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Abstract

Classification of lightning produced VLF/LF signals plays crucial role in the detection and location of lightning flashes. The

machine learning method has potential in the VLF/LF lightning signal classification. Traditional machine learning methods

are data-driven and work in a black-box fashion, making the classification accuracy highly dependent on the size and quality

of dataset. In this paper, an interpretable convolutional neural network model is proposed for VLF/LF lightning electric field

waveform classification. Multi-scale convolutional kernels and shortcut connections are adopted in this model to enhance the

ability to capture local waveform features. The CAM method is embedded in our model to open the black-box by visualizing

the weight of different waveform features on the classification results. Based on the measured data from five different provinces

in China, an accuracy of 98.5% is achieved in a four-type classification task including RS, active stage of IC, PB and NB. The

correlation between the weight values of different waveform features and corresponding lightning discharge process are analyzed.

It is found that the proposed model can extract decisive features of VLF/LF lightning signals closely related to the physical

process of lightning discharges, which is similar to the human expert’s behavior. The proposed model is validated by using an

open-source dataset from Argentina. It is indicated that the proposed model can resist the impact of unexpected waveform

oscillation and achieve a higher accuracy of 98.39% than that of the support vector method. It is demonstrated that our model

is less dependent on the training dataset.
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Key Points: 15 

 The proposed model can extract decisive features of VLF/LF lightning signals 16 

which is similar to the human expert’s behavior. 17 

 The model achieved an accuracy of 98.5% on a four-type lightning VLF/LF 18 

electrical waveforms dataset. 19 

 Testing with data from Argentina validates that the accuracy of the model is less 20 

dependent on training data set. 21 

 22 

Abstract: 23 

Classification of lightning produced VLF/LF signals plays crucial role in the detection 24 

and location of lightning flashes. The machine learning method has potential in the 25 

VLF/LF lightning signal classification. Traditional machine learning methods are data-26 

driven and work in a black-box fashion, making the classification accuracy highly 27 

dependent on the size and quality of dataset. In this paper, an interpretable convolutional 28 

neural network model is proposed for VLF/LF lightning electric field waveform 29 

classification. Multi-scale convolutional kernels and shortcut connections are adopted 30 

in this model to enhance the ability to capture local waveform features. The CAM 31 

method is embedded in our model to open the black-box by visualizing the weight of 32 

different waveform features on the classification results. Based on the measured data 33 

from five different provinces in China, an accuracy of 98.5% is achieved in a four-type 34 

classification task including RS, active stage of IC, PB and NB. The correlation between 35 

the weight values of different waveform features and corresponding lightning discharge 36 



process are analyzed. It is found that the proposed model can extract decisive features 37 

of VLF/LF lightning signals closely related to the physical process of lightning 38 

discharges, which is similar to the human expert’s behavior. The proposed model is 39 

validated by using an open-source dataset from Argentina. It is indicated that the 40 

proposed model can resist the impact of unexpected waveform oscillation and achieve 41 

a higher accuracy of 98.39% than that of the support vector method. It is demonstrated 42 

that our model is less dependent on the training dataset. 43 

Plain Language Summary 44 

Electromagnetic waveforms in very low frequency and low frequency (VLF/LF) band 45 

are usually used to detect and locate different lightning activities. Traditional 46 

classification methods often misclassify in multi-type lightning discharge waveform 47 

classification. The machine learning models show promising potential in the multi-type 48 

classification task. However, these models cannot explain which part of the input 49 

waveform leads to the classification result, which makes the classification model 50 

unreliable. In this paper, we propose an improved and interpretable convolution neural 51 

network model, which is adapted to the lightning waveform classification task with 52 

changes in model structure. By utilizing the convolution outputs, the model can 53 

visualize the contribution of different parts of the waveform to the classification result. 54 

The analysis of the visualization results show that the high accuracy and generalization 55 

of the proposed model comes from the capture of waveform features corresponding to 56 

the key physical process in waveform generation. The dataset for model training comes 57 

from five provinces in China, which contains different meteorological conditions. The 58 

trained model based on the dataset reached a classification accuracy of 98.5% on test 59 

set and 98.39% on another open-source dataset from Argentina, which validated the 60 

generalization of the proposed model.  61 

 62 

  63 



 64 

1 Introduction 65 

Remote sensing the electromagnetic radiation generated by lightning discharges is 66 

an effective approach to detect and locate lightning activities. It is recognized that the 67 

radio emission in the VHF regime is primarily emitted by the streamer and leader 68 

involved in lightning discharges, while most of the radiation power is concentrated in 69 

the VLF/LF band that is mainly produced by the return stroke (RS) in cloud-to-ground 70 

flashes (CGs) and the active stage of intro-cloud flashes (ICs). The detection of VLF/LF 71 

radiation was initially introduced to sense the occurrence of CG remotely.  Combined 72 

with the VLF/LF sensing and the time of arrival (TOA) method, the lightning location 73 

system (LLS) was proposed in 1980s which becomes an important technique to support 74 

the lightning protection for ground infrastructures nowadays.  In order to exclude the 75 

impact of ICs, a fundamental task of LLS based on the VLF/LF detection is to recognize 76 

the characteristic waveforms produced by return strokes. In recent years, with the 77 

development of hardware performance, the emission source location of CGs and ICs 78 

can be achieved by using the short-baseline VLF/LF sensing technique and the 3D TOA 79 

method. The updated VLF/LF system not only can be utilized as an effective tool for 80 

lightning protection engineering applications, but also has the potential in lightning 81 

physics research. The lightning leader development process were investigated by using 82 

this technique, including the propagation of negative downward leader, the preliminary 83 

breakdown (PB), and the narrow bipolar event (NBE) etc. (Bitzer et al., 2013; Y. Wang 84 

et al., 2016; Wu et al., 2018). In order to improve the performance of the short-baseline 85 

system in lightning detection and lightning physics research, challenges arise in the 86 

accurate and automatic identification of waveform characteristics that produced by 87 

different lightning discharges.  88 

For most LLS, the multi-parameter method is employed as the criterion to classify 89 

the CG and IC, which is derived from extensive field records(Murphy et al., 2021).  It 90 

adopts specific parameters that can describe the primary profile of VLF/LF waveform, 91 

such as the amplitude, the rise and fall time, and the zero-cross time, etc. According to 92 

the results of validation studies, the RS detection efficiency of typical lightning location 93 

systems (including National Detection Networks (NLDN) and Earth Networks Total 94 

Lightning Network (ENTLN) in US, European Cooperation for Lightning Detection 95 

network (EUCLID) in Europe ranges from 71% to 92%, while the ICs detection 96 

efficiency varies from 73% to 96%(Biagi et al., 2007; Mallick et al., 2015; Schulz et al., 97 

2016). Despite the difference in hardware performance, the deviation in detection 98 

efficiency of different systems is mainly attributed to the classification accuracy of CGs 99 



and ICs. On the one hand, since the multi-parameter method is difficult to extract 100 

characteristic parameters from VLF/LF signals with low-amplitude, the small signals 101 

were often abandoned, resulting in the decrease of detection efficiency(Kohlmann et al., 102 

2017; Nag et al., 2014). On the other hand, the characteristic parameter involved in the 103 

multi-parameter method may vary in regions with different meteorological 104 

conditions(Cooray, 2009; Said et al., 2010; Shao & Jacobson, 2009; Wooi et al., 2015). 105 

For instance, the rise time and zero cross time of RS in Vitemölla, Sweden is of 5-25μs 106 

and approximately 40μs respectively, while the rise time decreases to about 2.5-9μs and 107 

the zero cross time increases to the range of 40-160μs in Sri Lanka(Cooray & Lundquist, 108 

1982, 1985). Accurately determining the thresholds of characteristic parameters 109 

requires the support of long-term data. Recently, the machine learning methods such as 110 

the support vector machines (SVM) and the convolutional neural networks (CNN) are 111 

introduced to improve the classification efficiency of lightning VLF/LF signals. The 112 

SVM method is utilized to classify the VLF/LF lightning waveforms of CGs and ICs. 113 

A classification accuracy of 97% is achieved, which shows an excellent adaptability 114 

and automation(Zhu et al., 2021). The CNN models with different structures are 115 

proposed to perform the classification of VLF/LF signals generated by multiple 116 

lightning processes, including RS, PB, and NBE, etc. (Peng et al., 2019; J. Wang et al., 117 

2020). It indicates that CNN has the potential to realize signal classification produced 118 

by various complex lightning discharge processes.  119 

Although extensive efforts have been paid to improve the classification accuracy 120 

of lightning VLF/LF waveforms, towards to the development of high-performance 121 

short baseline VLF/LF lighting detection system, the following limitations still exist: 122 

 Using the multi-parameter method, the classification accuracy of RS and IC in the 123 

LLS system has reached more than 90%. The classification accuracy may be further 124 

improved by optimizing thresholds of the multi-parameter method based on long 125 

term operation experience. However, since the VLF/LF waveforms produced by 126 

lightning leader discharges has more pulses and other high frequency components, 127 

it is difficult to determine thresholds involved in the multi-parameter method which 128 

can effectively discriminate different lightning events correlated to lightning leader 129 

propagation. Recently, it was found that the VLF/LF signals generated by NBE are 130 

wrongly identified as RS by the multi-parameter method(Leal et al., 2019; Lyu et 131 

al., 2015). 132 

 The machine learning methods show promising performance in multi-object 133 

classification tasks, the challenges of applying machine learning methods in 134 

lightning VLF/LF waveform classification come from two aspects. Firstly, note 135 

that the data-driven nature of the machine learning methods means that the 136 



performance is highly dependent on the balance and quality of the original dataset. 137 

An CNN model derived from imbalance data set is not reliable, because the model 138 

will tends to classify the objective waveform into the category which has the most 139 

samples in training dataset (Kaur et al., 2019). Secondly, since the characteristics 140 

of lightning VLF/LF signals can change in different regions, the accuracy of 141 

machine learning methods largely depends on whether the training dataset covers 142 

all possible variations of the objective waveform characteristics. Meanwhile, we 143 

need to note that most of the classification process by using machine learning 144 

methods acts like black box models, which makes it is difficult to ensure the 145 

classification accuracy of different lightning events. As discussed by Zhu et al., 146 

misclassification of RS signal can still occur by using SVM, although the 147 

characteristics of the misclassified waveform can be easily recognized manually. 148 

Since it is difficult to obtain the lightning waveforms in all regions of the world to 149 

expand the database, it is necessary to develop interpretable machine learning 150 

models to open the black box, which can reveal the classification process (Lipton, 151 

2018) and assess whether the model is able to capture the essential characteristics 152 

of different types of lightning VLF/LF signals.  153 

In this paper, a new interpretable CNN model which utilizes the class activation 154 

map (CAM) to represent the contribution of different waveform parts during the 155 

classification process is proposed. A four-class dataset including RS, PB, NB and IC is 156 

established for model training. The dataset is based on 17,441 waveforms recorded from 157 

five provinces in China with the latitude ranging from 29.1° to 33.5° and the longitude 158 

from 91.1° to 120.2°. The classification accuracy of the trained CNN is compared with 159 

that of the SVM model. The classification process of the four types of lightning 160 

waveforms is visualized by the CAM, which throws light on the relationship between 161 

the high-weighted waveform features and the physical process of leader discharge in 162 

lightning.  The classification results are analyzed for the range of variation of the 163 

characteristic parameters of different waveforms in turn. The generalization of the 164 

proposed CNN model is test on another open dataset in Argentina used by Zhu et al. 165 

This paper is organized as follows: Section 2 introduces the data sources and the 166 

improved CNN network structure used in this paper. Section 3 shows the classification 167 

performance of the trained model and discusses the interpretability of the classification 168 

results. Section 4 discusses the universality of the CNN model, and Section 5 makes 169 

the conclusion. 170 



2 Data and Methodology 171 

2.1 Dataset 172 

The dataset used in this paper comes from 17,441 lightning radiation waveform 173 

data recorded during 2019-2020. The measurement device is the VLF/LF electric field 174 

change meter (EFCM). The EFCM consists of an antenna and a digital data acquisition 175 

unit. The frequency band of the EFCM is 10Hz to 500kHz, with a sampling rate of 176 

5Ms/s and a GPS synchronization error of less than 50ns (Y. Wang et al., 2020). The 177 

EFCMs were installed in five different provinces of China, including Hubei, Jiangsu, 178 

Zhejiang, Anhui and Tibet, as shown in Table 1. When the dataset covers waveforms in 179 

a variety of meteorological and terrain conditions, the model can be more generalized 180 

and the classification accuracy may be improved. The installation sites of these EFCMs 181 

have altitude between 190m to 4000m above sea level, within the longitude from 91.1° 182 

to 120.2° and the latitude from 29.1° to 33.5°. In order to improve the quality of 183 

recorded waveforms and exclude the impact of measurement noises, a combination of 184 

empirical mode decomposition (EMD) method and wavelet denoise method were used 185 

to pre-process the lightning radiation signal. 186 

Table 1 Location of the deployed VLF/LF lightning waveform measurement meters 187 

