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Abstract

An ensemble-based method for wave data assimilation is implemented using significant wave height observations from the

globally distributed network of Sofar Spotter buoys and satellite altimeters. The Local Ensemble Transform Kalman Filter

(LETKF) method generates skillful analysis fields resulting in reduced forecast errors out to 2.5 days when used as initial

conditions in a cycled wave data assimilation system. The LETKF method provides more physically realistic model state updates

that better reflect the underlying sea state dynamics and uncertainty compared to methods such as optimal interpolation. Skill

assessment far from any included observations and inspection of specific storm events highlight the advantages of LETKF over

an optimal interpolation method for data assimilation. This advancement has immediate value in improving predictions of

the sea state and, more broadly, enabling future coupled data assimilation and utilization of global surface observations across

domains (atmosphere-wave-ocean).

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Ensemble-Based Data Assimilation of Significant Wave1

Height from Sofar Spotters and Satellite Altimeters2

with a Global Operational Wave Model3

I.A. Houghton, S.G. Penny, C. Hegermiller, M. Cesaretti, C. Teicheira, P.B.4

Smit5

Sofar Ocean6

Key Points:7

• The Local Ensemble Transform Kalman Filter assimilating wave height observa-8

tions improves global wave forecast skill out to 2.5 days.9

• LETKF is more effective at improving predictions far from observations compared10

to a simple optimal interpolation framework.11

• The ensemble-based data assimilation (DA) demonstrated in the wave domain en-12

ables future coupled DA across atmosphere-ocean-wave models.13
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Abstract14

An ensemble-based method for wave data assimilation is implemented using significant15

wave height observations from the globally distributed network of Sofar Spotter buoys16

and satellite altimeters. The Local Ensemble Transform Kalman Filter (LETKF) method17

generates skillful analysis fields resulting in reduced forecast errors out to 2.5 days when18

used as initial conditions in a cycled wave data assimilation system. The LETKF method19

provides more physically realistic model state updates that better reflect the underly-20

ing sea state dynamics and uncertainty compared to methods such as optimal interpo-21

lation. Skill assessment far from any included observations and inspection of specific storm22

events highlight the advantages of LETKF over an optimal interpolation method for data23

assimilation. This advancement has immediate value in improving predictions of the sea24

state and, more broadly, enabling future coupled data assimilation and utilization of global25

surface observations across domains (atmosphere-wave-ocean).26

Plain Language Summary27

Sofar Ocean built and maintains a global network of buoys that measure ocean sur-28

face waves. This network supplements less frequent measurements of ocean surface wave29

heights taken from satellite altimeters. Here, we develop a technique to combine both30

observational datasets to initialize a numerical wave model that is used to make fore-31

casts of ocean surface wave conditions multiple days into the future. In particular, the32

advancement demonstrated here accounts for uncertainty in wind forecasts, which are33

a major source of uncertainty for ocean surface wave forecasts. Future development based34

on this advancement could thus result in improvements in both wave and atmospheric35

predictions.36

1 Introduction37

Data assimilation (DA) with global operational wave models has lagged advances38

in other domains despite the value of accurate wave state representation for both wave39

forecasting itself and coupled Earth system forecasting more generally. In this work, we40

demonstrate the effective implementation of an ensemble-based wave data assimilation41

method that is a fundamental and, as of yet, not broadly implemented building block42

to a modern coupled Earth system forecasting framework.43

The continuous development of Earth system modeling frameworks for weather fore-44

casting has enabled remarkable increases in predictive ability with major social and eco-45

nomic consequences (Kull et al., 2021). This forecast skill is often attributed to a com-46

bination of improved model accuracy and observation utilization (Kalnay, 2002). Thus,47

effectively leveraging observations in Earth system modeling (i.e., data assimilation) is48

critically important to improving forecast skill. In the wave domain, the massive expan-49

sion of in situ observations provided by the Sofar Spotter network furthers the impact50

of DA developments.51

Over the past 30 years, the production of ensemble forecasts has become a stan-52

dard activity at operational weather prediction centers (Buizza, 2019; Kalnay, 2019). While53

operational centers generally produce atmospheric ensemble forecasts using some kind54

of ensemble-based or hybrid ensemble-variational DA method (Kleist & Ide, 2015; Ra-55

bier et al., 2000; Clayton et al., 2013), operational wave forecasts have generally been56

produced using either basic DA methods (Janssen et al., 2005) or no DA at all (NCEP,57

2022).58

Here, we aim to advance the DA capabilities for operational wave forecasting to59

catch up with the state of the art in atmospheric and oceanic prediction. While wave60

forecast skill improvement from DA has been demonstrated in the past (Lionello et al.,61

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

1992; Aouf et al., 2006; Smit et al., 2021; Houghton et al., 2022), this work presents the62

robust implementation of advanced DA methods in the wave domain at a global scale63

and in an operational capacity. The ensemble DA approach is advantageous because it64

can better leverage the uncertainty information provided by atmospheric ensemble fore-65

casts driving the wave forecasts. Further, with the increasing trend toward the use of66

coupled forecasting systems (Janssen et al., 2005; Mehra & Yang, 2020), the proposed67

LETKF wave DA approach serves as a precursor to initializing a coupled numerical weather68

prediction system that properly leverages information about cross-domain atmosphere-69

wave-ocean dynamics.70

With the advent of a globally distributed, high-density hourly in situ observing net-71

work provided by Sofar Spotter wave buoys (Houghton et al., 2021) in addition to satel-72

lite altimetry, impacts to forecast skill from wave observations at a global scale have be-73

come feasible. Smit et al. (2021) demonstrated a first implementation of assimilation of74

the global Spotter wave buoy network using a simple optimal interpolation scheme to75

assimilate measurements of significant wave height. Houghton et al. (2022) extended that76

work with an augmented optimal interpolation approach utilizing the spectral informa-77

tion provided by the Spotter buoys (frequency spectrum and Fourier coefficients of the78

directional spectrum). Both schemes provided forecast skill improvements for significant79

wave height out to three days, with additional benefits to peak and mean frequency and80

direction statistics for the spectral method.81

Despite clear value demonstrated by the assimilation of measurements derived from82

this global network, there remain several challenges for skillful wave forecasting enabled83

by data assimilation, namely,84

• Efficient determination of the forecast error covariances,85

• Proper update to the model state (wave spectra) given observations of diverse in-86

tegral parameters, and87

• Capacity to correct the wind forcing field based on observed errors in the wind88

sea.89

In this work, we describe the implementation of an ensemble-based data assimi-90

lation system using the Sofar Spotter network and satellite altimeters with the Local En-91

semble Transform Kalman Filter (LETKF; Hunt et al., 2007). LETKF combines the state-92

dependent background error derived from an ensemble forecast with the observations (and93

their corresponding uncertainties) to produce an analysis ensemble. In contrast to op-94

timal interpolation (OI), where a fixed forecast error covariance length scale and struc-95

ture (e.g., Gaussian) is prescribed, LETKF produces updates in the posterior analysis96

reflective of underlying uncertainty.97

Further, LETKF allows for the simultaneous assimilation of a variety of observa-98

tion types, as long as an observation operator to transform the model estimate to the99

observation space exists and observational uncertainty can be properly parameterized.100

In the case of a wave model, significant wave height observations from buoys and satel-101

lites can be assimilated and an analysis model spectra can be calculated without any as-102

sumptions regarding the relationship between an analysis significant wave height and the103

corresponding spectrum, such as is necessary in optimal interpolation frameworks (e.g.,104

Lionello et al. (1992); Voorrips et al. (1997)). This functionality becomes particularly105

valuable with the combination of the wave spectra observations from the Spotter net-106

work and significant wave height from satellite altimeters – both uniquely valuable ob-107

servations that can be simultaneously assimilated in an LETKF framework. Finally, the108

LETKF implementation is ideally suited for a coupled model infrastructure (Sluka et al.,109

2016; Penny et al., 2019), enabling correction of the atmospheric domain based on er-110

rors observed in the wave domain - a promising avenue for longer lead time improvements111

in the wave forecast and overall improvements in a coupled atmosphere-wave system.112
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Motivated by the myriad of advantages afforded by an ensemble-based assimila-113

tion framework, we demonstrate how the utilization of significant wave height observa-114

tions from approximately 600 free-drifting Spotter buoys and 3 satellite platforms (Jason-115

