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Abstract

Morocco is a large country with complex terrain and many sparsely populated

regions. With a semi-arid climate, it is highly vulnerable to floods driven by

extreme precipitation, whose distribution is highly variable in space and time.

Yet, this topic has received little attention. The limited availability of data has5

so far been the major obstacle to pursue such research in Morocco. Public gridded

datasets offer good opportunities to overcome this problem. However, the use of

such data should be handled with care, especially when applying extreme value

theory. The present work aims at addressing this issue. First, we introduce and

analyse a comprehensive set of 120 daily precipitation series which we assembled10

from different stakeholders in Morocco. Then, we perform quality control of

the data and use extreme value statistics to infer trends and large return levels.

Finally, we assess the accuracy of nine gridded satellite-based and reanalysis daily

precipitation datasets using the station data. These results are intended as a first

step towards a comprehensive understanding of extreme precipitation in Morocco,15

and can help select gridded datasets for future hydrometeorological research.

Keywords: Morocco, station observations, extreme precipitation, reanalysis, remote-

sensing of precipitation

1



Manuscript submitted to Stochastic Environmental Research and Risk Assessment

1 Introduction

Precipitation is a key variable in climate risk assessment. Its dynamics strongly deter-20

mine flood risk, especially in arid to semi-arid regions where dry soils and the lack of

vegetation prevent precipitation infiltration and often lead to flash floods (Saber and

Habib, 2016). Morocco is a case in point. Located in the dry subtropics, at the north-

western border of the Sahara desert, the country receives little precipitation overall,

but the bulk of it often falls in just a handful of days. This, combined with a high25

vulnerability, makes floods one of the most frequent, deadly and destructive natural

disasters in Morocco (World Bank, 2021; Loudyi et al., 2022). Dozens of destructive

and deadly flooding events occurred in the last few decades: in the Ourika Valley in

1995, Al Hoceima in 2003, Driouch in 2008, across the Sebou river in 2010, around

Ouarzazate and Sidi Ifni in 2014, Laayoune in 2016, near Tirzit in 2019 or Tetouan in30

2021.

Efficient flood risk assessment and preparedness relies on the availability of reliable

precipitation data at a fine spatio-temporal resolution. Precipitation extremes are of

particular interest, since they are responsible for much of the flood events (Berghuijs

et al., 2019). In Morocco, torrential rainfall often leads to floods, especially in the35

mountainous interior (El Khalki et al., 2018). A careful understanding and monitoring

of precipitation is therefore critical to managing flood risk. Precipitation in Morocco

is characterised by substantial variability in space and at all time scales. Most of the

precipitation occurs north of the Atlas mountains in the winter half-year, when the

North Atlantic storm track moves enough to the south to affect Morocco. Precipita-40

tion exhibits a large inter-annual variability, following the location of the storm track.

Intra-seasonal variability is also considerable. Most of the wet-season precipitation is

concentrated in a handful of days when storms hit Morocco, with long dry periods

broken by short and intense downpours. While the dynamics of seasonal-mean pre-

cipitation in the current and future climates, and their impact on water availability,45
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have already been addressed by several previous studies (e.g., Knippertz et al., 2003;

El Moçayd et al., 2020; Tuel, 2020), extreme precipitation in Morocco remains largely

unexplored. Besides, climate projections indicate an overall decrease in extreme precip-

itation magnitude in the region (Pfahl et al., 2017). Since climate models miss much of

Morocco’s fine-scale orography and are potentially biased in representing the relation-50

ship between large-scale weather patterns and extreme precipitation (Driouech et al.,

2009; Tuel, 2020), these projections are still uncertain and need to be better constrained

by observations.

The distribution of precipitation is often derived from ground rain gauge obser-

vations at networks of meteorological stations. Stations provide direct precipitation55

measurements, but only at a limited number of locations, usually not dense enough to

capture fine-scale variability. Stations are also often lacking in sparsely-populated areas

and mountainous regions, where more precipitation falls. There, the accuracy of purely

station-based precipitation estimates is thus greatly reduced (Kidd et al., 2017). One

can turn instead to satellite-based or reanalysis datasets, many of which have a high60

spatio-temporal resolution and offer complete spatial coverage. The downside is that

their accuracy is not guaranteed: satellite-based estimates always rely on some proxy

for precipitation, like radar reflectivity or brightness temperatures, and in reanalyses,

precipitation is almost exclusively a prognosis variable, i.e. not directly assimilated

and therefore subject to parametrisation uncertainties. To assess their accuracy, grid-65

ded datasets must consequently be compared with station data. Station data itself

is not free of problems – missing data, gauge undercatch, biases in extreme or trace

precipitation, wrong readings, changes in instrumentation, unsuitable station location,

poor station maintenance, among others – some of which can be addressed with quality

control (Hunziker et al., 2017). Still, on average, it represents the best ”ground truth”70

available to determine how accurate gridded products are.