Location Longitude Latitude 

Wuhan, Hubei 114.409 30.514 

Sihong, Jiangsu 118.219 33.482 

Wuxi, Jiangsu 120.256 31.618 

Lishui, Zhejiang 119.656 27.976 

Taizhou, Zhejiang 121.38 29.125 

Hefei, Anhui 117.202 31.761 

Anqing, Anhui 116.123 30.231 

Lasa, Tibet 91.14 29.666 

Linzhi, Tibet 94.373 29.636 

Changdu, Tibet 97.179 31.146 

 188 

Compared to the multi-parameter classification method, the machine learning 189 

algorithms can utilize the entire data information of time-resolved waveforms instead 190 

of several characteristic parameters. The SVM method was employed to classify the 191 

full VLF/LF waveform of lightning signals (Zhu et al. 2021). Considering the 192 

computational resources required for the deployment, the waveform is down sampled 193 

and divided into equal lengths, where each waveform slice is 100 μs in duration and 194 

contains 101 sample points. With the development of microprocessor technology in 195 



recent years, the main frequency of LS1043A ARM board we use has reached 1.6GHz, 196 

which significantly improves the ability to process waveform data per unit of time. In 197 

this paper, each waveform slice contains 2500 points corresponding to a time duration 198 

of 500 μs, which is beneficial to preserve the essential features of the original waveform. 199 

In the following discussion, each waveform slice is called as a sample. The dataset is 200 

constructed based on the prior knowledge of RS, PB, NB and active stage of IC, which 201 

can be found in reported literatures. We manually selected samples with the highest 202 

signal-to-noise ratio (SNR) and divided them into these four categories with a total of 203 

8000 samples. To ensure a balanced dataset, each of the four categories contains 2000 204 

samples. Note that our dataset is not classified by the polarity of lightning event, 205 

because the polarity can be easily intensified according to the polarity of the first pulse. 206 

It should be emphasized that this simplification will not affect the classification results 207 

discussed in the following parts. A 5-fold cross validation approach was adopted for the 208 

dataset, with the training set containing 6000 samples and the rest 2000 samples 209 

participate in the test.  210 

2.2 Method 211 

The CNN model performs feature extraction by convolving a convolution kernel 212 

with the input data. The convolution kernel is a weight matrix representing the features 213 

learned by the CNN model. The convolution kernel is usually initialized with random 214 

values, and the CNN model compares the output results with the true labels and updates 215 

the convolution kernel by backpropagation during the iterations. Thus, the convolution 216 

kernel can better match the core features of the data and improve the model’s 217 

performance. When making VLF/LF lightning waveform classification, traditional 218 

CNN networks (plain CNN) have the following limitations: 219 

 The same size of the convolutional kernel in each convolutional layer in plain CNN 220 

makes it difficult to handle the possible multi-scale features in waveforms.  221 

 We use a high computing capability development board to process the data, the 222 

sample time in the dataset is longer and the sample includes more information, 223 

requiring more convolution layers to fully extract these features. However, the 224 

backpropagation process calculates derivatives in chains to update network 225 

parameters. The gradient information may vanish gradually when simply 226 

increasing the number of convolution layers. It can also cause model degradation 227 

and make the model difficult to converge (He et al., 2016).  228 

 The CNN model flattens the features extracted from the convolutional layers into 229 

a one-dimensional vector, and output the classification results by means of full 230 

connection. It is difficult to obtain which part of the waveform determines the 231 

classification results of the model, which makes it impossible to judge whether the 232 



classification process of the model is reliable.  233 

In order to fix those issues, we proposed an interpretable CNN model with 234 

improved performance in feature extraction and convergence speed. The model 235 

includes a CNN classifier and a visualization module as shown in Figure 1. 236 

 237 

Figure 1 Structure of the proposed interpretable CNN model 238 
 239 

a) The CNN classifier: The proposed CNN classifier takes waveforms as input 240 

and gives out classification results with probabilities. Step 1-3 describes how the CNN 241 

classifier works and self-upgrades iteratively in training. 242 

 In step1 the waveform is fed into the CNN model and the high-dimensional 243 

feature maps are obtained. Compared with the plain CNN, the proposed CNN model 244 

adopts shortcut connections and parallel convolution kernels. The CNN model contains 245 

two convolution blocks, which is formed by stacking three convolutional layers. In each 246 

block, part of the input data is directly transferred to the second layer of the block 247 

through a shortcut connection. The shortcut connection aims to solve the problem of 248 

model degrading in multi-layer networks and accelerates the convergence in training. 249 

In each convolution layer, the convolutional kernels with the size of 40, 20, 10 and 1 250 

are introduced in a parallel structure. The kernels with the size of 40, 20 and 10 give 251 

the model a more various feature matching range after multiple layers, enabling the 252 

extraction of long-scale waveform features. The kernels with the size of 1 ensure that 253 

the model can also capture detailed waveform features. Each layer can be expressed as: 254 

𝑓௟ = 𝑏௟ + ෍ 𝑐𝑜𝑛𝑣1𝐷(𝑤௟, 𝑓௜
௟ିଵ)

ே೗షభ

௜ୀଵ
 （1） 

Where 𝑥௟ is defined as the input of layer l, 𝑏௟ is defined as the bias layer l , 𝑓௜
௟ିଵ 255 



is the ith output part of layer l-1, 𝑤௟ is the multi-size convolution kernels at layer l， 256 

𝑁௟ିଵ is  the number of output in layer l-1.  257 

In step2, the feature vector is obtained through the global average pooling based 258 

on the feature maps produced in step 1. Compared with the plain CNN methods, which 259 

flatten the high-dimensional feature maps as feature vectors, the proposed model uses 260 

the global average pooling to form the feature vectors and greatly reduces the 261 

computations of the model. 262 

The classification probability of the waveform is computed by the fully connected 263 

layer and the SoftMax function. The probability 𝑆௖  that a waveform belongs to a 264 

category c can be obtained from equation (3): 265 

𝑆௖ = 𝛴௜𝛼௜
௖𝐹௜ （2） 

Where 𝛼௜
௖  represents the contribution of feature map 𝑓௜(𝑥)  to model’s 266 

classification result of category c. 267 

During the model training, the model’s classification will be compared with the 268 

true label of the waveform by the loss function as shown in step 3. The result is referred 269 

as the loss value in training. The model uses the back propagation algorithm to make 270 

the loss information flow backward to update model parameters, which can be 271 

expressed as: 272 

𝜕𝑢௡

𝜕𝑢௝
= ෍

𝜕𝑢௡

𝜕𝑢௜

𝜕𝑢௜

𝜕𝑢௝

௜:௝∈௉௔(௨೔)

 （3） 

Equation 5 describes how to calculate the gradient of an output node 𝑢௡ (such as 273 

the loss value) over several input nodes from  𝑢ଵ to  𝑢௝ to achieve gradient descent 274 

update of the parameters. Where 𝑢௜ refers to the intermediate nodes in all possible paths 275 

(Pa) from 𝑢௡ to 𝑢௝. The gradient is essential for the gradient descent optimizing method 276 

during parameters update. 277 

b) Model Interpretation: In order to open the black-box of the CNN model, we 278 

introduce the CAM method in the proposed CNN model as shown in step 4. The CAM 279 

method multiply the weight vector produced in step 3with the high-dimension feature 280 

maps produced in step 1 to obtain a class activation map (CAM) which can mark the 281 

important waveform features in the classification. The CAM values for the class can be 282 

defined as： 283 

𝑀஼(𝑥) = 𝛴௜𝛼௜
஼𝑓௜(𝑥) （4） 

We denote 𝑀஼(𝑥) as the CAM value of the waveform under category c. By using 284 

heat maps the CAM value provides a direct indication of the importance of each 285 

datapoint x to the classification result of category c. 286 

Due to the model structure difference, CAM method is not appliable on traditional 287 



machine learning methods like the SVM. We use the SHAP method to visualize the 288 

important waveform features in the classification of traditional machine learning 289 

methods for comparison. SHAP method derives from cooperative game theory, which 290 

provides global and local interpretability of the features(Lundberg & Lee, 2017). The 291 

SHAP value is based on the marginal contribution of the features amongst all the feature 292 

arrangements. In waveform classification, we regard each waveform datapoint as a 293 

feature, the SHAP value can be expressed as: 294 

𝜑௝(𝑣𝑎𝑙) = 𝛴ௌ⊆௫భ,⋯,௫ಾ/௫ೕ

|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
(𝑣𝑎𝑙൫𝑆 ∪ 𝑥௝൯ − 𝑣𝑎𝑙(𝑆)) （5） 

Where the 𝑥௝ is the jth feature and refers to the jth point of input waveform. 𝜑௝   is 295 

the contribution value of 𝑥௝ to the classification result. S is the subset of features and M 296 

is the total number of features. The value function 𝑣𝑎𝑙(∗)  refers to the model’s 297 

classification results in machine learning. In the following section, SHAP is referred to 298 

the 𝜑௝  and used to describe the contribution of different waveform features to the 299 

classification results in traditional machine learning methods.  300 

2.3 Model Training 301 

In this paper, the proposed CNN model is deployed on a Tesla A100 graphics card 302 

and the training framework is Pytorch 1.9.1. The hyperparameters required for training 303 

are shown in Table 2. 304 

Table 2 Hyperparameters used for training 305 

Hyperparameter Value 

Batch Size 48 

Epoch 40 

Loss Function CrossEntrophy 

Optimizer Adam 

Learning Rate 0.01 

Momentum 0.5 

Batch Size means that the model is fed with 48 data samples at a time in model 306 

training, and the parameter Epoch specifies that the model performs a total of 40 307 

forward calculations and back propagation processes. The loss function used in the 308 

model is the CrossEntrophy function and the Adam is used as the optimization 309 

algorithm. The Learning Rate and Momentum together control the convergence rate 310 

and the efficiency of the model, which are set to 0.01 and 0.5 respectively after pre-test. 311 

The model was trained under the above conditions, and the training loss and 312 

classification accuracy are shown in Figure 2. Due to the introduction of the shortcut 313 

connection to solve the vanishing gradient problem, the model converges faster and 314 



reaches convergence after only five epochs, with an overall classification accuracy of 315 

about 98.5%. 316 

 317 

Figure2 Loss and accuracy changes of plain CNN model without shortcut and improved CNN 318 

model with shortcut in training 319 

3 Results 320 

3.1 Comparison for classification results 321 

After training, we compared the classification results of the proposed CNN method 322 

with other machine learning methods such as SVM and RF under the same dataset. The 323 

feature vector used for training SVM is obtained by data down sampling method (Zhu 324 

et al., 2021) and the amplitude-frequency features were extracted as feature vectors 325 

when training the RF model (Nassralla et al., 2017) . The performance of these methods 326 

is shown in table 3: 327 

Table 3 Comparison of the results of different models 328 

Method CNN SVM RF 

Metrics Accuracy Precision  Recall F1 Accuracy Accuracy 

Class 

RS 96.8% 1.00 1.00 1.00 90% 88.3% 

PB 100% 0.94 0.97 0.96 91% 83% 

IC 100% 1.00 1.00 1.00 86.20% 84.5% 

NB 97.8% 0.97 0.94 0.96 92% 92.7% 

  329 

Table 3 shows the comparison of classification accuracy in the four kinds of 330 

waveforms. For waveforms with short duration such as RS and NB, both CNN method 331 

and traditional machine learning methods achieve good classification results in 332 



classification accuracy, while the CNN model has an improvement of about 6%. 333 

However, for waveforms like PB and IC which last longer and is more difficult to 334 

classify, the CNN method shows a significant improvement of up to 17% in accuracy 335 

compared to traditional machine learning methods. The performance of SVM and RF 336 

is not as expected as that in the original literature. This may be due to the fact that the 337 

dataset we used contains longer slices of waveform which can preserve more waveform 338 

features. Therefore, the hyperparameters used in the original literature may be no longer 339 

suitable and need to be adjusted. In contrast, the CNN model supports raw waveforms 340 

as inputs, without the need of manual adjustment of hyperparameters after changing 341 

datasets, which can bring stronger robustness. In addition, the CNN model performs 342 

well on metrics like precision, recall and F1, proving that the model does not have an 343 

imbalance problem. 344 

3.2 Model interpretability analysis based on CAM visualization  345 

The proposed CNN model achieves higher performance in all kinds of waveforms, 346 

which may be related to a better understanding of the physical process.  To investigate 347 

the feature the model has learned, we use CAM visualization method mentioned in 348 

section 2.2 to estimate which part of the waveform lead to its classification result. For 349 

comparison, the SHAP method is used to mark the waveform which owns higher 350 

contribution to affect the classification results in SVM(Ribeiro et al., 2016). In this 351 

section we will discuss the classification process of the four typical VLF/LF waveforms 352 

in both cloud to ground flashes (CG) and intracloud flashes (IC), including return stokes 353 

(RS), active stage of IC (ASIC), preliminary breakdown (PB) and narrow bipolar pulses 354 

(NB). The accurate classification of RS helps to distinguish between CG and IC events 355 

and can improve the location efficiency of LLS. The classification of PB, NB and ASIC 356 

is important for further research of the initiation mechanisms of the lightning discharges. 357 

3.2.1 Return Stroke Produced by CG  358 

The LLS allows for real-time detection of return strokes (RS) in cloud to ground 359 

flashes (CG) due to the strong and widely spread VLF/LF waves of RS, which is 360 

generated by the propagation of high amplitude currents in the lightning channel. The 361 

waveshape and amplitude of RS are closely related to factors like current strength, 362 

propagation speed and propagation path etc. Compared to other stages of the lightning 363 

discharge, the velocity of RS is high and the current of RS is strong. Therefore, the LLS 364 

often use the amplitude or pulse width of the electrical field waveform to identify RS. 365 

The traditional multi-parameter classification method concludes that the pulse width of 366 

the RS waveform is typically between 10 and 200 us. However, recent reports indicate 367 

that using pulse width as a criterion can easily misclassify several kinds of intracloud 368 



lightning pulses as RS (Biagi et al., 2007; Leal et al., 2019; Nag et al., 2014). In recent 369 

years, scholars have already tried using machine learning methods like SVM  to perform 370 

RS/IC classification (Zhu et al., 2021). This section applied the CNN model trained in 371 

