Calibrated absolute seafloor pressure measurements for geodesy in Cascadia

Matthew James Cook¹, Erik K Frederickson², Emily Carlson Roland², Glenn S. Sasagawa³, David Schmidt², William S. D. Wilcock², and Mark Andrew Zumberge³

¹University of California San Diego ²University of Washington ³University of California, San Diego

February 1, 2023

Abstract

The boundary between the overriding and subducting plates is locked along some portions of the Cascadia subduction zone. The extent and location of locking affects the potential size and frequency of great earthquakes in the region. Because much of the boundary is offshore, measurements on land are incapable of completely defining a locked zone in the up-dip region. Deformation models indicate that a record of seafloor height changes on the accretionary prism can reveal the extent of locking. To detect such changes, we have initiated a series of calibrated pressure measurements using an absolute self-calibrating pressure recorder (ASCPR). A piston-gauge calibrator under careful metrological considerations produces an absolutely known reference pressure to correct seafloor pressure observations to an absolute value. We report an accuracy of about 25 ppm of the water depth, or 0.02 kPa (0.2 cm equivalent) at 100 m to 0.8 kPa (8 cm equivalent) at 3,000 m. These campaign survey-style absolute pressure measurements on seven offshore benchmarks in a line extending 100 km westward from Newport, Oregon from 2014 to 2017 establish a long-term, sensor-independent time series that can, over decades, reveal the extent of vertical deformation and thus the extent of plate locking and place initial limits on rates of subsidence or uplift. Continued surveys spanning years could serve as calibration values for co-located or nearby continuous pressure records and provide useful information on possible crustal deformation rates, while epoch measurements spanning decades would provide further limits and additional insights on deformation.

1 Calibrated absolute seafloor pressure measurements for geodesy in Cascadia

2

- 3 Matthew J. Cook¹, Erik K. Fredrickson², Emily C. Roland³, Glenn S. Sasagawa¹, David A.
- 4 Schmidt⁴, William S. D. Wilcock², and Mark A. Zumberge¹
- 5 ¹University of California San Diego, Scripps Institution of Oceanography
- 6 ²University of Washington, School of Oceanography
- 7 ³Western Washington University, College of Science and Engineering
- 8 ⁴University of Washington, Department of Earth and Space Sciences
- 9
- 10 Corresponding author: Matthew J. Cook (<u>m4cook@ucsd.edu</u>)
- 11

14

12 Key Points:13 • Camp

- Campaign-style surveys of in situ, absolute calibrated ocean pressure measurements were made in the Cascadia subduction zone.
- These sensor-independent measurements act as long-term, absolute reference values that can be used in future vertical deformation studies.
- We document the sources of error in the technique and quantify the formal uncertainties of data collected from 2014 to 2017.
- 19 20 **Ab**

Abstract The boundary between the overriding and subducting plates is locked along some portions of the Cascadia subduction zone. The extent and location of locking affects the potential size and frequency of great earthquakes in the region. Because much of the boundary is offshore, measurements on land are incapable of completely defining a locked zone in the up-dip region. Deformation models indicate that a record of seafloor height changes on the accretionary prism

- can reveal the extent of locking. To detect such changes, we have initiated a series of calibrated pressure measurements using an absolute self-calibrating pressure recorder (ASCPR). A pistongauge calibrator under careful metrological considerations produces an absolutely known reference pressure to correct seafloor pressure observations to an absolute value. We report an accuracy of about 25 ppm of the water depth, or 0.02 kPa (0.2 cm equivalent) at 100 m to 0.8 kPa (8 cm equivalent) at 3,000 m. These campaign survey-style absolute pressure measurements on seven offshore benchmarks in a line extending 100 km westward from Newport, Oregon from 2014 to 2017 establish a long-term, sensor-independent time series that can, over decades, reveal
- 2014 to 2017 establish a long-term, sensor-independent time series that can, over decades, reveal
 the extent of vertical deformation and thus the extent of plate locking and place initial limits on
- 35 rates of subsidence or uplift. Continued surveys spanning years could serve as calibration values 36 for co-located or nearby continuous pressure records and provide useful information on possible
- 37 crustal deformation rates, while epoch measurements spanning decades would provide further
- 38 limits and additional insights on deformation.
- 39

40 Plain Language Summary

41 The Cascadia subduction zone has produced large earthquakes and tsunamis whose potential size

- 42 and interval is affected by the amount and distribution of locking between the tectonic plates. A
- 43 large portion of the subduction zone is offshore, where typical land- and satellite-based methods
- 44 are ineffective at measuring crustal deformation. Seafloor water pressure observations can be used
- 45 to monitor height changes, but pressure gauges inherently drift at rates typically exceeding
- 46 expected vertical seafloor deformation rates. The absolute self-calibrating pressure recorder

(ASCPR) measures the true, absolute, sensor-independent seafloor pressure by addressing and 47 48 correcting sources of error caused by the internal piston gauge calibrator and recording pressure 49 gauges. The accuracy of our measurements is about 25 ppm of the water depth, equivalent to 2.5 50 cm of height per 1,000 m of water. Campaign survey-style measurements using the ASCPR at seven benchmarks off the coast of Newport, Oregon from 2014 to 2017 establish a long-term 51 52 record of absolute measurements that can be referenced by studies decades or more in the future 53 or can be used to estimate and correct drift of nearby continuous pressure gauges. Continued 54 measurements can provide more valuable information and insights on seafloor deformation and 55 thus locking in Cascadia.

56

57 **1** Introduction

58 The Cascadia subduction zone poses considerable seismic and tsunami hazard to the coasts 59 of northwestern USA and southwestern Canada, stretching 1,300 km from Mendocino, CA to 60 Vancouver Island, BC (Walton et al., 2021). Large tsunamigenic earthquakes have ruptured along 61 the subduction zone numerous times in the past based on records of tsunami inundation, turbidite 62 flows, and paleoseismic evidence, most recently in 1700 (Atwater et al., 2005). The recurrence 63 interval of large earthquakes and tsunamis is suggested to be a few hundred years to a thousand 64 years; the current state of the subduction zone is not well-known (Atwater, 1987). More 65 information regarding the structure, deformation, and other properties of the subduction zone is 66 needed to better characterize the seismic and tsunami hazards in Cascadia. Although land-based 67 studies investigating interseismic and slow slip phenomena in Cascadia have been increasingly 68 common over the last decades, terrestrial data alone are insufficient for constraining properties in 69 the up-dip portion located offshore (Wang & Trehu, 2016).

70 Marine geodetic methods have been demonstrated over the last several decades. Acoustic 71 methods, notably GNSS-Acoustic, can measure horizontal motions at the cm-level, and have been 72 used to make measurements in various subduction zones, including Japan and Cascadia (Spiess et 73 al., 1998; Matsumoto et al., 2008). Seafloor pressure, a proxy for seafloor height, is also widely 74 used to measure vertical crustal motion and deformation. To be useful for seafloor geodesy, 75 pressure variations caused by oceanic and atmospheric variations must be extracted from the 76 seafloor pressure measurements to reveal the tectonic signal of interest. Although standard 77 pressure gauges are capable of mm-level resolution, they are unreliable for measurements over 78 months-to-years due to inherent drift (Polster et al., 2009). Pressure gauge drift contaminates and 79 often exceeds long-term signals of interest and is difficult to reliably characterize. Methods to 80 correct sensor drift include mobile pressure recorder (MPR) surveys by ROV, which measure 81 pressure changes relative to a stable reference site (e.g., Stenvold et al., 2006; Chadwick et al., 82 2006; Nooner & Chadwick, 2009; Nooner & Chadwick, 2016), mobile pressure calibrator surveys 83 by ROV, which provide a controlled, calibrated pressure reference adjacent to long-term in situ 84 pressure recorders (Machida et al., 2020), normal self-calibrating pressure recorders (SCPRs), 85 which measure pressure changes relative to a piston-gauge calibrator (Sasagawa & Zumberge, 86 2013; Sasagawa et al., 2016), and A0A (also known as AZA) sensors, which measure pressure 87 changes relative to the internal air pressure (Wilcock et al., 2021).

