
P
os
te
d
on

24
J
an

20
23

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
45
79
90
.0
27
78
63
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Localization of deformation in a non-collisional subduction orogen:

the roles of dip geometry and plate strength on the evolution of the

broken Andean foreland, Sierras Pampeanas, Argentina
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Abstract

The non-collisional subduction margin of South America is characterized by different geometries of the subduction zone and

upper-plate tectono-magmatic provinces. The localization of deformation in the southern Central Andes (29°S–39°S) has been

attributed to numerous factors that combine the properties of the subducting oceanic Nazca plate and the continental South

American plate. In this study, the present-day configuration of the subducting oceanic plate and the continental upper plate

were integrated in a data-driven geodynamic workflow to assess their role in determining strain localization within the upper

plate of the flat slab and its southward transition to a steeper segment. The model predicts two fundamental processes that

drive deformation in the Andean orogen and its foreland: eastward propagation of deformation in the flat-slab segment by a

combined bulldozing mechanism and pure-shear shortening that affects the broken foreland and simple-shear shortening in the

fold-and-thrust belt of the orogen above the steep slab segment. The transition between the steep and subhorizontal subduction

segments is characterized by a 370-km-wide area of diffuse shear, where deformation transitions from pure to simple shear,

resembling the transition from thick to thin-skinned foreland deformation in the southern Sierras Pampeanas. This pattern is

controlled by the change in dip geometry of the Nazca plate and the presence of mechanically weak sedimentary basins and

inherited faults.
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Abstract 11 

The non-collisional subduction margin of South America is characterized by different geometries of the 12 

subduction zone and upper-plate tectono-magmatic provinces. The localization of deformation in the 13 

southern Central Andes (29°S–39°S) has been attributed to numerous factors that combine the properties of 14 

the subducting oceanic Nazca plate and the continental South American plate. In this study, the present-day 15 

configuration of the subducting oceanic plate and the continental upper plate were integrated in a data-16 

driven geodynamic workflow to assess their role in determining strain localization within the upper plate of 17 

the flat slab and its southward transition to a steeper segment. The model predicts two fundamental 18 

processes that drive deformation in the Andean orogen and its foreland: eastward propagation of 19 

deformation in the flat-slab segment by a combined bulldozing mechanism and pure-shear shortening that 20 

affects the broken foreland and simple-shear shortening in the fold-and-thrust belt of the orogen above the 21 

steep slab segment. The transition between the steep and subhorizontal subduction segments is 22 

characterized by a 370-km-wide area of diffuse shear, where deformation transitions from pure to simple 23 

shear, resembling the transition from thick to thin-skinned foreland deformation in the southern Sierras 24 

Pampeanas. This pattern is controlled by the change in dip geometry of the Nazca plate and the presence of 25 

mechanically weak sedimentary basins and inherited faults.   26 

Plain language summary 27 

 The deformation in the Sierras Pampeanas in the foreland of the southern Central Andes involves 28 

sedimentary cover rocks and the underlying crust. The mechanisms driving this style of deformation are debated 29 

between two schools of thought, with one group proposing that the subhorizontal subduction of the oceanic 30 
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Nazca Plate beneath the continent (also known as the flat-slab area) allows stresses to be propagated away from 31 

the oceanic trench into the Sierras Pampeanas, far away from the oceanic trench. Conversely, another group 32 

proposes that shear zones and faults in the South American continental crust and lithosphere that are inherited 33 

from previous tectonic regimes contribute to weaken the crust, and deformation and uplift of basement blocks 34 

follow closely through the reactivation of pre-existing structures such as terrane boundaries or extensional 35 

faults. These discontinuities would be responsible for the localization and style of deformation in the foreland. 36 

In this study, we numerically simulate the present kinematic and thermomechanical conditions of the Sierras 37 

Pampeanas to deduce the factors controlling deformation. 38 

 39 

1.  Introduction  40 

Flat subduction occurs at 10% of presently active convergent margins (Gutscher et al., 2000) and 41 

fundamentally influences the tectono-magmatic evolution of tectonically active orogens; similar 42 

configurations have repeatedly existed in the geological past as well (Dickinson & Snyder, 1978; Jordan et al., 43 

1983; Jordan & Allmendinger, 1986; Haines et al., 2001; Mahlburg Kay & Mpodozis, 2002) highlighting the 44 

importance of this geodynamic process in governing the distribution of seismicity, volcanism and orogenic 45 

growth. The western continental margin of South America hosts the Cenozoic Andes, the type example of a 46 

non-collisional Cenozoic mountain belt. The more than 6000-km-long Andes include the Altiplano-Puna 47 

Plateau, the second largest orogenic plateau on Earth; segments without a volcanic arc; thick- and thin-48 

skinned thrust belts, whose deformation and uplift have been linked with the characteristics of the 49 

subducting Nazca Plate; and inherited, crustal-scale heterogeneities of the upper plate (Jordan et al., 1983). 50 

In South America, the Nazca and the Pampean flat slabs are thought to be associated with the subduction of 51 

bathymetric anomalies of the Nazca and Juan-Fernandez Ridge (JFR), respectively (Figure 1; Kley et al., 1999; 52 

Gutscher et al., 2000; Yáñez et al., 2001; Bello-González et al., 2018). Due to the oblique subduction and form 53 

of these anomalies, it has been suggested that the Pampean flat slab in the southern Central Andes (SCA) has 54 

migrated from ~20°S lat to its present-day position at ~32°S lat within the last 35 Ma, accompanied by an 55 

increase in the magnitude of shortening in the Central Andes (Ramos et al., 2002b; Oncken, 2006; Oncken et 56 

al., 2012; Pilger, 1981). Therefore, examining the interaction between the subducting oceanic plate and the 57 

continental upper plate in light of inherited heterogeneities and different subduction geometries is vital for 58 

our understanding of the different factors that influence strain localization in a convergent-margin setting. 59 

In this study, we explore the role of different shortening contributors in the Southern Central Andes (SCA, 60 

~27°S–40°S) by integrating the previously constrained structural and thermal configurations of the plates 61 

(Rodriguez Piceda et al., 2021; 2022). According to these configurations the flat slab domain also has a spatial 62 

correlation with a portion of the upper plate that has a thick mafic lower crustal unit. This region of the upper 63 

plate therefore is relatively colder and rheologically stronger than other parts of the upper plate (Rodriguez 64 
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Piceda et al., 2022a,b). Above the flat-slab segment, deformation extends across an a really extensive broken 65 

foreland and localizes at the border of the reverse-faulted, thick-skinned Sierras Pampeanas (Ramos et al., 66 

2002b). This style of deformation contrasts with a thin-skinned deformation style in fold-and-thrust belts 67 

(FTB), where the sedimentary cover rocks of the foreland sectors are involved in the deformation (Isacks et 68 

al., 1982; Jordan, 1984; Jordan & Allmendinger, 1986; Kay & Abbruzzi, 1996; Ramos et al., 2002b). The SCA 69 

foreland is characterized by a transition from dominantly thick-skinned (~27°S–33°S) to thin-skinned 70 

deformation (>~36°S, Manceda & Figueroa, 1995; Giambiagi et al., 2012; Fuentes, 2016). Between ~33°S and 71 

36°S, both styles of deformation occur together. The eastward propagation and localization of deformation 72 

away from the trench through time can be explained by two main mechanisms: The first one involves a 73 

bulldozing process of the flat slab directed at the keel of the continental lithosphere (e.g., Jordan, 1984; 74 

Ramos & Folguera, 2009; Horton, 2018; Gutscher, 2018), where shear stresses are transmitted from the 75 

subduction interface at the trench to the eastern edge of the flat-slab segment. The second mechanism 76 

involves the compressional reactivation of steeply dipping crustal faults inherited from previous tectonic 77 

regimes (Figure 1d, Mon & Salfity, 1995; Kley & Monaldi, 1998; Cristallini & Ramos, 2000; Mescua et al., 2014; 78 

Giambiagi et al., 2014; Lossada et al., 2017)). By investigating the relative importance of the key contributors 79 

to strain localization, we discuss the viability of each mechanism in the SCA. 80 

We distinguish between shallow and deep-seated contributors that affect the deformation of the crust or 81 

the entire lithosphere, respectively. At the surface, topography and the strength of the sedimentary rocks 82 

and their  distribution is primarily a function of the formation of individual sedimentary basins that developed 83 

during Mesozoic extensional processes; the normal faults that once bounded these sedimentary basins were 84 

subsequently reactivated during Cenozoic Andean compression (Mpodozis & Kay, 1990; Uliana et al., 1995; 85 

Kley, 1999; 2002; Hongn et al., 2007; Del Papa et al., 2013; Fennell et al., 2019). Low frictional strength of 86 

unconsolidated sediments or poorly lithified sedimentary rocks may favor strain localization and thin-skinned 87 

deformation (Allmendinger, 1997; Allmendinger & Gubbels, 1996; Kley, 1999; Babeyko & Sobolev, 2005; Liu 88 

et al., 2022). Therefore, by including these sedimentary units in our model, we examined the role of crustal-89 

scale heterogeneities. At greater depths, strain localization can be affected by lithospheric-scale 90 

heterogeneities, which can be classified as inherited discrete discontinuities, such as suture zones that 91 

developed during the amalgamation of Paleozoic terranes (e.g., Ramos, 2010). Alternatively, they may 92 

constitute volumetric discontinuities associated with inherited variations in the composition and/or thickness 93 

of the layers of the continental lithosphere (i.e., crystalline crust and lithospheric mantle), which reflect the 94 

tectono-magmatic evolution of different sectors within the orogen and its foreland (Ibarra et al., 2018, 2019; 95 

Liu et al., 2022; Rodriguez Piceda et al., 2021). Overall, structural and geometric parameters may influence 96 

lithospheric strength and the localization of deformation   (Horton et al., 2022, Ramos et al., 2002, 2010, 97 

GIambiagi et al., 2022, Barrionuevo et al, 2021). 98 
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Using data-driven geodynamic modelling we developed a numerical modeling workflow that integrated 99 

data-driven three-dimensional structural, density, and thermal models (Rodriguez Piceda et al., 2021; 2022) 100 

into a geodynamic model to simulate shortening in the lithosphere of the SCA. Ultimately, our analysis sheds 101 

new light on the long-standing debate on the role and degree of influence of flat-slab geometry and inherited 102 

crustal-scale heterogeneities on deformation styles in orogenic forelands (Ramos et al., , 2002; Ramos & 103 

Folguera, 2009; Horton, 2016; Lossada et al., 2017).  104 

 105 

 

Figure 1 Structural cross sections and map of the Southern Central Andes. a topography and bathymetry 

of the model area based on ETOPO1 global relief model (Amante & Eakins, 2009), indicating the higher 

modelled resolved area (black rectangle) and the borders of the morphotectonic provinces (modified from 

Rodriguez Piceda et al., 2021) color-coded by the dominant style of deformation. The white-dashed rectangle 

outlines the extent of the gravity-constrained structural model (Rodriguez Piceda et al., 2021). Red triangles 

depict Cenozoic volcanic edifices. Depth contours of the top slab (Hayes et al., 2018) are shown in white 

lines. Dashed black lines in the oceanic domain delimit the Juan Fernandez Ridge (JFR). Oceanic and 

continental plate velocities are  indicated by white arrows (Sdrolias & Müller, 2006; Becker et al., 2015). 

Abbreviations of main morphotectonic provinces: CB: Cuyo basin, CC: Coastal Cordillera, CP: Cerrilladas 

Pedemontanas, ESP: Eastern Sierras Pampeanas, NB: Neuquén basin; P: Payenia, PC: Principal Cordillera (LR= 

La Ramada fold-thrust belt, Ac: Aconcagua fold-thrust belt, Ml: Malargüe fold-thust belt), FC: Frontal 

Cordillera, FA: forearc, PrC: Precordillera, SR: San Rafael Block, TrB: Triassic basins, WSP: Western Sierras 

Pampeanas, EAB:  Extra-Andean basins.. b Transect between 30-31°S (modified from Ramos et al., 2002b; 

Gans et al., 2011; Lossada et al., 2017; Stalder et al., 2020) c Transect at 33.4°S (modified from Barrionuevo 
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et al., 2021). c Transect at 36°S (modified from Barrionuevo et al., 2021). Abbreviations of lithospheric and 

asthenospheric units: UC: upper crust, LC: lower crust, ML: mantle listosphere, Ast: asthenosphere. Light-

brown colored area indicates crustal regions with pronounced deformation. Slab dip based on CRUST 2.0 

(Hayes et al., 2018).  

2.  Methods 106 

2.1 Governing equations 107 

We used the finite element code ASPECT (Advanced Solver for Problems in Earth's ConvecTion, version 2.3.0-108 

pre,  Kronbichler et al., 2012; Rose et al., 2017; Heister et al., 2017; Bangerth et al., 2021)  to simulate brittle and 109 

ductile deformation. This code solves for conservation of the momentum (eq. 1), mass (eq. 2) and energy (eq. 110 

3), together with the advection and reaction equations (eqs. 4-5).  111 

−𝛻 ·  (2𝜂έ) +  𝛻𝑝 =  𝜌𝑔 , ( 2) 112 

𝛻 ·  𝒖 =  0 , ( 2) 113 

ϼ𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+  𝒖 ·  𝛻𝑇)   −  𝛻 ·  𝑘𝛻𝑇 = ϼ𝐻 + (2𝜂έ) ∶  έ  − 𝛼𝑇 𝒖 ·  𝑔 , ( 3) 114 

𝜕𝑐𝑖

𝜕𝑡
+  𝒖 ·  𝛻𝑐𝑖 =  𝑞𝑖 , (4) 115 

     116 

Where έ =  
1

2
. (𝛻𝒖 + (𝛻𝒖)𝑇, is the deviatoric strain rate tensor, 𝑢 = 𝑢(𝑥⃑, 𝑡), 𝑝 = 𝑝(𝑥⃑, 𝑡)  and 𝑇 = 𝑇(𝑥⃑, 𝑡) 117 

are the  velocity, pressure and thermal fields, respectively.  Cp is the heat capacity, ρ and ϼ are the density and 118 

the reference density (see eq. 5), k is the thermal conductivity, α is the thermal expansivity, η is the viscosity, t 119 

is time, ci is the composition, and qi is the reaction rate. The energy equation (eq. 3) includes shear heating and 120 

adiabatic heating, while the contribution of radiogenic heating to the temperatures is already included in the 121 

initial thermal condition. 122 

 To simulate realistic densities, we used the equation of state of Murnaghan (1944, eq. 5) which takes 123 

into account pressure, although the latter is neglected in the mass-conservation conversion equation (eq. 2). 124 

This assumption can be considered as an acceptable approximation since in subduction models compressibility 125 

is considered to have a negligible effect (Fraters, 2015).  126 

𝜌𝑓 =  𝜌𝑟𝑒𝑓𝑖 (1 +  (𝑃 − (
𝛼𝑖

𝛽𝑖
) (𝑇 −  𝑇𝑟𝑒𝑓)) 𝑘𝑖𝛽𝑖)

1
𝑘𝑖

 , ( 5) 127 

https://www.zotero.org/google-docs/?broken=0i3JyN
https://www.zotero.org/google-docs/?broken=0i3JyN
https://www.zotero.org/google-docs/?broken=LSoh4W
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𝜌𝑓 and 𝜌𝑟𝑒𝑓𝑖 are the final and reference density for each composition at reference temperature (Tref = 293 128 