3, SARAL, and Sentinel-6A) leads to improvements in RMSD of forecasted ocean sur-116

face wave heights that can persist out to 60 hours or more, and improvements in biases117

can persist beyond that. We also show specific examples demonstrating the value of state-118

dependent forecast error covariance information, and impacts on predicting swell arrival119

time. To understand the unique aspects of LETKF as a method, an OI assimilation and120

forecasting framework is also implemented for comparative purposes. Sections 2.1-2.2121

describe the ensemble set up and processing of observations. Sections 2.3-2.6 describe122

the LETKF method and implementation choices, cycled analysis set up and forecast skill123

assessment. Section 3 discusses results, followed by conclusions and future work in Sec-124

tion 4.125

2 Methods126

In general, the data assimilation methods are evaluated in a cycled DA framework.127

For both the deterministic (OI) and ensemble (LETKF) methods, every hour, a one hour128

wave forecast (or ensemble of forecasts) is produced and used as the background in the129

assimilation step. The respective update method is then applied (OI or LETKF) and130

the analysis fields are then used as the initial conditions to the subsequent hour forecast.131

2.1 Wave Model Ensemble132

The WAVEWATCH3 model (WW3; Tolman et al., 2019) is used to produce a 29-133

member ensemble wave forecast. Each member is identically implemented with 0.5° hor-134

izontal resolution over the global ocean and forced by an ensemble of near-surface (U10)135

wind fields from the European Centre for Medium-Range Weather Forecasts (ECMWF)136

Ensemble forecast system. Members 1-29 of the ECMWF atmospheric ensemble are used137

(member 0 is the control run and not used), with each wind ensemble member consis-138

tently mapped to the same wave ensemble member at every model forecast step. A sin-139

gle deterministic sea ice area fraction forecast from the ECMWF High Resolution (HRES)140

forecast system is used for every wave ensemble member. Wave-current interactions, in-141

cluding relative wind effects, are included using HYCOM surface currents (Wallcraft, 2003).142

The WW3 model spectra are discretized with 36 equally-spaced direction bins and 36143

logarithmically-spaced frequency bins. See Smit et al. (2021) for full WW3 model con-144

figuration details. Atmospheric forcing is updated every 6 hours, as available from ECMWF.145

In pre-processing, the zonal and meridional components of each ECMWF wind en-146

semble member are shifted such that the square of the ensemble mean (proportional to147

the wind stress driving wave growth) matches the square of the HRES wind in order to148

reduce biases in the wave ensemble. Further, the wind input source term calibration fac-149

tor (βmax, Ardhuin et al., 2010) in the ensemble wave model is reduced to 1.36 from the150

deterministic model value of 1.48. This lessens a high bias observed in the free-running151

wave ensemble relative to the deterministic model that was not remedied by re-centering152

the winds alone.153

2.2 Observation Processing Methods154

Significant wave height (Hs) observations are used from the global Sofar Spotter155

network and the altimeters on three satellites. The Spotter buoy is an approximately 42156

cm-diameter directional wave buoy that provides, in near real-time, hourly observations157

of the directional wave spectrum, sea surface temperature, barometric pressure, sound158

level pressure, surface drift and inferred wind (Houghton et al., 2021). Bulk wave pa-159

rameters are calculated on board from the directional spectrum. In this work, only the160
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significant wave height is utilized in the data assimilation framework. Prior to each anal-161

ysis cycle, the Spotter data is aggregated and linearly interpolated onto the hour to align162

with the hourly WW3 model analysis times. Significant wave height observations below163

0.2 m, above 25 m, or with an hourly difference larger than 5 m are removed. Approx-164

imately 600 Spotter observations are available each hour throughout the study.165

Satellite altimeter observations of significant wave height are utilized from the Jason-166

3, SARAL, and Sentinel-6A platforms (SENTINEL-6, 2021; NASA/JPL, 2013; Desai,167

2016). These data are ingested prior to an analysis cycle in an operational framework168

(i.e., near real-time), therefore only approximately 50% of the total number of altime-169

ter observations are available at the time of analysis. Altimeter observations are binned170

to the nearest hour and the mean within a 0.5 degree latitude-longitude bin is stored (i.e.171

forming “super-obs” (Abdalla, 2014)). Latitude-longitude bins with a standard devia-172

tion of observations greater than 0.2 m are removed. Observations below 0.5 m, above173

12 m and north or south of 60◦ are removed to avoid ice regions. A land mask is derived174

from the WW3 model grid and dilated by 6 grid cells to remove any observations within175

approximately 300 km of land. Lastly, the altimeter observations are thinned by down-176

sampling to every other bin to reduce redundant information.177

Processed observations are calculated and stored independently of the assimilation178

experiments such that all re-analyses use identical observation data. Figure 1 illustrates179

Spotter buoy locations at the beginning of the study along with 24 hours of aggregated180

altimeter tracks.181

2.3 Local Ensemble Transform Kalman Filter (LETKF)182

We implement LETKF following Hunt et al. (2007). Each background wave ensem-183

ble member (i.e. N grid points x 36 frequency bins x 36 direction bins) is used to con-184

struct the columns of the matrix X̂
b
. The ensemble perturbations are then derived as185

Xb = X̂
b
− 1T x̄b, where x̄b is the background ensemble mean. LETKF balances the186

prior forecast error covariance estimated as Pb = 1
k−1X

bXbT with the observation er-187

ror covariance, R, to produce an optimal estimate of the posterior analysis ensemble Xa.188

The effective Kalman gain, K, of the LETKF algorithm can be formulated compactly189

as190

K = Xb

[
k − 1

ρ
I+

(
Yb

)T

R−1
(
Yb

)]−1 (
Yb

)T

R−1. (1)

The matrix Yb = H(Xb) corresponds to the ensemble of model estimates trans-191

formed to the observation space by the observation operator H, which allows these states192

to be compared directly to observations. The integer k is the number of ensemble mem-193

bers and the scalar ρ is a multiplicative inflation parameter, used to maintain spread in194

the ensemble. The observation error covariance matrix R describes the expected obser-195

vation errors on the diagonal and the covariances between observation errors on the off-196

diagonal.197

Following the implementation by Hunt et al. (2007), the Kalman gain in Equation198

1 is a function of the model analysis error covariance, which is given in the ensemble per-199

turbation subspace as,200

P̃a =

[
k − 1

ρ
I+

(
Yb

)T

R−1
(
Yb

)]−1

. (2)

The updated state estimate is then provided by201
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x̄a = x̄b +K
(
yo −H(x̄b)

)
, (3)

where yo is the set of observations and x̄a and x̄b correspond to the ensemble mean202

of the analysis and background, respectively. The updated set of ensemble perturbations203

in the original model space is provided by the transform operation,204

Xa = Xb
[
(k − 1)P̃a

] 1
2

. (4)

The final analysis ensemble is then given as,205

X̂a = Xa + 1T x̄a, (5)

with negative values in the analysis set to zero.206

Thus, every hour the observations available are optimally incorporated to gener-207

ate an analysis ensemble with a mean representing the best estimate of the true state208

and a standard deviation representative of model uncertainty. In practice, the analysis209

wave spectrum at a gridpoint is the weighted sum of the ensemble members, with the210

weights determined by the LETKF method (see Hunt et al. (2007) for computationally211

efficient implementation details).212

2.3.1 Implementation Specifics213

A multiplicative inflation of 5% (ρ = 1.05) is used to maintain ensemble spread214

over cycled analysis steps. Every analysis update decreases the spread of the ensemble215

members, however, the multiplicative inflation and the strong response to wind forcing216

avoids any collapse of the wave ensemble members over time. A test of relaxation to prior217

spread (see Whitaker & Hamill, 2012) as an alternative to multiplicative inflation yielded218

similar results. Multiplicative inflation is thus chosen for simplicity.219

An ensemble size of 29 is used to balance computational cost with achieving suf-220

ficient forecast ensemble spread. An inspection of observed and modeled significant wave221

height indicated that the ensemble spread sufficiently spans observation values. That said,222

a larger ensemble could more reliably represent the true state and remove spurious cor-223

relations in space.224

Due to the use of finite ensemble size, possible spurious correlations in space could225

degrade the analysis. To mitigate this issue, a limit on the physical distance of an ob-226

servation used in the analysis is imposed - i.e. localization. The localization is applied227

with a weighting function that decays with distance (d), a maximum cutoff distance for228

relevant observations and an upper limit on number of observations included. A hori-229

zontal length-scale, σh, of 800 km is used to determine the observation weight following,230

w(d) = e
−0.5( d

σh
)2
. (6)