The standard SCPR addresses gauge drift in situ by using a mechanical piston-gauge calibrator (PGC) to intermittently produce a stable reference pressure close to the ambient seafloor pressure. Drift in continuously recorded pressure gauges that are switched by a valve between the ambient ocean pressure and the PGC reference pressure can then be accurately determined, and the drift can be corrected. In this mode of operation, the actual value of the PGC reference need not be known accurately, we only require that it remains stable for the duration of its deployment,
i.e., unknown but constant offsets are acceptable (Sasagawa & Zumberge, 2013; Sasagawa et al.,
2016).

96 An alternative use of the standard SCPR technology is to accurately account for every 97 measurement parameter in an absolute manner that is traceable to metrological standards and then 98 periodically deploy in a campaign style rather than continuously occupying one location. In this 99 fashion, a single instrument can be used to survey several locations. Because the absolute value of 100 the pressure on top of a benchmark is determined at each visit, we call this method the Absolute 101 Self Calibrating Pressure Recorder, or ASCPR. The instrument is carried and handled by ROV, 102 placed on a permanent seafloor benchmark (a concrete disc or similar platform), and alternately 103 records the ocean and the reference pressures for several hours. Knowledge of the reference 104 pressure's true value enables the absolute pressure on the benchmark to be determined. The 105 permanent benchmarks facilitate accurate re-positioning of instruments for all observations. Since 106 the pressures measured by the ASCPR are determined absolutely, each survey contributes to a time 107 series of point measurements and any future observations can be compared to earlier ones even if 108 different components or a different absolute sensor are used.

109 The absolute seafloor pressure measurements must be addressed within the context of the 110 overlying water column and atmosphere to isolate the tectonic signal. The ocean tides are aliased 111 in our records but can also be accounted for within a few cm through tidal predictions or models 112 (Agnew, 2012; Pawlowicz et al., 2012). Ocean variability at periods longer than the tides can be 113 aliased in each survey and present additional challenges. Averaging over many years can 114 ameliorate that problem, though a refinement to the method is to leave a continuously recording 115 bottom pressure recorder (BPR) at each benchmark to capture and account for seafloor pressure 116 variations attributed to these processes. Further improvements can be made by addressing these 117 processes using available regional pressure networks, satellite altimetry products, and CTD data 118 (Frederickson et al., 2019; Watts et al., 2021).

We conducted pressure surveys with an ASCPR along a trench-perpendicular profile in the Cascadia subduction zone over a four-year period from September 2014 to September 2017. We present the design and methods of the instrument and surveys, as well as absolute seafloor pressure values, which will serve as longstanding fiducial values for future studies and estimated secular rates. We also document the sources of error and report on the repeatability of the technique.

125 **2** Method

126 The ASCPR instrument consists of a 40 cm diameter spherical pressure case that houses a 127 PGC (which generates a pressure by applying a mass force over a piston area), the mechanical 128 components needed to constrain the PGC mass during transit and deployment and spin the mass 129 during measurements, gimbals to level the PGC, two redundant quartz pressure gauges, and valves 130 to pressurize the PGC and alternately switch the gauges between the ambient seafloor and 131 reference pressures. The mass lock system prevents unwanted and potentially harmful torque on 132 the PGC system during transit. The mass spin-up system allows the PGC to generate a smooth, 133 continuous reference pressure and avoid pressure spikes caused by stick-slip behavior. The 134 spherical pressure case is mounted in a three-legged aluminum frame suitable for handling by an 135 ROV. Before each deployment a mass is loaded internally onto the system's piston of appropriate 136 size to create a reference pressure slightly less than the local seafloor pressure. This allows the 137 hydraulic connection to ambient sea pressure to pressurize the PGC, obviating the need for a highpressure pump, and minimizes the likelihood and amount of detectable hysteresis. In the survey 138

139 reported on here, the mass was transferred in the vessel's freezer held at seafloor temperature and

the instrument was kept there during transits between sites to help minimize thermal effects duringthe measurement.

142 The ASCPR is turned on while connected to the ROV on the ship deck and starts recording 143 pressure data, ancillary measurement data, and state-of-health data at 1 Hz. The ROV carries the 144 ACPR to depth in the basket. Once on site, the ROV places the ASCPR on top of a pre-deployed 145 seafloor benchmark and remains in place, electrically connected to the instrument, for the duration 146 of the measurement. An operator on the vessel sends commands to the system to actuate internal 147 gimbals to level the PGC, unlock the mass, pressurize the PGC, engage the rotation mechanism to 148 spin the mass (this ensures the PGC is in a state of kinetic friction to minimize pressure spikes 149 caused by stick-slip behavior), and control the valve which alternates the quartz gauges between 150 sea pressure and PGC pressure. Gauge drift and errors are present in the gauge output, whether the 151 gauge is observing the reference pressure or ambient seafloor pressure. Alternating the gauge 152 output between the PGC reference pressure and ambient seafloor pressure allows us to apply 153 corrections determined from the reference pressures to the seafloor pressures. Ambient sea 154 pressure is buffered by a tube containing sebacate oil to prevent seawater from entering the PGC. 155 A typical measurement period spans about two hours, with five to seven cycles alternating between 156 10- to 15-minute-long seafloor and reference pressure observations.

150 157 158

2.1 Survey profile

The calibrated pressure surveys were conducted on seven concrete benchmarks at six sites 159 that form a trench-perpendicular profile off the coast of Oregon at 44.5° N (Figure 1, Table 1). 160 The farthest west station (O1) is located 105 km offshore on the Juan de Fuca Plate side of the 161 162 trench at 2900 m water depth. The other stations (O2, O2B, O3, O4, O5, and O6) are located on 163 the North American plate and are separated by approximately 15 km from each other towards 164 shore. The closest station to shore (O6) is about 20 km off the coastline at a depth of 70 m. Each 165 station had an autonomous, continuous BPR attached to the benchmark or located nearby. A 166 redundant benchmark (O2B) was established adjacent to O2 when a second set of BPRs was 167 deployed.

Manuscript submitted to Journal of Geophysical Research: Solid Earth

^{-126°} -^{125°} -^{124°}
 Figure 1. Map of the survey area in the Cascadia subduction zone. The black dashed line indicates the deformation front at the foot of the accretionary prism. Circles represent standard benchmarks and triangles represent trawl-resistant benchmarks.

172 173 Two types of solid concrete benchmarks were used depending on the water depth, expected 174 seafloor material, and nearby trawling activity. The benchmarks located in deeper water (O1, O2, 175 O2B, O3, and O4) are based on a design originally developed by Segawa and Fujimoto (1988) and 176 later used in a variety of deep ocean settings (e.g., Chadwell, 2016). They have circular bases 76.2 177 cm in diameter, 15 cm thick, with three 14 cm long legs protruding below, weighing a total of 66.7 kg in water (145 kg in air). The shallow water benchmarks (O5 and O6) are a trawl-resistant design 178 179 with a triangular base that slopes up to a platform 71.1 cm across and weigh 354 kg in water (770 180 kg in air). Figure 2 includes photographs of each type of benchmark on the seafloor.

The benchmarks were coarsely leveled using the ROV manipulator to nudge them in a particular direction to within a few degrees of level. The total tilt of the benchmark is inconsequential if it is less than 10°, which is the amount of tilt the ASCPR gimbals can accommodate. The tilt at each benchmark was measured using the internal tiltmeter and recorded as a reference for future occupations to monitor the stability or potentially identify gross disturbances of the benchmarks (Table 1).