K) and surface pressures. 𝛼𝑖 is the thermal expansivity, 𝛽𝑖 is the isothermal compressibility and 𝑘𝑖 is the 129 

isothermal bulk-modulus pressure derivative.  130 

The dominant mechanism of deformation depends on the yield stress, which is defined as the maximum 131 

differential stress that a rock is able to withstand without experiencing permanent deformation (Goetze & Evans, 132 

1979). Viscous (ductile) deformation is simulated by harmonic averaging of dislocation and diffusion-creep 133 

mechanisms (eq. 6, Glerum et al., 2018):  134 

ηdiff|disl =  0.5 𝐴
diff|disl

(−
1
n

)
 𝑑𝑚έe

1.− n
n   exp (

𝑄diff|disl + 𝑃. 𝑉diff|disl

𝑛𝑅𝑇
) , (6) 135 

where A is the prefactor rescaled from uniaxial experiments, n is the stress exponent, d and m are the grain 136 

size and grain size exponent,  έ𝑒  is the square root of deviatoric strain rate, Q is the energy of activation, V is 137 

the volume of activation, P the pressure, R the gas constant, and T the temperature. Dislocation creep is grain-138 

size independent, therefore the term 𝑑𝑚 is removed from eq. (6) for ndisl. In turn, plastic (brittle) deformation is 139 

described by the Drucker-Prager criterion (eq. 7):  140 

𝑖𝑛 3𝐷 ∶  𝜎𝑦 =
6𝐶.𝑐𝑜𝑠Ф

√3(3−𝑠𝑖𝑛Ф )
+

6𝑃.𝑠𝑖𝑛Ф

√3(3−𝑠𝑖𝑛Ф )
 , ( 7)           141 

    142 

where C, P and F hold for the cohesion, the pressure and the internal friction angle (radians), respectively. 143 

Additionally, we included a linear plastic strain softening for the crustal layers which depends on the integrated 144 

strain accumulation (Table 1). 145 

Finally, the effective plastic viscosity is given by: 146 

𝜂 =  
𝜎𝑦

2έ
 , ( 8)  147 

The material and temperature fields used as input were defined on the basis of 3D lithospheric-scale models 148 

of the SCA (Rodriguez Piceda et al., 2021, 2022) and are described along the mechanical properties 149 

corresponding to the lithospheric layers in Section 2.2. Since each conservation equation is solved using the 150 

continuity equation, the deformation takes the appearance of shear zones in numerical geodynamic modeling. 151 

Therefore, highly deformed areas may potentially represent highly “faulted areas”. 152 

     153 

2.2 Model setup 154 

The geometries of the lithospheric layers were adopted from the 3D structural model of Rodriguez Piceda 155 

et al. (2021). This model is built upon the integration of geophysical and geological data and models, including 156 

the gravity field, and covers a region of 700 km x 1100 km x 200 km (Figure 1). Eight layers constituting the 157 
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model were defined based on the principal density contrasts in the lithosphere: (1-2) oceanic and continental 158 

sediments (‘sediments’, Figure 2a); (3) upper continental crystalline crust (‘upper crust’, Figure 2c) ; (4) lower 159 

continental crystalline crust (‘lower crust’, Figure 2d); (5) continental lithospheric mantle (‘continental 160 

mantle’, Figure 2f); (6) oceanic crust; (7) oceanic lithospheric mantle (‘oceanic mantle’), and (8) 161 

asthenospheric mantle. For the geodynamic simulations, two main modifications were introduced to change 162 

the original model of Rodriguez Piceda et al. (2021). First, the model was extended 200 km in depth, 500 km 163 

in the E-W direction, and 200 km in the N-S direction. The resulting box model is 1700 x 1700 x 400 km, with 164 

a central area of interest of 600 x 600 x 400 km (Figure 3). Second, we introduced an interface representing 165 

the lithosphere-asthenosphere boundary (LAB) in the continental plate based on the thermal LAB model of 166 

Hamza & Vieira (2012). The main features of the model are depicted (Figure 2) in terms of the: (a) thickness 167 

of sediments; (b) thickness of the continental crust; (c) thickness of the upper crust; (d) thickness of the lower 168 

crust; (e) Moho depth, and (f) LAB depth. 169 

 

Figure 1 Layer thickness and depth map of the SCA. Main structural features of the SCA lithosphere 

from the model of Rodriguez Piceda et al. (2021). a, total crystalline crustal thickness; b upper continental 

crustal thickness; c lower continental crustal thickness; d sediment thickness; e Moho depth and f LAB 

depth taken from Hamza and Vieira (2012). The black rectangle shows the most refined model area. 

The initial temperature field is based on a 3D thermal model of the SCA (Rodriguez Piceda et al., 2022), 170 

covering the same region as the structural model of Rodriguez Piceda et al. (2021). Temperatures were 171 

derived from the conversion of S-wave tomography (Schaeffer & Lebedev, 2013) together with steady-state 172 

conductive modeling, and were additionally validated by borehole temperatures and surface heat-flow data 173 
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(Rodriguez Piceda et al., 2022). One caveat of this model is related to the determination of the thermal 174 

structure of the oceanic slab through the conversion of S-wave tomography to temperature. The lack of 175 

seismic tomography resolution (0.5° longitudinally and 25km in depth) does not allow us to properly resolve 176 

the oceanic plate boundaries, which results in relatively high temperatures in comparison to the 177 

temperatures predicted by numerical solutions (Wada & Wang, 2009; van Keken et al., 2019). For this reason, 178 

we have assigned a conductive geotherm between 273 K and 1573 K from the top to the base of the oceanic 179 

plate as initial condition. 180 

The thermomechanical properties of each model unit were assigned according to its lithological 181 

composition (Rodriguez Piceda et al., 2021; 2022). These lithologies were inferred from the comparison 182 

between gravity-constrained densities (Rodriguez Piceda et al., 2021) and mean P-wave velocities (Araneda 183 

et al., 2003; Contreras-Reyes et al., 2008; Pesicek et al., 2012; Marot, 2014; Scarfi & Barbieri, 2019), combined 184 

with rock-properties compiled from literature (Sobolev & Babeyko, 1994; Christensen & Mooney, 1995; 185 

Brocher, 2005) and other seismic properties (Wagner et al., 2005; Gilbert et al., 2006; Alvarado et al., 2007; 186 

Ammirati et al., 2013; 2015; 2018). The reference density for each composition was recalculated, so the 187 

estimated final density of each composition (i.e., after correcting for pressure and temperature, eq. 5, Table 188 

1), is in the range of the density predicted by the structural model of Rodriguez Piceda et al (2021), and the 189 

resulting topography was compared to the present-day topography (Text B.S1 and Figure 1). The thermal 190 

properties used in the initial thermal field are from published average values for the lithology of each model 191 

unit (see references in Rodriguez Piceda et al., 2022a; 192 

We assigned rheological properties to each composition for the viscous regime, dry olivine (Hirth & 193 

Kohlstedt, 2004, H&K2004) to the oceanic mantle  (3321 kg/m³), diabase (Mackwell et al., 1998, Mck1998) 194 

to the lower crust (3129 kg/m³), wet olivine (Hirth & Kohlstedt, 2004) to the continental mantle (3388 kg/m³), 195 

wet quartzite (Gleason & Tullis, 1995, G&T1995) to the upper crust (2812 kg/m³), the oceanic and continental 196 

sedimentary layer (2300 and 2400 kg/m³) , and wet olivine (Hirth & Kohlstedt, 2004) to the upper mantle to 197 

represent the hydrated mantle wedge. 198 

  For the oceanic crust (2857 kg/m³), we prescribed a weak quartzite rheology (Ranalli, 1997) to 199 

simulate the visco-plastic behavior of a quartz-dominated “mélange”, which is characteristic of the 200 

subduction interface (Sobolev et al., 2006; Muldashev & Sobolev, 2020), with a relatively low friction 201 

coefficient of 0.015, which produces an appropriate maximum shear stress of 20 to 40 MPa, depending on 202 

the temperature and the dip of the oceanic plate (Figure S4; Lamb & Davis, 2003; Sobolev et al., 2006).  203 

For the plastic regime, we set a cohesion of 40 MPa and a friction angle of 30° to the mantle layers.  The short 204 

model runtime prevents the layers from weakening by accumulating plastic strain, thus we assigned a weak 205 

plastic rheology to the sedimentary layer (i.e., a friction angle of 3° and a cohesion of 2 MPa). The minimum 206 

viscosity was set to 1e19 Pas during the first 100 ka of model run, and subsequently changed to 2.5e18 Pas. 207 
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Here, we refer to the second invariant of the square root of the deviatoric strain rate in the plastic and viscous 208 

domains as plastic strain rate and viscous strain rate, respectively. The plastic strain represents the integrated 209 

plastic strain rate over time and allows us to see the regions of the model that have been deformed and 210 

weakened during the model run. We used adaptive mesh refinement (Figure 3) to resolve the central and 211 

outer domains, with a resolution of ~6km and 12.5km, respectively. We ran the model simulation for ~250 212 

ka while applying velocities of 5 cm/yr and 1 cm/yr to the oceanic and continental plates, respectively 213 

(Sdrolias & Müller, 2006), whereas the left and right asthenosphere borders were left open. To fulfill the 214 

volume conservation constraint, we prescribed an equivalent volume outflow to the bottom boundary equal 215 

to the prescribed inflow from the plate velocity. We use the advantages of the ASPECT code by prescribing a 216 

dynamically deformable mesh in order to simulate present-day topography. In particular, the topography in 217 

the model is uplifted and advected using the ASPECT-FastScape coupling (Braun & Willett, 2013; Bovy, 2021; 218 

Neuharth et al., 2021).219 
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 220 

   Asthenosphere 
(AST) 

Oceanic plate  Continental plate  

  Units Upper mantle Weak Gabbro Lithomantle 
Oceanic 

sediments 
Continental 
Sediments 

UpperCrust LowerCrust Lithomantle 

Lithology / Harzburgite 
Gabbro 

+melange 
(serpentinite) 

Moderately 
depleted 
Lherzolite 

Siliclastic Siliclastic Diorite Mafic Granulite Wet olivine 

Reference / H&K2004 Ranalli, 1997 H&K2004 G&T1995 G&T1995 Mck1998 H&K2004 

Composition used in 
the model 

/ Dry  olivine Wet quartzite  Dry olivine  
Wet 

quartzite   
Wet quartzite   Maryland diabase  Wet olivine 

Grain size m 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 

Creep pre-exponential 
factor Bd / Bn 

Pa-ndiff/ndisl. s-

1 
1e-9 / 8.49e-15 - / 2.25e-17 

2.25e-15 / 
2.96e-16 

- / 8.57e-
28 

- / 8.57e-28 - / 7.13e-18 1e-9 / 2.96e-14 

Grain-size exponents mm 0 -  3 - - - 0 

Activation energies Ed 
/ En 

kJ/mol 335 / 540 - / 154 375 / 535 - / 223 - / 223 - / 345  335 / 515 

Activation volume Vd / 
Vn 

m3/mol 4.8e-6 / 12e-6 - / 0 
10e-6 / 14e-

6 
- / 0 - / 0 - / 0 4.8e-6 / 14e-6 

Stress exponents n 3.5 2.3 3.5 4 4 3 3.5 

Internal angle of 
friction 

degree 30 0.8594 30 30 -> 6 3 30 -> 6 30 -> 6 30  

Cohesion MPa 40 0.1 40 20 -> 10 2 20 40 -> 20 40  

Plastic strain 
weakening interval 

none -  0 - 0.3 - 0.5 - 1.5 0 - 1.5 0.5 - 1.5 0 - 1.5 0 - 1.5 

Thermal conductivity W/K/m 3.3 2.5 3.3 2.2 2.2 2.5 2.6 3.3 

Densities kg/m3 3347 2857 3321 2300 2400 2812 3129 3388 

Table 1 Model parameters for each composition. G&T1995 : Gleason & Tullis, 1995. Mck1998 : Mackwell et al., 1998. H&K2004.Hirth & Kohlstedt, 2004. Lithology corresponds 

to the one defined in Rodriguez Piceda et al., (2020) whereas representative compositions in the model are defined based on deformation experiments. Prefactors (A) were 

scaled from uniaxial compression experiments (Dannberg et al., 2017). We applied wet olivine (Hirth & Kohlstedt, 2004) to the upper mantle to be representative of the hydrated 

mantle wedge and mantle lithosphere caused by the long-term subduction at the Chile margin (Babeyko et al., 2006). 

221 
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Figure 2 Model setup. a 3d model geometry, mesh refinement and temperature.  b 2D W-E cross section 

long with location indicated in a, showing: boundary and initial conditions, refinement of the interface, 

composition of the lithospheric layers and temperature. Tpot indicates the mantle potential temperature 

and FA the forearc domain. c-e yield strength (black line) and temperature (red line) profiles of the upper 

plate at: c  flat-slab. d shallow slab. e steep slab. 

First, we computed the reference model (S1) using the parametrization discussed above (section 2.2). 222 

Subsequently, we ran a series of models (S2, S3, S4 and S5, Table 2) with varying multiple parameters to 223 

investigate the relative contribution of key factors with respect to the strain localization in the upper plate. 224 
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3.  Modeling results 225 

3.1 Reference model (S1) 226 

 

Figure 1 Surface-strain rate of the Reference model. a. Strain rate superposed with compiled faults 

(Moscoso & Mpodozis, 1988; García, 2001; Giambiagi et al., 2003; Broens & Pereira, 2005; Folguera & 

Zárate, 2011; Martino et al., 2016; Litvak et al., 2018; Martínez et al., 2017; Sánchez et al., 2017; Meeßen 

et al., 2018; Riesner et al., 2018; Olivar et al., 2018; Jensen, 2018; Melnick et al., 2020; Costa et al., 2020; 

Eisermann et al., 2021). b. Close-up of the Sierras Pampeanas morphotectonic province and extensional 

faults  and terrane sutures in red (Ramos et al., 2002a; Wimpenny, 2022). Green structures indicate uplifted 

Sierras Pampeanas ranges. The timing of uplift is indicated by filled coloured circles (Table B.S1).  White 

lines are isobaths of the top of the subducting oceanic plate. Red triangles indicate the position of known 

volcanic edifices. Major structures and morphotectonic provinces are highlighted by different colours in 

the legend. 