Section 3.1 for RS classification. By analyzing the classification process of our CNN 372 

model under several typical RS cases, we explored the key physical features the model 373 

learned and compared it with the SVM method. 374 

 375 

Figure 2 Visualized classification results of negative RS waveform #190912135803-001RS and 376 

positive RS waveform #190912135803-003RS waveform. a) Visualized CNN classification result 377 

based on CAM for the negative RS case with a detailed demonstration for the main pulse part b) 378 

Visualized CNN classification result based on CAM for the positive RS case with a detailed 379 

demonstration for the main pulse part c) Visualized SVM classification result based on SHAP for 380 

the same case and detailed demonstration as (a) d) Visualized SVM classification result based on 381 

SHAP for the same case and detailed demonstration as (b) 382 

Figure 3(a) shows the classification result of the CNN model for a negative RS，383 

which was recorded at 13:58:03 September 2019 at Anqing, Anhui, China. We define 384 

data points with CAM weight values above 0.5 as hotspots during classification. The 385 

pulse width of this case is about 11 s, which is at the lower threshold according to the 386 

multi-parameter method, leading to great possibility for misclassification. However, the 387 

CNN model gives out a hotspot region between 25s and 27s, which means the CNN 388 

model accomplished the classification mainly by the main peak part with a duration of 389 

only 2s. It can be seen from this part that the main pulse contains a sequential double-390 

peak characteristic with a primary peak VA and a subpeak VB. Based on observation 391 
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results,  Le Vine et al. conclude that the subpeak structure of the RS waveform is related 392 

to the geometry change of the lightning channel (Le Vine, 1980). Cooray et al. propose 393 

that the abrupt changes in current amplitude or channel development velocity will result 394 

in the subpeak structure in the VLF/LF waveform (Cooray & Lundquist, 1985). Figure 395 

3(a) demonstrates that the CNN model successfully captured the double-peak 396 

characteristic of the RS waveform, which represents a key part of the physical process 397 

of RS.  398 

Figure 3(c) gives the SVM classification result for the same negative RS waveform. 399 

The orange and red circles represent the high weight points given by the SVM with a 400 

SHAP value greater than 0.5. The high weight points distribution shows that the SVM 401 

model is able to depict the profile of the waveform. It can be inferred from this that the 402 

SVM method may classify the RS waveform by marking the high-amplitude part of the 403 

RS waveform. Although the SVM model was also able to correctly classify this RS 404 

event, it failed to capture other physical information of the RS waveform.  405 

The classification results for another positive RS are given in Figure 3(b) and 406 

Figure 3(d). The hotspot region in Figure 3(b) shows that the CNN model also captured 407 

the two-peak feature of both PA and PB, which means a better understanding about the 408 

correlation between the RS waveform and physical process such as the change in the 409 

channel development velocity and the channel geometry. However, the SVM method 410 

fails to classify this positive RS waveform. As can be seen from Figure 3(d), the high 411 

weight points given out by the SVM model also tends to depict the entire waveshape. 412 

But due to the bipolar pulse following the main pulse of this waveform, the SVM 413 

method failed to mark the main pulse, which resulted in a 42% probability for RS while 414 

an 82% probability for NB. The CNN model proposed in this paper not only marks the 415 

true main pulse part of the RS waveform but also captured the double-peak feature in 416 

the main pulse. Compared to multi-parameter method, the proposed CNN model can 417 

overcome the problem that an applicable general criterion for parameters like pulse 418 

duration is difficult to be determined. As for traditional machine learning method like 419 

SVM, the anti-disturbance capability of the proposed CNN model also gets improved, 420 

which means stronger robustness.  421 

3.2.2 Active Stage of ICs   422 

Intra-cloud lightning discharge (IC) occurs in a single storm cloud or between 423 

different storm clouds. The intra-cloud lightning discharge can be divided into wo 424 

stages, including the active stage and the final stage (Bils et al., 1988). The VLF/LF 425 

radiation signal generated during the active stage of intra-cloud lightning (ASIC) 426 

presents a sequence of pulse activities. A variety of transient processes appears in the 427 

following final stage, including the narrow bipolar events, the stepped leader, the J 428 



process and the K process, etc. (Rakov & Uman, 2003). The VLF/LF radiation signal 429 

of the final stage of ICs is usually not used to identify the intra-cloud lightning events, 430 

because it owes an overlapping amplitude range with the RS. Conversely, during the 431 

ASIC, repetitive VLF/LF electric field pulses can be detected. These pulses are 432 

characterized by low amplitude and unipolarity and are related to the stepped growth 433 

of the negative leader, which are applicable to distinguish the IC and CG(Brunner, 434 

2016). However, the statistics of characteristics of the pulses during the ASICs are 435 

rarely reported. In this section, attempts were made to demonstrate that an interpretable 436 

CNN model can be used as an effective approach for the classification of ICs events.  437 

 438 

Figure 3  Visualized classification results of negative IC waveform #190818114117-001IC and 439 

#190817184223-001IC. a) Visualized CNN classification result based on CAM for the first case 440 

with a detailed demonstration for the one single pulse b) Visualized CNN classification result 441 

based on CAM for the second case with a detailed demonstration for one single pulse c) 442 

Visualized SVM classification result based on SHAP for the first case d) Visualized SVM 443 

classification result based on SHAP for the second case 444 

Figure 4(a) shows the visualized CNN classification result for a pulse train during 445 

the active period of the IC lightning. This waveform is captured at 11:41:17 18th August 446 

2019 at Lishui, Zhejiang, China. The electrical waveform at this stage consists of a 447 

sequence of pulses. The tail of each single pulse is followed by a small, slowly changing 448 

polarity-reversed process (Krider et al., 1975). The pulses repeat slowly at this stage, 449 

with an average pulse interval of 10.7s in this case, which is consistent with the 450 
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existing observations (Gomes & Cooray, 2001; Krider et al., 1975). In Figure 4(a), the 451 

hotspot region given out by the CNN model mainly contains two parts. Firstly, the 452 

model focuses on the pulse peak and its subsequent polarity-reversed part. The mean 453 

CAM value of this region is greater than 0.8. It shows that the CNN model provides a 454 

good understanding of the causal relationship between the main peak and the 455 

subsequent polarity-reversed waveform and treat them as a whole part. Secondly, it 456 

should be noted that the waveform between the two pulses is mainly background 457 

waveform, but the model still gives out CAM values of 0.5 to 0.6, significantly higher 458 

than the CAM values of the background waveform outside the active stage. It can be 459 

inferred that the model not only captures the characteristics of single pulses of ICs, but 460 

also find the pattern of continuously pulse repeat during the ASIC. In Figure 4(c), the 461 

SVM method is used to classify the same case. The circles in Figure 4(c) represent the 462 

high weight points given out by the SVM with a SHAP value greater than 0.5. The high 463 

weighted points mainly locate near the peak of the pulse. This suggests that although 464 

the SVM method can also capture the peak of the pulse, it fails to capture the causal 465 

relationship of main peak and the succeeding part.  466 

Figure 4(b) and Figure 4(d) compare the classification results of CNN and SVM 467 

method for another IC waveform. For the CNN model, the hotspot region is similar to 468 

that in Figure 4(a) which also concentrate on the single pulses and the pulse intervals. 469 

However, the SVM method misclassifies the waveform as RS. Figure 4(d) shows that 470 

the high weighted points of the SVM model mainly locates around 0μs and 75μs. The 471 

waveform around 0μs is mainly the background electric field and the waveform around 472 

75μs has the highest pulse peak. The results show that the SVM model mainly focus on 473 

the peak of the electric field pulses. Besides, since the SVM model mainly focuses on 474 

the pulse peaks, it makes the high weight points in this case locate around the largest 475 

pulse, leading to the misclassification as RS. By the comparison, it can be concluded 476 

that the CNN model is able to learn the detailed features like the temporal relationship 477 

between the first peak and subsequent polarity-reversed part of pulses, and is also able 478 

to effectively identify the macro features like the repetition of pulses in active stage of 479 

ICs. 480 

3.2.3 Preliminary Breakdown Pulses  481 

The preliminary breakdown (PB) is the initiation and development of the leaders 482 

in cloud, which is considered to be the initial stage of the lightning. The VLF/LF electric 483 

field waveform generated by PB is composed of consecutive bipolar pulses with a total 484 

duration of microseconds. It is concluded from theoretical simulations that the 485 

waveform of the PB process has a similar physical mechanism to that of the NB, which 486 

is probably related to the consecutive stepped elongation of the negative leader channel 487 



within the thundercloud(Da Silva & Pasko, 2015). The multi-parameter method usually 488 

utilizes the SNR to make classification. It is considered to be a PB process while at least 489 

three consecutive bipolar pulses are found with peaks twice the average noise level or 490 

more (Nag & Rakov, 2008). However, according to the discussion in section 3.2.2, the 491 

waveforms during the ASICs are also characterized by repetitive bipolar pulses, which 492 

makes it difficult to achieve an accurate distinction between the PBs and ASICs using 493 

multi-parameter method. In this section, the visualized result of the CNN model for PB 494 

classification is analyzed to illustrate the CNN model’s ability to capture the physical 495 

features of PB waveforms, which improves the model’s accuracy and robustness. 496 

 497 

Figure 4  Visualized classification results of PB waveform #190727133157-001PB and 498 

#1907271314423-001PB. a) Visualized CNN classification result based on CAM for the first PB 499 

case with a detailed demonstration for the main pulse and the pause part b) Visualized CNN 500 

classification result based on CAM for the second PB case with a detailed demonstration for the 501 

pause part c) Visualized SVM classification result based on SHAP for the first case d) Visualized 502 

SVM classification result based on SHAP for the second case 503 

Figure 5(a) shows the visualized CNN classification result for an PB waveform, 504 

which is captured at 13:31:57 27th July 2019 at Wuxi, Jiangsu, China. The hotspot 505 

region given out by the CNN model covers the entire period between 23 and 54μs in 506 

which the pulses exist. However, it is obvious that two partitions with different CAM 507 

values exist during this period. The first partition is between 26 and 32μs where the 508 

CAM values are all above 0.8. It can be seen from Figure 5(a) that the waveform within 509 
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this partition is notably characterized by significant continuous bipolar oscillations. The 510 

second partition is between 38 and 54μs where the CAM values range between 0.4 and 511 

0.6 and also has significant continuous bipolar oscillations. It is interesting that in the 512 

time from 32 to 38μs between the two partitions, there is a pause interval where the 513 

CAM values are less than 0.3. Figure 5(a) shows that the amplitude is low and bipolar 514 

oscillation is not obvious during the interval. The above analysis shows that the model 515 

in this paper is able to adaptively mark intervals that match the PB characteristics based 516 

on the bipolar oscillation frequency and amplitude characteristics of the waveform. 517 

Figure 5(c) shows the visualized SVM classification result for the same case. It can be 518 

seen from Figure 5(c) that the high weight points distribute on both the background 519 

waveform and the pulse part, which indicates that the SVM completes the PB 520 

identification by depicting the overall profile of the waveform without an understanding 521 

of PB’s core physical features.  522 

To further compare the proposed CNN model with the SVM model, another case 523 

of PB is shown in Figure 5(b) and Figure 5(d). In Figure 5(b) the CNN model gives a 524 

similar distribution of hotspot regions as in Figure 5(a). The CNN model accurately 525 

marks the pulse part which is also divided into two partitions by a pause interval, and 526 

the duration of the pause interval in Figure 5(b) is shorter by about 1μs compared to 527 

figure 5(a). This represents a better ability of the CNN model to adaptively classify 528 

continuous pulses that conform to bipolarity, with better robustness. The above 529 

phenomenon means that the CNN model is able to adaptively find PB-like waveforms, 530 

and even a very short non-PB interval will cause the CAM value to drop sharply. In 531 

comparison, Figure 5(d) shows that the SVM method misclassifies this case, with the 532 

highest weight points distributing at the start of the waveform around 30μs. Besides, 533 

the other high weight points mainly exist in the negative part of the waveform, leading 534 

to the misclassification. It can be inferred that the CNN model has higher classification 535 

accuracy compared to traditional machine learning methods for the ability to recognize 536 

temporal features like the continuous bipolar pulses. 537 
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Figure 6 (a) relationship of CAM values PBa  and peak ratio P (b) relationship of CAM values 539 

PBa  and pulse duration T 540 

To demonstrate our model’s ability to help to find adequate threshold for multi-541 

parameter classification. The average CAM values PBa , peak ratio P and pulse duration 542 

T are estimated and compared with the results of similar waveforms like NB. We define 543 

a single pulse as a segment of the waveform between two zero crossing points, which 544 

must contain a polarity change. The PBa  refers to the average CAM value given by the 545 

model when the waveform is considered to be a PB. The peak ratio P is the absolute 546 

value of the first and second peak amplitude ratio, and the pulse duration T is the time 547 

interval between two crossing points. The PBa  -P relationship is given in Figure 6(a). 548 

The result shows that the bipolar peak ratio of the PBs waveform ranges between 1 and 549 

2, which is in agreement with the range of peak ratios of the NB. The difference is that 550 

63% of the PBs have a P of less than 1.3, while 81% of the NBEs have a P between 1.3 551 

and 1.7. It is notable that when the P is less than 1.3, the PBa  is greater than 0.5 and 552 

decreases as the P increases. This suggests that the more P is close to 1, the more likely 553 

the pulse considered to be PB in our model, which is consistent with the simulation 554 

results of Silva et al. (Da Silva & Pasko, 2015). However, when the P is greater than 555 

1.8, the PBa  increases as the P increases. This suggests that the peak ratio cannot be 556 

used as an effective way to distinguish PB from NB. This may be because that the P 557 

changes as the conductivity of the leader channel changes in which the PBs radiation 558 

source locate, thus deviating from the theoretical result of Silva(Kašpar et al., 2017). 559 