Figure 2. Photographs of benchmarks. The left shows a standard circular benchmark at O1, a deep
site (depth greater than ~400 m), and the right shows a trawl-resistant benchmark at O5, a shallow
site (depth shallower than ~400m or located near known trawl zones).

193

Table 1. Basic station information. Benchmark tilts are listed as a reference for future occupations.

195 Uncertainties are the quadrature sum of the tiltmeter accuracy and standard deviation of 196 measurements conducted each occupation.

197

Station	Latitude (°N)	Longitude (°E)	Depth (m)	Benchmark tilt (°)	Established (year)
01	44.5099	-125.4056	2907	4.0 ± 0.2	2014
O2	44.4670	-125.2636	1909	0.5 ± 0.1	2014
O2B	44.4661	-125.2637	1910	0.9 ± 0.1	2015
O3	44.4450	-125.1418	1315	3.4 ± 0.1	2016
O4	44.3666	-124.9670	620	0.3 ± 0.1	2016
05	44.2889	-124.6838	79	3.4 ± 0.2	2016
06	44.4512	-124.3616	70	3.0 ± 0.1	2016

198

199 **2.2** Absolute determination of the PGC reference pressure

200 The ASCPR method relies on accurate determinations of the true, absolute value of the 201 PGC reference pressure. The quartz-gauge observations of the PGC reference pressure reveal static 202 offsets from imperfect calibrations and transients from thermal gradients, creep, or other 203 unmodeled effects in the quartz gauges (Wearn & Larson, 1982; Polster et al., 2009). These offset 204 and transient errors are present in the gauge output regardless of the gauges being directed to the 205 reference pressure or ambient seafloor pressure. These errors are determined using the pressure 206 difference between the actual, absolute, known PGC reference pressures and the observed gauge 207 output during calibration intervals. Alternating the gauges between the PGC and ambient seafloor 208 pressure allows us to apply the absolute gauge corrections to the seafloor pressure record as well. 209 We do not expect any detectable hysteresis since our target reference pressure is chosen to be 210 within about 200 kPa of the expected seafloor pressure. As a result, the seafloor pressure values 211 are calibrated and traceable to absolute standards.

Equation 1 and Table 2 define the PGC reference pressure, P_{PGC} , and the significant variables (Bean, 1994). We measure and determine the absolute values and uncertainties of each correction term using NIST-traceable standards either prior to or during a deployment.

216
$$P_{PGC} = \frac{M\left(1 - \frac{\rho_{air}}{\rho_{mass}}\right)g\left(1 - \frac{\theta^2}{2}\right) + \gamma C}{A(1 + bP_0)[1 + 2\alpha(T - T_0)]} + P_{baro}$$
(1)

- 218 Table 2. Reference pressure variables and notes about their values and how they are determined
- 219 or measured.
- 220

Variable	Term	Comments
P _{PGC}	Pressure, PGC (kPa)	Piston gauge calibrator
М	Mass (kg)	Measured in lab (2016)
		Götze 2011 gravity formula +
g	Gravitational acceleration (m/s ²)	EGM2008 gravity anomaly +
		seawater gravity gradient
А	Piston area (m ²)	Fluke (2014)
		Measured by Jewell 900 sensor;
θ	Tilt (rad)	calibration of conversion
		coefficients done in lab (2014)
0.	Internal air density $(k\sigma/m^3)$	Calculated using ideal gas law for
Pair	internal an density (kg/m)	N ₂ , P _{baro}
0	Mass density $(k\sigma/m^3)$	Calculated using mass materials
Pmass		information
γ	Viscosity (m ² /s)	Nominal value of sebacate oil
С	Piston circumference (m)	Calculated from area value; Fluke
C		(2014)
b	Coefficient of elastic deformation (1/Pa)	Fluke (2014)
		Calculated using simplified
P_0	Fluid pressure (Pa)	reference pressure ($P = Mg/A +$
		P _{baro})
α	Linear coefficient of thermal expansion (1/°C)	Lab calibration (2018)
T ₀	Reference temperature (°C)	Nominal value from DHI Fluke
Т		Measured by Fluke PRT;
	Piston temperature (°C)	calibration of conversion
		coefficients done in lab (2016)
		Measured by Vaisala PTB 110;
$\mathbf{P}_{\mathrm{baro}}$	Internal air pressure (Pa)	conversion coefficients lab
		calibration (2016)

221

222

Table 3 provides the accuracy of each individual variable and the total measurement 223 accuracy. Some of the terms in equation (1), such as temperature and internal air pressure, change 224 on timescales shorter than the duration of a calibration, and are measured in situ.

225 In shallow waters, typically 100 m to a few hundred m deep, the primary error constituents 226 are the internal air pressure and then the piston-cylinder cross-sectional area. The internal air 227 pressure has an accuracy of 0.02 kPa within the nominal range and our operating range, 228 corresponding to up to 20 ppm (at 100 m water depth). The piston-cylinder cross-sectional area 229 for the larger diameter apparatus used for smaller pressures and shallower water depths has a

manufacturer provided accuracy of 14 ppm, which corresponds to about 0.01 kPa at 100 m water
depth, or 0.1 kPa at 1,000 m water depth. Other errors are small on the order of a few ppm and
contribute a small fraction of the total error.

233 At greater depths of several hundred m to several km, the error is dominated by the piston-234 cylinder area. The internal air pressure accuracy remains 0.02 kPa but constitutes a significantly smaller error contribution of 2 ppm (at 1,000 m depth) or less. The piston-cylinder used for greater 235 236 depths and pressures is a smaller diameter and has a lower cross-sectional area accuracy of about 237 25 ppm. As the water depth and reference pressure increase, the error also increases, reaching 238 nearly 0.8 kPa at 3,000 m. The greatest improvement to our deep water measurements would be 239 improving the accuracy of the piston-cylinder area, but that requires micrometer-level 240 measurements of the piston-cylinder dimensions. Facilities equipped to do this are rare and 241 prohibitively expensive. The error is otherwise the same as the shallow depths, where most of the 242 remaining errors are small and contribute little to the total error.

243

Table 3. Uncertainties of each reference pressure variable (or collective term) and the total quadrature sum error of a resulting calibration measurement. Some uncertainties scale with pressure (depth) while others do not. Three example depths are provided to highlight the uncertainty magnitude at various pressures (depths). A 10 ppm uncertainty at 1,000 m depth corresponds to 1 cm in height.

Nama	Variable	Acourcov	Example depth			
Iname	variable	Accuracy	100 m	1,000 m	3,000 m	
Mass	М	(Minimum 14.648 kg) 0.9 ppm (Maximum 3.029 kg) 4.3 ppm	- 3.7 ppm	4.3 ppm	0.9 ppm	
Gravitational acceleration	8	2.3 ppm	2.3 ppm	2.3 ppm	2.3 ppm	
Piston area	Α	(PC-7300-200) 14 ppm (PC-7300-2) 25 ppm	- 14 ppm	25 ppm	25 ppm	
Thermal expansion	$[1+2\alpha(T-T_0)]$	4.1 ppm	4.1 ppm	4.1 ppm	4.1 ppm	
Buoyancy $\left(1 - \frac{\rho_{\text{air}}}{\rho_{\text{mass}}}\right)$		(Stainless Steel Mass) 1.5 ppm (Aluminum Mass) 3.3 ppm	- 3.3 ppm	1.5 ppm	1.5 ppm	
Tilt $\left(1 - \frac{\theta^2}{2}\right)$ 1.6 ppm		1.6 ppm	1.6 ppm	1.6 ppm	1.6 ppm	
Elastic deformation	$(1+bP_0)$	(PC-7300-200) 1.1 ppm (PC-7300-2) 0.03 ppm	- 1.1 ppm	0.1 ppm	0.03 ppm	
		(PC-7300-200)	2 ppm	0.5 ppm	0.17 ppm	

Surface tension	уC	0.002 kPa (PC-7300-2) 0.005 kPa			
Internal air pressure	$P_{ m baro}$	0.02 kPa	20 ppm	2.0 ppm	0.67 ppm
Quadrature Sum Total		—	25.5 ppm	26.0 ppm	25.6 ppm

The values used to determine the reference pressure at each station and typical ranges for measured variables are provided in Table 4, while the exact values can be found in the ancillary data. For example, the barometric pressure within the sphere typically changes by 5-10 kPa during a calibration owing to the changing temperature inside the sphere. The internal temperature increases because of the electronics inside that are turned on when a survey is initiated, and a measurement sequence begins.