A maximum cutoff distance (influenced by Gaspari and Cohn (1999)) is then de-231

rived from the horizontal length scale of232

dmax = 2
√
10/3 σh ≈ 2, 900 km. (7)

A maximum of 5 Spotter observations and 30 altimeter observations are used for233

analysis at any given grid point. For a grid point with greater than the maximum num-234

ber of observations, the most proximate observations are used.235
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To derive the model estimates in the observation space, H(Xb), the model spec-236

trum is bi-linearly interpolated to the observation location and then the significant wave237

height, Hs, is calculated following238

Hs = 4
√
∫∫E(f, θ)dfdθ, (8)

where E(f, θ) is the model state, the variance density spectrum in frequency (f) and di-239

rection (θ).240

2.3.2 Observation Error Covariances241

Data assimilation relies on balancing uncertainty in the model with uncertainty in242

the observations to provide a best estimate of the true state. As a result, a reliable es-243

timate of uncertainty in observations relative to the model is critical, spanning obser-244

vational noise and representativeness errors (Janjić et al., 2018). To that end, a co-location245

study was carried out to estimate uncertainty in Spotter observations. Over approximately246

a one year period, all Spotter observations collected within 50 km were co-located, and247

the differences between proximate observations were aggregated. A maximum separa-248

tion distance of 50 km was chosen to incorporate representativeness error of the 0.5◦ model249

grid along with observational noise and yielded approximately 93,000 pairs. A consis-250

tent difference in observed wave heights as a function of wave height itself is observed251

(Figure 2). Specifically, higher sea states resulted in larger differences between co-located252

observations. This proportional scaling of uncertainty is consistent with uncertainty as-253

sociated with integrals over observed spectra (Young, 1986) - rather than instrument GPS254

error. As a result, a relative observation error standard deviation is chosen. Within the255

assimilation framework, the observation error is estimated unique to each observation256

as 6.5% of the observation value itself for Spotters. Off-diagonal observation error co-257

variances are assumed to be zero for significant wave height, simplifying the R matrix258

to be diagonal and increasing computational speed of the LETKF algorithm. A mod-259

erately higher uncertainty is attributed to the satellite altimeter of 10% motivated by260

observed noise in the satellite observations (Abdalla, 2014).261

2.4 Wave Model Analyses262

2.4.1 LETKF263

Each ensemble member is initialized with the same model state from the free-running264

(non-assimilative) deterministic 0.5◦ model. A one hour forecast is carried out for each265

of the ensemble members to produce a background ensemble, X̂
b
. The analysis step is266

then carried out using ensemble members 1-29. The analysis ensemble mean is then cal-267

culated and stored as the zeroth ensemble member. Ensemble member 0 is then driven268

by the deterministic (ECMWF HRES) winds, while the rest of the ensemble members269

are driven by their respective ensemble wind member. This architecture is chosen to prop-270

agate forward a “best estimate” of the analysis state, assuming the deterministic winds271

are more skillful than any individual wind ensemble member.272

Spin-up of the wave ensemble is assessed with the global average standard devi-273

ation of the significant wave heights in the ensemble as a function of time and the dis-274

tribution of departures (yo−H(X̂
b
)). The model spread represented by the standard275

deviation of Hs and the mean of the departures are expected to stabilize for a spun-up276

cycled system, and appear to do so after approximately two days, or 48 analysis cycles.277

2.4.2 Optimal Interpolation278

To assess the unique impacts of the LETKF assimilation technique given an equiv-279

alent set of observations, a comparative cycled analysis was also run using an optimal280

interpolation (Hs OI) scheme as outlined in Smit et al. (2021). A constant observation281
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standard deviation of error of 0.3 m and a model error covariance scale of 0.3 m with ho-282

mogeneous, isotropic structure was prescribed with a correlation length-scale of 300 km.283

2.5 Wave Model Forecasts284

Every six hours, the deterministic wind and sea ice fields provided by ECMWF HRES285

are used to drive three-day forecasts initialized by the wave model analyses. Three dif-286

ferent experiments are presented here - LETKF, Optimal Interpolation (OI), and free-287

running (No DA). For LETKF, the best estimate ensemble mean assigned to the zeroth288

ensemble member is used as the initial condition to the four-day forecast. For OI, sim-289

ply the analysis field at the forecast initialization time is used. For No DA, the 6-hour290

forecast from the previous forecast initialization is used. The wave model is implemented291

identically as for the ensemble above, except utilizing ECMWF HRES winds and the cor-292

responding βmax of 1.48. Therefore, differences in forecast skill should be attributable293

to the initialization alone. Forecasts were initialized after a spin-up of 48 analysis cy-294

cles and run from October 12, 2022 to November 2, 2022.295

2.6 Forecast Skill Assessment296

Forecast skill is assessed by bi-linearly interpolating model significant wave height297

to excluded (un-assimilated) Spotter and altimeter observations. Bias (mean error) and298

root-mean-square error (RMSE) are evaluated for significant wave height as a function299

of forecast lead time. In addition to the globally aggregated statistics, specific events are300

inspected to illustrate the differences between the two assimilation techniques and the301

non-assimilative forecast.302

3 Results303

The LETKF data assimilation runs in the cloud on 28 cores with up to 60 GB of304

memory in approximately 0.4 hours per hourly analysis-forecast cycle (2.5 hours between305

the 6-hourly forecast initialization), and is therefore feasible to operationalize, such as306

for the currently operational Sofar wave forecast used for ship routing optimization.307

3.1 Analysis Increment308

The differences between the OI and LETKF techniques are well-illustrated by in-309

spection of the model analysis increment (x̄a - x̄b). Figure 3 illustrates the increment310

in terms of significant wave height, an integral property of the sea state that is physi-311

cally interpretable. For a large storm in the Southern Ocean with Hs exceeding 9 m, the312

LETKF model ensemble exhibits a large spread among members, or model uncertainty,313

in the southern region of the storm, illustrated with the standard deviation of Hs (Fig-314

ure 3, upper right). Inspection of the difference in the wave heights calculated from the315

model ensemble analysis and background indicate a unique spatial structure to the up-316

date. This update is reflective of both the model uncertainty and the structure of the317

model error covariances (Figure 4). Specifically, the Spotter observation in the center318

of the storm reported wave heights higher than the model background. At the same time,319

there exist large, positive error covariances between the location of the observation and320

the northern portion of the storm and a negative error covariance in the southern flank321

of the storm (orange-brown shading in Figure 4). As a result, in the LETKF analysis,322

significant wave height is adjusted higher near to and north of the Spotter observation,323

and adjusted lower to the south. This inverse update (lowering waves to the south, de-324

spite a positive departure) in essence shifts the storm further north, enabled by the model325

error covariances calculated from the ensemble. In contrast, the optimal interpolation326

update (Figure 3, lower right) is a Gaussian-looking fit to the observations present, with327

the largest update applied exactly at the observation location, regardless of underlying328
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sea state structure. As a result, rather than shifting the storm in space, the overall en-329

ergy of the storm is inflated within the covariance length-scale of the observation. Fur-330

ther, the magnitude of the model increments varies between LETKF and OI (10 cm ver-331

sus 40 cm, respectively). Owing to the cycled nature of the assimilation systems and rel-332

atively constant locations of the Spotter observations hour-to-hour, each analysis step333

should only be a small nudge toward the “true state” that is applied sequentially and334

should be in balance with the wave model and overlying wind forcing. The much larger335

increments associated with OI likely indicate updates that are out of balance with the336

model state and external forcing and as a result are destroyed with each model forecast337

step, only to be reintroduced with each subsequent analysis.338

3.2 Forecast Time Series339

Ultimately, the analysis update is sought to provide an accurate initial condition340

for forecasting. Inspection of discrete events highlights the performance of LETKF ver-341

sus OI and No DA for forecast initialization. During a high wave event around October342

25, 2022 to the southwest of Australia, the 1 day forecast provided by LETKF indicates343

improved performance for prediction of storm arrival. Figure 5 displays time series at344

an excluded Spotter location and corresponds to forecasts initialized on October 24, 2022345