Reference model S1 is built upon the known values for plate convergence, subduction-interface 227 

coefficient, sediment strength, and present-day topography (see Methods section). From south to north, 228 

deformation migrates to the east, with the strain localizing in the southern part, while in the northern part it 229 

is distributed over multiple faults (Figures 4 and 5). This shift is related to a change in the shortening mode 230 

from simple shear to pure shear. When considered in a strain-rate snapshot, simple-shear shortening occurs 231 



13 

when the plastic strain-rate band in the upper crust connects with the viscous strain-rate band in the lower 232 

crust to form a shear zone (Figure 5c–d), which is expressed by thin-skinned deformation in the FTBs. 233 

Conversely, if no connection occurs between the plastic and viscous strain-rate localization zones, pure-shear 234 

shortening involving multiple faults is favored, leading to distributed deformation within the crystalline 235 

basement, which corresponds to a thick-skinned foreland-deformation style. The resulting surface strain-rate 236 

field indicates three distinct north-to-south oriented branches (Figure 4a) characterized by a distinct 237 

shortening mode:  238 

(i) A Western branch between 75°W and 73°W, which corresponds to the trench. At the trench, both 239 

plates are decoupled by the weak subduction interface, where most of the deformation localizes. 240 

Conversely, the crust of the adjacent cold and mechanically strong forearc is virtually undeformed. 241 

(ii) A Central branch between 73°W and 70°W, which comprises the orogen and the adjacent foreland. 242 

Strain distribution varies from north to south. In the flat-slab segment, the strain localizes in the eastern 243 

front of the orogen and intensifies southward and the foreland crust is almost undeformed. In the shallow-244 

slab segment, the strain distributes in the foreland over multiple oblique or en échelon, crustal-scale 245 

structures that connect to the Eastern branch and which are associated with pure-shear shortening. In 246 

the steep-slab segment, strain localizes in front of the orogen and in the foreland by simple-shear 247 

shortening. 248 

(iii) An Eastern branch between 60°W and 65°W, where deformation localizes in front of the flat slab by 249 

pure-shear shortening, as well as along regions that spatially correlate with Pre-Andean cratonic 250 

structures related to the amalgamation of terranes during the formation of Gondwana, such as the 251 

Transbrazilian Lineament (Fairhead & Maus, 2003; Ramos, 2010). In the south, the deformation localizes 252 

within smaller structures that straddle the Rio de la Plata craton.  253 

On a lithospheric scale, these three branches interact spatially. The Sierras Pampeanas morphotectonic 254 

province appears as a large-scale shear zone that accommodates deformation via en-échelon structures 255 

associated with the uplift of isolated rigid basement blocks. The deformation at the borders of these blocks 256 

is accommodated by diffuse dextral strike-slip deformation (Pons et al., 2023, will be submitted with this 257 

paper).   258 

We also distinguish three slab segments of the subducting Nazca Plate (Figure 5): a flat segment (27°W to 259 

32°W, 1000–1400 km model width-coordinates), a shallow segment (32°W to 35°W , a 600–1000 km model 260 

width-coordinates), and a steep segment (35°W to 41°W, 0–600 km model width-coordinates). The E-W-261 

oriented cross sections across the reference model (Figure 5) illustrate how the plastic (brittle) and viscous 262 

deformation is accommodated in the continental plate along the segments with different slab geometry 263 

(Figure 5a–c), and how stresses are distributed within the plates (Figure 5d–f). Above the steep segment, the 264 

upper plate is characterized by simple-shear shortening at the front of the orogenic thrust wedge (Figure 5c). 265 

Above the shallow subduction segment, the model predicts a mixture of simple and pure-shear shortening 266 
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(Figure 5b). No significant deformation occurs above the flat-slab segment, while pure-shear deformation 267 

takes place at its eastern edge (Figure 5a). 268 

The greatest horizontal stress is effectively transmitted throughout the continental plate to weak regions 269 

where the deformation localizes. In the flat-slab section (Figure 5a), deformation takes place more than ~700 270 

km away from the trench and is localized over a 200-km-wide band in the eastern broken foreland of the 271 

Sierras Pampeanas. The model predicts local plastic (equivalent to brittle in reality) deformation (Figure 5a) 272 

on top of the colder flat-slab segment at a 100 km depth (Figure 5c), which also correlates with the bending 273 

of the slab (i.e., internal shear stress, Figure 5a, d). Horizontal stresses of > 200 MPa are generated locally in 274 

the crust and in the colder lithospheric mantle of the forearc, where the BDT is deeper, but they are not 275 

sufficiently large to cause significant deformation. The thick and warmer orogen shows no significant 276 

deformation despite being weaker, which is illustrated by the shallower BDT (Figure 5a). On top of the flat-277 

slab segment, the greatest horizontal stress is mainly generated by the subducting plate as shown by the 278 

eastward-pointing velocity vectors (Figure 5d). The horizontal stresses also build up within the cold and 279 

strong lithospheric mantle of the foreland. Despite the presence of a weak sedimentary basin at the surface, 280 

deformation does not localize and stresses are partially transmitted eastward from the base of the upper 281 

crust to the Eastern Sierras Pampeanas. Finally, crustal shortening results in a stress drop in the eastern 282 

Sierras Pampeanas, and the polarity of the velocity field switches from east to west, indicating that velocity 283 

is now determined by the upper plate (Figure 5d).  284 

Shortening is distributed over multiple faults within a relatively wide area (~200 km), similar to pure-shear 285 

shortening. In the shallow-slab section (Figure 5b), the plastic and viscous strain rates merge in front of the 286 

orogen (at ~800 km model coordinates) to form a deep shear zone dominated by simple-shear shortening. 287 

In the foreland, the deformation distributes over multiple faulted areas along a wide area, with rigid crustal 288 

blocks with a shallower BDT. Similarly to the previous section the deformation terminates in the transition 289 

with the cratonic domain and a thick-skinned style of deformation, which results from pure-shear shortening. 290 

The horizontal stress also builds up locally in the cold forearc (>~200 MPa; Figure 5e), where the great 291 

mechanical strength of the rocks prevents failure and causes a transmission of stresses to the orogen. 292 

Additionally, the horizontal stress builds up in the lower crust and partially transmitted to the Eastern Sierras 293 

Pampeanas. Strain localizes at the orogenic front by simple-shear shortening and is accommodated y pure-294 

shear shortening in the foreland and at the transition with the cratonic domain. In the steep-slab section, the 295 

deformation strongly localizes in front of the orogen (~800 km model length; Figure 5c).  296 
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Figure 2 Representative cross sections of the subduction segments for the reference model (see location in Figure 1): Strain rate (a-c) and stress (d-f). a-

d Flat-slab (31°S). b-e Shallow slab (33°S) and c-f Steep slab (36°S). a-c white lines are interpreted faults, yellow lines show the depth of the brittle-ductile 

transition (BDT), and dark lines indicate isotherms. d-f black lines indicate the interpreted faults, arrows indicate the sense of the velocity for the crust. 

297 
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3.2 Model variations 298 

In this section, we test the relative contribution of four key parameters on the resulting surface strain-299 

rate distribution: (1) the friction coefficient at the oceanic plate interface, (2) the strength of continental 300 

sediments, (3) the topography, and (4) the velocity applied to the model boundaries. The  friction 301 

coefficient at the oceanic plate interface is varied between 0.005 and 0.05 (models S2a-c) in agreement 302 

with the models of the long-term evolution of the Central Andes (Sobolev et al., 2006; Sobolev & Babeyko, 303 

2005). The internal friction angle (Φ) and cohesion (C) of the sediments is varied from 3° to 30° (friction 304 

coefficient 0.05 to 0.5) and from 2 to 20 MPa, respectively (Figure 6, models S3a-d). In addition, we tested 305 

the effect of topography on the strain distribution by removing the topographic relief in the initial 306 

configuration with and without applied velocities at the boundaries (Figure 6, models S4a-d). Finally, the 307 

oceanic and continental plate velocities are varied between 0 cm/yr and 6 cm/yr, covering the range of 308 

possible velocities (Figure 6, models S5a-d). Table 2 summarizes the alternative model runs. In order to 309 

discuss the relative effect of each key parameter to the strain localization we computed the residual 310 

surface strain rate between the model variant and the reference model (Figure S3). To estimate the 311 

variation in strain localization above the trench related to flat, shallow, and steep subduction, we divided 312 

the surface of each model into sub-domains. For each domain, we calculated an average of the strain rate 313 

using the root mean square. Finally, we calculated the relative change between the domains of the model 314 

variants and of the reference model. Thus, we obtained a summary of the relative percentage of 315 

contribution of each key parameter to the reference model for each domain (Figure 7). Note that for a 316 

similar budget of force between the reference model and the model variants, if the strain at the surface 317 

localizes further in one of the branches (section 3.1), it may decrease in another one to keep the balance. 318 

Because part of the forces might be redistributed outside of the area of interest, the net percentage of 319 

the domains might not be equal to 100%. 320 

  321 
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Group Name Variation 

Friction coefficient of the 
subduction interface (μint) 

S2a μint = 0.005 

S2b μint = 0.035 

S2c μint = 0.05 

S2d μint = 0.07 

Sediment strength (internal friction 
angle Φ and cohesion C) 

S3a Φ = 30° ,C = 20 MPa 

S3b Φ = 30°, C = 2 MPa 

S3c Φ = 15°, C = 20 MPa 

S3d Φ = 3°, C = 20 MPa 

Model with variation of the 
topography 

S4a no initial topography w/ boundary velocity 

S4b no initial topography, w/o boundary velocity 

S4c no topography w/ boundary velocity 

S4d no topography w/o boundary velocity 

Velocities of the subducting plate 
(SP) and the overriding plate (OP) 

S5a SP= 0 cm/yr , OP= 1 cm/yr 

S5b SP= 5 cm/yr, OP = 0 cm/yr 

S5c SP = 6 cm/yr, OP = 0 cm/yr 

S5d SP = 0 cm/yr, OP = 6 cm/yr 

Table 1 Model variations with respect to the reference model. 322 
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Figure 3 Strain-rate distribution in various models. a-d Models with variable friction coefficients (f) 

at the subduction interface: a S2a, f 0.005. b S2b, f 0.035. c S2c, f 0.05. d S2d, f 0.07. e-h Models with 

alternative strength (Φ internal friction angle, and C cohesion) of the sedimentary layer.  e S3a, Φ = 

30°  C = 20 MPa. f S3b, Φ = 30°  C= 2 MPa. g S3c, Φ = 15°  C= 20 MPa. h S3d Φ =3°  C=20 MPa. i-l Models 

without prescribing initial topography. i-j Free surface with advection of the topography allowed. k-l 
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Free-slip, no advection of topography allowed. I, k models with plate velocity, SP = 5 cmyr-1 and OP 

=1 cmyr-1 . j,l models without velocity, SP and OP = 0 cmyr-1. For abbreviations of plate velocities, see 

table 2. m-p Models with variations of prescribed plate velocity. m Absolute overriding plate velocity 

orthogonal to the trench, no subducting plate velocity. n Absolute subducting plate velocity 

orthogonal to the trench, no overriding plate velocity. o Convergence velocity, applied only to the 

subducting plate. p Convergence velocity, applied only to the overriding plate. Black rectangle is the 

resolved area; dark line indicates the boundaries of the morphotectonic provinces, red triangles 

denote position of volcanic edifices. 

3.2.1 Models with variable slab-interface friction (S2a-d) 323 

The greatest differences between the reference and alternative models related to the slab interface 324 

friction occurs along the trench (Figure 6). With low slab interface friction (S2a; Figure 6a), the strain 325 

strongly localizes more at the trench (x18 or +994%, Figure 7). Less strain localizes within the overriding 326 

plate (-27 to -54%), including the orogen and the back-arc. Conversely, higher interplate friction (S2b-c; 327 

Figure 6b-d) translates into a twofold lower strain localization at the trench (-92 to 97%), and slightly 328 

higher overriding plate deformation (+6%, Figure 7). Therefore, for these short simulations the increase 329 

of friction at the interface results in similar intensity of upper-plate deformation with respect to the 330 

reference model S1. 331 

3.2.2 Strength of continental sediments (S3a-d) 332 

Modifying sediment strength results in a significant change in strain-rate distribution. Weaker 333 

sediments lead to a higher degree of strain localization adjacent to the orogen and the foreland basins 334 

(S3a-d, Figure 6e-h). A decrease in the internal friction angle (S3c and S3d, Figure 6f and h) decreases the 335 

strength significantly more than a decrease of cohesion (S3b and S1, Figure 6g and Figure 4), promoting 336 

the compressional reactivation of foreland structures. With high friction and cohesion (S3a, Figure 6e), 337 

the strain rate in the foreland appears to be more diffuse and less localized (-35 and -40%), causing strain 338 

to localize closer to the orogen and the trench (+220%) compared to the reference model (Figure 7). With 339 

weaker continental sediments, the major component of deformation switches from the orogen interior 340 

outward to its front. Overall, stronger sediments result in more active shallow deformation near the 341 

trench and in the orogen above the flat slab (S3a, 423%), and less pronounced deformation in the foreland 342 

above the shallower and steeper domains (~-40%, Figure 7).   343 
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3.2.3 Models with topography variations (S4a-d)  344 

By initializing the model without present-day topography, we aim to look at the effect of internal forces 345 

related to the density and thickness configuration of the overriding plate layers. In models S4a and S4b, 346 

we allow for the topography to evolve with and without plate velocities, respectively (Figure 6i-j). S4a 347 

exhibits a strain-rate distribution similar to S1 (cf. Figure 6a), but with higher strain localization at the 348 

trench and in the orogen on top of the flat-slab (+25 and 38%, Figure 7). In S4b, although no horizontal 349 

velocity is prescribed, the strain rate is higher in the orogen on top of the flat slab (+30%) and lower 350 

elsewhere. To investigate the effect of topography on the strain distribution, we ran two alternative 351 

models inhibiting topographic growth, with and without plate velocities (models S4b-c; Figure 6j-l). In the 352 

model with plate velocities (S4c) the strain rate is higher at the trench and the orogen on top of the flat-353 

slab (+128 and 101%), and it is more diffuse and lower in the foreland of the shallow and steep-subduction 354 

domains (-23% and -36%). Without plate velocities (S4d), the strain rate only localizes in a narrow corridor 355 

along the orogen and otherwise decreases elsewhere.   356 

3.2.4 Velocity boundary conditions (S5a-d)  357 

Varying the prescribed boundary velocity allows us to determine the contribution of each plate to the 358 

intensity of strain localization in the overriding plate. In model S5a (Figure 6m), where velocities are only 359 

prescribed to the overriding plate (1cm yr-1; Figure 6m), the intensity of the deformation in the foreland 360 

is lower by 58 to 83% in all domains compared to model S1 (Figure 7) because the deformation slightly 361 

localizes at the trench in specific places. In model S5b, where the overriding plate does not advance 362 

trenchward, the deformation decreases everywhere by 15 to 30%, likely because the strain efficiently 363 

localizes in the orogen and the foreland (Figure 6n). Models S5c and S5d (Figure 6n-o) show that a 364 

deformation intensity similar to the reference model can be reached if the total convergence velocity is 365 

applied to either the lower or the upper plates. Overall, a fast convergence rate controls the intensity of 366 

the deformation and its localization. In these models, the contribution of the subducting plate velocity 367 

seems more important than that of the overriding plate, although a fast overriding plate velocity (S5d) 368 

can lead to similar degree of deformation as in the reference model. The strain-rate distribution in the 369 

overriding plate does not depend on the side of the prescribed velocity. The models that prescribe velocity 370 

from the west with the subducting plate (S5c) or from the east with the overriding upper plate (S5d) show 371 

similar structures and patterns (Figure 6o-p).372 
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 373 

 

Figure 4 Relative surface strain-rate difference between the reference and the model variants. Relative change of strain rate in percentage 

[έRMS(area) −  έRMSref(area)] / έRMSref(area) ∗ 100 with respect to the reference model in each deformation domain for each model variant.  

 

374 
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4.  Discussion  375 

To analyze the roles of inherited heterogeneities in the continental plate and oceanic plate 376 

geometry we assess the relative contribution of the overriding plate strength with respect to strain 377 

localization along-strike. We first compare the distribution of modeled strain-rate patterns with the 378 

mapped structures (Section 4.1). Next, we discuss each of the tested key factors and how they affect 379 

the strength in our model, and their contribution to strain localization. We then discuss the role of 380 

shallow and deep-seated structures (e.g., sediment strength, topography, and the thermal state and 381 

thickness of the lithosphere, section 4.2, Figure 8). Finally, we examine the effect of slab geometry 382 

(flat, shallow, and steep subduction) regarding the distribution and style of deformation in the foreland 383 

(section 4.3). 384 

 385 
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Figure 8 Schematic 3D diagram showing the possible processes (in bold) and inherited structures 

that can affect strain localization and the tectonic foreland deformation style in the Sierras 

Pampeanas. 