Several studies have used station data to analyse the distribution of precipitation
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and the accuracy of gridded precipitation datasets across Morocco. Milewski et al.

(2015) and Ouatiki et al. (2017) compared TRMM Multisatellite Precipitation Analy-

sis (TMPA) products to station data over North-Central Morocco and the Oum-Er-Rbia75

catchment in Central Morocco respectively, and found good agreement at monthly and

annual timescales. The Tensift basin around Marrakech has attracted a lot of atten-

tion: Habitou et al. (2020) analysed the performance of the CHIRPS dataset in this

basin; Saouabe et al. (2020) did the same for the GPM-IMERG dataset and Salih et al.

(2022) for 7 satellite-based and reanalysis products. Tramblay et al. (2016) also com-80

pared 5 different gridded satellite-based datasets to station data and evaluated their

accuracy as inputs to hydrological models in a small catchment of Northern Morocco.

Most of these studies did not however look at extreme precipitation, conducting the

comparison to station data mostly at the monthly scale. A few recent studies anal-

ysed the spatio-temporal variability in extreme precipitation with station data, notably85

modelling temporal trends and inferring large return levels (e.g., Filahi et al., 2016; El

Alaoui El Fels et al., 2021; Driouech et al., 2021; Hadri et al., 2021). Driouech et al.

(2009) also assessed the ability of regional climate models to correctly simulate the

distribution of extreme precipitation across Morocco, but to our knowledge, no system-

atic study exists that quantifies the accuracy of the most common available gridded90

products.

Another important limitation of previous studies is the limited number of stations they

use (usually a few to a few dozen, with a temporal coverage of 30−50 years), in addition

often restricted to the major cities or single catchments. The availability of reliable,

long-term observation data in Morocco has indeed always been a major obstacle to95

research. Filahi et al. (2016) and Driouech et al. (2021) limit their analysis to major

cities, mostly missing the wetter mountain regions, while El Alaoui El Fels et al. (2021)

and Hadri et al. (2021) both only focus on small catchments of a few thousand to 20,000

km2. Only Milewski et al. (2015) attempted to cover as much of Morocco as possible,

by analysing 125 rain gauges spread across Northern Morocco.100
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This study focuses on extreme precipitation across Morocco. We introduce what is

to our knowledge the most complete database of quality-controlled station observations

of daily precipitation in Morocco. We briefly describe the spatio-temporal distribution

of extreme precipitation. We then provide a comprehensive assessment of the accu-

racy of 9 commonly used gridded precipitation datasets in representing precipitation105

extremes.

2 Study area and data

2.1 Study area

Morocco is located in the dry subtropics, between the 21°N and 36°N parallels, at

the junction between the Atlantic and Mediterranean coastlines. Its climate is overall110

warm and dry, though with important regional differences. The Atlas Range, one

of Africa’s major mountain chains, separates the desert interior, with less than 200

mm of precipitation a year on average, from the relatively wetter coastal plains of

the north and northwest and their Mediterranean climate (Figure 1). With 600-800

mm of average annual precipitation, the Atlas and the smaller Rif mountains to the115

north are the wettest regions in the country. They are Morocco’s water tower, from

which the country’s rivers take their source, storing much of the precipitation as snow

during winter and releasing it during warmer months (Tuel, 2020). Precipitation in

Morocco is not only scarce, but also highly variable in time. To the north, 80-85%

of annual precipitation fall during the wet season, from November to April, when the120

region stands under the influence of the North Atlantic storm track (Knippertz et al.,

2003; Tuel and Eltahir, 2018). A wet season typically consists of 5-10 storm episodes,

so that precipitation is often highly concentrated within a handful of days (Born et al.,

2008; Tuel, 2020). Precipitation also varies substantially from year to year and across

decades, driven by variations in the North Atlantic Oscillation (NAO) that dictate the125
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mean location of the mid-latitude storm track.