18:00 UTC. At approximately October 25 13:00 UTC, a distinct jump in peak period346

is present in the observation, indicating the arrival of the swell generated by the storm.347

The No DA forecast predicts the swell arrival approximately 3 hours too early, OI ap-348

proximately 2 hours early and LETKF approximately 1 hour early. The predictions of349

significant wave height are offset similarly. Inspecting the spatial fields at the 19-hour350

lead time (Figure 5, right), the LETKF forecast compared to the OI forecast indicates351

a distinct reduction in peak period and significant wave height at the leading edge of the352

storm, resulting in the delayed storm arrival in better agreement with the Spotter ob-353

servation.354

3.3 Aggregated Forecast Skill355

In all forecasts, root-mean-square error of Hs increases as a function of forecast lead356

time (Figure 6). For the forecasts initialized by LETKF and OI analyses, the global RMSE357

at short lead times (0-12 hours) is reduced by up to 24% compared to the non-assimilative358

forecast. At longer lead times, all forecasts converge, as is expected with identical forc-359

ing and model configuration. When compared to satellite altimeter observations of sig-360

nificant wave height, LETKF narrowly outperforms OI at all lead times. When compar-361

ing to excluded Spotter observations, OI outperforms LETKF at the shorter lead times362

(0 and 6 hours), and otherwise follows similar trends as the altimeter comparison for longer363

lead times. While the skill is evaluated at excluded Spotters only, the free-drifting Spot-364

ters tend to cluster and are very rarely present entirely independent of neighboring Spot-365

ters (see Figure 1). As a result, the skill at excluded Spotters is more reflective of the366

short term impact of pulling toward observations near utilized Spotters, whereas the skill367

at excluded altimeters is likely more representative of updates to the entire ocean do-368

main, including further afield of included observations.369

4 Discussion and Conclusion370

For the first time, an ensemble-based data assimilation method for wave forecast-371

ing is implemented using observations from the global Sofar Spotter buoy network and372

satellite altimeters. This implementation yields global wave forecast skill improvement373

over a non-assimilative forecasting framework, with additional improvements over op-374

timal interpolation when inspecting individual events.375
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By utilizing the ensemble to estimate the model error covariances, LETKF provides376

an analysis increment reflective of the underlying sea state and model uncertainty, in con-377

trast to an OI method. This novel capability enables physically meaningful updates to378

the model background, such as shifting a storm in space or maintaining sharp gradients379

that would otherwise be smoothed by OI. Minor shifts in storm location or swell arrival380

can be of particular value for applications such as ship routing, where certain vessels are381

highly sensitive to wave period. For coastal applications, variations in swell arrival time382

on the order of a couple hours can result in differences in coastal impacts due to com-383

binations with tide and surge phasing. Consequently, incremental improvements in rep-384

resentation and forecasting of the sea state is of particular value.385

While LETKF appears particularly skillful for discrete events, it remains compa-386

rable to OI in an aggregate sense. OI is a simple, yet effective, tool when evaluated near387

where the updates are occurring and in terms of RMSE of significant wave height - a met-388

ric that does not necessarily capture more complex features that are also of importance389

(e.g. small-scale structure, arrival timing of large events). That said, the superior per-390

formance of LETKF when compared to altimeter observations indicates the ability of391

LETKF to provide skillful updates far from observations by leveraging understanding392

of the model error covariances in a way that OI fundamentally cannot do. Further op-393

timization of the LETKF implementation (e.g., tuning background ensemble model skill,394

observation error covariances, localization, multiplicative inflation) may serve to reduce395

forecast errors further. Regardless, the primary objective of the implementation presented396

herein is the robust ensemble-based approach to enable more advanced implementations397

in a coupled Earth system model framework.398

An efficient and skillful LETKF implementation for wave forecasting is critical for399

future development of coupled Earth system modeling frameworks. Specifically, with ac-400

cess to an ensemble, the errors in the wave domain can then correct the atmospheric do-401

main. By extending the observations provided by the comprehensive global Spotter net-402

work to atmospheric corrections, the potential for both unique atmospheric forecast im-403

provements and wave forecast skill improvements at longer lead times (where errors are404

nearly entirely determined by errors in the overlying winds) becomes feasible.405

Further, LETKF is particularly well-suited to handle diverse sets of observations406

- such as wave spectra and significant wave heights - simultaneously. Previously, Houghton407

et al. (2022) utilized the rich and unique dataset of observations of directional wave spec-408

tra available from the Sofar Spotters. These observations were assimilated in an opti-409

mal interpolation framework to achieve marked improvements in forecast skill of wave410

period and direction, which are also critical variables in wave forecast accuracy. This first411

LETKF implementation described here focuses solely on significant wave height for the412

development of a robust underlying system. However, future work will be the augmen-413

tation of observational variables to include the frequency-dependent information on to-414

tal energy and directional distribution. LETKF is ideally suited for handling the diverse415

types of observations from altimeters (Hs alone) and Spotters, and a frequency-localized416

update of the model state is expected to allow for skillful improvement of both the sea417

and swell components more independently. Further, Spotter provides observations at the418

air-sea interface beyond the sea state, including barometric pressure and sea surface tem-419

perature. Combining the vast network of Spotter observations and data provided by satel-420

lite altimeters in a coupled model framework with the data assimilation strategy demon-421

strated here could lead to additional forecast improvements across global oceans.422
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Figure 1. An overview map of the global observations on October 25, 2022. This includes 605

total Sofar Spotters (gold pentagons) reporting hourly data and a cumulative 24 hours of satellite

altimeter tracks (gray dots) available within our operational time constraints. 28 Spotters were

excluded (grey pentagons) from the data assimilation and used for forecast skill assessment.

5 Open Research423

Data and software specific to this study can be found here: [to be posted on DRYAD424

(datadryad.org) following acceptance.] The WW3 model code is open-source and avail-425

able at https://github.com/NOAA-EMC/WW3.426
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Figure 2. Pairs of Spotters within 50 km were aggregated from the drifting network historical

archive. The differences between the reported wave heights for each pair were used to estimate

the expected standard deviation of observation errors parameterized in the assimilation. A strong

dependence on wave state was observed (left). Normalizing the difference by the average wave

height observed yielded a relatively constant value of expected errors used in the data assimila-

tion (right).

Figure 3. An example of model increments for LETKF and OI assimilation methods. Upper

left: A large storm with waves upwards of 9 m was predicted in the Southern Ocean around Oc-

tober 12, 2022. Contours indicate the magnitude of significant wave height and are overlaid on

all subplots to visualize storm location. Spotter locations are indicated by pentagonal markers,

colored by observed significant wave height. Upper right: Model spread is illustrated with the

standard deviation of the significant wave height among the 29 ensemble members. Lower left:

The model increment (analysis - background) from the LETKF method. The wave heights are

increased in the upper half of the storm and reduced in the lower half. Lower right: The model

increment from the OI method. To note, the magnitudes of the updates are larger for the opti-

mal interpolation framework, an indication that the assimilation is not well-balanced with the

model state.
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Figure 4. An example of the model error covariances derived from the significant wave height

fields of the ensemble for two locations with a Spotter buoy (yellow pentagon) present. The grey

contour line indicates an error covariance of zero to the indicated observation location, the cross

over from a positive correlation to a negative correlation of model errors. Departures (observation

- model) are shown for each observation.