Figure 6(b) demonstrates the relation of PBa -T, where T is within 10 μs for both PB 560 

and NB. 91% of PB had T of less than 4.0 μs, while all of NB have T between 4.0 and 561 

10.0 μs. As can be seen from the trend of PBa , the proposed model suggests that the 562 

shorter the pulse duration is the more likely the pulse is to be a PB, especially when the 563 

pulse duration is less than 4μs. It should be pointed out that as the T increases, the PBa  564 

gradually decreases to around 0.4. According to the results, overlaps exist in the 565 

parameter distribution of PB and NB, which lead to the difficulties to set an adequate 566 

threshold for multi-parameter classification. However, the turning points of PBa -P and 567 

PBa -T is generally consistent with the actual peak ratio and pulse duration distribution 568 

of PB and NB. This indicates the CAM values from the proposed model is helpful in 569 

threshold determination.  570 

3.2.4 Narrow Bipolar events (NBs) 571 



Narrow bipolar event (NB) is a special type of intracloud discharge, often occurring 572 

in isolation from other discharge events. The amplitude of NB is usually high, which 573 

can be close to that of RS(Rakov & Uman, 2003; Smith et al., 1999). The pulse duration 574 

of NB is short, ranging from 2 to 20μs (Jacobson and Light 2012; Wu et al. 2014). 575 

Increasing evidences indicate that NB may be the initiating process for other lightning 576 

discharge events. It is demonstrated through simulation that the electric field waveform 577 

of the NBE is related to the abrupted elongation of the initial  negative leader channel 578 

in the thundercloud(Da Silva & Pasko, 2015). Because of the distribution overlap of 579 

several essential characteristic like the amplitude and pulse width between NB and RS, 580 

the NB is thus an important factor affecting the accuracy of RS classification in 581 

LLS.(Leal et al., 2019; Nag et al., 2014). In this section, the visualization of which part 582 

of the NB waveform causes the model to make the correct classification will be 583 

analyzed. 584 

 585 

Figure 7 Visualized classification results of NB waveform #190818114306-001NB and 586 

#190818114919-001NB. a) Visualized CNN classification result based on CAM for the first NB 587 

case with a detailed demonstration for the main pulse part b) Visualized CNN classification result 588 

based on CAM for the second NB case with a detailed demonstration for the main pulse part c) 589 

Visualized SVM classification result based on SHAP for the first case and detailed demonstration 590 

as (a) d) Visualized SVM classification result based on SHAP for the second case and detailed 591 

demonstration as (b) 592 

Figure 7(a) shows the visualized CNN classification result for an NB waveform, 593 
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which is captured at 11:43:06 18th August 2019 at Anqing, Anhui, China. It can be seen 594 

that the proposed CNN locates the main pulse part of this waveform within 24.5±1.5μs 595 

accurately, which contains both positive and negative peaks as well as a steep polarity 596 

change process. It is notable that the average CAM value of the main pulse is higher 597 

than 0.8, while the average CAM value of the other part is less than 0.2, indicating that 598 

the CNN model focuses on the waveform pulse and pays less attention to the 599 

background waveform. The CAM value difference shows that the CNN model captures 600 

the feature of isolation of the NB waveform, with attention focused on the pulse part in 601 

the waveform which contains the most information of the waveform. Figure 7(b) shows 602 

the visualized SVM classification result for the same case. Compared to the CNN model, 603 

the SVM model also focuses on the pulse part and the high weight point is distributed 604 

at the positive and negative peak tops, with almost no high weight point distributed in 605 

the background part. Figure 7(c) shows that the weight values positive is positively 606 

correlated to the pulse magnitude, indicating that the SVM model may classify 607 

waveforms by identifying the high amplitude parts in the waveform. It is important to 608 

point out that the two core characteristics of the NB require the model to be able to 609 

recognize time-dependent feature. The short pulse duration feature requires the model 610 

to be able to determine if the pulse presents for a certain period of time. The bipolar 611 

pulse feature requires the model to be able to determine if positive and negative peaks 612 

appear in succession. As depicted in 2.3.2, the parallel design of multiple convolutional 613 

kernels in our CNN model allows the model to capture features at different time scales 614 

during the training process. Due to the variable scale of the features extracted by the 615 

CNN model, the model can learn the temporal causality features in waveforms during 616 

the learning process. Therefore, the hotspot region given out includes the entire main 617 

pulse part. In contrast, the SVM model only focuses on the high amplitude point 618 

distribution of the waveform and therefore may lead to misclassification of some NB 619 

waveforms. Figure 7(b) and Figure 7(d) show another case of NB. The bipolar pulse in 620 

this case is located around 23.9 to 24.9s, but there is a large positive disturbance at 621 

23.5s with a peak ratio of approximately 0.5 to the main pulse. Figure 7(b) shows that 622 

the CNN model successfully classifies the waveform, with the given hotspot region 623 

distributed between 23.8-24.9s, which is coincides with the main pulse duration. It 624 

should be noted that the CAM value of the positive part disturbance is less than 0.5. 625 

However, the SVM model is unable to classify this case correctly. As can be seen from 626 

Figure 7(d), the SVM model only locates the positive peak top of the main pulse as well 627 

as the positive peak top of the disturbance, ignoring the negative period of the main 628 

pulse, and thus makes incorrect judgments as a result. As can be seen from the above 629 

comparison, the SVM model only classifies waveforms by the distribution of high 630 



amplitude points, which lacks consideration of temporal correlation. The classification 631 

of SVM is not supported by physical process and is prone to misclassification. The 632 

CNN model takes into account the temporal correlation patterns in the timeseries data 633 

at an adaptive scale during the classification process, and is more likely to capture the 634 

core features of the NB waveform, providing higher classification accuracy and 635 

robustness.  636 

To further demonstrate that the CNN model can help to find threshold to 637 

distinguish similar waveforms like RS and NB, we calculated the peak ratio P, pulse 638 

duration T and average CAM values NBa of the NB and RS waveforms in the dataset. 639 

The definitions of P and T are identical to those in 3.2.3. The NBa  refers to the CAM 640 

value given by the model when the waveform is considered to be a NB. The result is 641 

shown in Figure 8. 642 

 643 

Figure 8 (a) relationship of CAM values NBa  and pulse duration T (b) relationship of CAM 644 

values NBa  and peak ratio P 645 

Figure 8(a) shows the relationship between the average CAM value NBa  and the 646 

pulse duration T. When the pulse duration T is between 2-5.5s, the average CAM value  647 

NBa  remains high within 0.75-0.8. As the T increases, NBa drops rapidly to a minimum 648 

value of 0.22. It can be concluded from figure 8(a) that the model suggests that the pulse 649 

duration of the NB should not exceed 15s. Figure 8(b) shows the relationship between 650 

the average CAM value NBa  and the peak ratio P. The peak ratio quantifies the degree 651 

of bipolarity of the waveform. When the P is between 1 and 2, the bipolarity of the 652 

waveform is more obvious and the average CAM value is at a high level between 0.6 653 

and 0.8. When the P is greater than 2 and increases further, the bipolar characteristics 654 

of the waveform can be considered to have gradually disappeared and the unipolar 655 

characteristics become prominent. The CAM value drops steeply and remains at a low 656 

level of around 0.4. Figure 8(a) and (b) show that the turning points of NBa -P and NBa657 
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-T is generally consistent with the actual peak ratio and pulse duration distribution of 658 

RS and NB. 659 

4 Discussion 660 

Compared to plain CNN models, our model employs the shortcut connection to 661 

improve the rate of convergence, which enables the model to deal with longer input 662 

waveforms. The multi-size kernels of our model can capture multi-scale temporal 663 

features of VLF/LF waveforms. In section 3.2, we demonstrate that the improved 664 

model can extract physical information of VLF/LF waveforms which is related to 665 

different lightning discharge processes. It means that the classification accuracy of our 666 

model is much less dependent on the dataset, and it can be extended to recognize the 667 

lightning VLF/LF waveform recorded from other regions.   668 

The open dataset measured at Córdoba in central Argentina (Zhu et al., 2021) is 669 

employed as a test dataset here to further exam the portability of our model. The 670 

waveforms in the original dataset are classified into four types, including +CG, - CG, 671 

+ IC and – IC. We ignore the impact of polarity on the classification accuracy since it 672 

is convenient to be recognized. The original dataset is reclassified into two groups of 673 

RS and IC. We down sample these waveforms to the sample rate of 5MS/s, which is 674 

corresponding to our devices.  Since the input waveform of our model must possess 675 

2500 points, we manually add noise data to the waveforms meet the required length. 676 

Higher classification accuracy is obtained by using our model than the result reported 677 

by Zhu et al. The classification accuracy of RS in our model is 99.41%, while it is 97% 678 

by using SVM. The classification accuracy of IC in our model is 97.38%, while it is 679 

97% by using SVM. Note that the classification accuracy of IC here equals to the sum 680 

of PB, NB, and ASIC for convenience of comparison. 681 

It should be emphasized that traditional machine learning methods can only give 682 

out the probability for different categories. The proposed model can visualize the 683 

contribution of different parts of the waveform to the classification result. One can 684 

observe in figure 9 that our model can effectively capture the physical features of 685 

waveforms which cannot be classified correctly by the SVM. Fig. 9 (a) shows the CAM 686 

visualization of a RS event. This case is misclassified as an IC by the SVM, which may 687 

be caused by the unexpected bipolar oscillation around 30s according to the discussion 688 

of Zhu et al. It can be seen from figure 9(a) that the proposed model marks the dual 689 

peaks of the waveform which is believed to be an instinct feature of RS events. 690 

Moreover, the unexpected bipolar oscillation is neglected by our model, since the 691 

corresponding CAM are less than 0.5 there. Figure 9(b) shows the CAM visualization 692 

of a NB event. It is misclassified as a CG by the SVM for the positive disturbance 693 



around 27s according to Zhu’s report. It can be seen in figure 9(b) that the steep 694 

polarity change process is marked with high CAM values, which is the key feature in 695 

the NB waveforms. The positive disturbance is neglected with the CAM values less 696 

than 0.5. According to these comparisons, the proposed CNN model is more effective 697 

in extracting the key features related to the physical process. These key features are 698 

relatively invariant in different regions. Therefore, the CNN model is able to accurately 699 

classify data from different regions. 700 

 701 

Figure 9 The CAM values of two misclassified waveforms by the SVM in the open dataset. (a) a 702 

RS waveform misclassified as IC. (b) an IC waveform misclassified as RS 703 

5 Conclusion 704 

In this paper, the main conclusions are summarized as follows:  705 

（1）In this paper, an interpretable CNN model for VLF/LF lightning waveform 706 

classification is proposed. The proposed model uses multi-scale convolutional kernels 707 

to enhance the ability to capture local waveform features. The output of the final 708 

convolutional layer and the fully-connection weights are used to visualize the 709 

contribution of different waveform parts to the classification result. A shortcut 710 

connection is built in the proposed CNN model to promote the convergence speed and 711 

make the model capable of waveforms with higher sampling rate. Based on 8000 712 

waveforms recorded in five provinces in China, the four-type classification of 713 

waveforms including RS, ASIC, PB and NB, is achieved with an accuracy of 98.5%, 714 

which is better than the traditional SVM and RF methods. 715 

（2）Based on the distribution of the high-contribution waveform parts in the 716 

classification process, we analyzed the correlation between the model’s focused 717 

features and the lightning discharge process. The model considers the double peak 718 

structure superimposed on the main pulse as the main feature of the RS, which is mainly 719 

caused by the abrupt change of the current or the branches of the lightning channel. The 720 

proposed model is able to identify the separated, repetitive pulses generated by the 721 

ASIC event, which are associated with the stepped growth of the negative leader in 722 
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thunderstorms. The continuous bipolar pulse train is considered as the main feature of 723 

PB by the model, which is generated by the continuous development of the initial leader 724 

in thunderstorms. The model in this paper is also able to identify the narrow bipolar 725 

pulse generated by the sudden elongation of the initial leader in NB events. This 726 

indicates that compared to traditional machine learning methods, the model in this paper 727 

extracts features which are in line with the human experts in the VLF/VF waveform 728 

model classification process. 729 

（3）We analyzed the relationship between the average waveform weights given 730 

by the model and the pulse duration, peak ratios. For NB and PB events with similar 731 

physical mechanisms, the weight value αPB for PB events varies in a U-shape with the 732 

increase of the peak ratio. When the pulse duration Twidth is greater than 4.0 μs, αPB 733 

decreases monotonically with the increase of Twidth. This indicates that the pulse 734 

duration is more suitable than the peak ratio to distinguish the NB and PB waveforms. 735 

Compared to the RS, the weight value αNB for NB does not vary significantly (which is 736 

between 0.4 and 0.7) with the peak ratio. And when the pulse duration Twidth is greater 737 

than 5.0 μs, αNB decreases significantly with the increase of Twidth, which indicates that 738 

the pulse duration can better solve the problem of easy confusion between RS and NB 739 

events in the lightning location system. 740 

（4）We validated the model in this paper using an open source dataset reported 741 

in literature, which has a total of 32,754 samples from central Argentina. The model in 742 

this paper achieved an accuracy of 98.39%, which is better than the result using the 743 

SVM according to the literature. Based on the contribution weights obtained in this 744 

paper, it can be seen that the model in this paper considers the double-peaked structure 745 

superimposed on the main pulse as the key feature of the RS, which avoids the influence 746 

of unexpected waveform oscillation and NB waveforms on the RS/IC classification 747 

accuracy. It is proved that the model in this paper not only reduces the dependence of 748 

the classification performance on the training set, but also is more robust in the 749 

classification of waveforms from different regions. 750 
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Key Points: 15 

