheric CO2 concentrations from pre-548 
industrial levels (Ribes et al., 2021; Zelinka et al., 2020). The eight GCMs used in this study 549 
except for GFDL-ESM have higher equilibrium climate sensitivity (ECS) larger than the 550 
multimodel mean shown in Zelinka et al. (2020). Therefore, our projection using CMIP6 climate 551 
output may be subject to the “hotter” CMIP6 projection, but we focus on the median value of the 552 
multimodel projections, which would not be influenced by extreme values (i.e., the model with 553 
very high sensitivity). 554 

Using SHAP to explain the NN model, we identify the crucial factors driving the future 555 
enhanced fire emissions over CONUS. Increased normalized temperature and decreased soil 556 
moisture and normalized RH are the common and key drivers leading to the enhanced fire 557 
emissions in JJA and SON across the western US (Figure 9). Soil moisture and RH is projected 558 
to decrease by 0.36-2.6% and 2.2-4.6%, respectively; the normalized temperature is projected to 559 
increase by 24-366% in the future, which is consistent with prior studies showing decreases in 560 
moisture and increases temperature will enhance future fire risk given abundant fuels (Jain et al., 561 
2022). As shown in Figure 8, increases in fire emissions considering future LULC change may 562 
be attributed to increases in the grass, tree, and vegetation fraction (~15% across the western 563 
US). The fire emission projection generally agrees with the projections in prior studies and 564 
reveals the importance of the drying trend and LULC change in controlling future fire emissions 565 
(Brey et al., 2018; Yu et al., 2022). 566 

  This study utilizes XAI and CMIP6 GCM outputs to project future fire PM2.5 emissions. 567 
This approach assumes the relationships between predictors and fire emissions remain the same 568 
in the future as at present, while the relationships may change. Uncertainties may exist in NN's 569 
extrapolation ability and behavior, which would be a concern for making future projections. For 570 
instance, prior studies have shown that the NN's structure and activation function and whether 571 
the training data is diverse have substantial impacts on extrapolation behavior (Xu et al., 2021). 572 
Hernanz et al. (2022) evaluated different MLs’ extrapolation behavior in predicting surface 573 
temperature. Their results show that the extrapolation capability is better when training and 574 
testing data overlap at a certain level. In this study, the data space of the observation/reanalysis 575 
data and historical and future simulation of GCMs overlaps, suggesting minor extrapolated errors 576 
in our NN model projection (Figure S9). One notable limitation of the NN model is its lack of 577 
feedback between fire emissions and climate, which might underestimate the projection of future 578 
fire emissions (Zou et al., 2020). Lastly, large uncertainties also exist in the projection of future 579 
LULC; future work is needed to improve the future projection of LULC to better project fire 580 
emissions, as climate change projection can also be influenced by LULC change (Bukovsky et 581 
al., 2021). Overall, based on the relationships at present-day learned by NN, rising temperature, 582 
decreasing moisture, and changes in LULC (i.e., increases in vegetation) are key factors 583 
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contributing to increasing future fire emissions over the western US, where the intensity and 584 
frequency of large fires have significantly risen in recent decades. 585 
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