2.2 Station data

We collected data at an ensemble of 120 stations distributed across Morocco (Figure

1). The data come from two main sources: the Moroccan Weather Service (”Direction

Générale de la Météorologie”, DGM) for 40 stations located in or near cities, and130

regional watershed agencies (”Agences des Bassins Hydrauliques”, ABH) for most of

the remaining stations. ABHs are responsible for water monitoring, allocation and

management at the regional scale across Morocco.

At each station, daily precipitation accumulation (usually from 12pm to 12pm the next

day) is measured in mm, with a precision of 0.1 mm. Snowfall is distinguished only135

at the DGM stations. Most stations are confined to the northern side of the Atlas,

especially in the mountainous regions of the Rif (Sebou and Loukkos river basins)

and of the High Atlas (Oum-Er-Rbia and Tensift river basins). Very few stations are

available in the arid and sparsely populated regions to the east and south of the Atlas.

The earliest station record begins in 1934, and the latest ends in August 2019. We give140

the station list along with detailed information in Table S1.

2.3 Gridded datasets

We analyse in this study gridded daily precipitation data from several different datasets:

eight based on observations (satellite and/or gauge data) and one reanalysis dataset

(Table 1). These datasets are not all independent since many rely on the same input145

data (from the same satellite, for instance) or because one dataset is corrected with

another, often at the monthly scale.

• Tropical Rainfall Measuring Mission (TRMM) Version 7 3B42 daily precipitation

data, available from 1998 to 2019 at 0.25° resolution. TRMM data incorporates

microwave and radar precipitation estimates with infrared brightness observa-150
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tions, calibrated with station data on a monthly basis (Huffman et al., 2007).

TRMM came to an end in 2015; post-2015 data comes from GPM (see below).

• Global Precipitation Measurement (GPM) mission data, available from June 2000

to near-present at 0.1° resolution. GPM began in 2014 as the successor mission

to TRMM. Like TRMM, GPM applies precipitation retrieval algorithms to data155

from multiple satellite sensors (both passive and active) (Hou et al., 2014). We use

the GPM Integrated Multi-satellitE Retrievals (IMERG) Version 06 Final Run

data, which comes with a 3.5 month latency. Pre-2014 data comes from TRMM

and was processed retrospectively with the IMERG algorithm.

• Global Precipitation Climatology Project (GPCP) daily precipitation analysis160

version 1.3 data at 1° resolution from October 1996 to near-present. GPCP pre-

cipitation estimates in the 40°N-S band are obtained from geosynchronous infrared

brightness temperatures processed with a threshold-matched precipitation index

(Huffman et al., 2001).

• Climate Hazards InfraRed Precipitation with Stations (CHIRPS) daily data,165

available from 1981 to near-present at 0.05° resolution. CHIRPS estimates pre-

cipitation by merging high-resolution remotely-sensed cold cloud duration data

and station observations with a precipitation climatology based on station and

satellite data, and geographical covariates (elevation, longitude, latitude) (Funk

et al., 2015).170

• Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 data, available

at 0.1° resolution from 1979 to near-present. MSWEP is based on an optimal

merging of station data, satellite-based estimates and reanalysis output (Beck

et al., 2019).

• Global Satellite Mapping of Precipitation (GSMaP) Version 6 data at 0.1° res-175
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olution, available from 2000/3 to near-present. A product of the JAXA Global

Rainfall Watch, GSMaP precipitation is based on combined microwave-infrared

data from a range of satellites (including from the TRMM and GPM constella-

tions) (Kubota et al., 2020). The version 6 data we use was obtained with the

Microwave-IR Merged Algorithm (Ushio and Kachi, 2010) applied to remotely-180

sensed data after 2014 and to Japanese 55-year Reanalysis data from 2000-2014,

before operational data became available.

• Climate Prediction Center Morphing Technique (CMORPH) data at 0.25° reso-

lution, available from January 1998 to near-present (Xie et al., 2019). CMORPH

is based on retrievals of precipitation rates from many passive microwave satellite185

measurements that are bias-corrected with CPC daily rain gauge data over land

and GPCP data over the ocean. The daily data is based on an hourly version at

a resolution of 8× 8 km.

• Precipitation Estimation from Remotely Sensed Information using Artificial Neu-

ral Networks (PERSIANN) Climate Data Record daily data at 0.25° resolution,190

available from 1983 to near-present. Precipitation estimates in PERSIANN are

obtained from infrared brightness temperature data used as input to a neural net-

work trained on the National Centers for Environmental Prediction (NCEP) stage

IV radar-based precipitation data over the continental united States (Ashouri

et al., 2015). Precipitation is then corrected at the monthly scale to equal the195

monthly 2.5° GPCP data.