Figure 5. An inspection of a storm event to the southwest of Australia. Left: Time series

from a forecast initialized on October 24 18:00 UTC show significant wave height and peak pe-

riod at an excluded Spotter buoy. The Spotter observations (yellow) indicate a later arrival of the

high wave heights compared to No DA (grey), Hs OI (red), and LETKF (blue). LETKF most

closely predicts the arrival of the long period, fastest waves associated with the storm, indicated

by the jump in peak period. The LETKF time series envelope (shaded blue) indicates the stan-

dard deviation of the analysis ensemble at the observation time, an additional feature of LETKF

not otherwise available. Right: Spatial maps of significant wave height and peak period at the

19-hour lead time illustrate the spatial structure of differences between the two cycled data as-

similation frameworks (OI and LETKF). LETKF results in a decrease of the eastern edge of the

storm and increase to the north, in better agreement with observations.
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Figure 6. Forecast skill for significant wave height. Bias (left) and root-mean-square error

(RMSE) (right) are calculated as a function of forecast lead time. Skill is evaluated at excluded

altimeter observations (top) and excluded Spotters (bottom) for the No DA (grey), Hs OI (red)

and LETKF (blue) forecasting frameworks. Uncertainty estimates in the bias and RMSE are

represented by the error bars following Jensen (2017).
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Key Points:7

• The Local Ensemble Transform Kalman Filter assimilating wave height observa-8

tions improves global wave forecast skill out to 2.5 days.9

• LETKF is more effective at improving predictions far from observations compared10

to a simple optimal interpolation framework.11

• The ensemble-based data assimilation (DA) demonstrated in the wave domain en-12

ables future coupled DA across atmosphere-ocean-wave models.13
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Abstract14

An ensemble-based method for wave data assimilation is implemented using significant15

wave height observations from the globally distributed network of Sofar Spotter buoys16

and satellite altimeters. The Local Ensemble Transform Kalman Filter (LETKF) method17

generates skillful analysis fields resulting in reduced forecast errors out to 2.5 days when18

used as initial conditions in a cycled wave data assimilation system. The LETKF method19

provides more physically realistic model state updates that better reflect the underly-20

ing sea state dynamics and uncertainty compared to methods such as optimal interpo-21

lation. Skill assessment far from any included observations and inspection of specific storm22

events highlight the advantages of LETKF over an optimal interpolation method for data23

assimilation. This advancement has immediate value in improving predictions of the sea24

state and, more broadly, enabling future coupled data assimilation and utilization of global25

surface observations across domains (atmosphere-wave-ocean).26

Plain Language Summary27

Sofar Ocean built and maintains a global network of buoys that measure ocean sur-28

face waves. This network supplements less frequent measurements of ocean surface wave29

heights taken from satellite altimeters. Here, we develop a technique to combine both30

observational datasets to initialize a numerical wave model that is used to make fore-31

casts of ocean surface wave conditions multiple days into the future. In particular, the32

advancement demonstrated here accounts for uncertainty in wind forecasts, which are33

a major source of uncertainty for ocean surface wave forecasts. Future development based34

on this advancement could thus result in improvements in both wave and atmospheric35

predictions.36

1 Introduction37

Data assimilation (DA) with global operational wave models has lagged advances38

in other domains despite the value of accurate wave state representation for both wave39

forecasting itself and coupled Earth system forecasting more generally. In this work, we40

demonstrate the effective implementation of an ensemble-based wave data assimilation41

method that is a fundamental and, as of yet, not broadly implemented building block42

to a modern coupled Earth system forecasting framework.43

The continuous development of Earth system modeling frameworks for weather fore-44

casting has enabled remarkable increases in predictive ability with major social and eco-45

nomic consequences (Kull et al., 2021). This forecast skill is often attributed to a com-46

bination of improved model accuracy and observation utilization (Kalnay, 2002). Thus,47

effectively leveraging observations in Earth system modeling (i.e., data assimilation) is48

critically important to improving forecast skill. In the wave domain, the massive expan-49

sion of in situ observations provided by the Sofar Spotter network furthers the impact50

of DA developments.51

Over the past 30 years, the production of ensemble forecasts has become a stan-52

dard activity at operational weather prediction centers (Buizza, 2019; Kalnay, 2019). While53

operational centers generally produce atmospheric ensemble forecasts using some kind54

of ensemble-based or hybrid ensemble-variational DA method (Kleist & Ide, 2015; Ra-55

bier et al., 2000; Clayton et al., 2013), operational wave forecasts have generally been56

produced using either basic DA methods (Janssen et al., 2005) or no DA at all (NCEP,57

2022).58

Here, we aim to advance the DA capabilities for operational wave forecasting to59

catch up with the state of the art in atmospheric and oceanic prediction. While wave60

forecast skill improvement from DA has been demonstrated in the past (Lionello et al.,61
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1992; Aouf et al., 2006; Smit et al., 2021; Houghton et al., 2022), this work presents the62

robust implementation of advanced DA methods in the wave domain at a global scale63

and in an operational capacity. The ensemble DA approach is advantageous because it64

can better leverage the uncertainty information provided by atmospheric ensemble fore-65

casts driving the wave forecasts. Further, with the increasing trend toward the use of66

coupled forecasting systems (Janssen et al., 2005; Mehra & Yang, 2020), the proposed67

LETKF wave DA approach serves as a precursor to initializing a coupled numerical weather68

prediction system that properly leverages information about cross-domain atmosphere-69

wave-ocean dynamics.70

With the advent of a globally distributed, high-density hourly in situ observing net-71

work provided by Sofar Spotter wave buoys (Houghton et al., 2021) in addition to satel-72

lite altimetry, impacts to forecast skill from wave observations at a global scale have be-73

come feasible. Smit et al. (2021) demonstrated a first implementation of assimilation of74

the global Spotter wave buoy network using a simple optimal interpolation scheme to75

assimilate measurements of significant wave height. Houghton et al. (2022) extended that76

work with an augmented optimal interpolation approach utilizing the spectral informa-77

tion provided by the Spotter buoys (frequency spectrum and Fourier coefficients of the78

directional spectrum). Both schemes provided forecast skill improvements for significant79

wave height out to three days, with additional benefits to peak and mean frequency and80

direction statistics for the spectral method.81

Despite clear value demonstrated by the assimilation of measurements derived from82

this global network, there remain several challenges for skillful wave forecasting enabled83

by data assimilation, namely,84

• Efficient determination of the forecast error covariances,85

• Proper update to the model state (wave spectra) given observations of diverse in-86

tegral parameters, and87

• Capacity to correct the wind forcing field based on observed errors in the wind88

sea.89

In this work, we describe the implementation of an ensemble-based data assimi-90

lation system using the Sofar Spotter network and satellite altimeters with the Local En-91

semble Transform Kalman Filter (LETKF; Hunt et al., 2007). LETKF combines the state-92

dependent background error derived from an ensemble forecast with the observations (and93

their corresponding uncertainties) to produce an analysis ensemble. In contrast to op-94

timal interpolation (OI), where a fixed forecast error covariance length scale and struc-95

ture (e.g., Gaussian) is prescribed, LETKF produces updates in the posterior analysis96

reflective of underlying uncertainty.97

Further, LETKF allows for the simultaneous assimilation of a variety of observa-98

tion types, as long as an observation operator to transform the model estimate to the99

observation space exists and observational uncertainty can be properly parameterized.100

In the case of a wave model, significant wave height observations from buoys and satel-101

lites can be assimilated and an analysis model spectra can be calculated without any as-102

sumptions regarding the relationship between an analysis significant wave height and the103

corresponding spectrum, such as is necessary in optimal interpolation frameworks (e.g.,104

Lionello et al. (1992); Voorrips et al. (1997)). This functionality becomes particularly105

valuable with the combination of the wave spectra observations from the Spotter net-106

work and significant wave height from satellite altimeters – both uniquely valuable ob-107

servations that can be simultaneously assimilated in an LETKF framework. Finally, the108

LETKF implementation is ideally suited for a coupled model infrastructure (Sluka et al.,109

2016; Penny et al., 2019), enabling correction of the atmospheric domain based on er-110

rors observed in the wave domain - a promising avenue for longer lead time improvements111

in the wave forecast and overall improvements in a coupled atmosphere-wave system.112
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Motivated by the myriad of advantages afforded by an ensemble-based assimila-113

tion framework, we demonstrate how the utilization of significant wave height observa-114

tions from approximately 600 free-drifting Spotter buoys and 3 satellite platforms (Jason-115

3, SARAL, and Sentinel-6A) leads to improvements in RMSD of forecasted ocean sur-116

face wave heights that can persist out to 60 hours or more, and improvements in biases117

can persist beyond that. We also show specific examples demonstrating the value of state-118

dependent forecast error covariance information, and impacts on predicting swell arrival119

time. To understand the unique aspects of LETKF as a method, an OI assimilation and120

forecasting framework is also implemented for comparative purposes. Sections 2.1-2.2121

describe the ensemble set up and processing of observations. Sections 2.3-2.6 describe122

the LETKF method and implementation choices, cycled analysis set up and forecast skill123

assessment. Section 3 discusses results, followed by conclusions and future work in Sec-124

tion 4.125

2 Methods126

In general, the data assimilation methods are evaluated in a cycled DA framework.127