 The proposed model can extract decisive features of VLF/LF lightning signals 16 

which is similar to the human expert’s behavior. 17 

 The model achieved an accuracy of 98.5% on a four-type lightning VLF/LF 18 

electrical waveforms dataset. 19 

 Testing with data from Argentina validates that the accuracy of the model is less 20 

dependent on training data set. 21 

 22 

Abstract: 23 

Classification of lightning produced VLF/LF signals plays crucial role in the detection 24 

and location of lightning flashes. The machine learning method has potential in the 25 

VLF/LF lightning signal classification. Traditional machine learning methods are data-26 

driven and work in a black-box fashion, making the classification accuracy highly 27 

dependent on the size and quality of dataset. In this paper, an interpretable convolutional 28 

neural network model is proposed for VLF/LF lightning electric field waveform 29 

classification. Multi-scale convolutional kernels and shortcut connections are adopted 30 

in this model to enhance the ability to capture local waveform features. The CAM 31 

method is embedded in our model to open the black-box by visualizing the weight of 32 

different waveform features on the classification results. Based on the measured data 33 

from five different provinces in China, an accuracy of 98.5% is achieved in a four-type 34 

classification task including RS, active stage of IC, PB and NB. The correlation between 35 

the weight values of different waveform features and corresponding lightning discharge 36 



process are analyzed. It is found that the proposed model can extract decisive features 37 

of VLF/LF lightning signals closely related to the physical process of lightning 38 

discharges, which is similar to the human expert’s behavior. The proposed model is 39 

validated by using an open-source dataset from Argentina. It is indicated that the 40 

proposed model can resist the impact of unexpected waveform oscillation and achieve 41 

a higher accuracy of 98.39% than that of the support vector method. It is demonstrated 42 

that our model is less dependent on the training dataset. 43 

Plain Language Summary 44 

Electromagnetic waveforms in very low frequency and low frequency (VLF/LF) band 45 

are usually used to detect and locate different lightning activities. Traditional 46 

classification methods often misclassify in multi-type lightning discharge waveform 47 

classification. The machine learning models show promising potential in the multi-type 48 

classification task. However, these models cannot explain which part of the input 49 

waveform leads to the classification result, which makes the classification model 50 

unreliable. In this paper, we propose an improved and interpretable convolution neural 51 

network model, which is adapted to the lightning waveform classification task with 52 

changes in model structure. By utilizing the convolution outputs, the model can 53 

visualize the contribution of different parts of the waveform to the classification result. 54 

The analysis of the visualization results show that the high accuracy and generalization 55 

of the proposed model comes from the capture of waveform features corresponding to 56 

the key physical process in waveform generation. The dataset for model training comes 57 

from five provinces in China, which contains different meteorological conditions. The 58 

trained model based on the dataset reached a classification accuracy of 98.5% on test 59 

set and 98.39% on another open-source dataset from Argentina, which validated the 60 

generalization of the proposed model.  61 

 62 

  63 



 64 

1 Introduction 65 

Remote sensing the electromagnetic radiation generated by lightning discharges is 66 

an effective approach to detect and locate lightning activities. It is recognized that the 67 

radio emission in the VHF regime is primarily emitted by the streamer and leader 68 

involved in lightning discharges, while most of the radiation power is concentrated in 69 

the VLF/LF band that is mainly produced by the return stroke (RS) in cloud-to-ground 70 

flashes (CGs) and the active stage of intro-cloud flashes (ICs). The detection of VLF/LF 71 

radiation was initially introduced to sense the occurrence of CG remotely.  Combined 72 

with the VLF/LF sensing and the time of arrival (TOA) method, the lightning location 73 

system (LLS) was proposed in 1980s which becomes an important technique to support 74 

the lightning protection for ground infrastructures nowadays.  In order to exclude the 75 

impact of ICs, a fundamental task of LLS based on the VLF/LF detection is to recognize 76 

the characteristic waveforms produced by return strokes. In recent years, with the 77 

development of hardware performance, the emission source location of CGs and ICs 78 

can be achieved by using the short-baseline VLF/LF sensing technique and the 3D TOA 79 

method. The updated VLF/LF system not only can be utilized as an effective tool for 80 

lightning protection engineering applications, but also has the potential in lightning 81 

physics research. The lightning leader development process were investigated by using 82 

this technique, including the propagation of negative downward leader, the preliminary 83 

breakdown (PB), and the narrow bipolar event (NBE) etc. (Bitzer et al., 2013; Y. Wang 84 

et al., 2016; Wu et al., 2018). In order to improve the performance of the short-baseline 85 

system in lightning detection and lightning physics research, challenges arise in the 86 

accurate and automatic identification of waveform characteristics that produced by 87 

different lightning discharges.  88 

For most LLS, the multi-parameter method is employed as the criterion to classify 89 

the CG and IC, which is derived from extensive field records(Murphy et al., 2021).  It 90 

adopts specific parameters that can describe the primary profile of VLF/LF waveform, 91 

such as the amplitude, the rise and fall time, and the zero-cross time, etc. According to 92 

the results of validation studies, the RS detection efficiency of typical lightning location 93 

systems (including National Detection Networks (NLDN) and Earth Networks Total 94 

Lightning Network (ENTLN) in US, European Cooperation for Lightning Detection 95 

network (EUCLID) in Europe ranges from 71% to 92%, while the ICs detection 96 

efficiency varies from 73% to 96%(Biagi et al., 2007; Mallick et al., 2015; Schulz et al., 97 

2016). Despite the difference in hardware performance, the deviation in detection 98 

efficiency of different systems is mainly attributed to the classification accuracy of CGs 99 



and ICs. On the one hand, since the multi-parameter method is difficult to extract 100 

characteristic parameters from VLF/LF signals with low-amplitude, the small signals 101 

were often abandoned, resulting in the decrease of detection efficiency(Kohlmann et al., 102 

2017; Nag et al., 2014). On the other hand, the characteristic parameter involved in the 103 

multi-parameter method may vary in regions with different meteorological 104 

conditions(Cooray, 2009; Said et al., 2010; Shao & Jacobson, 2009; Wooi et al., 2015). 105 

For instance, the rise time and zero cross time of RS in Vitemölla, Sweden is of 5-25μs 106 

and approximately 40μs respectively, while the rise time decreases to about 2.5-9μs and 107 

the zero cross time increases to the range of 40-160μs in Sri Lanka(Cooray & Lundquist, 108 

1982, 1985). Accurately determining the thresholds of characteristic parameters 109 

requires the support of long-term data. Recently, the machine learning methods such as 110 

the support vector machines (SVM) and the convolutional neural networks (CNN) are 111 

introduced to improve the classification efficiency of lightning VLF/LF signals. The 112 

SVM method is utilized to classify the VLF/LF lightning waveforms of CGs and ICs. 113 

A classification accuracy of 97% is achieved, which shows an excellent adaptability 114 

and automation(Zhu et al., 2021). The CNN models with different structures are 115 

proposed to perform the classification of VLF/LF signals generated by multiple 116 

lightning processes, including RS, PB, and NBE, etc. (Peng et al., 2019; J. Wang et al., 117 

2020). It indicates that CNN has the potential to realize signal classification produced 118 

by various complex lightning discharge processes.  119 

Although extensive efforts have been paid to improve the classification accuracy 120 

of lightning VLF/LF waveforms, towards to the development of high-performance 121 

short baseline VLF/LF lighting detection system, the following limitations still exist: 122 

 Using the multi-parameter method, the classification accuracy of RS and IC in the 123 

LLS system has reached more than 90%. The classification accuracy may be further 124 

improved by optimizing thresholds of the multi-parameter method based on long 125 

term operation experience. However, since the VLF/LF waveforms produced by 126 

lightning leader discharges has more pulses and other high frequency components, 127 

it is difficult to determine thresholds involved in the multi-parameter method which 128 

can effectively discriminate different lightning events correlated to lightning leader 129 

propagation. Recently, it was found that the VLF/LF signals generated by NBE are 130 

wrongly identified as RS by the multi-parameter method(Leal et al., 2019; Lyu et 131 

al., 2015). 132 

 The machine learning methods show promising performance in multi-object 133 

classification tasks, the challenges of applying machine learning methods in 134 

lightning VLF/LF waveform classification come from two aspects. Firstly, note 135 

that the data-driven nature of the machine learning methods means that the 136 



performance is highly dependent on the balance and quality of the original dataset. 137 

An CNN model derived from imbalance data set is not reliable, because the model 138 

will tends to classify the objective waveform into the category which has the most 139 

samples in training dataset (Kaur et al., 2019). Secondly, since the characteristics 140 

of lightning VLF/LF signals can change in different regions, the accuracy of 141 

machine learning methods largely depends on whether the training dataset covers 142 

all possible variations of the objective waveform characteristics. Meanwhile, we 143 

need to note that most of the classification process by using machine learning 144 

methods acts like black box models, which makes it is difficult to ensure the 145 

classification accuracy of different lightning events. As discussed by Zhu et al., 146 

misclassification of RS signal can still occur by using SVM, although the 147 

characteristics of the misclassified waveform can be easily recognized manually. 148 

Since it is difficult to obtain the lightning waveforms in all regions of the world to 149 

expand the database, it is necessary to develop interpretable machine learning 150 

models to open the black box, which can reveal the classification process (Lipton, 151 

2018) and assess whether the model is able to capture the essential characteristics 152 

of different types of lightning VLF/LF signals.  153 

In this paper, a new interpretable CNN model which utilizes the class activation 154 

map (CAM) to represent the contribution of different waveform parts during the 155 

classification process is proposed. A four-class dataset including RS, PB, NB and IC is 156 

established for model training. The dataset is based on 17,441 waveforms recorded from 157 

five provinces in China with the latitude ranging from 29.1° to 33.5° and the longitude 158 

from 91.1° to 120.2°. The classification accuracy of the trained CNN is compared with 159 

that of the SVM model. The classification process of the four types of lightning 160 

waveforms is visualized by the CAM, which throws light on the relationship between 161 

the high-weighted waveform features and the physical process of leader discharge in 162 

lightning.  The classification results are analyzed for the range of variation of the 163 

characteristic parameters of different waveforms in turn. The generalization of the 164 

proposed CNN model is test on another open dataset in Argentina used by Zhu et al. 165 

This paper is organized as follows: Section 2 introduces the data sources and the 166 

improved CNN network structure used in this paper. Section 3 shows the classification 167 

performance of the trained model and discusses the interpretability of the classification 168 

results. Section 4 discusses the universality of the CNN model, and Section 5 makes 169 

the conclusion. 170 



2 Data and Methodology 171 

2.1 Dataset 172 

The dataset used in this paper comes from 17,441 lightning radiation waveform 173 

data recorded during 2019-2020. The measurement device is the VLF/LF electric field 174 

change meter (EFCM). The EFCM consists of an antenna and a digital data acquisition 175 

unit. The frequency band of the EFCM is 10Hz to 500kHz, with a sampling rate of 176 

5Ms/s and a GPS synchronization error of less than 50ns (Y. Wang et al., 2020). The 177 

EFCMs were installed in five different provinces of China, including Hubei, Jiangsu, 178 

Zhejiang, Anhui and Tibet, as shown in Table 1. When the dataset covers waveforms in 179 

a variety of meteorological and terrain conditions, the model can be more generalized 180 

and the classification accuracy may be improved. The installation sites of these EFCMs 181 

have altitude between 190m to 4000m above sea level, within the longitude from 91.1° 182 

to 120.2° and the latitude from 29.1° to 33.5°. In order to improve the quality of 183 

recorded waveforms and exclude the impact of measurement noises, a combination of 184 

empirical mode decomposition (EMD) method and wavelet denoise method were used 185 

to pre-process the lightning radiation signal. 186 

Table 1 Location of the deployed VLF/LF lightning waveform measurement meters 187 

Location Longitude Latitude 

Wuhan, Hubei 114.409 30.514 

Sihong, Jiangsu 118.219 33.482 

Wuxi, Jiangsu 120.256 31.618 

Lishui, Zhejiang 119.656 27.976 

Taizhou, Zhejiang 121.38 29.125 

Hefei, Anhui 117.202 31.761 

Anqing, Anhui 116.123 30.231 

Lasa, Tibet 91.14 29.666 

Linzhi, Tibet 94.373 29.636 

Changdu, Tibet 97.179 31.146 

 188 

Compared to the multi-parameter classification method, the machine learning 189 

algorithms can utilize the entire data information of time-resolved waveforms instead 190 

of several characteristic parameters. The SVM method was employed to classify the 191 

full VLF/LF waveform of lightning signals (Zhu et al. 2021). Considering the 192 

computational resources required for the deployment, the waveform is down sampled 193 

and divided into equal lengths, where each waveform slice is 100 μs in duration and 194 

contains 101 sample points. With the development of microprocessor technology in 195 



recent years, the main frequency of LS1043A ARM board we use has reached 1.6GHz, 196 

which significantly improves the ability to process waveform data per unit of time. In 197 

this paper, each waveform slice contains 2500 points corresponding to a time duration 198 

of 500 μs, which is beneficial to preserve the essential features of the original waveform. 199 

In the following discussion, each waveform slice is called as a sample. The dataset is 200 

constructed based on the prior knowledge of RS, PB, NB and active stage of IC, which 201 

can be found in reported literatures. We manually selected samples with the highest 202 

signal-to-noise ratio (SNR) and divided them into these four categories with a total of 203 

8000 samples. To ensure a balanced dataset, each of the four categories contains 2000 204 

samples. Note that our dataset is not classified by the polarity of lightning event, 205 

because the polarity can be easily intensified according to the polarity of the first pulse. 206 