257

Table 4. Values used to determine the known reference pressure at each station. Tilt, piston-gauge temperature, and internal air pressure are measured in situ. Their values vary between each occupation and can fall within a broad, nominal range that is listed; however, they typically fall within a narrower range that is also specified. Their exact values can be found in the ancillary data records.

263

Variable	Value at Station						
variable	01	O2 / O2B	03	04	05/06		
M (kg)	14.648207	9.539057	6.544407	3.029427	3.509207		
g (m/s ²)	9.80496	9.80522	9.80540	9.80553	9.80555		
A (10^{-6} m^2)		4.901	1758		49.02159		
θ (10 ⁻³ rad)	Rang	es from (-1.7, 1.	7) but typically v	within (-0.87, 0.	.87)		
ρ_{air} (kg/m ³)	Ranges from (0.71, 1.03) but typically within (0.81, 0.95)						
ρ_{mass} (kg/m ³)	7779.907	5586.182	7613.153	3324.631	3230.054		
γ (m ² /s)	0.031						
C (10 ⁻³ m)		7.84	839		24.8198		
b (10 ⁻¹³ 1/Pa)	7.5		54	12.6			
P ₀ (kPa)	29,372 +/- 10	19,153 +/- 10	13,163 +/- 10	6,132 +/- 10	774 +/- 10		
α (10 ⁻⁶ 1/°C)	3.9						
T_0 (°C)			20				
T (°C)	Ranges from (4.5, 9.5) but typically within (5, 8.5))			
P _{baro} (kPa)	Ranges from (60, 85) but typically within (67.5, 77.5)				5)		

264

The pressure observed by the gauges while valved to the ambient seawater is denoted P_{sea}^{obs} and contains the tectonic vertical deformation signal of interest, as well as any variation in the overlying water column. The pressure observed while valved to the PGC is denoted P_{PGC}^{obs} . Each differs from their absolute counterparts, P_{PGC} and P_{sea} respectively, by the same error, P_{error} , attributed to imperfections mentioned above.

270

271

$$P_{sea}^{obs} = P_{sea} + P_{error} \tag{3}$$

- The gauge error, P_{error} , is equal to the difference between the observed calibration pressure and the true calibration pressure.
- 277
- 278 279

$$P_{error} = P_{PGC}^{obs} - P_{PGC} \tag{4}$$

We chose to model P_{error} as a constant offset and a relatively small, time varying component 280 281 modelled with combined exponential and linear terms (Wearn & Larson, 1982; Watts & 282 Kontoviannis, 1990; Polster et al., 2009). Other numerical drift models exist, but the exponential 283 component of a few cm sufficiently captures any short-term transients caused by viscoelastic creep 284 or thermal effects, and the long-term linear component represents any long-term mechanical creep, 285 outgassing, or aging of the quartz crystal (Paros & Kobayashi, 2015a). The exponential component 286 is modeled starting at the initial time, t₀, of the first calibration interval for an occupation and 287 extending until the last time of the final calibration interval, with an amplitude, A, and time 288 constant, B, typically on the order of a few minutes. The linear rate, C, is also modeled relative to 289 the initial time, t_0 , and the offset is simply determined as D.

- 290
- 291 292

$$P_{error} = Ae^{-\frac{t-t_0}{B}} - C(t-t_0) + D$$
(5)

A non-linear least squares regression is used to calculate the best-fit coefficients and drift model to the gauge error time series defined as the difference between P_{PGC} and P_{PGC}^{obs} . The true sea pressure is computed by correcting P_{sea}^{obs} with the modeled error function, which is the same whether the valve connects the gauges to the PGC or the ambient ocean.

297

298 2.3 Absolute pressure occupation

299 Pressure time series show fluctuations related to the descent of the ASCPR to the seafloor 300 and the flipping of the value between ambient and reference pressures (Figure 3). In (a), the 301 pressure observed by one of the two redundant gauges over the course of a survey is plotted in 302 grey (before and after a calibration) and black (during a calibration). The grey trace reveals that 303 the instrument was taken to depth by the ROV just before 21 October 2015 at 00:00 and placed on the benchmark around 04:45 where, being stationary, it began to show the tidal pressure variation. 304 305 The dotted green trace shows the predicted ocean tides. Soon after being emplaced on the 306 benchmark, the gauges were alternately valved between the ambient seawater and the PGC 307 reference pressure, the latter being around 200 kPa less than the sea pressure at this site. This 308 creates an approximate square wave in pressure that covered seven valve cycles each lasting about 20 minutes. In (b), the raw observations of the two quartz gauges, P_{PGC}^{obs} , are plotted in red shades 309 during the times they were valved to the PGC reference. The known output of the PGC (equation 310 311 1) as a function of time, P_{PGC} , is plotted in black at the same times (labeled "Known Reference") 312 pressure). One can see that P_{error} is primarily an offset of about 12 kPa for gauge #1 and 9 kPa for 313 gauge #2. The time variations in both the gauge records and the known PGC record are too small 314 to be visibly discerned in this plot. In (c), the records from the two uncalibrated gauges are plotted during the periods when the valve connected them to the outside seawater, P_{sea}^{obs} ; the tidal signal is 315 apparent. The offset between the two further exemplifies their imperfect calibrations, P_{error} . In (d), 316 317 two P_{error} functions, determined independently for each gauge from the records shown in (b), have

318 been added to the two corresponding records plotted in (c), yielding the final, absolutely calibrated 319 seafloor pressure records, P_{sea} . The traces from the two gauges lie on top of each other, as they 320 should confirming the agreement of the corrections. In (e), the small differences between the two 321 gauges are plotted partly confirming the efficacy of the method. A perfect calibration method for 322 two independent gauges sensing the same pressure source should entirely remove any differences 323 between the two records. The difference between the two calibrated pressure gauges is practically 324 flat at zero, although small coherent variations (apparent as stripes or steps) persist. These are 325 likely due to noise in the applied calibrations and a very small timing offset between the two gauges

326 but are inconsequential and treated as noise.

328 329 Figure 3. Pressure records during a typical ASCPR measurement at station O1 in 2015. (a) Raw pressure gauge output before (dashed grey line), during (solid black line), and after (dashed grey 330 331 line) occupying the station for a measurement. Predicted ocean tides for the station are shown 332 (dashed green line). The gauge output during calibration intervals is in the red box, shown in 333 greater detail in (b). The gauge output during ambient seafloor pressure intervals is in the blue box, 334 shown in greater detail in (c). (b) Observed output of the two gauges during calibration intervals 335 (dark and light red) and the calculated time series of the known reference pressure defined in

336 equation (1). The raw gauge output is different from the known reference by an offset and 337 exponential-linear drift function. (c) Observed output of the two gauges during ambient seafloor 338 intervals (dark and light blue). The raw gauge output is also different from the true, absolute 339 seafloor pressure by the same offset and exponential-linear function determined from (b). (d) 340 Absolutely calibrated seafloor pressures at the height of the bottom of the piston-gauge. (e) The 341 difference between the two calibrated pressure records (dark and light blue traces in (d)) as an 342 indication of the method efficacy. The difference is nearly flat and centered at zero, meaning the 343 independent corrections applied to each gauge effectively capture each gauge drift signal and 344 produce no differential signal. Coherent noise is still present, mostly attributed to noise in ancillary 345 data used in the corrections.