For both the deterministic (OI) and ensemble (LETKF) methods, every hour, a one hour128

wave forecast (or ensemble of forecasts) is produced and used as the background in the129

assimilation step. The respective update method is then applied (OI or LETKF) and130

the analysis fields are then used as the initial conditions to the subsequent hour forecast.131

2.1 Wave Model Ensemble132

The WAVEWATCH3 model (WW3; Tolman et al., 2019) is used to produce a 29-133

member ensemble wave forecast. Each member is identically implemented with 0.5° hor-134

izontal resolution over the global ocean and forced by an ensemble of near-surface (U10)135

wind fields from the European Centre for Medium-Range Weather Forecasts (ECMWF)136

Ensemble forecast system. Members 1-29 of the ECMWF atmospheric ensemble are used137

(member 0 is the control run and not used), with each wind ensemble member consis-138

tently mapped to the same wave ensemble member at every model forecast step. A sin-139

gle deterministic sea ice area fraction forecast from the ECMWF High Resolution (HRES)140

forecast system is used for every wave ensemble member. Wave-current interactions, in-141

cluding relative wind effects, are included using HYCOM surface currents (Wallcraft, 2003).142

The WW3 model spectra are discretized with 36 equally-spaced direction bins and 36143

logarithmically-spaced frequency bins. See Smit et al. (2021) for full WW3 model con-144

figuration details. Atmospheric forcing is updated every 6 hours, as available from ECMWF.145

In pre-processing, the zonal and meridional components of each ECMWF wind en-146

semble member are shifted such that the square of the ensemble mean (proportional to147

the wind stress driving wave growth) matches the square of the HRES wind in order to148

reduce biases in the wave ensemble. Further, the wind input source term calibration fac-149

tor (βmax, Ardhuin et al., 2010) in the ensemble wave model is reduced to 1.36 from the150

deterministic model value of 1.48. This lessens a high bias observed in the free-running151

wave ensemble relative to the deterministic model that was not remedied by re-centering152

the winds alone.153

2.2 Observation Processing Methods154

Significant wave height (Hs) observations are used from the global Sofar Spotter155

network and the altimeters on three satellites. The Spotter buoy is an approximately 42156

cm-diameter directional wave buoy that provides, in near real-time, hourly observations157

of the directional wave spectrum, sea surface temperature, barometric pressure, sound158

level pressure, surface drift and inferred wind (Houghton et al., 2021). Bulk wave pa-159

rameters are calculated on board from the directional spectrum. In this work, only the160
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significant wave height is utilized in the data assimilation framework. Prior to each anal-161

ysis cycle, the Spotter data is aggregated and linearly interpolated onto the hour to align162

with the hourly WW3 model analysis times. Significant wave height observations below163

0.2 m, above 25 m, or with an hourly difference larger than 5 m are removed. Approx-164

imately 600 Spotter observations are available each hour throughout the study.165

Satellite altimeter observations of significant wave height are utilized from the Jason-166

3, SARAL, and Sentinel-6A platforms (SENTINEL-6, 2021; NASA/JPL, 2013; Desai,167

2016). These data are ingested prior to an analysis cycle in an operational framework168

(i.e., near real-time), therefore only approximately 50% of the total number of altime-169

ter observations are available at the time of analysis. Altimeter observations are binned170

to the nearest hour and the mean within a 0.5 degree latitude-longitude bin is stored (i.e.171

forming “super-obs” (Abdalla, 2014)). Latitude-longitude bins with a standard devia-172

tion of observations greater than 0.2 m are removed. Observations below 0.5 m, above173

12 m and north or south of 60◦ are removed to avoid ice regions. A land mask is derived174

from the WW3 model grid and dilated by 6 grid cells to remove any observations within175

approximately 300 km of land. Lastly, the altimeter observations are thinned by down-176

sampling to every other bin to reduce redundant information.177

Processed observations are calculated and stored independently of the assimilation178

experiments such that all re-analyses use identical observation data. Figure 1 illustrates179

Spotter buoy locations at the beginning of the study along with 24 hours of aggregated180

altimeter tracks.181

2.3 Local Ensemble Transform Kalman Filter (LETKF)182

We implement LETKF following Hunt et al. (2007). Each background wave ensem-183

ble member (i.e. N grid points x 36 frequency bins x 36 direction bins) is used to con-184

struct the columns of the matrix X̂
b
. The ensemble perturbations are then derived as185

Xb = X̂
b
− 1T x̄b, where x̄b is the background ensemble mean. LETKF balances the186

prior forecast error covariance estimated as Pb = 1
k−1X

bXbT with the observation er-187

ror covariance, R, to produce an optimal estimate of the posterior analysis ensemble Xa.188

The effective Kalman gain, K, of the LETKF algorithm can be formulated compactly189

as190

K = Xb

[
k − 1

ρ
I+

(
Yb

)T

R−1
(
Yb

)]−1 (
Yb

)T

R−1. (1)

The matrix Yb = H(Xb) corresponds to the ensemble of model estimates trans-191

formed to the observation space by the observation operator H, which allows these states192

to be compared directly to observations. The integer k is the number of ensemble mem-193

bers and the scalar ρ is a multiplicative inflation parameter, used to maintain spread in194

the ensemble. The observation error covariance matrix R describes the expected obser-195

vation errors on the diagonal and the covariances between observation errors on the off-196

diagonal.197

Following the implementation by Hunt et al. (2007), the Kalman gain in Equation198

1 is a function of the model analysis error covariance, which is given in the ensemble per-199

turbation subspace as,200

P̃a =

[
k − 1

ρ
I+

(
Yb

)T

R−1
(
Yb

)]−1

. (2)

The updated state estimate is then provided by201
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x̄a = x̄b +K
(
yo −H(x̄b)

)
, (3)

where yo is the set of observations and x̄a and x̄b correspond to the ensemble mean202

of the analysis and background, respectively. The updated set of ensemble perturbations203

in the original model space is provided by the transform operation,204

Xa = Xb
[
(k − 1)P̃a

] 1
2

. (4)

The final analysis ensemble is then given as,205

X̂a = Xa + 1T x̄a, (5)

with negative values in the analysis set to zero.206

Thus, every hour the observations available are optimally incorporated to gener-207

ate an analysis ensemble with a mean representing the best estimate of the true state208

and a standard deviation representative of model uncertainty. In practice, the analysis209

wave spectrum at a gridpoint is the weighted sum of the ensemble members, with the210

weights determined by the LETKF method (see Hunt et al. (2007) for computationally211

efficient implementation details).212

2.3.1 Implementation Specifics213

A multiplicative inflation of 5% (ρ = 1.05) is used to maintain ensemble spread214

over cycled analysis steps. Every analysis update decreases the spread of the ensemble215

members, however, the multiplicative inflation and the strong response to wind forcing216

avoids any collapse of the wave ensemble members over time. A test of relaxation to prior217

spread (see Whitaker & Hamill, 2012) as an alternative to multiplicative inflation yielded218

similar results. Multiplicative inflation is thus chosen for simplicity.219

An ensemble size of 29 is used to balance computational cost with achieving suf-220

ficient forecast ensemble spread. An inspection of observed and modeled significant wave221

height indicated that the ensemble spread sufficiently spans observation values. That said,222

a larger ensemble could more reliably represent the true state and remove spurious cor-223

relations in space.224

Due to the use of finite ensemble size, possible spurious correlations in space could225

degrade the analysis. To mitigate this issue, a limit on the physical distance of an ob-226

servation used in the analysis is imposed - i.e. localization. The localization is applied227

with a weighting function that decays with distance (d), a maximum cutoff distance for228

relevant observations and an upper limit on number of observations included. A hori-229

zontal length-scale, σh, of 800 km is used to determine the observation weight following,230

w(d) = e
−0.5( d

σh
)2
. (6)

A maximum cutoff distance (influenced by Gaspari and Cohn (1999)) is then de-231

rived from the horizontal length scale of232

dmax = 2
√
10/3 σh ≈ 2, 900 km. (7)