It should be emphasized that this simplification will not affect the classification results 207 

discussed in the following parts. A 5-fold cross validation approach was adopted for the 208 

dataset, with the training set containing 6000 samples and the rest 2000 samples 209 

participate in the test.  210 

2.2 Method 211 

The CNN model performs feature extraction by convolving a convolution kernel 212 

with the input data. The convolution kernel is a weight matrix representing the features 213 

learned by the CNN model. The convolution kernel is usually initialized with random 214 

values, and the CNN model compares the output results with the true labels and updates 215 

the convolution kernel by backpropagation during the iterations. Thus, the convolution 216 

kernel can better match the core features of the data and improve the model’s 217 

performance. When making VLF/LF lightning waveform classification, traditional 218 

CNN networks (plain CNN) have the following limitations: 219 

 The same size of the convolutional kernel in each convolutional layer in plain CNN 220 

makes it difficult to handle the possible multi-scale features in waveforms.  221 

 We use a high computing capability development board to process the data, the 222 

sample time in the dataset is longer and the sample includes more information, 223 

requiring more convolution layers to fully extract these features. However, the 224 

backpropagation process calculates derivatives in chains to update network 225 

parameters. The gradient information may vanish gradually when simply 226 

increasing the number of convolution layers. It can also cause model degradation 227 

and make the model difficult to converge (He et al., 2016).  228 

 The CNN model flattens the features extracted from the convolutional layers into 229 

a one-dimensional vector, and output the classification results by means of full 230 

connection. It is difficult to obtain which part of the waveform determines the 231 

classification results of the model, which makes it impossible to judge whether the 232 



classification process of the model is reliable.  233 

In order to fix those issues, we proposed an interpretable CNN model with 234 

improved performance in feature extraction and convergence speed. The model 235 

includes a CNN classifier and a visualization module as shown in Figure 1. 236 

 237 

Figure 1 Structure of the proposed interpretable CNN model 238 
 239 

a) The CNN classifier: The proposed CNN classifier takes waveforms as input 240 

and gives out classification results with probabilities. Step 1-3 describes how the CNN 241 

classifier works and self-upgrades iteratively in training. 242 

 In step1 the waveform is fed into the CNN model and the high-dimensional 243 

feature maps are obtained. Compared with the plain CNN, the proposed CNN model 244 

adopts shortcut connections and parallel convolution kernels. The CNN model contains 245 

two convolution blocks, which is formed by stacking three convolutional layers. In each 246 

block, part of the input data is directly transferred to the second layer of the block 247 

through a shortcut connection. The shortcut connection aims to solve the problem of 248 

model degrading in multi-layer networks and accelerates the convergence in training. 249 

In each convolution layer, the convolutional kernels with the size of 40, 20, 10 and 1 250 

are introduced in a parallel structure. The kernels with the size of 40, 20 and 10 give 251 

the model a more various feature matching range after multiple layers, enabling the 252 

extraction of long-scale waveform features. The kernels with the size of 1 ensure that 253 

the model can also capture detailed waveform features. Each layer can be expressed as: 254 

𝑓௟ = 𝑏௟ + ෍ 𝑐𝑜𝑛𝑣1𝐷(𝑤௟, 𝑓௜
௟ିଵ)

ே೗షభ

௜ୀଵ
 （1） 

Where 𝑥௟ is defined as the input of layer l, 𝑏௟ is defined as the bias layer l , 𝑓௜
௟ିଵ 255 



is the ith output part of layer l-1, 𝑤௟ is the multi-size convolution kernels at layer l， 256 

𝑁௟ିଵ is  the number of output in layer l-1.  257 

In step2, the feature vector is obtained through the global average pooling based 258 

on the feature maps produced in step 1. Compared with the plain CNN methods, which 259 

flatten the high-dimensional feature maps as feature vectors, the proposed model uses 260 

the global average pooling to form the feature vectors and greatly reduces the 261 

computations of the model. 262 

The classification probability of the waveform is computed by the fully connected 263 

layer and the SoftMax function. The probability 𝑆௖  that a waveform belongs to a 264 

category c can be obtained from equation (3): 265 

𝑆௖ = 𝛴௜𝛼௜
௖𝐹௜ （2） 

Where 𝛼௜
௖  represents the contribution of feature map 𝑓௜(𝑥)  to model’s 266 

classification result of category c. 267 

During the model training, the model’s classification will be compared with the 268 

true label of the waveform by the loss function as shown in step 3. The result is referred 269 

as the loss value in training. The model uses the back propagation algorithm to make 270 

the loss information flow backward to update model parameters, which can be 271 

expressed as: 272 

𝜕𝑢௡

𝜕𝑢௝
= ෍

𝜕𝑢௡

𝜕𝑢௜

𝜕𝑢௜

𝜕𝑢௝

௜:௝∈௉௔(௨೔)

 （3） 

Equation 5 describes how to calculate the gradient of an output node 𝑢௡ (such as 273 

the loss value) over several input nodes from  𝑢ଵ to  𝑢௝ to achieve gradient descent 274 

update of the parameters. Where 𝑢௜ refers to the intermediate nodes in all possible paths 275 

(Pa) from 𝑢௡ to 𝑢௝. The gradient is essential for the gradient descent optimizing method 276 

during parameters update. 277 

b) Model Interpretation: In order to open the black-box of the CNN model, we 278 

introduce the CAM method in the proposed CNN model as shown in step 4. The CAM 279 

method multiply the weight vector produced in step 3with the high-dimension feature 280 

maps produced in step 1 to obtain a class activation map (CAM) which can mark the 281 

important waveform features in the classification. The CAM values for the class can be 282 

defined as： 283 

𝑀஼(𝑥) = 𝛴௜𝛼௜
஼𝑓௜(𝑥) （4） 

We denote 𝑀஼(𝑥) as the CAM value of the waveform under category c. By using 284 

heat maps the CAM value provides a direct indication of the importance of each 285 

datapoint x to the classification result of category c. 286 

Due to the model structure difference, CAM method is not appliable on traditional 287 



machine learning methods like the SVM. We use the SHAP method to visualize the 288 

important waveform features in the classification of traditional machine learning 289 

methods for comparison. SHAP method derives from cooperative game theory, which 290 

provides global and local interpretability of the features(Lundberg & Lee, 2017). The 291 

SHAP value is based on the marginal contribution of the features amongst all the feature 292 

arrangements. In waveform classification, we regard each waveform datapoint as a 293 

feature, the SHAP value can be expressed as: 294 

𝜑௝(𝑣𝑎𝑙) = 𝛴ௌ⊆௫భ,⋯,௫ಾ/௫ೕ

|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
(𝑣𝑎𝑙൫𝑆 ∪ 𝑥௝൯ − 𝑣𝑎𝑙(𝑆)) （5） 

Where the 𝑥௝ is the jth feature and refers to the jth point of input waveform. 𝜑௝   is 295 

the contribution value of 𝑥௝ to the classification result. S is the subset of features and M 296 

is the total number of features. The value function 𝑣𝑎𝑙(∗)  refers to the model’s 297 

classification results in machine learning. In the following section, SHAP is referred to 298 

the 𝜑௝  and used to describe the contribution of different waveform features to the 299 

classification results in traditional machine learning methods.  300 

2.3 Model Training 301 

In this paper, the proposed CNN model is deployed on a Tesla A100 graphics card 302 

and the training framework is Pytorch 1.9.1. The hyperparameters required for training 303 

are shown in Table 2. 304 

Table 2 Hyperparameters used for training 305 

Hyperparameter Value 

Batch Size 48 

Epoch 40 

Loss Function CrossEntrophy 

Optimizer Adam 

Learning Rate 0.01 

Momentum 0.5 

Batch Size means that the model is fed with 48 data samples at a time in model 306 

training, and the parameter Epoch specifies that the model performs a total of 40 307 

forward calculations and back propagation processes. The loss function used in the 308 

model is the CrossEntrophy function and the Adam is used as the optimization 309 

algorithm. The Learning Rate and Momentum together control the convergence rate 310 

and the efficiency of the model, which are set to 0.01 and 0.5 respectively after pre-test. 311 

The model was trained under the above conditions, and the training loss and 312 

classification accuracy are shown in Figure 2. Due to the introduction of the shortcut 313 

connection to solve the vanishing gradient problem, the model converges faster and 314 



reaches convergence after only five epochs, with an overall classification accuracy of 315 

about 98.5%. 316 

 317 

Figure2 Loss and accuracy changes of plain CNN model without shortcut and improved CNN 318 

model with shortcut in training 319 

3 Results 320 

3.1 Comparison for classification results 321 

After training, we compared the classification results of the proposed CNN method 322 

with other machine learning methods such as SVM and RF under the same dataset. The 323 

feature vector used for training SVM is obtained by data down sampling method (Zhu 324 

et al., 2021) and the amplitude-frequency features were extracted as feature vectors 325 

when training the RF model (Nassralla et al., 2017) . The performance of these methods 326 

is shown in table 3: 327 

Table 3 Comparison of the results of different models 328 

Method CNN SVM RF 

Metrics Accuracy Precision  Recall F1 Accuracy Accuracy 

Class 

RS 96.8% 1.00 1.00 1.00 90% 88.3% 

PB 100% 0.94 0.97 0.96 91% 83% 

IC 100% 1.00 1.00 1.00 86.20% 84.5% 

NB 97.8% 0.97 0.94 0.96 92% 92.7% 

  329 

Table 3 shows the comparison of classification accuracy in the four kinds of 330 

waveforms. For waveforms with short duration such as RS and NB, both CNN method 331 

and traditional machine learning methods achieve good classification results in 332 



classification accuracy, while the CNN model has an improvement of about 6%. 333 

However, for waveforms like PB and IC which last longer and is more difficult to 334 

classify, the CNN method shows a significant improvement of up to 17% in accuracy 335 

compared to traditional machine learning methods. The performance of SVM and RF 336 

is not as expected as that in the original literature. This may be due to the fact that the 337 

dataset we used contains longer slices of waveform which can preserve more waveform 338 

features. Therefore, the hyperparameters used in the original literature may be no longer 339 

suitable and need to be adjusted. In contrast, the CNN model supports raw waveforms 340 

as inputs, without the need of manual adjustment of hyperparameters after changing 341 

datasets, which can bring stronger robustness. In addition, the CNN model performs 342 

well on metrics like precision, recall and F1, proving that the model does not have an 343 

imbalance problem. 344 

3.2 Model interpretability analysis based on CAM visualization  345 

The proposed CNN model achieves higher performance in all kinds of waveforms, 346 

which may be related to a better understanding of the physical process.  To investigate 347 

the feature the model has learned, we use CAM visualization method mentioned in 348 

section 2.2 to estimate which part of the waveform lead to its classification result. For 349 

comparison, the SHAP method is used to mark the waveform which owns higher 350 

contribution to affect the classification results in SVM(Ribeiro et al., 2016). In this 351 

section we will discuss the classification process of the four typical VLF/LF waveforms 352 

in both cloud to ground flashes (CG) and intracloud flashes (IC), including return stokes 353 

(RS), active stage of IC (ASIC), preliminary breakdown (PB) and narrow bipolar pulses 354 

(NB). The accurate classification of RS helps to distinguish between CG and IC events 355 

and can improve the location efficiency of LLS. The classification of PB, NB and ASIC 356 

is important for further research of the initiation mechanisms of the lightning discharges. 357 

3.2.1 Return Stroke Produced by CG  358 

The LLS allows for real-time detection of return strokes (RS) in cloud to ground 359 

flashes (CG) due to the strong and widely spread VLF/LF waves of RS, which is 360 

generated by the propagation of high amplitude currents in the lightning channel. The 361 

waveshape and amplitude of RS are closely related to factors like current strength, 362 

propagation speed and propagation path etc. Compared to other stages of the lightning 363 

discharge, the velocity of RS is high and the current of RS is strong. Therefore, the LLS 364 

often use the amplitude or pulse width of the electrical field waveform to identify RS. 365 

The traditional multi-parameter classification method concludes that the pulse width of 366 

the RS waveform is typically between 10 and 200 us. However, recent reports indicate 367 

that using pulse width as a criterion can easily misclassify several kinds of intracloud 368 



lightning pulses as RS (Biagi et al., 2007; Leal et al., 2019; Nag et al., 2014). In recent 369 

years, scholars have already tried using machine learning methods like SVM  to perform 370 

RS/IC classification (Zhu et al., 2021). This section applied the CNN model trained in 371 

Section 3.1 for RS classification. By analyzing the classification process of our CNN 372 

model under several typical RS cases, we explored the key physical features the model 373 

learned and compared it with the SVM method. 374 

 375 

Figure 2 Visualized classification results of negative RS waveform #190912135803-001RS and 376 

positive RS waveform #190912135803-003RS waveform. a) Visualized CNN classification result 377 

based on CAM for the negative RS case with a detailed demonstration for the main pulse part b) 378 

Visualized CNN classification result based on CAM for the positive RS case with a detailed 379 

demonstration for the main pulse part c) Visualized SVM classification result based on SHAP for 380 

the same case and detailed demonstration as (a) d) Visualized SVM classification result based on 381 

SHAP for the same case and detailed demonstration as (b) 382 

Figure 3(a) shows the classification result of the CNN model for a negative RS，383 

which was recorded at 13:58:03 September 2019 at Anqing, Anhui, China. We define 384 

data points with CAM weight values above 0.5 as hotspots during classification. The 385 

pulse width of this case is about 11 s, which is at the lower threshold according to the 386 

multi-parameter method, leading to great possibility for misclassification. However, the 387 