346

347 **2.4 Height correction**

348 As a final correction, the pressure values measured by the ASCPR must be transferred to 349 the height of the surface of the concrete benchmark, 32.6 cm below the height of the piston-gauge 350 (Figure 4). The in situ calibration of the quartz pressure gauges as described above establishes a 351 function, Perror, that, when added to the raw gauge outputs, gives values equaling the known 352 pressure at the height of the piston-gauge. While the quartz gauges are physically separated from 353 the piston-gauge and therefore experience a pressure difference from the associated pressure head, 354 this offset is included in P_{error} – that is, the corrections to the quartz gauges incorporate both the 355 gauge imperfections and the pressure head relative to the bottom of the piston-gauge. There is a 356 hydraulic line filled with sebacate oil in the internal system that emerges in seawater through a 357 port 12.1 cm below the bottom of the piston, and this port is 20.5 cm above the benchmark. The 358 pressure head correction from the calibrated pressure measurement and the benchmark is therefore:

359

360

 $\Delta P = \rho_S g \times 0.121 \text{ m} + \rho_W g \times 0.205 \text{ m}$

361

where ρ_s and ρ_w are the densities of sebacate and seawater respectively, and *g* is the value of gravity. Values for ρ_s and ρ_w are slightly site dependent because they depend on ambient pressure. For ρ_s we use equation (2) from Paredes et al. (2012) assuming a temperature of 5 °C and standard estimates for ρ_w . Table 5 lists the necessary terms and resultant height corrections for our sites.

Figure 4. A cross-sectional drawing of the instrument in its spherical housing and frame. The height of the bottom of the piston-gauge is where the reference PGC pressure is determined. A correction to the benchmark 32.6 cm below depends on the fluid density in between, which is oil for part of the path and water for another portion. Note that the height of the piston bottom above the benchmark center varies only by an inconsequential amount in cases where the benchmark is not level.

375

Table 5. Terms used to determine the height correction for transferring absolute pressuremeasurements from the piston inside the ASCPR to the surface of the benchmark.

378	8
-----	---

Station	Depth (m)	ρ_s (kg/m ³)	ρ _w (kg/m ³)	Gravity (m/s²)	Height correction (kPa)
01	2907	940	1041	9.80496	3.21
02	1909	934	1036	9.80522	3.19
O2B	1910	934	1036	9.80522	3.19
03	1315	931	1033	9.80540	3.18
O4	620	927	1030	9.80533	3.17
05	79	925	1025	9.80555	3.16
06	70	925	1025	9.80555	3.16

379

380 2.5 Continuous pressure recorders

Manuscript submitted to Journal of Geophysical Research: Solid Earth

381 After removal of the ocean tides, physical oceanographic processes cause seafloor pressure 382 fluctuations that can eclipse tectonic signals of interest such as secular strain accumulation or slow 383 slip events (Frederickson et al., 2019; Watts et al., 2021). These processes include internal waves, 384 currents, eddies, El Niño Southern Oscillation (ENSO), and other decadal-scale events, which can 385 contribute 5 cm or more of noise at periods from hours to years (NRC 2012). When we infer the seafloor height from the absolute pressure campaigns, we have aliased many of these 386 387 oceanographic processes. Some methods to reduce the oceanographic variability and noise include 388 using surrounding pressure data, specifically at a comparable depth, or satellite altimetry and CTD 389 data (Frederickson et al., 2019; Watts et al., 2021).

390 Co-located or nearby continuous pressure data can provide direct and valuable information 391 on the oceanographic signals that are otherwise aliased in our surveys. Over time spans shorter 392 than a couple decades, these data can provide significant improvements through direct 393 observations of oceanographic processes. Even though these signals tend to average out in long 394 time series spanning several decades, the data can still contextualize individual surveys. 395 Additionally, since ASCPR measurements produce accurate absolute seafloor pressure values, the 396 surveys can be used as calibration points to estimate and correct long-term linear drift in 397 continuous gauges. After correcting for drift, the full-rate continuous time series can be processed 398 to address oceanographic variability and used to estimate deformation rates. We deployed a 399 continuous BPR at or near each site to provide high-rate data during and between surveys. All the 400 BPRs used Paroscientific quartz pressure gauges but different sensor configurations were used to 401 accommodate different depths, durations, and logistical needs.

402 One BPR from the Applied Physics Laboratory (APL) at the University of Washington 403 (UW) was installed near station O1 on the OOI Cabled Array in September 2014. It housed a 404 Paroscientific model 46K pressure gauge in a titanium housing. Data were recorded at 1-sec 405 intervals and telemetered to shore in real-time to shore at the OOI Data Portal. An OOI Cabled 406 Array BPR was also installed as part of a Benthic Experiment Package near station O4, but the 407 sensor was changed, replaced, or out of service for most of the time spanning our surveys.

Two BPRs were constructed at the Scripps Institution of Oceanography (SIO) at the University of California, San Diego (UCSD). These were deployed at the 1900 m depth site, O2. They used battery powered Paroscientific model 46K pressure gauges inside aluminum pressure cases. Data were integrated over 100-sec intervals and recorded to an internal memory card. The data were recovered from the internal memory after the instruments were physically recovered.

413 Another five BPRs were built by the UW APL. Two were designed for shallow water less 414 than 100 m depth (stations O5 and O6) and used Paroscientific model 2200A pressure gauges 415 inside PVC pressure cases. The other three were designed for greater depths ranging from 600 m 416 to 1900 m (stations O2, O3, and O4) and used Paroscientific model 31K, 42K, and 43K pressure 417 gauges housed inside titanium pressure cases. They all recorded at 15-sec intervals to internal 418 memory. Data were recovered wirelessly using a RF antenna linked to an ROV-held receiver a 419 few cm away to prevent disturbing the instruments when possible. In other instances, data were 420 recovered from internal memory after the instrument was recovered. These sensors were designed 421 to record for up to 10 years from when they were deployed.

The four separate BPR deployments at stations O2 and O2B lasted between 8 and 15 months and overlapped with the previous BPR by at least a few days. Although these records could be concatenated to produce a single continuous record by matching the overlapping data intervals, we are unable to reliably distinguish drift in the former record from drift in the latter record. The linear drift rate could be estimated from data later in the record, but we have no way to estimate 427 the exponential drift, which is typically significant in the first 90 days, though longer exponential 428 time constants have been observed (Polster et al., 2009). However, the records still provide 429 observations and estimations of the oceanographic signals occurring during surveys but were not 430 evaluated as a single, continuous record spanning all the surveys.

The BPRs at stations O3, O4, and O5 failed early on due to pressure housing leaks and we were unable to recover the continuous data for those sites. Therefore, continuous data at stations O3, O4, O5 are not included in this analysis since complete records were not available. The cause of the leaks was identified, and the instruments were modified and re-deployed. The BPR at O6 did not fully span both surveys and had timing offsets difficult to reconcile. Therefore, O6 is also not included in this analysis.

437

438 439

Figure 5. Timeline of continuous BPR data availability. ASCPR survey windows are boxed. Large gaps in the BPRs deployed at O3, O4, O5, and O6 are due to pressure housing leaks, which were identified, recovered, refurbished, and redeployed. The APL BPRs should be recording until about 2027 but data recovery requires an ROV or physical recovery. The OOI BPR has been recording 444 continuously with only minor power interruptions.