• ERA5 reanalysis data, available at 0.25° resolution from 1979 to near-present.

ERA5 is the ECMWF’s latest reanalysis dataset and provides hourly precipita-

tion forecasts based on the Integrated Forecasting System (IFS) cycle 41r2 (Hers-

bach et al., 2020). Precipitation in ERA5 is therefore not assimilated but only a200

prognosis variable.
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Dataset Type Resolution Period Reference

CHIRPS
Satellite +

0.05° 1981-2019 Funk et al. (2015)
stations

CMORPH
Satellite +

0.25° 1998-2019 Xie et al. (2019)
stations

ERA5 Reanalysis 0.25° 1979-2019 Hersbach et al. (2020)

GPM
Satellite +

0.1° 2000/6-2019 Hou et al. (2014)
station correction

GPCP Satellite 0.25° 1996/10-2019 Huffman et al. (2001)

GSMaP
Satellite +

0.1° 2000/3-2019 Kubota et al. (2020)
reanalysis

MSWEP
Satellite + stations +

0.1° 1979-2019 Beck et al. (2019)
reanalysis

PERSIANN Satellite 0.25° 1983-2019 Ashouri et al. (2015)

TRMM
Satellite +

0.25° 1998-2019 Huffman et al. (2007)
station correction

Table 1: Overview of the gridded datasets used in this study.

3 Methods

3.1 Quality control

We begin by implementing basic quality control checks on the station data following

Durre et al. (2010), which we briefly summarise here:205

(1) Basic integrity checks. They consist in duplication, extreme value and iden-

tical value-streak checks. We check for duplication by testing whether all values are

the same for two different years, and whether all values in a month are the same as

in any other month of the same year, or any other same calendar month in the full

record. We exclude months with no precipitation (a frequent occurrence in Morocco).210

Extreme value checks consist in flagging daily precipitation values above the established

world record (1828 mm/day) or below 0 mm. Finally, we flag streaks with identical or

frequent (non-zero and non-missing) precipitation values as in Durre et al. (2010).

(2) Outlier checks. Outliers are identified by looking for gaps larger than 300mm

in the distribution of daily precipitation within each month. We also flag daily values215
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larger than 9 times the 95th wet-day percentile.

(3) Spatial consistency checks. They consist in identifying observations at a

given station which fall significantly outside the range of simultaneous (± 1 day) values

at neighbouring stations. Neighbouring stations are all available stations within 75 km

of the reference station and with non-missing data on the target dates; we require at220

least 3. Observations at the target station are flagged if they fall outside the range

of neighbour values and if they differ from the closest neighbour value by a threshold

inversely related to the difference between the climatological percentiles of daily pre-

cipitation totals at the target and neighbour stations. This helps detect both dubiously

high precipitation values and false zero values (when neighbouring stations all record225

substantial amounts of precipitation). We run this check twice, removing flagged sta-

tion values from potential neighbours in the second step so that they may not influence

the consistency check results.

3.2 Extreme value analysis

We define extreme daily precipitation events as days when cumulative precipitation ex-230

ceeds its 99th all-day percentile. Percentiles are calculated empirically for each dataset

and location. Results remain qualitatively unchanged with slightly lower percentiles

(97.5th or 95th). Choosing an all-day percentile helps avoid the issue of biases in wet-

day frequency linked to trace precipitation amounts in satellite and reanalysis datasets.

To explore the statistics of extreme daily precipitation, we use concepts of extreme235

value theory. At each station, we fit Generalized Extreme Value (GEV) distributions

to annual maxima of daily precipitation, and Generalized Pareto (GP) distributions to

exceedances of daily precipitation above its 99th all-day percentile (Coles, 2001). The

10
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cumulative distribution functions of the GEV and GP distributions are

FGEV(x;µ, σ, ξ) = 1−
(
1 + ξ x−µ

σ

)−1/ξ
for 1 + ξ x−µ

σ
> 0

FGP(x;σ, ξ) = 1−
(
1 + ξ x

σ

)−1/ξ
for x > 0

(1)

where µ, σ and ξ are the location, shape and scale parameters respectively. In FGP(x;σ, ξ),240

x represents exceedances above the threshold u: x = y−u conditioned on y > u, where

y is the series of daily precipitation totals and u its 99th all-day percentile. Although

the GEV and GP distributions are theoretically related, the GP fits rely on 3-4 times

more data than the GEV fits, and thus tend to yield more robust estimates of high

return periods. The GEV nevertheless provides a convenient framework to assess po-245

tential temporal trends in extreme precipitation magnitude (see below). This is why we

consider both distributions to characterise the extremal behaviour of our precipitation

series.