CNN model gives out a hotspot region between 25s and 27s, which means the CNN 388 

model accomplished the classification mainly by the main peak part with a duration of 389 

only 2s. It can be seen from this part that the main pulse contains a sequential double-390 

peak characteristic with a primary peak VA and a subpeak VB. Based on observation 391 
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results,  Le Vine et al. conclude that the subpeak structure of the RS waveform is related 392 

to the geometry change of the lightning channel (Le Vine, 1980). Cooray et al. propose 393 

that the abrupt changes in current amplitude or channel development velocity will result 394 

in the subpeak structure in the VLF/LF waveform (Cooray & Lundquist, 1985). Figure 395 

3(a) demonstrates that the CNN model successfully captured the double-peak 396 

characteristic of the RS waveform, which represents a key part of the physical process 397 

of RS.  398 

Figure 3(c) gives the SVM classification result for the same negative RS waveform. 399 

The orange and red circles represent the high weight points given by the SVM with a 400 

SHAP value greater than 0.5. The high weight points distribution shows that the SVM 401 

model is able to depict the profile of the waveform. It can be inferred from this that the 402 

SVM method may classify the RS waveform by marking the high-amplitude part of the 403 

RS waveform. Although the SVM model was also able to correctly classify this RS 404 

event, it failed to capture other physical information of the RS waveform.  405 

The classification results for another positive RS are given in Figure 3(b) and 406 

Figure 3(d). The hotspot region in Figure 3(b) shows that the CNN model also captured 407 

the two-peak feature of both PA and PB, which means a better understanding about the 408 

correlation between the RS waveform and physical process such as the change in the 409 

channel development velocity and the channel geometry. However, the SVM method 410 

fails to classify this positive RS waveform. As can be seen from Figure 3(d), the high 411 

weight points given out by the SVM model also tends to depict the entire waveshape. 412 

But due to the bipolar pulse following the main pulse of this waveform, the SVM 413 

method failed to mark the main pulse, which resulted in a 42% probability for RS while 414 

an 82% probability for NB. The CNN model proposed in this paper not only marks the 415 

true main pulse part of the RS waveform but also captured the double-peak feature in 416 

the main pulse. Compared to multi-parameter method, the proposed CNN model can 417 

overcome the problem that an applicable general criterion for parameters like pulse 418 

duration is difficult to be determined. As for traditional machine learning method like 419 

SVM, the anti-disturbance capability of the proposed CNN model also gets improved, 420 

which means stronger robustness.  421 

3.2.2 Active Stage of ICs   422 

Intra-cloud lightning discharge (IC) occurs in a single storm cloud or between 423 

different storm clouds. The intra-cloud lightning discharge can be divided into wo 424 

stages, including the active stage and the final stage (Bils et al., 1988). The VLF/LF 425 

radiation signal generated during the active stage of intra-cloud lightning (ASIC) 426 

presents a sequence of pulse activities. A variety of transient processes appears in the 427 

following final stage, including the narrow bipolar events, the stepped leader, the J 428 



process and the K process, etc. (Rakov & Uman, 2003). The VLF/LF radiation signal 429 

of the final stage of ICs is usually not used to identify the intra-cloud lightning events, 430 

because it owes an overlapping amplitude range with the RS. Conversely, during the 431 

ASIC, repetitive VLF/LF electric field pulses can be detected. These pulses are 432 

characterized by low amplitude and unipolarity and are related to the stepped growth 433 

of the negative leader, which are applicable to distinguish the IC and CG(Brunner, 434 

2016). However, the statistics of characteristics of the pulses during the ASICs are 435 

rarely reported. In this section, attempts were made to demonstrate that an interpretable 436 

CNN model can be used as an effective approach for the classification of ICs events.  437 

 438 

Figure 3  Visualized classification results of negative IC waveform #190818114117-001IC and 439 

#190817184223-001IC. a) Visualized CNN classification result based on CAM for the first case 440 

with a detailed demonstration for the one single pulse b) Visualized CNN classification result 441 

based on CAM for the second case with a detailed demonstration for one single pulse c) 442 

Visualized SVM classification result based on SHAP for the first case d) Visualized SVM 443 

classification result based on SHAP for the second case 444 

Figure 4(a) shows the visualized CNN classification result for a pulse train during 445 

the active period of the IC lightning. This waveform is captured at 11:41:17 18th August 446 

2019 at Lishui, Zhejiang, China. The electrical waveform at this stage consists of a 447 

sequence of pulses. The tail of each single pulse is followed by a small, slowly changing 448 

polarity-reversed process (Krider et al., 1975). The pulses repeat slowly at this stage, 449 

with an average pulse interval of 10.7s in this case, which is consistent with the 450 
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existing observations (Gomes & Cooray, 2001; Krider et al., 1975). In Figure 4(a), the 451 

hotspot region given out by the CNN model mainly contains two parts. Firstly, the 452 

model focuses on the pulse peak and its subsequent polarity-reversed part. The mean 453 

CAM value of this region is greater than 0.8. It shows that the CNN model provides a 454 

good understanding of the causal relationship between the main peak and the 455 

subsequent polarity-reversed waveform and treat them as a whole part. Secondly, it 456 

should be noted that the waveform between the two pulses is mainly background 457 

waveform, but the model still gives out CAM values of 0.5 to 0.6, significantly higher 458 

than the CAM values of the background waveform outside the active stage. It can be 459 

inferred that the model not only captures the characteristics of single pulses of ICs, but 460 

also find the pattern of continuously pulse repeat during the ASIC. In Figure 4(c), the 461 

SVM method is used to classify the same case. The circles in Figure 4(c) represent the 462 

high weight points given out by the SVM with a SHAP value greater than 0.5. The high 463 

weighted points mainly locate near the peak of the pulse. This suggests that although 464 

the SVM method can also capture the peak of the pulse, it fails to capture the causal 465 

relationship of main peak and the succeeding part.  466 

Figure 4(b) and Figure 4(d) compare the classification results of CNN and SVM 467 

method for another IC waveform. For the CNN model, the hotspot region is similar to 468 

that in Figure 4(a) which also concentrate on the single pulses and the pulse intervals. 469 

However, the SVM method misclassifies the waveform as RS. Figure 4(d) shows that 470 

the high weighted points of the SVM model mainly locates around 0μs and 75μs. The 471 

waveform around 0μs is mainly the background electric field and the waveform around 472 

75μs has the highest pulse peak. The results show that the SVM model mainly focus on 473 

the peak of the electric field pulses. Besides, since the SVM model mainly focuses on 474 

the pulse peaks, it makes the high weight points in this case locate around the largest 475 

pulse, leading to the misclassification as RS. By the comparison, it can be concluded 476 

that the CNN model is able to learn the detailed features like the temporal relationship 477 

between the first peak and subsequent polarity-reversed part of pulses, and is also able 478 

to effectively identify the macro features like the repetition of pulses in active stage of 479 

ICs. 480 

3.2.3 Preliminary Breakdown Pulses  481 

The preliminary breakdown (PB) is the initiation and development of the leaders 482 

in cloud, which is considered to be the initial stage of the lightning. The VLF/LF electric 483 

field waveform generated by PB is composed of consecutive bipolar pulses with a total 484 

duration of microseconds. It is concluded from theoretical simulations that the 485 

waveform of the PB process has a similar physical mechanism to that of the NB, which 486 

is probably related to the consecutive stepped elongation of the negative leader channel 487 



within the thundercloud(Da Silva & Pasko, 2015). The multi-parameter method usually 488 

utilizes the SNR to make classification. It is considered to be a PB process while at least 489 

three consecutive bipolar pulses are found with peaks twice the average noise level or 490 

more (Nag & Rakov, 2008). However, according to the discussion in section 3.2.2, the 491 

waveforms during the ASICs are also characterized by repetitive bipolar pulses, which 492 

makes it difficult to achieve an accurate distinction between the PBs and ASICs using 493 

multi-parameter method. In this section, the visualized result of the CNN model for PB 494 

classification is analyzed to illustrate the CNN model’s ability to capture the physical 495 

features of PB waveforms, which improves the model’s accuracy and robustness. 496 

 497 

Figure 4  Visualized classification results of PB waveform #190727133157-001PB and 498 

#1907271314423-001PB. a) Visualized CNN classification result based on CAM for the first PB 499 

case with a detailed demonstration for the main pulse and the pause part b) Visualized CNN 500 

classification result based on CAM for the second PB case with a detailed demonstration for the 501 

pause part c) Visualized SVM classification result based on SHAP for the first case d) Visualized 502 

SVM classification result based on SHAP for the second case 503 

Figure 5(a) shows the visualized CNN classification result for an PB waveform, 504 

which is captured at 13:31:57 27th July 2019 at Wuxi, Jiangsu, China. The hotspot 505 

region given out by the CNN model covers the entire period between 23 and 54μs in 506 

which the pulses exist. However, it is obvious that two partitions with different CAM 507 

values exist during this period. The first partition is between 26 and 32μs where the 508 

CAM values are all above 0.8. It can be seen from Figure 5(a) that the waveform within 509 
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this partition is notably characterized by significant continuous bipolar oscillations. The 510 

second partition is between 38 and 54μs where the CAM values range between 0.4 and 511 

0.6 and also has significant continuous bipolar oscillations. It is interesting that in the 512 

time from 32 to 38μs between the two partitions, there is a pause interval where the 513 

CAM values are less than 0.3. Figure 5(a) shows that the amplitude is low and bipolar 514 

oscillation is not obvious during the interval. The above analysis shows that the model 515 

in this paper is able to adaptively mark intervals that match the PB characteristics based 516 

on the bipolar oscillation frequency and amplitude characteristics of the waveform. 517 

Figure 5(c) shows the visualized SVM classification result for the same case. It can be 518 

seen from Figure 5(c) that the high weight points distribute on both the background 519 

waveform and the pulse part, which indicates that the SVM completes the PB 520 

identification by depicting the overall profile of the waveform without an understanding 521 

of PB’s core physical features.  522 

To further compare the proposed CNN model with the SVM model, another case 523 

of PB is shown in Figure 5(b) and Figure 5(d). In Figure 5(b) the CNN model gives a 524 

similar distribution of hotspot regions as in Figure 5(a). The CNN model accurately 525 

marks the pulse part which is also divided into two partitions by a pause interval, and 526 

the duration of the pause interval in Figure 5(b) is shorter by about 1μs compared to 527 

figure 5(a). This represents a better ability of the CNN model to adaptively classify 528 

continuous pulses that conform to bipolarity, with better robustness. The above 529 

phenomenon means that the CNN model is able to adaptively find PB-like waveforms, 530 

and even a very short non-PB interval will cause the CAM value to drop sharply. In 531 

comparison, Figure 5(d) shows that the SVM method misclassifies this case, with the 532 

highest weight points distributing at the start of the waveform around 30μs. Besides, 533 

the other high weight points mainly exist in the negative part of the waveform, leading 534 

to the misclassification. It can be inferred that the CNN model has higher classification 535 

accuracy compared to traditional machine learning methods for the ability to recognize 536 

temporal features like the continuous bipolar pulses. 537 

 538 
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Figure 6 (a) relationship of CAM values PBa  and peak ratio P (b) relationship of CAM values 539 

PBa  and pulse duration T 540 

To demonstrate our model’s ability to help to find adequate threshold for multi-541 

parameter classification. The average CAM values PBa , peak ratio P and pulse duration 542 

T are estimated and compared with the results of similar waveforms like NB. We define 543 

a single pulse as a segment of the waveform between two zero crossing points, which 544 

must contain a polarity change. The PBa  refers to the average CAM value given by the 545 

model when the waveform is considered to be a PB. The peak ratio P is the absolute 546 

value of the first and second peak amplitude ratio, and the pulse duration T is the time 547 

interval between two crossing points. The PBa  -P relationship is given in Figure 6(a). 548 

The result shows that the bipolar peak ratio of the PBs waveform ranges between 1 and 549 

2, which is in agreement with the range of peak ratios of the NB. The difference is that 550 

63% of the PBs have a P of less than 1.3, while 81% of the NBEs have a P between 1.3 551 

and 1.7. It is notable that when the P is less than 1.3, the PBa  is greater than 0.5 and 552 

decreases as the P increases. This suggests that the more P is close to 1, the more likely 553 

the pulse considered to be PB in our model, which is consistent with the simulation 554 

results of Silva et al. (Da Silva & Pasko, 2015). However, when the P is greater than 555 

1.8, the PBa  increases as the P increases. This suggests that the peak ratio cannot be 556 

used as an effective way to distinguish PB from NB. This may be because that the P 557 

changes as the conductivity of the leader channel changes in which the PBs radiation 558 

source locate, thus deviating from the theoretical result of Silva(Kašpar et al., 2017). 559 

Figure 6(b) demonstrates the relation of PBa -T, where T is within 10 μs for both PB 560 

and NB. 91% of PB had T of less than 4.0 μs, while all of NB have T between 4.0 and 561 

10.0 μs. As can be seen from the trend of PBa , the proposed model suggests that the 562 

shorter the pulse duration is the more likely the pulse is to be a PB, especially when the 563 

pulse duration is less than 4μs. It should be pointed out that as the T increases, the PBa  564 

gradually decreases to around 0.4. According to the results, overlaps exist in the 565 

parameter distribution of PB and NB, which lead to the difficulties to set an adequate 566 

threshold for multi-parameter classification. However, the turning points of PBa -P and 567 

PBa -T is generally consistent with the actual peak ratio and pulse duration distribution 568 

of PB and NB. This indicates the CAM values from the proposed model is helpful in 569 

threshold determination.  570 

3.2.4 Narrow Bipolar events (NBs) 571 



Narrow bipolar event (NB) is a special type of intracloud discharge, often occurring 572 

in isolation from other discharge events. The amplitude of NB is usually high, which 573 

can be close to that of RS(Rakov & Uman, 2003; Smith et al., 1999). The pulse duration 574 

of NB is short, ranging from 2 to 20μs (Jacobson and Light 2012; Wu et al. 2014). 575 

Increasing evidences indicate that NB may be the initiating process for other lightning 576 

discharge events. It is demonstrated through simulation that the electric field waveform 577 

of the NBE is related to the abrupted elongation of the initial  negative leader channel 578 

in the thundercloud(Da Silva & Pasko, 2015). Because of the distribution overlap of 579 

several essential characteristic like the amplitude and pulse width between NB and RS, 580 

the NB is thus an important factor affecting the accuracy of RS classification in 581 

LLS.(Leal et al., 2019; Nag et al., 2014). In this section, the visualization of which part 582 

of the NB waveform causes the model to make the correct classification will be 583 

analyzed. 584 

 585 

Figure 7 Visualized classification results of NB waveform #190818114306-001NB and 586 

#190818114919-001NB. a) Visualized CNN classification result based on CAM for the first NB 587 

case with a detailed demonstration for the main pulse part b) Visualized CNN classification result 588 

based on CAM for the second NB case with a detailed demonstration for the main pulse part c) 589 

Visualized SVM classification result based on SHAP for the first case and detailed demonstration 590 

as (a) d) Visualized SVM classification result based on SHAP for the second case and detailed 591 

demonstration as (b) 592 

Figure 7(a) shows the visualized CNN classification result for an NB waveform, 593 

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

C
A

M
 

SH
A

P

0 25 50 75 100 125 150

22 24 26 28

1.0

0.5

0.0

-0.5

N
o

rm
al

iz
ed

 E
-F

ie
ld

  (
a.

 u
.)