 386 

4.1 Correlation with mapped structures 387 

Our modelling results can be compared with observed surface faulting. Although we do not 388 

implement faults in the models explicitly, sediment accumulation is partly associated with their 389 

activity. In the investigated area, Mesozoic deposits are controlled by normal-fault bounded, 390 

extensional basins, while reverse faults cause sediment accumulation at their footwalls. Therefore, 391 

sediment strength and pre-existing faults related to a different kinematic regime may strongly affect 392 

the location of deformation and the reactivation of shallow inherited faults, which explains why 393 

structures resulting from the strain-rate map of the reference model are spatially well correlated with 394 

exposed faults (Figure 4a-b). In particular, the strain-rate distribution in the reference model correlates 395 

with Quaternary faults located at the front of the orogen in the foreland fold-and-thrust belts (e.g., 396 
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Malargue, San Rafael FTB), at the borders of the basins (e.g., Cuyo Basin), and with the faults uplifiting 397 

the Sierras Pampeanas basement blocks. In some cases, inherited Pre-Andean structures have been 398 

reactivated that were associated with the amalgamation of Paleozoic crustal terranes at the western 399 

margin of Gondwana (Introcaso & Ruiz, 2001; Vietor & Echtler, 2006; Ortiz et al., 2021). For instance, 400 

faults associated with the Desaguadero-Bermejo lineament (DBL) close to the Sierra Valle Fértil in the 401 

western Sierras Pampeanas (Figure 4b, Introcaso & Ruiz, 2001) are associated with structures related 402 

to the Ordovician collision of the Cuyania and Pampia terranes (Ramos, 2010). This strike-slip fault was 403 

reactivated during the Neogene (Introcaso & Ruiz, 2001). The model also predicts the reactivation of 404 

the Transbrazilian lineament (TBL), a major Proterozoic transpressive shear zone that borders the 405 

thicker mantle lithosphere of the Rio de la Plata craton (Figure 4b, Cordani et al., 2013; Casquet et al., 406 

2018).  In contrast, the forearc is subjected to a low degree of deformation and acts as a rigid body 407 

(Tassara & Yáñez, 2003; Tassara, 2005; Hackney et al., 2006), although previous studies have shown 408 

that the forearc experienced a certain degree of Quaternary deformation (González et al., 2003; 409 

Melnick et al., 2006; Regard et al., 2010). The mobility of the forearc is controlled by the long-term 410 

weakening associated with strain partitioning that is caused by oblique plate convergence (Melnick et 411 

al., 2006; Rosenau et al., 2006; Eisermann et al., 2021), which is not considered in our model. Other 412 

regions that exhibit a low degree of deformation include the foreland above the flat-slab segment 413 

(Figure 5a) and the back-arc in the steep-slab segment (Figure 5c). In the latter case, most of the 414 

deformation is related to pre-Neogene structures (e.g., Folguera & Zárate, 2009). 415 

4.2 Upper-plate control on strain localization  416 

The strength of the overriding plate controls strain localization and results from contributions 417 

exerted by the frictional (brittle) and viscous (ductile) strength (Babeyko et al., 2006; Mouthereau, 418 

2013; Jammes & Huismans, 2012; Liu et al., 2022). Several processes may weaken the plate and 419 

influence the localization of deformation. In our study we distinguished between shallow and deep-420 

seated contributors, depending on their control on the frictional and viscous strength, respectively. 421 

An important component of the stress is transmitted through the frictional regime (Figure 5), thus 422 

shallow contributors can significantly affect strain localization through frictional weakening. The 423 

variations in frictional strength are related to the tectonic history of the region, and are modulated by 424 

several features. These include the sediment strength relative to the underlying structures (Babeyko 425 

et al., 2006; Erdős et al., 2015; Mescua et al., 2016; Liu et al., 2022), the presence of inherited (Pre-426 

Andean) faults and fabrics and their orientation with respect to the convergence direction 427 

(Allmendinger et al., 1983; Kley, 1999; Kley & Monaldi, 2002), and topography (Molnar & Tapponnier, 428 

1975; Chen & Molnar, 1983; Stüwe, 2007; Mareschal & Jaupart, 2011; Liu et al., 2022). In turn, the 429 
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deep-seated contributors are those affecting the strength of the crust and the lithospheric mantle 430 

through temperature variations. The extent to which shallow and deep-seated contributors interact 431 

and affect the strength of the overriding plate in the SCA, is discussed in the following sections. 432 

4.2.1 Shallow structures  433 

Previous studies have shown the important role of the thickness and strength of sediments in 434 

shallow strain localization (Babeyko et al., 2006; Erdős et al., 2015; Mescua et al., 2016; Liu et al., 2022). 435 

In the Central Andes, the presence of mechanically weak and porous Palaeozoic sediments in the 436 

foreland spatially correlates with a change of deformational style from thin-skinned to thick-skinned 437 

deformation in strain rate map the transition between the Subandean FTB and the broken foreland 438 

province of the Santa Barbara System of northwestern Argentina  (Allmendinger et al., 1983; McGroder 439 

et al., 2015; Pearson et al., 2013). Previous numerical models have shown that a low friction coefficient 440 

of the sediments (<0.05) promotes asymmetric deformation, a simple-shear shortening and thin-441 

skinned deformation style, which may constitute a necessary condition to initiate foreland 442 

underthrusting of the Brazilian Shield (Sobolev et al., 2006; Liu et al., 2022; Pons et al., 2022).  443 

Additionally, Ibarra et al. (2019) have proposed that deformation tends to localize within the areas 444 

with large lateral variations of crustal strength, such as the foreland where a thick sedimentary layer 445 

is present. Our results show that the distribution of sediments inherited from past tectonic events 446 

largely control shallow strain localization (Figure 2d, Figure 6 and 7, S3a-c). Sediments tend to 447 

accumulate at the footwall of the faults or close to uplifted basement blocks. In addition, some of these 448 

depocenters had already formed during Palaeozoic to early Mesozoic extension, which could also have 449 

weakened the basement (Mescua et al., 2016). In our model, efficient simple-shear shortening is 450 

favored by the thick sedimentary layer of the foreland basin, which generates a detachment fault 451 

connecting plastic (brittle) and viscous strain rates in the upper and lower crust, respectively (Figure 452 

5). In case that such a connection is not possible, shortening is accommodated by pure shear and 453 

deformation distributes along multiple symmetrical faults (Figure 5). Model variations S3a-d show that 454 

weaker sediments are required to localize the deformation along specific discrete faults and structures 455 

(e.g., at the borders of the uplifted basement blocks or the Bermejo basin; Figure 6, S3c). Conversely, 456 

strong sediments (e.g. model S3a) with a small strength contrast with respect to the upper crust lead 457 

to a broad, diffuse shear zone in the foreland above the flat-slab segment (Figure 6e-h).  458 

An additional factor that is proposed to exert major control on strain localization is topography. In 459 

the orogen, the gravitational potential energy constitutes an important resistive force to orogenic 460 

growth (Molnar & Tapponnier, 1975; Chen & Molnar, 1983; Stüwe, 2007; Mareschal & Jaupart, 2011; 461 

Liu et al., 2022). If horizontal forces are not sufficiently strong to overcome gravitational stresses 462 
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exerted by the topography of the orogen, the horizontal stresses migrate laterally to the periphery of 463 

the orogen and strain localized in the foreland. This effect is highlighted in Model S4c (Figure 6k), where 464 

no topography is allowed to grow, thus the deformation is less efficiently transmitted and localized in 465 

the weak areas of the foreland. Topography can also exert an indirect effect on deformation 466 

localization if the uplifted foreland basement blocks are bounded by faults and adjacent sediment 467 

depocenters, which promotes the localization of deformation as discussed previously in this section. 468 

In the alternative models without initial topography (Model S4a, Figure 6i) or where no topography is 469 

allowed to grow (Model S4c, Figure 6k), the removal of the orogenic load fosters strain localization in 470 

the orogen. Additionally, the models without prescribed velocities (Models S4b, Figs. 6j and l) indicate 471 

that a low portion of the strain rate in the northern orogen in the model could result from some 472 

dynamic effect of the flowing mantle asthenosphere. 473 

4.2.2 Effect of deep-seated inherited structures.  474 

The viscous strength of the continental crust and mantle lithosphere strongly depends on their 475 

composition, inherited thickness and on their thermal state because of the strong dependence of 476 

viscosity on temperature  (Sippel et al., 2017; Anikiev et al., 2020; Ibarra et al., 2021; Rodriguez Piceda 477 

et al., 2022b). In the orogen, higher temperatures decrease the depth of the brittle-ductile transition 478 

favoring viscous deformation and crustal flow which may facilitate the connection with the plastically 479 

deforming foreland sediments, ultimately promoting simple-shear deformation (Liu et al., 2022). 480 

Additionally, for an orogenic crust of more than 60 km thickness, simple shear is almost always the 481 

preferred mode of foreland deformation (Liu et al., 2022). In contrast, a cold,  rigid lithosphere can act 482 

as an indenter by transmitting horizontal stresses to its front, localizing the deformation at the 483 

transition between strong and weak domains (Calignano et al., 2015; Tesauro et al., 2015; Rodriguez 484 

Piceda et al., 2022b, Ibarra et al., 2021). 485 

The lithospheric thermal field in the SCA is the result of the contributions from the compositional 486 

and thickness configuration of the lithospheric layers and the basal lithospheric heat flow (Rodriguez 487 

Piceda et al., 2022a). The crustal thermal field mainly depends on the volumetric heat capacity of the 488 

radiogenic upper crust, whereas the thermal field of the mantle is strongly perturbed by the cooling 489 

effect of the subducting slab, which changes as a function of the slab dip and geometry (Rodriguez 490 

Piceda et al., 2022a). In the northern part of the orogen, the effect of the thick felsic radiogenic crust 491 

(Figure 2) overprints the cooling effect of the flat slab (Rodriguez Piceda et al., 2022a). Therefore, the 492 

northern part of the orogen would be expected to deform actively, which contradicts our model results 493 

and the lack of observed seismicity in the area (ISC catalog, Rodriguez Piceda et al., 2022b; Figure S2). 494 

To explain this apparent contradiction (i.e., no deformation of the upper plate), an additional 495 
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mechanism must be invoked (further discussed in Section 4.3). Conversely, the lithosphere in the 496 

northern foreland is characterized by a thinner radiogenic upper crust (Figure 2) which does not 497 

overprint the cooling effect of the flat-slab, thus resulting in a colder and stronger lithosphere. This 498 

strengthening allows for an efficient stress transmission from the oceanic plate to the continental plate 499 

between western and eastern domain above the flat-slab segment. Additionally, the strong, thick 500 

cratonic domain (Figure 2f) allows for an efficient transmission of stresses to the west. Consequently, 501 

the deformation localizes at the eastern edge of the broken foreland where the effects of forces 502 

applied from the subducted plate and the cratonic part of the continental plate meet (Figure 5a). 503 

Finally, the deformation is intensified by the overlying weak sediments. 504 

Other deep lithospheric processes, such as eclogitization of the crust and delamination of the 505 

lithospheric mantle, are not considered in our models, they could also weaken the overriding plate and 506 

facilitate strain localization (Babeyko et al., 2006; Sobolev et al., 2006). However, in the southern 507 

Central Andes, there is no evidence of delamination and extensive eclogitization below the Western 508 

Sierras Pampeanas and Precordillera (Alvarado et al., 2007, 2009; Ammirati et al., 2013; 2015; 2018; 509 

Gilbert et al., 2006b; Marot et al., 2014). Thick, warm orogenic crust (>~45 km) can also be subjected 510 

to intracrustal convection and partial melting, further weakening the overriding plate (Babeyko et al., 511 

2006). Nevertheless, such thickness values are only reached  (Assumpção, 2013; Rodriguez Piceda et 512 

al., 2021) where the lack of volcanism between ~27°S - 33°S (Figure 1) indicates a decrease in the 513 

lithospheric basal heat flux during the last ~6 Ma (Barazangi & Isacks, 1976; Isacks et al., 1982; Jordan 514 

et al., 1983; Kay et al., 1987; 1991; Jordan et al., 1993; Ramos et al., 2002a; Ramos & Folguera, 2009; 515 

Rodriguez Piceda et al., 2022b), preventing partial melting and crustal convection in the southern 516 

Central Andes. 517 

4.3 Lower-plate control on strain localization 518 

In the SCA, the role of the flat-slab on the stress regime and the localization of deformation in the 519 

upper plate is a matter of ongoing debate (Jordan et al., 1983; Gutscher et al., 2000; Folguera et al., 520 

2009; Gutscher, 2018; Horton, 2018; Martinod et al., 2020). Along the tectonically active Pacific rim 521 

steep subduction is associated with a low degree of coupling, upper-plate extension, and back-arc 522 

spreading (Mariana type), while low-angle subduction cause close plate coupling, upper-plate 523 

compression and shortening (Chile type) (Barazangi & Isacks, 1976; Uyeda & Kanamori, 1979; Ramos 524 

& Folguera, 2009; Horton, 2018). Eastward-directed compression in the Central Andes is driven by 525 

basal shear stress exerted by the underlying flat-slab (Gutscher et al., 2000). Additionally, the passage 526 

of the flat-slab weakens the overriding plate mechanically by scraping the continental lithospheric 527 

mantle,  (‘bulldozed mantle-keel’ model, Liu & Currie, 2016; Gutscher, 2018; Axen et al., 2018) and 528 
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thermally by exposing the remaining lithosphere to the warmer asthenosphere (Isacks, 1988). More 529 

recent studies, however, have emphasized that the stress regime of the overriding plate is probably 530 

more influenced by the velocity difference between the overriding plate and the trench rather than by 531 

the subduction angle (Lallemand et al., 2008; Faccenna et al., 2017, 2021). The velocity of trench 532 

retreat can be perturbed by a rapid change in the subduction angle, which can be caused by the 533 

interaction between the slab and the mantle transition zone (Čížková & Bina, 2013; Cerpa et al., 2015; 534 

Briaud et al., 2020; Pons et al., 2022). The absolute motion of the South American plate prescribed in 535 

model S1 is considered to be the driving force of the Andean orogeny (Sobolev and Babeyko, 2005; 536 

Husson et al., 2008; Martinod et al., 2010); nevertheless, when viewed at shorter geological timescales, 537 

model variants  such as model S5b-d, illustrate that a similar strain rate as in model S1 can be achieved 538 

with a different redistribution of plate velocities while maintaining a similar convergence rate (Figure 539 

6 and 7). This implies that at shorter timescales, the parameter convergence rate is potentially more 540 

important than absolute plate velocity. 541 

In our simulations, the subduction angle of the oceanic slab also controls the distribution of strain 542 

localization in the upper plate. The flat slab propagates stresses eastward causing shortening to take 543 

place in front of the flat slab, as proposed by the ‘bulldozed mantle-keel’ models (‘slab bulldozing’, 544 