For each station, we systematically discard years with more than 5% missing or flagged

data. Additionally, for the GEV/GPD fits, we only keep stations with at least 25 years250

of data. This is a compromise between data availability, rather constrained by our

limited data coverage, and robustness of the distribution fits. The parameters are ob-

tained through maximum likelihood estimation. We assess goodness-of-fit visually with

quantile-quantile plots, and statistically by implementing Kolmogorov-Smirnoff tests

(Massey, 1951).255

From the GPD fits, we estimate extreme return levels (10, 20 and 30 years) by solving

xp
GEV = (FGEV(x))

−1(p)

xp
GP = (FGP(x))

−1(p)
(2)

where p is the probability of exceedance equal to the reciprocal of the associated return

period (e.g., 1/3652 for 10 years).

We also test, at first order, for the presence of temporal trends in extreme daily pre-
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cipitation by allowing the location parameter µ to depend linearly on time in the GEV260

annual maxima fit:

µ(t) = µ0 + βµt (3)

where t is the year index. We assess the significance of the trend by computing the

Akaike Information Criterion (AIC) for both the stationary and the time-dependent

fits. AIC accounts for both model goodness-of-fit and parameter count, with a smaller

AIC indicating a better fit. We restrict the trend analysis to stations with at least 30265

years of data between 1980 and 2019 so that trends at different stations are calculated

over a similar time period.

3.3 Evaluation metrics

We compare gridded datasets against station observations by assigning each station

to the nearest grid cell for each dataset separately. Two neighbouring stations can270

therefore fall within the same grid cell, especially for the coarser-resolution datasets.

However, if a station is located too close to the edge of a grid cell (by less than 1/10th

of the cell’s spatial resolution), we assign the average value of the closest 2 grid cells.

We assess the reliability of gridded products with three simple metrics:

1. Relative bias in the 99th percentile:275

b = 100×
q99g − q99s

q99s
(4)

where q99g and q99s are the 99th all-day percentiles of daily precipitation at a station

and its corresponding grid cell respectively.

2. Critical success index (CSI) (Schaefer, 1990): the CSI is an overall measure of

the ability of the gridded datasets to correctly capture the timing of extreme
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precipitation events. It is defined as280

CSI =
Hits

Hits + Misses + False alarms
(5)

where ”Hits” is the number of correctly detected extremes (both station and grid-

ded dataset are extreme), ”Misses” the number of undetected extremes (station

is extreme but gridded dataset is not extreme), and ”False alarm” the number of

incorrectly detected extremes (station is not extreme but gridded dataset is ex-

treme). Because the station reporting times are unknown, we allow for an extra285

day around each station extreme to calculate the number of hits.

3. Ratio of contribution of extreme precipitation to total annual precipitation:

r =

∑
t pg(t)1{pg(t) > q99g }/

∑
t pg(t)}∑

t ps(t)1{ps(t) > q99s }/
∑

t ps(t)
(6)

where pg(t) and pg(t) are the daily series of precipitation at a station and its

corresponding grid cell respectively.

We calculate these metrics on the periods when station and gridded data intersect,290

only if the gridded dataset shares at least 10 years of data with the station. Again, this

is a compromise between the limited station data availability and the need to obtain

meaningful and robust bias and CSI estimates.

4 Results

4.1 Quality control and data coverage295

We calculate the fraction of missing data for each station between the first day of the

month with the earliest non-missing data point and the last day of the month with the

latest non-missing data point. On average, 10% of the data is missing across stations,

13



Manuscript submitted to Stochastic Environmental Research and Risk Assessment

with a range of 0-58%. The June-August period accounts for almost half (41%) of the

missing data, which is not unsurprising since it corresponds to the driest period of the300

year when most stations will not record a single day with precipitation. Back when

stations were manually operated (up to the early 2000s in many parts of Morocco),

data were therefore likely frequently not collected during the dry months.

The quality control algorithms flag an average 0.3% of the data, a figure consistent with

GHCN-Daily observations (0.24%) (Durre et al., 2010). This percentage ranges from 0305

to 2.3% between stations. Most flagged data occurs between May and September (65%

of the flagged data). 93% of the flags are due to duplication checks at the monthly scale.