A maximum of 5 Spotter observations and 30 altimeter observations are used for233

analysis at any given grid point. For a grid point with greater than the maximum num-234

ber of observations, the most proximate observations are used.235
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To derive the model estimates in the observation space, H(Xb), the model spec-236

trum is bi-linearly interpolated to the observation location and then the significant wave237

height, Hs, is calculated following238

Hs = 4
√
∫∫E(f, θ)dfdθ, (8)

where E(f, θ) is the model state, the variance density spectrum in frequency (f) and di-239

rection (θ).240

2.3.2 Observation Error Covariances241

Data assimilation relies on balancing uncertainty in the model with uncertainty in242

the observations to provide a best estimate of the true state. As a result, a reliable es-243

timate of uncertainty in observations relative to the model is critical, spanning obser-244

vational noise and representativeness errors (Janjić et al., 2018). To that end, a co-location245

study was carried out to estimate uncertainty in Spotter observations. Over approximately246

a one year period, all Spotter observations collected within 50 km were co-located, and247

the differences between proximate observations were aggregated. A maximum separa-248

tion distance of 50 km was chosen to incorporate representativeness error of the 0.5◦ model249

grid along with observational noise and yielded approximately 93,000 pairs. A consis-250

tent difference in observed wave heights as a function of wave height itself is observed251

(Figure 2). Specifically, higher sea states resulted in larger differences between co-located252

observations. This proportional scaling of uncertainty is consistent with uncertainty as-253

sociated with integrals over observed spectra (Young, 1986) - rather than instrument GPS254

error. As a result, a relative observation error standard deviation is chosen. Within the255

assimilation framework, the observation error is estimated unique to each observation256

as 6.5% of the observation value itself for Spotters. Off-diagonal observation error co-257

variances are assumed to be zero for significant wave height, simplifying the R matrix258

to be diagonal and increasing computational speed of the LETKF algorithm. A mod-259

erately higher uncertainty is attributed to the satellite altimeter of 10% motivated by260

observed noise in the satellite observations (Abdalla, 2014).261

2.4 Wave Model Analyses262

2.4.1 LETKF263

Each ensemble member is initialized with the same model state from the free-running264

(non-assimilative) deterministic 0.5◦ model. A one hour forecast is carried out for each265

of the ensemble members to produce a background ensemble, X̂
b
. The analysis step is266

then carried out using ensemble members 1-29. The analysis ensemble mean is then cal-267

culated and stored as the zeroth ensemble member. Ensemble member 0 is then driven268

by the deterministic (ECMWF HRES) winds, while the rest of the ensemble members269

are driven by their respective ensemble wind member. This architecture is chosen to prop-270

agate forward a “best estimate” of the analysis state, assuming the deterministic winds271

are more skillful than any individual wind ensemble member.272

Spin-up of the wave ensemble is assessed with the global average standard devi-273

ation of the significant wave heights in the ensemble as a function of time and the dis-274

tribution of departures (yo−H(X̂
b
)). The model spread represented by the standard275

deviation of Hs and the mean of the departures are expected to stabilize for a spun-up276

cycled system, and appear to do so after approximately two days, or 48 analysis cycles.277

2.4.2 Optimal Interpolation278

To assess the unique impacts of the LETKF assimilation technique given an equiv-279

alent set of observations, a comparative cycled analysis was also run using an optimal280

interpolation (Hs OI) scheme as outlined in Smit et al. (2021). A constant observation281
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standard deviation of error of 0.3 m and a model error covariance scale of 0.3 m with ho-282

mogeneous, isotropic structure was prescribed with a correlation length-scale of 300 km.283

2.5 Wave Model Forecasts284

Every six hours, the deterministic wind and sea ice fields provided by ECMWF HRES285

are used to drive three-day forecasts initialized by the wave model analyses. Three dif-286

ferent experiments are presented here - LETKF, Optimal Interpolation (OI), and free-287

running (No DA). For LETKF, the best estimate ensemble mean assigned to the zeroth288

ensemble member is used as the initial condition to the four-day forecast. For OI, sim-289

ply the analysis field at the forecast initialization time is used. For No DA, the 6-hour290

forecast from the previous forecast initialization is used. The wave model is implemented291

identically as for the ensemble above, except utilizing ECMWF HRES winds and the cor-292

responding βmax of 1.48. Therefore, differences in forecast skill should be attributable293

to the initialization alone. Forecasts were initialized after a spin-up of 48 analysis cy-294

cles and run from October 12, 2022 to November 2, 2022.295

2.6 Forecast Skill Assessment296

Forecast skill is assessed by bi-linearly interpolating model significant wave height297

to excluded (un-assimilated) Spotter and altimeter observations. Bias (mean error) and298

root-mean-square error (RMSE) are evaluated for significant wave height as a function299

of forecast lead time. In addition to the globally aggregated statistics, specific events are300

inspected to illustrate the differences between the two assimilation techniques and the301

non-assimilative forecast.302

3 Results303

The LETKF data assimilation runs in the cloud on 28 cores with up to 60 GB of304

memory in approximately 0.4 hours per hourly analysis-forecast cycle (2.5 hours between305

the 6-hourly forecast initialization), and is therefore feasible to operationalize, such as306

for the currently operational Sofar wave forecast used for ship routing optimization.307

3.1 Analysis Increment308

The differences between the OI and LETKF techniques are well-illustrated by in-309

spection of the model analysis increment (x̄a - x̄b). Figure 3 illustrates the increment310

in terms of significant wave height, an integral property of the sea state that is physi-311

cally interpretable. For a large storm in the Southern Ocean with Hs exceeding 9 m, the312

LETKF model ensemble exhibits a large spread among members, or model uncertainty,313

in the southern region of the storm, illustrated with the standard deviation of Hs (Fig-314

ure 3, upper right). Inspection of the difference in the wave heights calculated from the315

model ensemble analysis and background indicate a unique spatial structure to the up-316

date. This update is reflective of both the model uncertainty and the structure of the317

model error covariances (Figure 4). Specifically, the Spotter observation in the center318

of the storm reported wave heights higher than the model background. At the same time,319

there exist large, positive error covariances between the location of the observation and320

the northern portion of the storm and a negative error covariance in the southern flank321

of the storm (orange-brown shading in Figure 4). As a result, in the LETKF analysis,322

significant wave height is adjusted higher near to and north of the Spotter observation,323

and adjusted lower to the south. This inverse update (lowering waves to the south, de-324

spite a positive departure) in essence shifts the storm further north, enabled by the model325

error covariances calculated from the ensemble. In contrast, the optimal interpolation326

update (Figure 3, lower right) is a Gaussian-looking fit to the observations present, with327

the largest update applied exactly at the observation location, regardless of underlying328
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sea state structure. As a result, rather than shifting the storm in space, the overall en-329

ergy of the storm is inflated within the covariance length-scale of the observation. Fur-330

ther, the magnitude of the model increments varies between LETKF and OI (10 cm ver-331

sus 40 cm, respectively). Owing to the cycled nature of the assimilation systems and rel-332

atively constant locations of the Spotter observations hour-to-hour, each analysis step333

should only be a small nudge toward the “true state” that is applied sequentially and334

should be in balance with the wave model and overlying wind forcing. The much larger335

increments associated with OI likely indicate updates that are out of balance with the336

model state and external forcing and as a result are destroyed with each model forecast337

step, only to be reintroduced with each subsequent analysis.338

3.2 Forecast Time Series339

Ultimately, the analysis update is sought to provide an accurate initial condition340

for forecasting. Inspection of discrete events highlights the performance of LETKF ver-341

sus OI and No DA for forecast initialization. During a high wave event around October342

25, 2022 to the southwest of Australia, the 1 day forecast provided by LETKF indicates343

improved performance for prediction of storm arrival. Figure 5 displays time series at344

an excluded Spotter location and corresponds to forecasts initialized on October 24, 2022345

18:00 UTC. At approximately October 25 13:00 UTC, a distinct jump in peak period346

is present in the observation, indicating the arrival of the swell generated by the storm.347

The No DA forecast predicts the swell arrival approximately 3 hours too early, OI ap-348

proximately 2 hours early and LETKF approximately 1 hour early. The predictions of349

significant wave height are offset similarly. Inspecting the spatial fields at the 19-hour350

lead time (Figure 5, right), the LETKF forecast compared to the OI forecast indicates351

a distinct reduction in peak period and significant wave height at the leading edge of the352

storm, resulting in the delayed storm arrival in better agreement with the Spotter ob-353

servation.354

3.3 Aggregated Forecast Skill355

In all forecasts, root-mean-square error of Hs increases as a function of forecast lead356

time (Figure 6). For the forecasts initialized by LETKF and OI analyses, the global RMSE357

at short lead times (0-12 hours) is reduced by up to 24% compared to the non-assimilative358

forecast. At longer lead times, all forecasts converge, as is expected with identical forc-359

ing and model configuration. When compared to satellite altimeter observations of sig-360

nificant wave height, LETKF narrowly outperforms OI at all lead times. When compar-361

ing to excluded Spotter observations, OI outperforms LETKF at the shorter lead times362