Gutscher, 2018; Axen et al., 2018). Strain localization could be favoured by inherited crustal-scale 545 

structures such as the Transbrazilian lineament in the SCA (see Section 4.2.1). Conversely, the cratonic 546 

domain also transmits horizontal stresses westward across the continental plate and amplifies the 547 

intensity of deformation (Figure 5). Interestingly, our results predict almost no deformation in the 548 

upper plate overlying the flat-slab segment (27°S–32°S). This is consistent with limited seismic activity 549 

observed in the orogenic domain overlying the flat slab segment (Figure S2). We suggest that this is 550 

the result of upper-plate strengthening at these latitudes due to cooling as discussed above (cf. section 551 

4.2.2) and caused by the underplated oceanic slab at the base of the continental lithosphere. The 552 

notion that the upper plate is shielded from deformation in the flat-slab segment is also supported by 553 

the decrease in shortening in the Precordillera at ~9Ma at 30°S following the arrival of the Juan 554 

Fernandez Ridge at 12 Ma (Yáñez et al., 2001; Allmendinger & Judge, 2014; Bello-González et al., 2018). 555 

 The colder subduction interface along the flat-slab segment (Figure 5a) also contributes to an 556 

increase in the coupling between the plates, and can locally reach shear stresses >35 MPa (Figure S4). 557 

Moreover, the low temperatures of the subduction interface combined with its low frictional strength 558 

could deepen the BDT of this discontinuity to 100 km depth (Figure 5a). The shear stresses at the plate 559 

interface decrease southward, which is supported by the increased thickness of the trench-fill 560 

sediments south of 33°S (Bangs & Cande, 1997; Völker et al., 2013). A comparison with the average 561 

shear stress at the plate interface suggested by Lamb & Davis (2003; Figure S4) shows that our 562 
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reference model (f=0.015) may underestimate the shear stress at the flat-slab interface, whereas 563 

model S2d (f=0.07) may overestimate it.  564 

In contrast to the flat-slab segment, deformation in the steep-slab segment (36°S–40°S) localizes 565 

along the front of the orogen, which shows that deformation cannot be efficiently propagated to the 566 

eastern domain if the oceanic slab is steeply dipping. Alternatively, the transition between the steep 567 

and flat-slab geometry results in the formation of an intermediary shallow segment (32°S–36°S). Above 568 

this segment a large crustal shear zone develops in the broken foreland that results from the offset of 569 

strain localization between the flat and steep slabs. In such a scenario deformation takes place via 570 

multiple faults that border the basement ranges of the Sierras Pampeanas (Figure 5d), and the strain 571 

localization along these faults is enhanced by the presence of weak sediments (Models S2, Figure 6a-572 

d). From a dynamic point of view, we suggest that the shallowing of the slab generates crustal 573 

contraction prior to slab flattening in response to a large transpressive shear zone in the southern 574 

Sierras Pampeanas. Accordingly, deformation could be accommodated by a combination of strike-slip 575 

deformation at the borders of the uplifted basement blocks and block rotation. This mechanism, that 576 

we name “flat-slab conveyor”, is further investigated in a related publication (Pons et al., 2023, related 577 

manuscript). 578 

 579 

Figure 9 Summary of the main contributors to strain localization in the Southern Central Andes 580 

indicates a north-south-directed switch from deep to shallow-seated factors.  581 
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5.  Conclusions 583 

Using 3D data-driven geodynamic subduction modeling, we analyzed the relative contribution of 584 

subducting plate geometry and shallow and deep-seated crustal-scale and lithospheric structures of 585 

the overriding plate on strain localization in the SCA. Our modelling results provide a better 586 

understanding the Cenozoic interaction between the Pampean flat slab and the South American plate 587 

in the region of the southern Central Andes between 27° and 32°S and within the transition to a steeper 588 

subduction segment farther south. The flat slab controls upper-plate deformation in the northern part 589 

of the SCA by strengthening the lithosphere of the upper-plate and by cooling the overriding plate 590 

through underplating, thus shielding the upper plate of the flat-slab subduction system from 591 

pronounced deformation.  Consequently, deformation propagates toward the eastern edge of the flat 592 

slab by a bulldozing effect. This deformation is accommodated in the eastern broken foreland, where 593 

the slab is already dipping steeply.  594 

The inherited structures in the overriding plate contribute to the strain localization in multiple 595 

different ways.  (i) In the compressional Cenozoic setting of the flat-slab region sediment distribution 596 

can be viewed as a proxy for the distribution of major faults, because depocenters usually form at their 597 

footwalls. Weaker sediments, and therefore weaker faults, significantly intensify deformation in the 598 

flat-slab segment. (ii) Inherited crustal-scale fault zones, such as the TBL located within the transition 599 

to the cratonic domain, may be preferentially reactivated and localize deformation as seen in the 600 

eastern Sierras Pampeanas. (iii) The localization of deformation in the forearc may be controlled by 601 

strain partitioning and long-term strain weakening related to the obliquity of convergence. (iv) A thick 602 

crust may control the temperature of the continental crust due to the contribution of radiogenic 603 

heating, thus affecting the depth of the brittle-ductile transition (BDT). For a thicker felsic crust the 604 

BDT is shallower, which promotes the development of deep-seated, asymmetric décollements and 605 

simple-shear shortening in the fold-and-thrust belts. In contrast, a thinner upper continental crust 606 

causes a deeper BDT as observed in the Sierras Pampeanas and fosters the activity of multiple 607 

symmetric faults and pure-shear shortening.  (v) Surface topography may also exert a significant 608 

influence on strain localization within the orogen by transmitting horizontal stresses toward the 609 

foreland. 610 

  611 
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Abstract 11 

The non-collisional subduction margin of South America is characterized by different geometries of the 12 

subduction zone and upper-plate tectono-magmatic provinces. The localization of deformation in the 13 

southern Central Andes (29°S–39°S) has been attributed to numerous factors that combine the properties of 14 

the subducting oceanic Nazca plate and the continental South American plate. In this study, the present-day 15 

configuration of the subducting oceanic plate and the continental upper plate were integrated in a data-16 

driven geodynamic workflow to assess their role in determining strain localization within the upper plate of 17 

the flat slab and its southward transition to a steeper segment. The model predicts two fundamental 18 

processes that drive deformation in the Andean orogen and its foreland: eastward propagation of 19 

deformation in the flat-slab segment by a combined bulldozing mechanism and pure-shear shortening that 20 

affects the broken foreland and simple-shear shortening in the fold-and-thrust belt of the orogen above the 21 

steep slab segment. The transition between the steep and subhorizontal subduction segments is 22 

characterized by a 370-km-wide area of diffuse shear, where deformation transitions from pure to simple 23 

shear, resembling the transition from thick to thin-skinned foreland deformation in the southern Sierras 24 

Pampeanas. This pattern is controlled by the change in dip geometry of the Nazca plate and the presence of 25 

mechanically weak sedimentary basins and inherited faults.   26 

Plain language summary 27 

 The deformation in the Sierras Pampeanas in the foreland of the southern Central Andes involves 28 

sedimentary cover rocks and the underlying crust. The mechanisms driving this style of deformation are debated 29 

between two schools of thought, with one group proposing that the subhorizontal subduction of the oceanic 30 



2 

Nazca Plate beneath the continent (also known as the flat-slab area) allows stresses to be propagated away from 31 

the oceanic trench into the Sierras Pampeanas, far away from the oceanic trench. Conversely, another group 32 

proposes that shear zones and faults in the South American continental crust and lithosphere that are inherited 33 

from previous tectonic regimes contribute to weaken the crust, and deformation and uplift of basement blocks 34 

follow closely through the reactivation of pre-existing structures such as terrane boundaries or extensional 35 

faults. These discontinuities would be responsible for the localization and style of deformation in the foreland. 36 

In this study, we numerically simulate the present kinematic and thermomechanical conditions of the Sierras 37 

Pampeanas to deduce the factors controlling deformation. 38 

 39 

1.  Introduction  40 

Flat subduction occurs at 10% of presently active convergent margins (Gutscher et al., 2000) and 41 

fundamentally influences the tectono-magmatic evolution of tectonically active orogens; similar 42 

configurations have repeatedly existed in the geological past as well (Dickinson & Snyder, 1978; Jordan et al., 43 

1983; Jordan & Allmendinger, 1986; Haines et al., 2001; Mahlburg Kay & Mpodozis, 2002) highlighting the 44 

importance of this geodynamic process in governing the distribution of seismicity, volcanism and orogenic 45 

growth. The western continental margin of South America hosts the Cenozoic Andes, the type example of a 46 

non-collisional Cenozoic mountain belt. The more than 6000-km-long Andes include the Altiplano-Puna 47 

Plateau, the second largest orogenic plateau on Earth; segments without a volcanic arc; thick- and thin-48 

skinned thrust belts, whose deformation and uplift have been linked with the characteristics of the 49 

subducting Nazca Plate; and inherited, crustal-scale heterogeneities of the upper plate (Jordan et al., 1983). 50 

In South America, the Nazca and the Pampean flat slabs are thought to be associated with the subduction of 51 

bathymetric anomalies of the Nazca and Juan-Fernandez Ridge (JFR), respectively (Figure 1; Kley et al., 1999; 52 

Gutscher et al., 2000; Yáñez et al., 2001; Bello-González et al., 2018). Due to the oblique subduction and form 53 

of these anomalies, it has been suggested that the Pampean flat slab in the southern Central Andes (SCA) has 54 

migrated from ~20°S lat to its present-day position at ~32°S lat within the last 35 Ma, accompanied by an 55 

increase in the magnitude of shortening in the Central Andes (Ramos et al., 2002b; Oncken, 2006; Oncken et 56 

al., 2012; Pilger, 1981). Therefore, examining the interaction between the subducting oceanic plate and the 57 

continental upper plate in light of inherited heterogeneities and different subduction geometries is vital for 58 

our understanding of the different factors that influence strain localization in a convergent-margin setting. 59 

In this study, we explore the role of different shortening contributors in the Southern Central Andes (SCA, 60 

~27°S–40°S) by integrating the previously constrained structural and thermal configurations of the plates 61 

(Rodriguez Piceda et al., 2021; 2022). According to these configurations the flat slab domain also has a spatial 62 

correlation with a portion of the upper plate that has a thick mafic lower crustal unit. This region of the upper 63 

plate therefore is relatively colder and rheologically stronger than other parts of the upper plate (Rodriguez 64 
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Piceda et al., 2022a,b). Above the flat-slab segment, deformation extends across an a really extensive broken 65 

foreland and localizes at the border of the reverse-faulted, thick-skinned Sierras Pampeanas (Ramos et al., 66 

2002b). This style of deformation contrasts with a thin-skinned deformation style in fold-and-thrust belts 67 

(FTB), where the sedimentary cover rocks of the foreland sectors are involved in the deformation (Isacks et 68 

al., 1982; Jordan, 1984; Jordan & Allmendinger, 1986; Kay & Abbruzzi, 1996; Ramos et al., 2002b). The SCA 69 

foreland is characterized by a transition from dominantly thick-skinned (~27°S–33°S) to thin-skinned 70 

deformation (>~36°S, Manceda & Figueroa, 1995; Giambiagi et al., 2012; Fuentes, 2016). Between ~33°S and 71 

36°S, both styles of deformation occur together. The eastward propagation and localization of deformation 72 

away from the trench through time can be explained by two main mechanisms: The first one involves a 73 

bulldozing process of the flat slab directed at the keel of the continental lithosphere (e.g., Jordan, 1984; 74 

Ramos & Folguera, 2009; Horton, 2018; Gutscher, 2018), where shear stresses are transmitted from the 75 

subduction interface at the trench to the eastern edge of the flat-slab segment. The second mechanism 76 

involves the compressional reactivation of steeply dipping crustal faults inherited from previous tectonic 77 

regimes (Figure 1d, Mon & Salfity, 1995; Kley & Monaldi, 1998; Cristallini & Ramos, 2000; Mescua et al., 2014; 78 

Giambiagi et al., 2014; Lossada et al., 2017)). By investigating the relative importance of the key contributors 79 

to strain localization, we discuss the viability of each mechanism in the SCA. 80 

We distinguish between shallow and deep-seated contributors that affect the deformation of the crust or 81 

the entire lithosphere, respectively. At the surface, topography and the strength of the sedimentary rocks 82 

and their  distribution is primarily a function of the formation of individual sedimentary basins that developed 83 

during Mesozoic extensional processes; the normal faults that once bounded these sedimentary basins were 84 

subsequently reactivated during Cenozoic Andean compression (Mpodozis & Kay, 1990; Uliana et al., 1995; 85 

Kley, 1999; 2002; Hongn et al., 2007; Del Papa et al., 2013; Fennell et al., 2019). Low frictional strength of 86 

unconsolidated sediments or poorly lithified sedimentary rocks may favor strain localization and thin-skinned 87 

deformation (Allmendinger, 1997; Allmendinger & Gubbels, 1996; Kley, 1999; Babeyko & Sobolev, 2005; Liu 88 

et al., 2022). Therefore, by including these sedimentary units in our model, we examined the role of crustal-89 

scale heterogeneities. At greater depths, strain localization can be affected by lithospheric-scale 90 

heterogeneities, which can be classified as inherited discrete discontinuities, such as suture zones that 91 

developed during the amalgamation of Paleozoic terranes (e.g., Ramos, 2010). Alternatively, they may 92 

constitute volumetric discontinuities associated with inherited variations in the composition and/or thickness 93 

of the layers of the continental lithosphere (i.e., crystalline crust and lithospheric mantle), which reflect the 94 

tectono-magmatic evolution of different sectors within the orogen and its foreland (Ibarra et al., 2018, 2019; 95 

Liu et al., 2022; Rodriguez Piceda et al., 2021). Overall, structural and geometric parameters may influence 96 

lithospheric strength and the localization of deformation   (Horton et al., 2022, Ramos et al., 2002, 2010, 97 

GIambiagi et al., 2022, Barrionuevo et al, 2021). 98 
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Using data-driven geodynamic modelling we developed a numerical modeling workflow that integrated 99 

data-driven three-dimensional structural, density, and thermal models (Rodriguez Piceda et al., 2021; 2022) 100 

into a geodynamic model to simulate shortening in the lithosphere of the SCA. Ultimately, our analysis sheds 101 

new light on the long-standing debate on the role and degree of influence of flat-slab geometry and inherited 102 

crustal-scale heterogeneities on deformation styles in orogenic forelands (Ramos et al., , 2002; Ramos & 103 

Folguera, 2009; Horton, 2016; Lossada et al., 2017).  104 

 105 

 

Figure 1 Structural cross sections and map of the Southern Central Andes. a topography and bathymetry 

of the model area based on ETOPO1 global relief model (Amante & Eakins, 2009), indicating the higher 

modelled resolved area (black rectangle) and the borders of the morphotectonic provinces (modified from 

Rodriguez Piceda et al., 2021) color-coded by the dominant style of deformation. The white-dashed rectangle 

outlines the extent of the gravity-constrained structural model (Rodriguez Piceda et al., 2021). Red triangles 

depict Cenozoic volcanic edifices. Depth contours of the top slab (Hayes et al., 2018) are shown in white 

lines. Dashed black lines in the oceanic domain delimit the Juan Fernandez Ridge (JFR). Oceanic and 

continental plate velocities are  indicated by white arrows (Sdrolias & Müller, 2006; Becker et al., 2015). 