Transcription errors from written station records to digital format are likely responsi-

ble. It is also possible that missing months (most frequent in summer) were manually

replaced with data from non-missing months. The amount of quality-controlled data310

increases substantially from about 20 stations in the early 1970s to 100-110 stations

around 2000 (Figure 1).

4.2 Extreme value analysis in station data

Figure 2 shows the distribution of extreme percentiles and annual maxima of daily

precipitation accumulation across stations. This distribution unsurprisingly follows315

that of average precipitation: the largest values occur in the north – Morocco’s wettest

region – particularly in the Rif mountains and along the Atlas Range (Knippertz et al.,

2003; Born et al., 2008; Tuel, 2020). Extremes are also slightly more intense along the

Atlantic coast than on the plains further inland. Regions to the east and south of the

Atlas have low to very low extreme percentiles (< 10 mm) and mean annual maxima320

(< 20 mm).

A visual inspection of the marginal GEV and GPD fits shows a reasonable goodness-

of-fit (Figure S1). KS test results confirm this: all stations pass the test for both GEV

and GDP fits at a conservative 10% confidence level. Inferred daily precipitation return
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levels are shown on Figure 3. The highest values occur along the Mediterranean and325

Atlantic coastlines, and in the Rif Mountains and Atlas Range. Some northern and

mountain stations even have 10-year return levels above 100 mm (Figure 3-a). The

plains in Northwestern Morocco have generally small return levels (< 70 mm), even

at the 30-year timescale, as do the desert regions to the east and south of the Atlas.

The ratio of 30- to 10-year return levels is overall highest (≈ 1.5) for stations in the330

Sahara and along the Mediterranean coast, and lowest (≈ 1.1-1.2) in the Atlas and

Northwestern Morocco.

Out of 47 stations with sufficient data (30 full years between 1980 and 2019), 11 exhibit

noticeable temporal trends in their annual daily precipitation maxima, based on the

AIC of stationary and non-stationary fits (section 3.2; Figure 4). 10 of these trends are335

positive. The remaining 36 stations split somewhat evenly into positive and negative

trends, with trend magnitudes generally between -1 and +1 mm/decade.

4.3 Comparison of gridded datasets

Figures 5, 6 and 7 show the spatial distribution of the three selected metrics we use to

compare gridded products with the station data. The number of locations at which we340

compare station and gridded data slighlty varies depending on the gridded dataset: a

station must have 10 years of common data with a gridded product. However, almost

all (105 out of 120) stations have sufficient data to evaluate each dataset (see Figure

S2 for the comparison of gridded datasets on these 105 common stations only).

Biases in extreme percentiles generally vary in space with little consistency across the345

datasets. In ERA5, the bias is negative, though limited (absolute value below 40%) at

almost all stations (Figure 5-a). By contrast, CMORPH and GSMAP tend to under-

estimate extreme percentiles in the Atlas Range and overestimate them in the desert

regions to the south (Figure 5-d,f). TRMM, GPM and GPCP have negative biases

along the Atlas Range, and mostly positive elsewhere (Figure 5-b,c,g). For CHIRPS,350
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biases are high (>40%) over much of Northern Morocco, but small elsewhere (Figure

5-h), while PERSIANN mostly underestimates extreme percentiles, with a few positive

biases at Saharan stations. MSWEP performs well, with small biases (absolute value

below 20%) almost everywhere. By comparing biases at the same stations, MSWEP

also stands out, along with GSMaP and ERA5, while other datasets tend to have higher355

biases with more inter-station variability (Figure S2-a).

The ratio of relative contribution of extreme to annual precipitation does not always

reflect biases in extreme percentiles (Figure 6). South of the Atlas, for instance, all

datasets underestimate this contribution while they varyingly over- or underestimate

extreme percentile magnitudes (Figure 5). In Northwestern Morocco, the ratio is pos-360

itive in TRMM, GPM, CMORPH, GPCP and CHIRPS, very negative in ERA5 and

PERSIANN, and weakly negative in GSMaP and MSWEP. Focusing on the 50 common

stations, we again find that GSMaP and MSWEP perform well, along with GPCP and

GPM, for which the inter-station variability is however higher (Figure S2-c). PER-

SIANN and TRMM perform the worst. CSI values also highlight the good performance365

of GSMaP and MSWEP, with many CSI values above 0.4 (Figures 7 and S2-b). ERA5

also performs well, especially in the Sahara (Figure 7-a), while PERSIANN, GPCP and

CHIRPS have poor accuracy across Morocco (Figures 7-e,g,h and S2-b).