445 446

2.6 Additional geodetic monumentation

447 Benchmarks placed on the seafloor acted as our primary measurement markers. In 2016, 448 we deployed BPRs mounted to concrete seafloor benchmarks provided by APL near stations O2 449 and O2B, O3, O4, O5, and O6. These secondary BPR benchmarks included a platform wide 450 enough to place our instruments. In 2017, we installed secondary geodetic monuments, which 451 consisted of 4-m-long, 4.8-cm-diameter aluminum pipes jetted between 3 to 6 m deep into the 452 seafloor sediment so that about 1 meter extended above the seafloor, at O1, O3, and O4. The pipe 453 is better coupled to the sediment and provides a stable comparison monument within a few meters 454 of the primary benchmark. The pipe was painted with alternating 15.0 cm long black and yellow 455 stripes to increase visibility and provide a vertical length scale. A 15.3 cm by 40.3 cm metal plate 456 with yellow-painted edges was fastened to the top of the pipe with a firehose coupling to support 457 a pressure recorder.

458 An MPR was used to make a total of four alternating, 5-minute-long seafloor pressure 459 measurements between the primary benchmark and secondary benchmark: either a pole-mounted 460 plate or secondary concrete benchmark. Secondary monuments will provide a means in future 461 surveys to assess the stability of the primary benchmarks by repeating the MPR surveys between 462 them. The MPR baseplate dimensions are close to the secondary monument top plates, so when 463 the MPR is placed centered on the plate, the uncertainty attributed to variations in placement is 464 very small. The pressure difference, a proxy for height difference, was calculated after a computed 465 tide model using Some Programs for Ocean Tide Loading (SPOTL; Agnew, 2012) and combined 466 exponential-linear drift were removed from the short survey. Table 6 lists the pressure differences 467 between the surface of the primary concrete seafloor benchmarks and the heights of the plates on the secondary benchmarks. A height difference between the two can be determined using the local 468 469 gravity and seawater density.

470

471 **Table 6.** Pressure differences between primary benchmarks and secondary geodetic monuments

472 as measured by the MPR surveys. The difference is taken as the pressure at the primary benchmark 473 minus the pressure at the secondary reference. Pressure uncertainties are single standard deviations.

- 474
- 475

Station	Secondary Reference	Pressure Difference (kPa)
01	O1-pole	10.0 ± 0.1
O2	O2B	-6.6 ± 0.1
O2B	O2-APL benchmark	6.5 ± 0.1
03	O3-pole	12.6 ± 0.1
O4	O4-pole	2.9 ± 0.1
05	O5-APL benchmark	-20.5 ± 0.1

476

477 3 **Results**

478 We present the results in three forms. First, Figure 6 plots the corrected absolute sea 479 pressures at the instrument reference height of the PGC for each occupation at each station. The 480 pressures can be transferred to the benchmark surface by applying the appropriate height correction 481 (Table 4). Table 7 provides the absolute seafloor pressure value recorded at the specified date and 482 time and at the height of the piston-gauge calibrator, not including the height correction described 483 in section 2.4 nor any tidal corrections corresponding to the plots in Figure 6. Once corrected for 484 the instrument's height to the benchmark surface and an estimated tidal correction, these values 485 form the basis for future decadal-scale absolute seafloor pressure measurements, which can be 486 used to infer motions caused by tectonic deformation and changes in the overlying water column. 487 These instrument-independent, fiducial measurements form the foundation for long-term surveys 488 and studies of secular rates caused by tectonics and sea level rise.

Manuscript submitted to Journal of Geophysical Research: Solid Earth

491 Figure 6. Corrected seafloor pressure records for each survey conducted at O1 through O6
492 between 2014 and 2017.

493

Table 7. Corrected ocean pressure values starting at the indicated date and time for each station.
495 The duration of each survey is also provided. These values are also reflected in the plotted offsets
496 shown in Figure 5. Uncertainties listed are the quadrature sum of the total PGC error and the RMS
497 noise of the calibration pressure data.

Date	Time (UTC)	Duration	Pressure, no tidal correction (kPa)		
01					
2014-10-01	22:43:55	1h50m	29 588 15 + 0 8		
2014-10-02	06.15.30	1h51m	$29,508.13 \pm 0.8$		
2014-10-03	21:25:30	6h03m	$29,578,76\pm0.8$		
2015-10-21	05:05:30	2h03m	29 576 71 + 0.8		
2016-06-04	15:57:15	2h25m	2957490 + 0.8		
2017-09-06	10:58:00	1h58m	29.579.43 + 0.8		
		O	2		
2014 10 02	10.00.00	0.			
2014-10-02	19:09:00	1h50m	$19,418.44 \pm 0.5$		
2014-10-03	01:21:05	1h56m	19,428.30 ± 0.5		
2014-10-03	09:31:35	1h51m	$19,408.89 \pm 0.5$		
2015-10-20	23:56:00	1h50m	$19,427.98 \pm 0.5$		
2015-10-20	06:50:50	1h50m	$19,409.00 \pm 0.5$		
2016-06-05	21:44:45	1h46m	$19,428.72 \pm 0.5$		
2017-09-05	20:47:30	1h52m	19,428.11 ± 0.5		
		02	В		
2015-10-20	04:10:30	1h50m	19,420.10 ± 0.5		
2016-06-05	19:11:35	2h22m	19,433.57 ± 0.5		
		0	3		
2016-06-06	05:05:35	2h15m	13,397.88 ± 0.4		
2017-09-05	05:46:50	2h08m	13,401.83 ± 0.4		
		04	4		
2016-06-08	08:05:45	1h47m	6,388.54 ± 0.2		
2017-09-04	17:35:50	2h06m	6,387.26 ± 0.2		
	•	O	5		
2016-06-08	01:58:30	1h58m	885.41 + 0.1		
2017-09-02	23:50:30	2h29m	884 23 + 0.1		
2017-09-07	02:33:00	2h39m	880.51 ± 0.1		
		O	6		
2016-06-07	18:30:50	2h11m	803 17 + 0 1		
2017-09-02	15:55:45	1h45m	812 32 + 0.1		
2017-09-07	12:27:30	1h36m	804.18 ± 0.1		

500 Second, we also provide estimated secular deformation rates using surveys as individual 501 points in long-term time series (Figure 7). Each point is the average of the absolute seafloor 502 pressure with a tidal correction generated by SPOTL applied and a station specific offset removed 503 for visual clarity (Agnew, 2012). We use tides generated by SPOTL in lieu of tides computed using 504 harmonic analysis of continuous pressure data (e.g., t_tide) for consistency between all stations 505 and years since continuous pressure data are not available for every occupation (Pawlowicz et al., 506 2012). Error bars and uncertainties represent the single standard deviation quadrature sum of errors 507 attributed to the instrument measurements and RMS of the corrected, de-tided seafloor pressure. 508 Most of the uncertainty at deeper stations is attributed to instrumental effects while the uncertainty 509 at shallow stations is dominated by oceanographic processes whose effects will average out over 510 long time spans of decades or more. The uncertainty of the estimated rates is inversely proportional 511 to the total time span of the data and thus will improve with future measurements.

512 The surveys at each station suggest modest rates of motion equivalent to a few cm/year or 513 less in most cases. These rates may be larger than the expected tectonic signals in the region, but 514 they also likely contain oceanographic components due to aliasing that we cannot quantify 515 presently. Nonetheless, the estimated rates are within a reasonable range given the uncertainties 516 and generally agree with expected deformation patterns, i.e., subsidence near the trench (stations 517 O1, O2) and uplift closer to the coast (stations O5, O6). Station O4 (Figure 7, bright yellow circle 518 trace) is an exception, where the two surveys suggest a rate of +3.5 kPa/year is occurring 519 (equivalent to 35 cm/year of height change), a rate that is nearly 4 times the estimated uncertainty 520 and much larger than that observed elsewhere. We could not identify any egregious source of 521 instrumental error, nor do we have a solution to mitigate this error at Station O4. The instrument 522 and all components are handled meticulously and maintained, but we investigated potential sources 523 of error of this magnitude (e.g., a mass change of 2 g, barometer calibrations, etc.). If it were 524 attributed to components such as the piston-gauge area being chipped, damaged, or deformed, then 525 that would produce similar discrepancies in the other stations and surveys. During the 2016 526 campaign at station O4, the ASCPR was moved from the ship freezer to the ship deck and prepared 527 for loading on the ROV. The pressure case sphere was not fully sealed, so the instrument was 528 returned to the ship freezer and resealed, which may have inadvertently caused a thermal shock to 529 some component not captured by internal sensors. During the 2017 campaign, while recording at 530 station O4, the ROV unexpectedly lost thruster control and came off bottom and moved the 531 instrument from its placement on the benchmark. The ASCPR was quickly issued commands to 532 stop the mass rotation and lock it in place as to not damage the PGC. We do not believe that the 533 PGC was damaged, as this would be reflected in other measurements as well, but this event may 534 have introduced some other unmodeled error when we resumed the measurement. The high rate 535 may have been caused by aliasing of some very strong oceanographic signal. However, additional 536 surveys spanning a greater time will eventually converge toward a more accurate value.