Abbreviations of main morphotectonic provinces: CB: Cuyo basin, CC: Coastal Cordillera, CP: Cerrilladas 

Pedemontanas, ESP: Eastern Sierras Pampeanas, NB: Neuquén basin; P: Payenia, PC: Principal Cordillera (LR= 

La Ramada fold-thrust belt, Ac: Aconcagua fold-thrust belt, Ml: Malargüe fold-thust belt), FC: Frontal 

Cordillera, FA: forearc, PrC: Precordillera, SR: San Rafael Block, TrB: Triassic basins, WSP: Western Sierras 

Pampeanas, EAB:  Extra-Andean basins.. b Transect between 30-31°S (modified from Ramos et al., 2002b; 

Gans et al., 2011; Lossada et al., 2017; Stalder et al., 2020) c Transect at 33.4°S (modified from Barrionuevo 
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et al., 2021). c Transect at 36°S (modified from Barrionuevo et al., 2021). Abbreviations of lithospheric and 

asthenospheric units: UC: upper crust, LC: lower crust, ML: mantle listosphere, Ast: asthenosphere. Light-

brown colored area indicates crustal regions with pronounced deformation. Slab dip based on CRUST 2.0 

(Hayes et al., 2018).  

2.  Methods 106 

2.1 Governing equations 107 

We used the finite element code ASPECT (Advanced Solver for Problems in Earth's ConvecTion, version 2.3.0-108 

pre,  Kronbichler et al., 2012; Rose et al., 2017; Heister et al., 2017; Bangerth et al., 2021)  to simulate brittle and 109 

ductile deformation. This code solves for conservation of the momentum (eq. 1), mass (eq. 2) and energy (eq. 110 

3), together with the advection and reaction equations (eqs. 4-5).  111 

−𝛻 ·  (2𝜂έ) +  𝛻𝑝 =  𝜌𝑔 , ( 2) 112 

𝛻 ·  𝒖 =  0 , ( 2) 113 

ϼ𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+  𝒖 ·  𝛻𝑇)   −  𝛻 ·  𝑘𝛻𝑇 = ϼ𝐻 + (2𝜂έ) ∶  έ  − 𝛼𝑇 𝒖 ·  𝑔 , ( 3) 114 

𝜕𝑐𝑖

𝜕𝑡
+  𝒖 ·  𝛻𝑐𝑖 =  𝑞𝑖 , (4) 115 

     116 

Where έ =  
1

2
. (𝛻𝒖 + (𝛻𝒖)𝑇, is the deviatoric strain rate tensor, 𝑢 = 𝑢(𝑥⃑, 𝑡), 𝑝 = 𝑝(𝑥⃑, 𝑡)  and 𝑇 = 𝑇(𝑥⃑, 𝑡) 117 

are the  velocity, pressure and thermal fields, respectively.  Cp is the heat capacity, ρ and ϼ are the density and 118 

the reference density (see eq. 5), k is the thermal conductivity, α is the thermal expansivity, η is the viscosity, t 119 

is time, ci is the composition, and qi is the reaction rate. The energy equation (eq. 3) includes shear heating and 120 

adiabatic heating, while the contribution of radiogenic heating to the temperatures is already included in the 121 

initial thermal condition. 122 

 To simulate realistic densities, we used the equation of state of Murnaghan (1944, eq. 5) which takes 123 

into account pressure, although the latter is neglected in the mass-conservation conversion equation (eq. 2). 124 

This assumption can be considered as an acceptable approximation since in subduction models compressibility 125 

is considered to have a negligible effect (Fraters, 2015).  126 

𝜌𝑓 =  𝜌𝑟𝑒𝑓𝑖 (1 +  (𝑃 − (
𝛼𝑖

𝛽𝑖
) (𝑇 −  𝑇𝑟𝑒𝑓)) 𝑘𝑖𝛽𝑖)

1
𝑘𝑖

 , ( 5) 127 

https://www.zotero.org/google-docs/?broken=0i3JyN
https://www.zotero.org/google-docs/?broken=0i3JyN
https://www.zotero.org/google-docs/?broken=LSoh4W
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𝜌𝑓 and 𝜌𝑟𝑒𝑓𝑖 are the final and reference density for each composition at reference temperature (Tref = 293 128 

K) and surface pressures. 𝛼𝑖 is the thermal expansivity, 𝛽𝑖 is the isothermal compressibility and 𝑘𝑖 is the 129 

isothermal bulk-modulus pressure derivative.  130 

The dominant mechanism of deformation depends on the yield stress, which is defined as the maximum 131 

differential stress that a rock is able to withstand without experiencing permanent deformation (Goetze & Evans, 132 

1979). Viscous (ductile) deformation is simulated by harmonic averaging of dislocation and diffusion-creep 133 

mechanisms (eq. 6, Glerum et al., 2018):  134 

ηdiff|disl =  0.5 𝐴
diff|disl

(−
1
n

)
 𝑑𝑚έe

1.− n
n   exp (

𝑄diff|disl + 𝑃. 𝑉diff|disl

𝑛𝑅𝑇
) , (6) 135 

where A is the prefactor rescaled from uniaxial experiments, n is the stress exponent, d and m are the grain 136 

size and grain size exponent,  έ𝑒  is the square root of deviatoric strain rate, Q is the energy of activation, V is 137 

the volume of activation, P the pressure, R the gas constant, and T the temperature. Dislocation creep is grain-138 

size independent, therefore the term 𝑑𝑚 is removed from eq. (6) for ndisl. In turn, plastic (brittle) deformation is 139 

described by the Drucker-Prager criterion (eq. 7):  140 

𝑖𝑛 3𝐷 ∶  𝜎𝑦 =
6𝐶.𝑐𝑜𝑠Ф

√3(3−𝑠𝑖𝑛Ф )
+

6𝑃.𝑠𝑖𝑛Ф

√3(3−𝑠𝑖𝑛Ф )
 , ( 7)           141 

    142 

where C, P and F hold for the cohesion, the pressure and the internal friction angle (radians), respectively. 143 

Additionally, we included a linear plastic strain softening for the crustal layers which depends on the integrated 144 

strain accumulation (Table 1). 145 

Finally, the effective plastic viscosity is given by: 146 

𝜂 =  
𝜎𝑦

2έ
 , ( 8)  147 

The material and temperature fields used as input were defined on the basis of 3D lithospheric-scale models 148 

of the SCA (Rodriguez Piceda et al., 2021, 2022) and are described along the mechanical properties 149 

corresponding to the lithospheric layers in Section 2.2. Since each conservation equation is solved using the 150 

continuity equation, the deformation takes the appearance of shear zones in numerical geodynamic modeling. 151 

Therefore, highly deformed areas may potentially represent highly “faulted areas”. 152 

     153 

2.2 Model setup 154 

The geometries of the lithospheric layers were adopted from the 3D structural model of Rodriguez Piceda 155 

et al. (2021). This model is built upon the integration of geophysical and geological data and models, including 156 

the gravity field, and covers a region of 700 km x 1100 km x 200 km (Figure 1). Eight layers constituting the 157 
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model were defined based on the principal density contrasts in the lithosphere: (1-2) oceanic and continental 158 

sediments (‘sediments’, Figure 2a); (3) upper continental crystalline crust (‘upper crust’, Figure 2c) ; (4) lower 159 

continental crystalline crust (‘lower crust’, Figure 2d); (5) continental lithospheric mantle (‘continental 160 

mantle’, Figure 2f); (6) oceanic crust; (7) oceanic lithospheric mantle (‘oceanic mantle’), and (8) 161 

asthenospheric mantle. For the geodynamic simulations, two main modifications were introduced to change 162 

the original model of Rodriguez Piceda et al. (2021). First, the model was extended 200 km in depth, 500 km 163 

in the E-W direction, and 200 km in the N-S direction. The resulting box model is 1700 x 1700 x 400 km, with 164 

a central area of interest of 600 x 600 x 400 km (Figure 3). Second, we introduced an interface representing 165 

the lithosphere-asthenosphere boundary (LAB) in the continental plate based on the thermal LAB model of 166 

Hamza & Vieira (2012). The main features of the model are depicted (Figure 2) in terms of the: (a) thickness 167 

of sediments; (b) thickness of the continental crust; (c) thickness of the upper crust; (d) thickness of the lower 168 

crust; (e) Moho depth, and (f) LAB depth. 169 

 

Figure 1 Layer thickness and depth map of the SCA. Main structural features of the SCA lithosphere 

from the model of Rodriguez Piceda et al. (2021). a, total crystalline crustal thickness; b upper continental 

crustal thickness; c lower continental crustal thickness; d sediment thickness; e Moho depth and f LAB 

depth taken from Hamza and Vieira (2012). The black rectangle shows the most refined model area. 

The initial temperature field is based on a 3D thermal model of the SCA (Rodriguez Piceda et al., 2022), 170 

covering the same region as the structural model of Rodriguez Piceda et al. (2021). Temperatures were 171 

derived from the conversion of S-wave tomography (Schaeffer & Lebedev, 2013) together with steady-state 172 

conductive modeling, and were additionally validated by borehole temperatures and surface heat-flow data 173 
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(Rodriguez Piceda et al., 2022). One caveat of this model is related to the determination of the thermal 174 

structure of the oceanic slab through the conversion of S-wave tomography to temperature. The lack of 175 

seismic tomography resolution (0.5° longitudinally and 25km in depth) does not allow us to properly resolve 176 

the oceanic plate boundaries, which results in relatively high temperatures in comparison to the 177 

temperatures predicted by numerical solutions (Wada & Wang, 2009; van Keken et al., 2019). For this reason, 178 

we have assigned a conductive geotherm between 273 K and 1573 K from the top to the base of the oceanic 179 

plate as initial condition. 180 

The thermomechanical properties of each model unit were assigned according to its lithological 181 

composition (Rodriguez Piceda et al., 2021; 2022). These lithologies were inferred from the comparison 182 

between gravity-constrained densities (Rodriguez Piceda et al., 2021) and mean P-wave velocities (Araneda 183 

et al., 2003; Contreras-Reyes et al., 2008; Pesicek et al., 2012; Marot, 2014; Scarfi & Barbieri, 2019), combined 184 

with rock-properties compiled from literature (Sobolev & Babeyko, 1994; Christensen & Mooney, 1995; 185 

Brocher, 2005) and other seismic properties (Wagner et al., 2005; Gilbert et al., 2006; Alvarado et al., 2007; 186 

Ammirati et al., 2013; 2015; 2018). The reference density for each composition was recalculated, so the 187 

estimated final density of each composition (i.e., after correcting for pressure and temperature, eq. 5, Table 188 

1), is in the range of the density predicted by the structural model of Rodriguez Piceda et al (2021), and the 189 

resulting topography was compared to the present-day topography (Text B.S1 and Figure 1). The thermal 190 

properties used in the initial thermal field are from published average values for the lithology of each model 191 

unit (see references in Rodriguez Piceda et al., 2022a; 192 

We assigned rheological properties to each composition for the viscous regime, dry olivine (Hirth & 193 

Kohlstedt, 2004, H&K2004) to the oceanic mantle  (3321 kg/m³), diabase (Mackwell et al., 1998, Mck1998) 194 

to the lower crust (3129 kg/m³), wet olivine (Hirth & Kohlstedt, 2004) to the continental mantle (3388 kg/m³), 195 

wet quartzite (Gleason & Tullis, 1995, G&T1995) to the upper crust (2812 kg/m³), the oceanic and continental 196 

sedimentary layer (2300 and 2400 kg/m³) , and wet olivine (Hirth & Kohlstedt, 2004) to the upper mantle to 197 

represent the hydrated mantle wedge. 198 

  For the oceanic crust (2857 kg/m³), we prescribed a weak quartzite rheology (Ranalli, 1997) to 199 

simulate the visco-plastic behavior of a quartz-dominated “mélange”, which is characteristic of the 200 

subduction interface (Sobolev et al., 2006; Muldashev & Sobolev, 2020), with a relatively low friction 201 

coefficient of 0.015, which produces an appropriate maximum shear stress of 20 to 40 MPa, depending on 202 

the temperature and the dip of the oceanic plate (Figure S4; Lamb & Davis, 2003; Sobolev et al., 2006).  203 

For the plastic regime, we set a cohesion of 40 MPa and a friction angle of 30° to the mantle layers.  The short 204 

model runtime prevents the layers from weakening by accumulating plastic strain, thus we assigned a weak 205 

plastic rheology to the sedimentary layer (i.e., a friction angle of 3° and a cohesion of 2 MPa). The minimum 206 

viscosity was set to 1e19 Pas during the first 100 ka of model run, and subsequently changed to 2.5e18 Pas. 207 
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Here, we refer to the second invariant of the square root of the deviatoric strain rate in the plastic and viscous 208 

domains as plastic strain rate and viscous strain rate, respectively. The plastic strain represents the integrated 209 

plastic strain rate over time and allows us to see the regions of the model that have been deformed and 210 

weakened during the model run. We used adaptive mesh refinement (Figure 3) to resolve the central and 211 

outer domains, with a resolution of ~6km and 12.5km, respectively. We ran the model simulation for ~250 212 

ka while applying velocities of 5 cm/yr and 1 cm/yr to the oceanic and continental plates, respectively 213 

(Sdrolias & Müller, 2006), whereas the left and right asthenosphere borders were left open. To fulfill the 214 

volume conservation constraint, we prescribed an equivalent volume outflow to the bottom boundary equal 215 

to the prescribed inflow from the plate velocity. We use the advantages of the ASPECT code by prescribing a 216 

dynamically deformable mesh in order to simulate present-day topography. In particular, the topography in 217 

the model is uplifted and advected using the ASPECT-FastScape coupling (Braun & Willett, 2013; Bovy, 2021; 218 

Neuharth et al., 2021).219 
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 220 

   Asthenosphere 
(AST) 

Oceanic plate  Continental plate  

  Units Upper mantle Weak Gabbro Lithomantle 
Oceanic 

sediments 
Continental 
Sediments 

UpperCrust LowerCrust Lithomantle 

Lithology / Harzburgite 
Gabbro 

+melange 
(serpentinite) 

Moderately 
depleted 
Lherzolite 

Siliclastic Siliclastic Diorite Mafic Granulite Wet olivine 

Reference / H&K2004 Ranalli, 1997 H&K2004 G&T1995 G&T1995 Mck1998 H&K2004 

Composition used in 
the model 

/ Dry  olivine Wet quartzite  Dry olivine  
Wet 

quartzite   
Wet quartzite   Maryland diabase  Wet olivine 

Grain size m 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 

Creep pre-exponential 
factor Bd / Bn 

Pa-ndiff/ndisl. s-

1 
1e-9 / 8.49e-15 - / 2.25e-17 

2.25e-15 / 
2.96e-16 

- / 8.57e-
28 

- / 8.57e-28 - / 7.13e-18 1e-9 / 2.96e-14 

Grain-size exponents mm 0 -  3 - - - 0 

Activation energies Ed 
/ En 

kJ/mol 335 / 540 - / 154 375 / 535 - / 223 - / 223 - / 345  335 / 515 

Activation volume Vd / 
Vn 

m3/mol 4.8e-6 / 12e-6 - / 0 
10e-6 / 14e-

6 
- / 0 - / 0 - / 0 4.8e-6 / 14e-6 

Stress exponents n 3.5 2.3 3.5 4 4 3 3.5 

Internal angle of 
friction 

degree 30 0.8594 30 30 -> 6 3 30 -> 6 30 -> 6 30  

Cohesion MPa 40 0.1 40 20 -> 10 2 20 40 -> 20 40  

Plastic strain 
weakening interval 

none -  0 - 0.3 - 0.5 - 1.5 0 - 1.5 0.5 - 1.5 0 - 1.5 0 - 1.5 

Thermal conductivity W/K/m 3.3 2.5 3.3 2.2 2.2 2.5 2.6 3.3 

Densities kg/m3 3347 2857 3321 2300 2400 2812 3129 3388 

Table 1 Model parameters for each composition. G&T1995 : Gleason & Tullis, 1995. Mck1998 : Mackwell et al., 1998. H&K2004.Hirth & Kohlstedt, 2004. Lithology corresponds 

to the one defined in Rodriguez Piceda et al., (2020) whereas representative compositions in the model are defined based on deformation experiments. Prefactors (A) were 

scaled from uniaxial compression experiments (Dannberg et al., 2017). We applied wet olivine (Hirth & Kohlstedt, 2004) to the upper mantle to be representative of the hydrated 

mantle wedge and mantle lithosphere caused by the long-term subduction at the Chile margin (Babeyko et al., 2006). 