5 Discussion

5.1 Challenges with data quality and coverage370

While our station dataset is one of the most complete ever put together for Morocco,

it still suffers from several limitations. The first is of course related to its limited tem-

poral coverage. Consistent, long-term daily precipitation records are hard to find in

Morocco. Out of 120 stations in our database, 24 (20%) have less than 10 full years

of quality-controlled data, and only 18 (15%) have more than 40 years, with a median375
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value of 28 years. The longest records often correspond to urban centers, but a number

of stations at relatively high altitudes in the Rif and Atlas, far away from the population

centers, also have records of more than 30 years (Figure 1). In recent decades, weather

stations have been increasingly automated across Morocco, but the rate of deployment

remains uneven, and real-time data is not available for many of the stations. Addition-380

ally, station data is not collected in a centralised way in Morocco – each basin agency is

responsible for its own network, and the most recent data is not automatically collected

by a single entity. This explains why data coverage drops by about 20 stations around

2005 in our dataset (Figure 1).

The second major limitation is the uneven and generally low spatial density of sta-385

tions. The total number of rain gauges across Morocco in the early 2000s reached 375

(Loudyi et al., 2022), but many of these were discontinued or had only short records,

or their data was never digitised. As things stand now, there are few currently oper-

ating stations left to include in our inventory. Stations are unsurprisingly few in the

largely unpopulated and dry Sahara desert, though even there floods are a major con-390

cern whose risk remains badly quantified (Loudyi et al., 2022). The absence of stations

is problematic since most of the flood-driving precipitation occurs inland in uninhab-

ited areas. Station density is also low in important agricultural regions in Northern

Morocco, like the Doukkala plain between Casablanca and Marrakech. Historically,

stations were preferentially installed in the mountains, where most of the precipitation395

falls, to better assess the potential for irrigation and hydropower dams. Yet given its

spatial variability (El Moçayd et al., 2020), precipitation in the plains is also relevant

for rainfed agriculture, especially wheat, and for flash floods in many regions of the

country. New weather stations have recently been installed by the Moroccan weather

service, and could be added to the map as they start collecting more data.400

Short records make it difficult to robustly estimate temporal trends in extreme precip-

itation, all the more so as inter-annual variability is high in Morocco and the signal-

to-noise ratio probably low (Tuel, 2020). Additionally, many of the records begin the
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1980s, a historically dry decade. One should keep this in mind when looking at Figure 4

– the conclusion being that given the data currently available, it is difficult to conclude405

whether any meaningful trends in extreme precipitation have occurred in Morocco. One

possibility to make the analysis more meaningful would be to include the daily NAO

index as a covariate in equation 3, since the NAO is the main driver of precipitation

variability in Morocco (Knippertz et al., 2003; Tuel, 2020). Another approach consists

in pooling together the values of nearby stations to get more robust parameter values410

– for instance within a latent variables framework (Cooley et al., 2007).

5.2 Ranking gridded datasets

We find clear differences in accuracy across the nine gridded datasets we analysed.

While no dataset is perfect, some are clearly better or worse than others in most re-

spects. MSWEP and GSMaP stand out regarding both the timing and magnitude of415

daily extremes. GSMaP is slightly more accurate in the timing, but its inter-station

variance is higher, and its temporal coverage much lower than that of MSWEP (Table

1). ERA5 and GPM also perform well, especially for the timing of extremes and their

contribution to annual precipitation. TRMM, CMORPH and GPCP have a lower,

somewhat comparable accuracy, though extreme percentiles tend to be too high in420

TRMM and too low in CMORPH (Figures 5, S2-a), and GPCP is clearly less reliable

for the timing of extremes (Figures 7, S2-b). We also find a clear improvement from

TRMM to GPM (Figures 6, 7 and S2). Last in line are CHIRPS and PERSIANN which

have bad scores in all three metrics.