Figure 7. Pressure survey results from all stations. Estimated rates based on the individual surveys are listed. The plot shapes indicate the benchmark form factor (standard circular benchmark or triangular trawl-resistant benchmark). The inset legend provides the estimated pressure rates and uncertainties that were estimated by linear least squares fit. A pressure change of 0.1 kPa is equivalent to a height change of 1 cm.

544

545 Lastly, we leveraged our available continuous pressure data at station O1 to provide a better 546 secular rate estimate. The ASCPR survey was treated as an individual calibration value used to 547 calculate and remove only a long-term linear drift from the continuous record, which contains 548 information on non-tidal oceanographic signals at periods shorter than the interval between 549 surveys (8 to 12 months). Linear least squares fit to the difference between the overlapping 550 absolute survey data and continuous BPR data was used to calculate the linear drift rate of the 551 BPR, which was then removed from the continuous pressure record. The exponential component 552 was not modeled because the small number of ASCPR surveys cannot sufficiently constrain it, and the BPR was installed a few months prior to the first survey so the exponential component was likely less significant. The resulting drift-corrected pressure record was resampled to 30-minute intervals, de-tided using t_tide (Pawlowicz et al., 2012), and then lowpass filtered using a FIR filter with a passband at 1.2×10^{-6} Hz (0.10 cycles/day) and stopband at 7.7×10^{-6} Hz (0.067 cycles/day). A linear deformation rate was estimated from the record by linear least squares.

558 Station O1 had a single continuous BPR that spanned all the surveys conducted. This record 559 was calibrated as described in section 2.5. The secular rate for station O1 based on continuous 560 BPR data corrected for gauge drift using the absolute pressure surveys as calibration points is 561 estimated and plotted in Figure 8. The continuous records at the other stations were insufficient 562 for this analysis at this time, described in section 2.5. However, the BPRs deployed in 2017 were 563 designed to record for 10 years, so additional absolute pressure surveys conducted before 2027 564 should allow those continuous data to be evaluated in this way.

566 567

568 Figure 8. Continuous pressure record at station O1. The raw, uncalibrated pressure time series for 569 is plotted in red. The pressure times series corrected for long-term, linear drift using absolute 570 pressure surveys as calibration values is plotted in blue. The calibrated record reveals a significant 571 difference and therefore drift, which could be mistakenly interpreted as a physical signal. Arbitrary 572 offsets are plotted for clarity. 573

574 **4** Conclusions

575 Absolute seafloor pressure surveys provide inherent value on their own as fiducial values. 576 The ASCPR measurements can be used as longstanding benchmark values that can be incorporated 577 into future geodetic studies. Each survey acts as a point in a long-term time series that could span 578 decades or more and elucidate secular signals associated with tectonics or sea level rise. 579 Additionally, the measurements' utility is improved if co-located with continuous BPR data, as 580 they can be used to determine the long-term drift rate of the BPR and evaluated as a continuous 581 record. Continuous pressure data also provide high-rate information useful for reducing aliasing 582 and estimating long-period (daily to annual) oceanographic signals.

583 The disagreement between rates estimated using only individual surveys and rates from 584 calibrated continuous data is attributed to aliased signals driven by physical oceanography. Most 585 tidal analysis methods can typically remove up to 98% of the tidal signal, which still leaves several 586 cm of uncertainty in each survey (Agnew, 2012; Pawlowicz et al., 2012). Additionally, any non-587 tidal effects from mesoscale eddies, currents, thermal fluctuations, or other causes are not 588 addressed, which also contributes several cm of uncertainty in each survey. Advancements in 589 satellite altimetry products, global and regional ocean models and hindcasts, CTD data, and nearby 590 pressure sensor networks could improve our ability to characterize and account for oceanographicdriven noise (Frederickson et al., 2019; Wilcock et al., 2021). Still, over shorter time periods (e.g., a few years) or when expected deformation rates are small (e.g., cm/year), the preferred method includes the use of co-located BPRs. If significantly longer time periods (e.g., decades) are expected or if expected deformation rates are large (e.g., tens of cm/year), then single point absolute pressure surveys can suffice on their own. In both cases, the estimated rate uncertainties will improve as the span of time between the first and last measurement increases.

597 These results demonstrate the capability of absolute seafloor pressure measurements for 598 seafloor geodesy. Establishing additional time series of absolute measurements would be valuable 599 for investigating other tectonic and oceanographic processes, such as the non-steric component of 600 global sea level rise. Our results do not yet allow us to clearly discern between different expected 601 vertical deformation rates associated with different models or studies that incorporate additional 602 geodetic data to produce stronger geophysical interpretations, but that is outside the scope of this 603 paper. However, the results do establish baseline vertical geodetic measurements in Cascadia and 604 that, when compared to similar absolute measurements spanning several decades in the future, will 605 be able to constrain secular vertical deformation rates.

606

607 Acknowledgments

This work was funded by NSF grants OCE 1558477 and OCE 1558468 and by a private donation

from Jerome Paros. We would like to thank, John Delaney, Deb Kelley, David Price, Joel White,

610 Heinz Wuhrmann, and Michael Davis. We also thank the crews of the R/V Thomas G. Thompson,

611 R/V Roger Revelle, and R/V Sikuliaq, as well as the teams for ROV Jason II and ROV ROPOS.

- 612 The authors have no conflicts of interest for this publication.
- 613

614 **Open Research**

615 Data are available from the Marine Geoscience Data System (MGDS) at https://www.marine-616 San Diego Library Digital Collections geo.org/index.php and from the UC at 617 http://library.ucsd.edu/dc/object/XXXXXXX. The published data have been parsed from raw data files and simply converted into physical units using manufacturer and lab calibrations. The raw 618 619 data and calibration data are not published because it would be impractical to parse through the 620 substantial amounts of ancillary data and formatting. However, the raw data, calibration data, and 621 other supporting data may still be requested from corresponding author, Matthew J. Cook, or from 622 author Glenn S. Sasagawa.