(0 and 6 hours), and otherwise follows similar trends as the altimeter comparison for longer363

lead times. While the skill is evaluated at excluded Spotters only, the free-drifting Spot-364

ters tend to cluster and are very rarely present entirely independent of neighboring Spot-365

ters (see Figure 1). As a result, the skill at excluded Spotters is more reflective of the366

short term impact of pulling toward observations near utilized Spotters, whereas the skill367

at excluded altimeters is likely more representative of updates to the entire ocean do-368

main, including further afield of included observations.369

4 Discussion and Conclusion370

For the first time, an ensemble-based data assimilation method for wave forecast-371

ing is implemented using observations from the global Sofar Spotter buoy network and372

satellite altimeters. This implementation yields global wave forecast skill improvement373

over a non-assimilative forecasting framework, with additional improvements over op-374

timal interpolation when inspecting individual events.375
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By utilizing the ensemble to estimate the model error covariances, LETKF provides376

an analysis increment reflective of the underlying sea state and model uncertainty, in con-377

trast to an OI method. This novel capability enables physically meaningful updates to378

the model background, such as shifting a storm in space or maintaining sharp gradients379

that would otherwise be smoothed by OI. Minor shifts in storm location or swell arrival380

can be of particular value for applications such as ship routing, where certain vessels are381

highly sensitive to wave period. For coastal applications, variations in swell arrival time382

on the order of a couple hours can result in differences in coastal impacts due to com-383

binations with tide and surge phasing. Consequently, incremental improvements in rep-384

resentation and forecasting of the sea state is of particular value.385

While LETKF appears particularly skillful for discrete events, it remains compa-386

rable to OI in an aggregate sense. OI is a simple, yet effective, tool when evaluated near387

where the updates are occurring and in terms of RMSE of significant wave height - a met-388

ric that does not necessarily capture more complex features that are also of importance389

(e.g. small-scale structure, arrival timing of large events). That said, the superior per-390

formance of LETKF when compared to altimeter observations indicates the ability of391

LETKF to provide skillful updates far from observations by leveraging understanding392

of the model error covariances in a way that OI fundamentally cannot do. Further op-393

timization of the LETKF implementation (e.g., tuning background ensemble model skill,394

observation error covariances, localization, multiplicative inflation) may serve to reduce395

forecast errors further. Regardless, the primary objective of the implementation presented396

herein is the robust ensemble-based approach to enable more advanced implementations397

in a coupled Earth system model framework.398

An efficient and skillful LETKF implementation for wave forecasting is critical for399

future development of coupled Earth system modeling frameworks. Specifically, with ac-400

cess to an ensemble, the errors in the wave domain can then correct the atmospheric do-401

main. By extending the observations provided by the comprehensive global Spotter net-402

work to atmospheric corrections, the potential for both unique atmospheric forecast im-403

provements and wave forecast skill improvements at longer lead times (where errors are404

nearly entirely determined by errors in the overlying winds) becomes feasible.405

Further, LETKF is particularly well-suited to handle diverse sets of observations406

- such as wave spectra and significant wave heights - simultaneously. Previously, Houghton407

et al. (2022) utilized the rich and unique dataset of observations of directional wave spec-408

tra available from the Sofar Spotters. These observations were assimilated in an opti-409

mal interpolation framework to achieve marked improvements in forecast skill of wave410

period and direction, which are also critical variables in wave forecast accuracy. This first411

LETKF implementation described here focuses solely on significant wave height for the412

development of a robust underlying system. However, future work will be the augmen-413

tation of observational variables to include the frequency-dependent information on to-414

tal energy and directional distribution. LETKF is ideally suited for handling the diverse415

types of observations from altimeters (Hs alone) and Spotters, and a frequency-localized416

update of the model state is expected to allow for skillful improvement of both the sea417

and swell components more independently. Further, Spotter provides observations at the418

air-sea interface beyond the sea state, including barometric pressure and sea surface tem-419

perature. Combining the vast network of Spotter observations and data provided by satel-420

lite altimeters in a coupled model framework with the data assimilation strategy demon-421

strated here could lead to additional forecast improvements across global oceans.422

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. An overview map of the global observations on October 25, 2022. This includes 605

total Sofar Spotters (gold pentagons) reporting hourly data and a cumulative 24 hours of satellite

altimeter tracks (gray dots) available within our operational time constraints. 28 Spotters were

excluded (grey pentagons) from the data assimilation and used for forecast skill assessment.

5 Open Research423

Data and software specific to this study can be found here: [to be posted on DRYAD424

(datadryad.org) following acceptance.] The WW3 model code is open-source and avail-425

able at https://github.com/NOAA-EMC/WW3.426

Acknowledgments427

S.G. Penny acknowledges support from the Office of Naval Research (ONR), United States428

of America grants N00014-19-1-2522 and N00014-20-1-2580, National Aeronautics and429

Space Administration (NASA) grant 80NSSC21K1363 and National Oceanic and Atmo-430

spheric Administration (NOAA) grant NA22OAR4590510.431

All authors acknowledge support from the Office of Naval Research (ONR) grant432

N00014-22-1-2394.433

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Pairs of Spotters within 50 km were aggregated from the drifting network historical

archive. The differences between the reported wave heights for each pair were used to estimate

the expected standard deviation of observation errors parameterized in the assimilation. A strong

dependence on wave state was observed (left). Normalizing the difference by the average wave

height observed yielded a relatively constant value of expected errors used in the data assimila-

tion (right).

Figure 3. An example of model increments for LETKF and OI assimilation methods. Upper

left: A large storm with waves upwards of 9 m was predicted in the Southern Ocean around Oc-

tober 12, 2022. Contours indicate the magnitude of significant wave height and are overlaid on

all subplots to visualize storm location. Spotter locations are indicated by pentagonal markers,

colored by observed significant wave height. Upper right: Model spread is illustrated with the

standard deviation of the significant wave height among the 29 ensemble members. Lower left:

The model increment (analysis - background) from the LETKF method. The wave heights are

increased in the upper half of the storm and reduced in the lower half. Lower right: The model

increment from the OI method. To note, the magnitudes of the updates are larger for the opti-

mal interpolation framework, an indication that the assimilation is not well-balanced with the

model state.
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Figure 4. An example of the model error covariances derived from the significant wave height

fields of the ensemble for two locations with a Spotter buoy (yellow pentagon) present. The grey

contour line indicates an error covariance of zero to the indicated observation location, the cross

over from a positive correlation to a negative correlation of model errors. Departures (observation

- model) are shown for each observation.

Figure 5. An inspection of a storm event to the southwest of Australia. Left: Time series

from a forecast initialized on October 24 18:00 UTC show significant wave height and peak pe-

riod at an excluded Spotter buoy. The Spotter observations (yellow) indicate a later arrival of the

high wave heights compared to No DA (grey), Hs OI (red), and LETKF (blue). LETKF most

closely predicts the arrival of the long period, fastest waves associated with the storm, indicated

by the jump in peak period. The LETKF time series envelope (shaded blue) indicates the stan-

dard deviation of the analysis ensemble at the observation time, an additional feature of LETKF

not otherwise available. Right: Spatial maps of significant wave height and peak period at the

19-hour lead time illustrate the spatial structure of differences between the two cycled data as-

similation frameworks (OI and LETKF). LETKF results in a decrease of the eastern edge of the

storm and increase to the north, in better agreement with observations.
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Figure 6. Forecast skill for significant wave height. Bias (left) and root-mean-square error

(RMSE) (right) are calculated as a function of forecast lead time. Skill is evaluated at excluded

altimeter observations (top) and excluded Spotters (bottom) for the No DA (grey), Hs OI (red)

and LETKF (blue) forecasting frameworks. Uncertainty estimates in the bias and RMSE are

represented by the error bars following Jensen (2017).
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