Of course, our analysis is limited to precipitation extremes. Other characteristics of the425

precipitation distribution matter in practice and the datasets could perform better or

worse in these respects. Nevertheless, the point of our study was to look at extremes

specifically, since the literature was largely missing. Other studies have assessed the

performance of gridded precipitation datasets at monthly or annual timescales across
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Morocco (see introduction).430

All the datasets tend to perform most poorly in the High Atlas. All – excepted

CHIRPS – underestimate extreme percentile magnitudes (Figure 5) and most have

low CSI values (Figure 7) in this region. ERA5 does a comparatively good job there,

but probably overestimates wet-day frequency and small precipitation amounts at high

altitudes. Indeed, its contribution of extreme to annual precipitation is too low although435

it correctly simulates extreme percentiles (Figures 5-a, 6-a). Elevation significantly

modulates accuracy, though at varying degrees across the datasets. ERA5 in particular

is less affected. The timing of extremes tends to be lower at higher altitudes (Figure

S3), although this is not always the case for relative extreme percentile biases (not

shown). Still, only 15% of stations are located at an altitude higher than 1000 m,440

and it remains difficult to infer what biases at high altitudes really are. How accurate

the datasets are in the Saharan part of Morocco is also not easy to determine due to

stations being really scarce across this vast area (Figure 1). ERA5 and MSWEP and,

to a lesser extent, TRMM, GPM and GSMaP, appear to be reliable there, but a more

extensive analysis, perhaps articulated around case studies, could help make a better445

assessment.

6 Conclusion

We introduce in this study what is to our knowledge the most comprehensive quality-

controlled daily precipitation dataset for Morocco. The data come from various sources

and cover different time periods. About two thirds of stations have reliable data be-450

tween 1980 and 2015. We estimate extreme percentiles and 10- to 30-year return levels

of daily precipitation, and provide a comprehensive assessment of the accuracy of nine

commonly used gridded daily precipitation datasets with respect to extreme precipi-

tation in Morocco. MSWEP and GSMaP perform best overall. Since station data is
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particularly limited in both space and time in Morocco, and is not available in detail,455

gridded datasets are important tools for climate and flood risk analyses, and hydrolog-

ical or agricultural modeling. Our results are therefore important to better guide the

choice of gridded datasets in future research and quantify associated uncertainties.

Availability of Data and Materials

Station data are available from the corresponding author upon request. Table 2 shows460

how the various gridded datasets can be accessed.

Dataset URL

CHIRPS
https://data.chc.ucsb.edu/products/CHIRPS-2.0/

[last accessed July 1, 2022]
CMORPH http://doi.org/10.25921/w9va-q159

ERA5 http://doi.org/10.24381/cds.adbb2d47

GPCP http://doi.org/10.7289/V5RX998Z

GPM http://doi.org/10.5067/GPM/IMERGDF/DAY/06

GSMaP
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm

[last accessed July 1, 2022]

MSWEP
http://www.gloh2o.org/mswep/

[last accessed July 1, 2022]
PERSIANN http://doi.org/10.7289/V51V5BWQ

TRMM http://doi.org/10.5067/TRMM/TMPA/DAY/7

Table 2: Links to the gridded datasets used in this study.
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Figures

Figure 1: Map of station locations across Morocco (circles) with elevation in shaded
contours (data from the USGS GTOPO30 product resampled at 0.05° resolution). The
circle diameter indicates the number of years with more than 95% of data both non-
missing and passing the quality control checks. The circle color indicates station eleva-
tion (taken from station metadata records). The top-left inset shows the time evolution
in the number of stations with more than 95% of data both non-missing and passing
the quality control checks (evaluated on an annual basis).
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Figure 2: (a) Distribution of (a) 99th all-day percentiles and (b) mean annual maxima
of daily precipitation accumulations at all stations.
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Figure 3: Estimated (a) 10-year, (b) 20-year and (c) 30-year return levels of daily
precipitation accumulations at all stations (with at least 25 years with more than 95%
of quality-controlled data) inferred from the Generalised Pareto (GP) fits.
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Figure 4: Trends in annual daily precipitation maxima at all stations (with at least
25 years with more than 95% of quality-controlled data) inferred from the Generalised
Extreme Value (GEV) fit with the location parameter being a linear function of time
(see equation 3). Significant trends are highlighted with triangles (upward: positive
trends; downward: negative trends.
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Figure 5: Relative bias in 99th percentiles of daily precipitation accumulations (equation
4) between gridded and station data. Averages across stations are indicated at the
bottom right of each panel. The number of plotted locations varies with the gridded
dataset as we require at least 10 years of common data with a station to calculate the
bias.
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Figure 6: Same as Figure 5, but for the ratio of extreme to annual precipitation (equa-
tion 6).
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Figure 7: Same as Figure 5, but for the Critical Success Index (equation 5).
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