221 
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Figure 2 Model setup. a 3d model geometry, mesh refinement and temperature.  b 2D W-E cross section 

long with location indicated in a, showing: boundary and initial conditions, refinement of the interface, 

composition of the lithospheric layers and temperature. Tpot indicates the mantle potential temperature 

and FA the forearc domain. c-e yield strength (black line) and temperature (red line) profiles of the upper 

plate at: c  flat-slab. d shallow slab. e steep slab. 

First, we computed the reference model (S1) using the parametrization discussed above (section 2.2). 222 

Subsequently, we ran a series of models (S2, S3, S4 and S5, Table 2) with varying multiple parameters to 223 

investigate the relative contribution of key factors with respect to the strain localization in the upper plate. 224 
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3.  Modeling results 225 

3.1 Reference model (S1) 226 

 

Figure 1 Surface-strain rate of the Reference model. a. Strain rate superposed with compiled faults 

(Moscoso & Mpodozis, 1988; García, 2001; Giambiagi et al., 2003; Broens & Pereira, 2005; Folguera & 

Zárate, 2011; Martino et al., 2016; Litvak et al., 2018; Martínez et al., 2017; Sánchez et al., 2017; Meeßen 

et al., 2018; Riesner et al., 2018; Olivar et al., 2018; Jensen, 2018; Melnick et al., 2020; Costa et al., 2020; 

Eisermann et al., 2021). b. Close-up of the Sierras Pampeanas morphotectonic province and extensional 

faults  and terrane sutures in red (Ramos et al., 2002a; Wimpenny, 2022). Green structures indicate uplifted 

Sierras Pampeanas ranges. The timing of uplift is indicated by filled coloured circles (Table B.S1).  White 

lines are isobaths of the top of the subducting oceanic plate. Red triangles indicate the position of known 

volcanic edifices. Major structures and morphotectonic provinces are highlighted by different colours in 

the legend. 

Reference model S1 is built upon the known values for plate convergence, subduction-interface 227 

coefficient, sediment strength, and present-day topography (see Methods section). From south to north, 228 

deformation migrates to the east, with the strain localizing in the southern part, while in the northern part it 229 

is distributed over multiple faults (Figures 4 and 5). This shift is related to a change in the shortening mode 230 

from simple shear to pure shear. When considered in a strain-rate snapshot, simple-shear shortening occurs 231 
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when the plastic strain-rate band in the upper crust connects with the viscous strain-rate band in the lower 232 

crust to form a shear zone (Figure 5c–d), which is expressed by thin-skinned deformation in the FTBs. 233 

Conversely, if no connection occurs between the plastic and viscous strain-rate localization zones, pure-shear 234 

shortening involving multiple faults is favored, leading to distributed deformation within the crystalline 235 

basement, which corresponds to a thick-skinned foreland-deformation style. The resulting surface strain-rate 236 

field indicates three distinct north-to-south oriented branches (Figure 4a) characterized by a distinct 237 

shortening mode:  238 

(i) A Western branch between 75°W and 73°W, which corresponds to the trench. At the trench, both 239 

plates are decoupled by the weak subduction interface, where most of the deformation localizes. 240 

Conversely, the crust of the adjacent cold and mechanically strong forearc is virtually undeformed. 241 

(ii) A Central branch between 73°W and 70°W, which comprises the orogen and the adjacent foreland. 242 

Strain distribution varies from north to south. In the flat-slab segment, the strain localizes in the eastern 243 

front of the orogen and intensifies southward and the foreland crust is almost undeformed. In the shallow-244 

slab segment, the strain distributes in the foreland over multiple oblique or en échelon, crustal-scale 245 

structures that connect to the Eastern branch and which are associated with pure-shear shortening. In 246 

the steep-slab segment, strain localizes in front of the orogen and in the foreland by simple-shear 247 

shortening. 248 

(iii) An Eastern branch between 60°W and 65°W, where deformation localizes in front of the flat slab by 249 

pure-shear shortening, as well as along regions that spatially correlate with Pre-Andean cratonic 250 

structures related to the amalgamation of terranes during the formation of Gondwana, such as the 251 

Transbrazilian Lineament (Fairhead & Maus, 2003; Ramos, 2010). In the south, the deformation localizes 252 

within smaller structures that straddle the Rio de la Plata craton.  253 

On a lithospheric scale, these three branches interact spatially. The Sierras Pampeanas morphotectonic 254 

province appears as a large-scale shear zone that accommodates deformation via en-échelon structures 255 

associated with the uplift of isolated rigid basement blocks. The deformation at the borders of these blocks 256 

is accommodated by diffuse dextral strike-slip deformation (Pons et al., 2023, will be submitted with this 257 

paper).   258 

We also distinguish three slab segments of the subducting Nazca Plate (Figure 5): a flat segment (27°W to 259 

32°W, 1000–1400 km model width-coordinates), a shallow segment (32°W to 35°W , a 600–1000 km model 260 

width-coordinates), and a steep segment (35°W to 41°W, 0–600 km model width-coordinates). The E-W-261 

oriented cross sections across the reference model (Figure 5) illustrate how the plastic (brittle) and viscous 262 

deformation is accommodated in the continental plate along the segments with different slab geometry 263 

(Figure 5a–c), and how stresses are distributed within the plates (Figure 5d–f). Above the steep segment, the 264 

upper plate is characterized by simple-shear shortening at the front of the orogenic thrust wedge (Figure 5c). 265 

Above the shallow subduction segment, the model predicts a mixture of simple and pure-shear shortening 266 
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(Figure 5b). No significant deformation occurs above the flat-slab segment, while pure-shear deformation 267 

takes place at its eastern edge (Figure 5a). 268 

The greatest horizontal stress is effectively transmitted throughout the continental plate to weak regions 269 

where the deformation localizes. In the flat-slab section (Figure 5a), deformation takes place more than ~700 270 

km away from the trench and is localized over a 200-km-wide band in the eastern broken foreland of the 271 

Sierras Pampeanas. The model predicts local plastic (equivalent to brittle in reality) deformation (Figure 5a) 272 

on top of the colder flat-slab segment at a 100 km depth (Figure 5c), which also correlates with the bending 273 

of the slab (i.e., internal shear stress, Figure 5a, d). Horizontal stresses of > 200 MPa are generated locally in 274 

the crust and in the colder lithospheric mantle of the forearc, where the BDT is deeper, but they are not 275 

sufficiently large to cause significant deformation. The thick and warmer orogen shows no significant 276 

deformation despite being weaker, which is illustrated by the shallower BDT (Figure 5a). On top of the flat-277 

slab segment, the greatest horizontal stress is mainly generated by the subducting plate as shown by the 278 

eastward-pointing velocity vectors (Figure 5d). The horizontal stresses also build up within the cold and 279 

strong lithospheric mantle of the foreland. Despite the presence of a weak sedimentary basin at the surface, 280 

deformation does not localize and stresses are partially transmitted eastward from the base of the upper 281 

crust to the Eastern Sierras Pampeanas. Finally, crustal shortening results in a stress drop in the eastern 282 

Sierras Pampeanas, and the polarity of the velocity field switches from east to west, indicating that velocity 283 

is now determined by the upper plate (Figure 5d).  284 

Shortening is distributed over multiple faults within a relatively wide area (~200 km), similar to pure-shear 285 

shortening. In the shallow-slab section (Figure 5b), the plastic and viscous strain rates merge in front of the 286 

orogen (at ~800 km model coordinates) to form a deep shear zone dominated by simple-shear shortening. 287 

In the foreland, the deformation distributes over multiple faulted areas along a wide area, with rigid crustal 288 

blocks with a shallower BDT. Similarly to the previous section the deformation terminates in the transition 289 

with the cratonic domain and a thick-skinned style of deformation, which results from pure-shear shortening. 290 

The horizontal stress also builds up locally in the cold forearc (>~200 MPa; Figure 5e), where the great 291 

mechanical strength of the rocks prevents failure and causes a transmission of stresses to the orogen. 292 

Additionally, the horizontal stress builds up in the lower crust and partially transmitted to the Eastern Sierras 293 

Pampeanas. Strain localizes at the orogenic front by simple-shear shortening and is accommodated y pure-294 

shear shortening in the foreland and at the transition with the cratonic domain. In the steep-slab section, the 295 

deformation strongly localizes in front of the orogen (~800 km model length; Figure 5c).  296 
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Figure 2 Representative cross sections of the subduction segments for the reference model (see location in Figure 1): Strain rate (a-c) and stress (d-f). a-

d Flat-slab (31°S). b-e Shallow slab (33°S) and c-f Steep slab (36°S). a-c white lines are interpreted faults, yellow lines show the depth of the brittle-ductile 

transition (BDT), and dark lines indicate isotherms. d-f black lines indicate the interpreted faults, arrows indicate the sense of the velocity for the crust. 

297 
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3.2 Model variations 298 

In this section, we test the relative contribution of four key parameters on the resulting surface strain-299 

rate distribution: (1) the friction coefficient at the oceanic plate interface, (2) the strength of continental 300 

sediments, (3) the topography, and (4) the velocity applied to the model boundaries. The  friction 301 

coefficient at the oceanic plate interface is varied between 0.005 and 0.05 (models S2a-c) in agreement 302 

with the models of the long-term evolution of the Central Andes (Sobolev et al., 2006; Sobolev & Babeyko, 303 

2005). The internal friction angle (Φ) and cohesion (C) of the sediments is varied from 3° to 30° (friction 304 

coefficient 0.05 to 0.5) and from 2 to 20 MPa, respectively (Figure 6, models S3a-d). In addition, we tested 305 

the effect of topography on the strain distribution by removing the topographic relief in the initial 306 

configuration with and without applied velocities at the boundaries (Figure 6, models S4a-d). Finally, the 307 

oceanic and continental plate velocities are varied between 0 cm/yr and 6 cm/yr, covering the range of 308 

possible velocities (Figure 6, models S5a-d). Table 2 summarizes the alternative model runs. In order to 309 

discuss the relative effect of each key parameter to the strain localization we computed the residual 310 

surface strain rate between the model variant and the reference model (Figure S3). To estimate the 311 

variation in strain localization above the trench related to flat, shallow, and steep subduction, we divided 312 

the surface of each model into sub-domains. For each domain, we calculated an average of the strain rate 313 

using the root mean square. Finally, we calculated the relative change between the domains of the model 314 

variants and of the reference model. Thus, we obtained a summary of the relative percentage of 315 

contribution of each key parameter to the reference model for each domain (Figure 7). Note that for a 316 

similar budget of force between the reference model and the model variants, if the strain at the surface 317 

localizes further in one of the branches (section 3.1), it may decrease in another one to keep the balance. 318 

Because part of the forces might be redistributed outside of the area of interest, the net percentage of 319 

the domains might not be equal to 100%. 320 

  321 
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Group Name Variation 

Friction coefficient of the 
subduction interface (μint) 

S2a μint = 0.005 

S2b μint = 0.035 

S2c μint = 0.05 

S2d μint = 0.07 

Sediment strength (internal friction 
angle Φ and cohesion C) 

S3a Φ = 30° ,C = 20 MPa 

S3b Φ = 30°, C = 2 MPa 

S3c Φ = 15°, C = 20 MPa 

S3d Φ = 3°, C = 20 MPa 

Model with variation of the 
topography 

S4a no initial topography w/ boundary velocity 

S4b no initial topography, w/o boundary velocity 

S4c no topography w/ boundary velocity 

S4d no topography w/o boundary velocity 

Velocities of the subducting plate 
(SP) and the overriding plate (OP) 

S5a SP= 0 cm/yr , OP= 1 cm/yr 

S5b SP= 5 cm/yr, OP = 0 cm/yr 

S5c SP = 6 cm/yr, OP = 0 cm/yr 

S5d SP = 0 cm/yr, OP = 6 cm/yr 

Table 1 Model variations with respect to the reference model. 322 
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Figure 3 Strain-rate distribution in various models. a-d Models with variable friction coefficients (f) 

at the subduction interface: a S2a, f 0.005. b S2b, f 0.035. c S2c, f 0.05. d S2d, f 0.07. e-h Models with 

alternative strength (Φ internal friction angle, and C cohesion) of the sedimentary layer.  e S3a, Φ = 

30°  C = 20 MPa. f S3b, Φ = 30°  C= 2 MPa. g S3c, Φ = 15°  C= 20 MPa. h S3d Φ =3°  C=20 MPa. i-l Models 

without prescribing initial topography. i-j Free surface with advection of the topography allowed. k-l 
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Free-slip, no advection of topography allowed. I, k models with plate velocity, SP = 5 cmyr-1 and OP 

=1 cmyr-1 . j,l models without velocity, SP and OP = 0 cmyr-1. For abbreviations of plate velocities, see 

table 2. m-p Models with variations of prescribed plate velocity. m Absolute overriding plate velocity 

orthogonal to the trench, no subducting plate velocity. n Absolute subducting plate velocity 

orthogonal to the trench, no overriding plate velocity. o Convergence velocity, applied only to the 

subducting plate. p Convergence velocity, applied only to the overriding plate. Black rectangle is the 

resolved area; dark line indicates the boundaries of the morphotectonic provinces, red triangles 

denote position of volcanic edifices. 