Time (μs)

-0.6

0.6

0.4

0.2

0.0

-0.2

-0.4

0.8

0 25 50 75 100 125 150

-0.6

0.6

0.4

0.2

0.0

-0.2

-0.4

0.8

N
o

rm
al

iz
ed

 E
-F

ie
ld

  (
a.

 u
.)

Time (μs)

22 24 26 28

1.0

0.5

0.0

-0.5

(b)

(d)

0 25 50 75 100 125 150

-0.6

0.6

0.4

0.2

0.0

-0.2

-0.4

0.8

N
o

rm
al

iz
ed

 E
-F

ie
ld

  (
a.

 u
.)

Time (μs)

22 24 26 28

1.0

0.5

0.0

-0.5

(a)

0 25 50 75 100 125 150

N
o

rm
al

iz
ed

 E
-F

ie
ld

  (
a.

 u
.)

Time (μs)

-0.6

0.6

0.4

0.2

0.0

-0.2

-0.4

0.8

22 24 26 28

1.0

0.5

0.0

-0.5

(c)



which is captured at 11:43:06 18th August 2019 at Anqing, Anhui, China. It can be seen 594 

that the proposed CNN locates the main pulse part of this waveform within 24.5±1.5μs 595 

accurately, which contains both positive and negative peaks as well as a steep polarity 596 

change process. It is notable that the average CAM value of the main pulse is higher 597 

than 0.8, while the average CAM value of the other part is less than 0.2, indicating that 598 

the CNN model focuses on the waveform pulse and pays less attention to the 599 

background waveform. The CAM value difference shows that the CNN model captures 600 

the feature of isolation of the NB waveform, with attention focused on the pulse part in 601 

the waveform which contains the most information of the waveform. Figure 7(b) shows 602 

the visualized SVM classification result for the same case. Compared to the CNN model, 603 

the SVM model also focuses on the pulse part and the high weight point is distributed 604 

at the positive and negative peak tops, with almost no high weight point distributed in 605 

the background part. Figure 7(c) shows that the weight values positive is positively 606 

correlated to the pulse magnitude, indicating that the SVM model may classify 607 

waveforms by identifying the high amplitude parts in the waveform. It is important to 608 

point out that the two core characteristics of the NB require the model to be able to 609 

recognize time-dependent feature. The short pulse duration feature requires the model 610 

to be able to determine if the pulse presents for a certain period of time. The bipolar 611 

pulse feature requires the model to be able to determine if positive and negative peaks 612 

appear in succession. As depicted in 2.3.2, the parallel design of multiple convolutional 613 

kernels in our CNN model allows the model to capture features at different time scales 614 

during the training process. Due to the variable scale of the features extracted by the 615 

CNN model, the model can learn the temporal causality features in waveforms during 616 

the learning process. Therefore, the hotspot region given out includes the entire main 617 

pulse part. In contrast, the SVM model only focuses on the high amplitude point 618 

distribution of the waveform and therefore may lead to misclassification of some NB 619 

waveforms. Figure 7(b) and Figure 7(d) show another case of NB. The bipolar pulse in 620 

this case is located around 23.9 to 24.9s, but there is a large positive disturbance at 621 

23.5s with a peak ratio of approximately 0.5 to the main pulse. Figure 7(b) shows that 622 

the CNN model successfully classifies the waveform, with the given hotspot region 623 

distributed between 23.8-24.9s, which is coincides with the main pulse duration. It 624 

should be noted that the CAM value of the positive part disturbance is less than 0.5. 625 

However, the SVM model is unable to classify this case correctly. As can be seen from 626 

Figure 7(d), the SVM model only locates the positive peak top of the main pulse as well 627 

as the positive peak top of the disturbance, ignoring the negative period of the main 628 

pulse, and thus makes incorrect judgments as a result. As can be seen from the above 629 

comparison, the SVM model only classifies waveforms by the distribution of high 630 



amplitude points, which lacks consideration of temporal correlation. The classification 631 

of SVM is not supported by physical process and is prone to misclassification. The 632 

CNN model takes into account the temporal correlation patterns in the timeseries data 633 

at an adaptive scale during the classification process, and is more likely to capture the 634 

core features of the NB waveform, providing higher classification accuracy and 635 

robustness.  636 

To further demonstrate that the CNN model can help to find threshold to 637 

distinguish similar waveforms like RS and NB, we calculated the peak ratio P, pulse 638 

duration T and average CAM values NBa of the NB and RS waveforms in the dataset. 639 

The definitions of P and T are identical to those in 3.2.3. The NBa  refers to the CAM 640 

value given by the model when the waveform is considered to be a NB. The result is 641 

shown in Figure 8. 642 

 643 

Figure 8 (a) relationship of CAM values NBa  and pulse duration T (b) relationship of CAM 644 

values NBa  and peak ratio P 645 

Figure 8(a) shows the relationship between the average CAM value NBa  and the 646 

pulse duration T. When the pulse duration T is between 2-5.5s, the average CAM value  647 

NBa  remains high within 0.75-0.8. As the T increases, NBa drops rapidly to a minimum 648 

value of 0.22. It can be concluded from figure 8(a) that the model suggests that the pulse 649 

duration of the NB should not exceed 15s. Figure 8(b) shows the relationship between 650 

the average CAM value NBa  and the peak ratio P. The peak ratio quantifies the degree 651 

of bipolarity of the waveform. When the P is between 1 and 2, the bipolarity of the 652 

waveform is more obvious and the average CAM value is at a high level between 0.6 653 

and 0.8. When the P is greater than 2 and increases further, the bipolar characteristics 654 

of the waveform can be considered to have gradually disappeared and the unipolar 655 

characteristics become prominent. The CAM value drops steeply and remains at a low 656 

level of around 0.4. Figure 8(a) and (b) show that the turning points of NBa -P and NBa657 
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-T is generally consistent with the actual peak ratio and pulse duration distribution of 658 

RS and NB. 659 

4 Discussion 660 

Compared to plain CNN models, our model employs the shortcut connection to 661 

improve the rate of convergence, which enables the model to deal with longer input 662 

waveforms. The multi-size kernels of our model can capture multi-scale temporal 663 

features of VLF/LF waveforms. In section 3.2, we demonstrate that the improved 664 

model can extract physical information of VLF/LF waveforms which is related to 665 

different lightning discharge processes. It means that the classification accuracy of our 666 

model is much less dependent on the dataset, and it can be extended to recognize the 667 

lightning VLF/LF waveform recorded from other regions.   668 

The open dataset measured at Córdoba in central Argentina (Zhu et al., 2021) is 669 

employed as a test dataset here to further exam the portability of our model. The 670 

waveforms in the original dataset are classified into four types, including +CG, - CG, 671 

+ IC and – IC. We ignore the impact of polarity on the classification accuracy since it 672 

is convenient to be recognized. The original dataset is reclassified into two groups of 673 

RS and IC. We down sample these waveforms to the sample rate of 5MS/s, which is 674 

corresponding to our devices.  Since the input waveform of our model must possess 675 

2500 points, we manually add noise data to the waveforms meet the required length. 676 

Higher classification accuracy is obtained by using our model than the result reported 677 

by Zhu et al. The classification accuracy of RS in our model is 99.41%, while it is 97% 678 

by using SVM. The classification accuracy of IC in our model is 97.38%, while it is 679 

97% by using SVM. Note that the classification accuracy of IC here equals to the sum 680 

of PB, NB, and ASIC for convenience of comparison. 681 

It should be emphasized that traditional machine learning methods can only give 682 

out the probability for different categories. The proposed model can visualize the 683 

contribution of different parts of the waveform to the classification result. One can 684 

observe in figure 9 that our model can effectively capture the physical features of 685 

waveforms which cannot be classified correctly by the SVM. Fig. 9 (a) shows the CAM 686 

visualization of a RS event. This case is misclassified as an IC by the SVM, which may 687 

be caused by the unexpected bipolar oscillation around 30s according to the discussion 688 

of Zhu et al. It can be seen from figure 9(a) that the proposed model marks the dual 689 

peaks of the waveform which is believed to be an instinct feature of RS events. 690 

Moreover, the unexpected bipolar oscillation is neglected by our model, since the 691 

corresponding CAM are less than 0.5 there. Figure 9(b) shows the CAM visualization 692 

of a NB event. It is misclassified as a CG by the SVM for the positive disturbance 693 



around 27s according to Zhu’s report. It can be seen in figure 9(b) that the steep 694 

polarity change process is marked with high CAM values, which is the key feature in 695 

the NB waveforms. The positive disturbance is neglected with the CAM values less 696 

than 0.5. According to these comparisons, the proposed CNN model is more effective 697 

in extracting the key features related to the physical process. These key features are 698 

relatively invariant in different regions. Therefore, the CNN model is able to accurately 699 

classify data from different regions. 700 

 701 

Figure 9 The CAM values of two misclassified waveforms by the SVM in the open dataset. (a) a 702 

RS waveform misclassified as IC. (b) an IC waveform misclassified as RS 703 

5 Conclusion 704 

In this paper, the main conclusions are summarized as follows:  705 

（1）In this paper, an interpretable CNN model for VLF/LF lightning waveform 706 

classification is proposed. The proposed model uses multi-scale convolutional kernels 707 

to enhance the ability to capture local waveform features. The output of the final 708 

convolutional layer and the fully-connection weights are used to visualize the 709 

contribution of different waveform parts to the classification result. A shortcut 710 

connection is built in the proposed CNN model to promote the convergence speed and 711 

make the model capable of waveforms with higher sampling rate. Based on 8000 712 

waveforms recorded in five provinces in China, the four-type classification of 713 

waveforms including RS, ASIC, PB and NB, is achieved with an accuracy of 98.5%, 714 

which is better than the traditional SVM and RF methods. 715 

（2）Based on the distribution of the high-contribution waveform parts in the 716 

classification process, we analyzed the correlation between the model’s focused 717 

features and the lightning discharge process. The model considers the double peak 718 

structure superimposed on the main pulse as the main feature of the RS, which is mainly 719 

caused by the abrupt change of the current or the branches of the lightning channel. The 720 

proposed model is able to identify the separated, repetitive pulses generated by the 721 

ASIC event, which are associated with the stepped growth of the negative leader in 722 
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thunderstorms. The continuous bipolar pulse train is considered as the main feature of 723 

PB by the model, which is generated by the continuous development of the initial leader 724 

in thunderstorms. The model in this paper is also able to identify the narrow bipolar 725 

pulse generated by the sudden elongation of the initial leader in NB events. This 726 

indicates that compared to traditional machine learning methods, the model in this paper 727 

extracts features which are in line with the human experts in the VLF/VF waveform 728 

model classification process. 729 

（3）We analyzed the relationship between the average waveform weights given 730 

by the model and the pulse duration, peak ratios. For NB and PB events with similar 731 

physical mechanisms, the weight value αPB for PB events varies in a U-shape with the 732 

increase of the peak ratio. When the pulse duration Twidth is greater than 4.0 μs, αPB 733 

decreases monotonically with the increase of Twidth. This indicates that the pulse 734 

duration is more suitable than the peak ratio to distinguish the NB and PB waveforms. 735 

Compared to the RS, the weight value αNB for NB does not vary significantly (which is 736 

between 0.4 and 0.7) with the peak ratio. And when the pulse duration Twidth is greater 737 

than 5.0 μs, αNB decreases significantly with the increase of Twidth, which indicates that 738 

the pulse duration can better solve the problem of easy confusion between RS and NB 739 

events in the lightning location system. 740 

（4）We validated the model in this paper using an open source dataset reported 741 

in literature, which has a total of 32,754 samples from central Argentina. The model in 742 

this paper achieved an accuracy of 98.39%, which is better than the result using the 743 

SVM according to the literature. Based on the contribution weights obtained in this 744 

paper, it can be seen that the model in this paper considers the double-peaked structure 745 

superimposed on the main pulse as the key feature of the RS, which avoids the influence 746 

of unexpected waveform oscillation and NB waveforms on the RS/IC classification 747 

accuracy. It is proved that the model in this paper not only reduces the dependence of 748 

the classification performance on the training set, but also is more robust in the 749 

classification of waveforms from different regions. 750 
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