- 623
- 624

625 **References**

629

632

637

645

- Agnew, D. C. (2012). SPOTL: Some Programs for Ocean-Tide Loading, *SIO Technical Report*.
 UC San Diego: Scripps Institution of Oceanography.
 https://escholarship.org/uc/item/954322pg
- Atwater, B. F. (1987). Evidence for great Holocene earthquakes along the outer coast of
 Washington State. *Nature*, 236(4804), 942–944, <u>https://doi.org/10.1126/science.236.4804.942</u>
- Atwater, B. F., Musumi-Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K., & Yamaguchi, D. K. (2005).
 The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America, 2nd *ed.: Seattle, University of Washington Press*, U.S. Geological Survey Professional Paper 1707,
 https://doi.org/10.3133/pp1707
- Bean, V. E. (1994). NIST pressure calibration service, U. S. Department of Commerce, CODEN:
 NSPUE2, U. S. Government Printing Office, Washington, D. C., USA, Nat. Inst. Stand.
 Technol. Spec. Publ., 250-39.
- 641
 642 Chadwell, C. D. (2016). Initiation of GPS-Acoustics measurements on the continental slope of the
 643 Cascadia Subduction Zone, Abstract T31C-2907 presented at the 2016 AGU Fall Meeting, San
 644 Francisco, CA, 12-16 Dec.
 - 646 Chadwick Jr, W. W., Nooner, S. L., Zumberge, M. A., Embley, R. W., & Fox, C. G. (2006). 647 Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea 648 pressure sensors. J. of Volc. and Geotherm. Res., 150(1-3),313-327. 649 https://doi.org/10.1016/j.jvolgeores.2005.07.006 650
 - Fredrickson, E. K., Wilcock, W. S. D., Schmidt, D. A., MacCready, P., Roland, E., Kurapov, A.
 L., Zumberge, M. A., & Sasagawa, G. S. (2019). Optimizing sensor configurations for the
 detection of slow-slip earthquakes in seafloor pressure records, using the Cascadia Subduction
 Zone as a case study. J. of Geophys. Res.: Solid Earth, 124(12), 13504-13531.
 https://doi.org/10.1029/2019JB018053
 - 657 Götze, H. J. (2011). International gravity formula. Encyclopedia of Solid Earth Geophysics, 611658 612. <u>https://doi.org/10.1007/978-90-481-8702-7_102</u>
 659
 - Machida, Y., Nishida, S., Kimura, T., & Araki, E. (2020). Mobile pressure calibrator for the
 development of submarine geodetic monitoring systems. *Journal of Geophysical Research: Solid Earth*, 125, e2020JB020284. <u>https://doi.org/10.1029/2020JB020284</u>
 - Matsumoto, Y., Ishikawa, T., Fujita, M., Sato, M., Saito, H., Mochizuki, M., Yabuki, T., & Asada,
 A. (2008). Weak interplate coupling beneath the subduction zone off Fukushima, NE Japan,
 inferred from GPS/acoustic seafloor geodetic observation. *Earth, Planets and Space*, 60(6),
 e9-e12. <u>https://doi.org/10.1186/BF03353114</u>
 - 668

- National Research Council (2012). Sea-Level Rise for the Coasts of California, Oregon, and
 Washington: Past, Present, and Future. Washington, DC: The National Academies Press.
 <u>https://doi.org/10.17226/13389</u>
- Nooner, S. L., & Chadwick, W. W. (2009). Volcanic inflation measured in the caldera of Axial
 Seamount: Implications for magma supply and future eruptions. *Geochem. Geophys. Geosyst.*, 10(2), Q02002. <u>https://doi.org/10.1029/2008GC002315</u>
- 676
 677 Nooner, S. L., & Chadwick, W. W. (2016). Inflation-predictable behavior and co-eruption
 678 deformation at Axial Seamount. *Science*, 354(6318), 1399-1403.
 679 <u>https://doi.org/10.1126/science.aah4666</u>
- 680

672

- Paredes, X., Fandiño, O., Pensado, A. S., Comuñas, M. J. P., & Fernández, J. (2012). Experimental
 density and viscosity measurements of di(2ethylhexyl) sebacate at high pressure. *The Journal of Chemical Thermodynamics*, 44(1), 38-43. <u>https://doi.org/10.1016/j.jct.2011.07.005</u>
- Paros, J. M., & Kobayashi, T. (2015a). Mathematical models of quartz sensor stability. Available
 at: <u>http://paroscientific.com/pdf/G8095 Mathematical Models.pdf</u>
- 687
 688 Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error
 689 estimates in MATLAB using T_TIDE. Comp. & Geosci., 28(8), 929-937.
 690 <u>https://doi.org/10.1016/S0098-3004(02)00013-4</u>
- Polster, A., Fabian, M., & Villinger, H. (2009). Effective resolution and drift of Paroscientific
 pressure sensors derived from long-term seafloor measurements. *Geochem. Geophys. Geosyst.*,
 10(8). <u>https://doi.org/10.1029/2009GC002532</u>
- Sasagawa, G. S., Cook, M. J., & Zumberge, M. A. (2016). Drift-corrected seafloor pressure
 observations of vertical deformation at Axial Seamount 2013-2014. *Earth and Space Science*,
 3(9), 381-385. <u>https://doi.org/10.1002/2016EA000190</u>
- 699
 700 Sasagawa, G. S., & Zumberge, M. A. (2013). A self-calibrating pressure recorder for detecting
 701 seafloor height change. *IEEE Journal of Oceanic Engineering*, 38(3), 447-454.
 702 <u>https://doi.org/10.1109/JOE.2012.2233312</u>
- Segawa, J., & Fujimoto, H. (1988). Observation of an ocean bottom station installed in the Sagami
 Bay and replacement of the acoustic transponder attached to it, *JAMSTECTR Deep Sea Research*, 256, 251-257.
- Spiess, F. N., Chadwell, C. D., Hildebrand, J. A., Young, L. E., Purcell Jr, G. H., & Dragert, H. (1998). Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. *Physics of the Earth and Planetary Interiors*, 108(2), 101-112. <u>https://doi.org/10.1016/S0031-9201(98)00089-2</u>
- 712

- Stenvold, T., Eiken, O., Zumberge, M. A., Sasagawa, G. S., & Nooner, S. L. (2006). Highprecision relative depth and subsidence mapping from seafloor water pressure measurements. *SPE Journal*, 11, 380-381. https://doi.org/10.2118/97752-PA
- 716

- Walton, M. A. L., Staisch, L. M., Dura, T., Pearl, J. K., Sherrod, B., Gomberg, J., Engelhart, S.,
 Trehu, A., Watt, J., Perkins, J., Witter, R. C., Bartlow, N., Goldfinger, C., Kelsey, H., Morey,
 A. E., Sahakian, V. J., Tobin, H., Wang, K., Wells, R., & Wirth, E. (2021). Toward an
 integrative geological and geophysical view of Cascadia Subduction Zone earthquakes. *Ann. Rev. of Earth and Plan. Sci.*, 49(1), 367-398. <u>https://doi.org/10.1146/annurev-earth-071620-</u>
 065605
- Wang, K., & Trehu, A. M. (2016). Invited review paper: Some outstanding issues in the study of
 great megathrust earthquakes—The Cascadia example. *J. of Geodynamics*, 98, 1-18.
 <u>https://doi.org/10.1016/j.jog.2016.03.010</u>
- Watts, D. R., & Kontoyiannis, H. (1990). Deep-ocean bottom pressure measurement: Drift removal and performance. J. Atmos. Oceanic Technol, 7(2), 296-306.
 <u>https://doi.org/10.1175/1520-0426(1990)007%3C0296:DOBPMD%3E2.0.CO;2</u>
- 732 Watts, D. R., Wei, M., Tracey, K. L., Donohue, K. A., & He, B. (2021). Seafloor geodetic pressure 733 measurements to detect shallow slow slip events: Methods to remove contributions from ocean 734 Geophys. water. J. Res.: Solid Earth. 126. e2020JB020065. of 735 https://doi.org/10.1029/2020JB020065
- Wearn, R. B., & Larson, N. G. (1982). Measurements of the sensitivities and drift of Digiquartz
 pressure sensors. *Deep Sea Res. Part A. Oceanographic Research Papers*, 29(1), 111-134.
 <u>https://doi.org/10.1016/0198-0149(82)90064-4</u>
- 740 741

- Wilcock W. S. D., Manalang, D. A., Fredrickson, E. K., Harrington, M. J., Cram, G., Tilley, J.,
 Burnett, J., Martin, D., Kobayashi, T., & Paros, J. M. (2021). A thirty-month seafloor test of
 the A-0-A method for calibrating pressure gauges. *Front. Earth Sci.*, 8, 600671.
 <u>https://doi.org/10.3389/feart.2020.600671</u>
- 746