3.2.1 Models with variable slab-interface friction (S2a-d) 323 

The greatest differences between the reference and alternative models related to the slab interface 324 

friction occurs along the trench (Figure 6). With low slab interface friction (S2a; Figure 6a), the strain 325 

strongly localizes more at the trench (x18 or +994%, Figure 7). Less strain localizes within the overriding 326 

plate (-27 to -54%), including the orogen and the back-arc. Conversely, higher interplate friction (S2b-c; 327 

Figure 6b-d) translates into a twofold lower strain localization at the trench (-92 to 97%), and slightly 328 

higher overriding plate deformation (+6%, Figure 7). Therefore, for these short simulations the increase 329 

of friction at the interface results in similar intensity of upper-plate deformation with respect to the 330 

reference model S1. 331 

3.2.2 Strength of continental sediments (S3a-d) 332 

Modifying sediment strength results in a significant change in strain-rate distribution. Weaker 333 

sediments lead to a higher degree of strain localization adjacent to the orogen and the foreland basins 334 

(S3a-d, Figure 6e-h). A decrease in the internal friction angle (S3c and S3d, Figure 6f and h) decreases the 335 

strength significantly more than a decrease of cohesion (S3b and S1, Figure 6g and Figure 4), promoting 336 

the compressional reactivation of foreland structures. With high friction and cohesion (S3a, Figure 6e), 337 

the strain rate in the foreland appears to be more diffuse and less localized (-35 and -40%), causing strain 338 

to localize closer to the orogen and the trench (+220%) compared to the reference model (Figure 7). With 339 

weaker continental sediments, the major component of deformation switches from the orogen interior 340 

outward to its front. Overall, stronger sediments result in more active shallow deformation near the 341 

trench and in the orogen above the flat slab (S3a, 423%), and less pronounced deformation in the foreland 342 

above the shallower and steeper domains (~-40%, Figure 7).   343 
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3.2.3 Models with topography variations (S4a-d)  344 

By initializing the model without present-day topography, we aim to look at the effect of internal forces 345 

related to the density and thickness configuration of the overriding plate layers. In models S4a and S4b, 346 

we allow for the topography to evolve with and without plate velocities, respectively (Figure 6i-j). S4a 347 

exhibits a strain-rate distribution similar to S1 (cf. Figure 6a), but with higher strain localization at the 348 

trench and in the orogen on top of the flat-slab (+25 and 38%, Figure 7). In S4b, although no horizontal 349 

velocity is prescribed, the strain rate is higher in the orogen on top of the flat slab (+30%) and lower 350 

elsewhere. To investigate the effect of topography on the strain distribution, we ran two alternative 351 

models inhibiting topographic growth, with and without plate velocities (models S4b-c; Figure 6j-l). In the 352 

model with plate velocities (S4c) the strain rate is higher at the trench and the orogen on top of the flat-353 

slab (+128 and 101%), and it is more diffuse and lower in the foreland of the shallow and steep-subduction 354 

domains (-23% and -36%). Without plate velocities (S4d), the strain rate only localizes in a narrow corridor 355 

along the orogen and otherwise decreases elsewhere.   356 

3.2.4 Velocity boundary conditions (S5a-d)  357 

Varying the prescribed boundary velocity allows us to determine the contribution of each plate to the 358 

intensity of strain localization in the overriding plate. In model S5a (Figure 6m), where velocities are only 359 

prescribed to the overriding plate (1cm yr-1; Figure 6m), the intensity of the deformation in the foreland 360 

is lower by 58 to 83% in all domains compared to model S1 (Figure 7) because the deformation slightly 361 

localizes at the trench in specific places. In model S5b, where the overriding plate does not advance 362 

trenchward, the deformation decreases everywhere by 15 to 30%, likely because the strain efficiently 363 

localizes in the orogen and the foreland (Figure 6n). Models S5c and S5d (Figure 6n-o) show that a 364 

deformation intensity similar to the reference model can be reached if the total convergence velocity is 365 

applied to either the lower or the upper plates. Overall, a fast convergence rate controls the intensity of 366 

the deformation and its localization. In these models, the contribution of the subducting plate velocity 367 

seems more important than that of the overriding plate, although a fast overriding plate velocity (S5d) 368 

can lead to similar degree of deformation as in the reference model. The strain-rate distribution in the 369 

overriding plate does not depend on the side of the prescribed velocity. The models that prescribe velocity 370 

from the west with the subducting plate (S5c) or from the east with the overriding upper plate (S5d) show 371 

similar structures and patterns (Figure 6o-p).372 
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 373 

 

Figure 4 Relative surface strain-rate difference between the reference and the model variants. Relative change of strain rate in percentage 

[έRMS(area) −  έRMSref(area)] / έRMSref(area) ∗ 100 with respect to the reference model in each deformation domain for each model variant.  

 

374 
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4.  Discussion  375 

To analyze the roles of inherited heterogeneities in the continental plate and oceanic plate 376 

geometry we assess the relative contribution of the overriding plate strength with respect to strain 377 

localization along-strike. We first compare the distribution of modeled strain-rate patterns with the 378 

mapped structures (Section 4.1). Next, we discuss each of the tested key factors and how they affect 379 

the strength in our model, and their contribution to strain localization. We then discuss the role of 380 

shallow and deep-seated structures (e.g., sediment strength, topography, and the thermal state and 381 

thickness of the lithosphere, section 4.2, Figure 8). Finally, we examine the effect of slab geometry 382 

(flat, shallow, and steep subduction) regarding the distribution and style of deformation in the foreland 383 

(section 4.3). 384 

 385 
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Figure 8 Schematic 3D diagram showing the possible processes (in bold) and inherited structures 

that can affect strain localization and the tectonic foreland deformation style in the Sierras 

Pampeanas. 

 386 

4.1 Correlation with mapped structures 387 

Our modelling results can be compared with observed surface faulting. Although we do not 388 

implement faults in the models explicitly, sediment accumulation is partly associated with their 389 

activity. In the investigated area, Mesozoic deposits are controlled by normal-fault bounded, 390 

extensional basins, while reverse faults cause sediment accumulation at their footwalls. Therefore, 391 

sediment strength and pre-existing faults related to a different kinematic regime may strongly affect 392 

the location of deformation and the reactivation of shallow inherited faults, which explains why 393 

structures resulting from the strain-rate map of the reference model are spatially well correlated with 394 

exposed faults (Figure 4a-b). In particular, the strain-rate distribution in the reference model correlates 395 

with Quaternary faults located at the front of the orogen in the foreland fold-and-thrust belts (e.g., 396 
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Malargue, San Rafael FTB), at the borders of the basins (e.g., Cuyo Basin), and with the faults uplifiting 397 

the Sierras Pampeanas basement blocks. In some cases, inherited Pre-Andean structures have been 398 

reactivated that were associated with the amalgamation of Paleozoic crustal terranes at the western 399 

margin of Gondwana (Introcaso & Ruiz, 2001; Vietor & Echtler, 2006; Ortiz et al., 2021). For instance, 400 

faults associated with the Desaguadero-Bermejo lineament (DBL) close to the Sierra Valle Fértil in the 401 

western Sierras Pampeanas (Figure 4b, Introcaso & Ruiz, 2001) are associated with structures related 402 

to the Ordovician collision of the Cuyania and Pampia terranes (Ramos, 2010). This strike-slip fault was 403 

reactivated during the Neogene (Introcaso & Ruiz, 2001). The model also predicts the reactivation of 404 

the Transbrazilian lineament (TBL), a major Proterozoic transpressive shear zone that borders the 405 

thicker mantle lithosphere of the Rio de la Plata craton (Figure 4b, Cordani et al., 2013; Casquet et al., 406 

2018).  In contrast, the forearc is subjected to a low degree of deformation and acts as a rigid body 407 

(Tassara & Yáñez, 2003; Tassara, 2005; Hackney et al., 2006), although previous studies have shown 408 

that the forearc experienced a certain degree of Quaternary deformation (González et al., 2003; 409 

Melnick et al., 2006; Regard et al., 2010). The mobility of the forearc is controlled by the long-term 410 

weakening associated with strain partitioning that is caused by oblique plate convergence (Melnick et 411 

al., 2006; Rosenau et al., 2006; Eisermann et al., 2021), which is not considered in our model. Other 412 

regions that exhibit a low degree of deformation include the foreland above the flat-slab segment 413 

(Figure 5a) and the back-arc in the steep-slab segment (Figure 5c). In the latter case, most of the 414 

deformation is related to pre-Neogene structures (e.g., Folguera & Zárate, 2009). 415 

4.2 Upper-plate control on strain localization  416 

The strength of the overriding plate controls strain localization and results from contributions 417 

exerted by the frictional (brittle) and viscous (ductile) strength (Babeyko et al., 2006; Mouthereau, 418 

2013; Jammes & Huismans, 2012; Liu et al., 2022). Several processes may weaken the plate and 419 

influence the localization of deformation. In our study we distinguished between shallow and deep-420 

seated contributors, depending on their control on the frictional and viscous strength, respectively. 421 

An important component of the stress is transmitted through the frictional regime (Figure 5), thus 422 

shallow contributors can significantly affect strain localization through frictional weakening. The 423 

variations in frictional strength are related to the tectonic history of the region, and are modulated by 424 

several features. These include the sediment strength relative to the underlying structures (Babeyko 425 

et al., 2006; Erdős et al., 2015; Mescua et al., 2016; Liu et al., 2022), the presence of inherited (Pre-426 

Andean) faults and fabrics and their orientation with respect to the convergence direction 427 

(Allmendinger et al., 1983; Kley, 1999; Kley & Monaldi, 2002), and topography (Molnar & Tapponnier, 428 

1975; Chen & Molnar, 1983; Stüwe, 2007; Mareschal & Jaupart, 2011; Liu et al., 2022). In turn, the 429 
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deep-seated contributors are those affecting the strength of the crust and the lithospheric mantle 430 

through temperature variations. The extent to which shallow and deep-seated contributors interact 431 

and affect the strength of the overriding plate in the SCA, is discussed in the following sections. 432 

4.2.1 Shallow structures  433 

Previous studies have shown the important role of the thickness and strength of sediments in 434 

shallow strain localization (Babeyko et al., 2006; Erdős et al., 2015; Mescua et al., 2016; Liu et al., 2022). 435 

In the Central Andes, the presence of mechanically weak and porous Palaeozoic sediments in the 436 

foreland spatially correlates with a change of deformational style from thin-skinned to thick-skinned 437 

deformation in strain rate map the transition between the Subandean FTB and the broken foreland 438 

province of the Santa Barbara System of northwestern Argentina  (Allmendinger et al., 1983; McGroder 439 

et al., 2015; Pearson et al., 2013). Previous numerical models have shown that a low friction coefficient 440 

of the sediments (<0.05) promotes asymmetric deformation, a simple-shear shortening and thin-441 

skinned deformation style, which may constitute a necessary condition to initiate foreland 442 

underthrusting of the Brazilian Shield (Sobolev et al., 2006; Liu et al., 2022; Pons et al., 2022).  443 

Additionally, Ibarra et al. (2019) have proposed that deformation tends to localize within the areas 444 

with large lateral variations of crustal strength, such as the foreland where a thick sedimentary layer 445 

is present. Our results show that the distribution of sediments inherited from past tectonic events 446 

largely control shallow strain localization (Figure 2d, Figure 6 and 7, S3a-c). Sediments tend to 447 

accumulate at the footwall of the faults or close to uplifted basement blocks. In addition, some of these 448 

depocenters had already formed during Palaeozoic to early Mesozoic extension, which could also have 449 

weakened the basement (Mescua et al., 2016). In our model, efficient simple-shear shortening is 450 

favored by the thick sedimentary layer of the foreland basin, which generates a detachment fault 451 

connecting plastic (brittle) and viscous strain rates in the upper and lower crust, respectively (Figure 452 

5). In case that such a connection is not possible, shortening is accommodated by pure shear and 453 

deformation distributes along multiple symmetrical faults (Figure 5). Model variations S3a-d show that 454 

weaker sediments are required to localize the deformation along specific discrete faults and structures 455 

(e.g., at the borders of the uplifted basement blocks or the Bermejo basin; Figure 6, S3c). Conversely, 456 

strong sediments (e.g. model S3a) with a small strength contrast with respect to the upper crust lead 457 

to a broad, diffuse shear zone in the foreland above the flat-slab segment (Figure 6e-h).  458 

An additional factor that is proposed to exert major control on strain localization is topography. In 459 

the orogen, the gravitational potential energy constitutes an important resistive force to orogenic 460 

growth (Molnar & Tapponnier, 1975; Chen & Molnar, 1983; Stüwe, 2007; Mareschal & Jaupart, 2011; 461 

Liu et al., 2022). If horizontal forces are not sufficiently strong to overcome gravitational stresses 462 
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exerted by the topography of the orogen, the horizontal stresses migrate laterally to the periphery of 463 

the orogen and strain localized in the foreland. This effect is highlighted in Model S4c (Figure 6k), where 464 

no topography is allowed to grow, thus the deformation is less efficiently transmitted and localized in 465 

the weak areas of the foreland. Topography can also exert an indirect effect on deformation 466 

localization if the uplifted foreland basement blocks are bounded by faults and adjacent sediment 467 

depocenters, which promotes the localization of deformation as discussed previously in this section. 468 

In the alternative models without initial topography (Model S4a, Figure 6i) or where no topography is 469 

allowed to grow (Model S4c, Figure 6k), the removal of the orogenic load fosters strain localization in 470 

the orogen. Additionally, the models without prescribed velocities (Models S4b, Figs. 6j and l) indicate 471 

that a low portion of the strain rate in the northern orogen in the model could result from some 472 

dynamic effect of the flowing mantle asthenosphere. 473 

4.2.2 Effect of deep-seated inherited structures.  474 

The viscous strength of the continental crust and mantle lithosphere strongly depends on their 475 

composition, inherited thickness and on their thermal state because of the strong dependence of 476 

viscosity on temperature  (Sippel et al., 2017; Anikiev et al., 2020; Ibarra et al., 2021; Rodriguez Piceda 477 

et al., 2022b). In the orogen, higher temperatures decrease the depth of the brittle-ductile transition 478 

favoring viscous deformation and crustal flow which may facilitate the connection with the plastically 479 

deforming foreland sediments, ultimately promoting simple-shear deformation (Liu et al., 2022). 480 

Additionally, for an orogenic crust of more than 60 km thickness, simple shear is almost always the 481 

preferred mode of foreland deformation (Liu et al., 2022). In contrast, a cold,  rigid lithosphere can act 482 

as an indenter by transmitting horizontal stresses to its front, localizing the deformation at the 483 

transition between strong and weak domains (Calignano et al., 2015; Tesauro et al., 2015; Rodriguez 484 

Piceda et al., 2022b, Ibarra et al., 2021). 485 

The lithospheric thermal field in the SCA is the result of the contributions from the compositional 486 

and thickness configuration of the lithospheric layers and the basal lithospheric heat flow (Rodriguez 487 

Piceda et al., 2022a). The crustal thermal field mainly depends on the volumetric heat capacity of the 488 

radiogenic upper crust, whereas the thermal field of the mantle is strongly perturbed by the cooling 489 

effect of the subducting slab, which changes as a function of the slab dip and geometry (Rodriguez 490 

Piceda et al., 2022a). In the northern part of the orogen, the effect of the thick felsic radiogenic crust 491 

(Figure 2) overprints the cooling effect of the flat slab (Rodriguez Piceda et al., 2022a). Therefore, the 492 

northern part of the orogen would be expected to deform actively, which contradicts our model results 493 

and the lack of observed seismicity in the area (ISC catalog, Rodriguez Piceda et al., 2022b; Figure S2). 494 

To explain this apparent contradiction (i.e., no deformation of the upper plate), an additional 495 
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mechanism must be invoked (further discussed in Section 4.3). Conversely, the lithosphere in the 496 

northern foreland is characterized by a thinner radiogenic upper crust (Figure 2) which does not 497 

overprint the cooling effect of the flat-slab, thus resulting in a colder and stronger lithosphere. This 498 

strengthening allows for an efficient stress transmission from the oceanic plate to the continental plate 499 

between western and eastern domain above the flat-slab segment. Additionally, the strong, thick 500 

cratonic domain (Figure 2f) allows for an efficient transmission of stresses to the west. Consequently, 501 

the deformation localizes at the eastern edge of the broken foreland where the effects of forces 502 

applied from the subducted plate and the cratonic part of the continental plate meet (Figure 5a). 503 

Finally, the deformation is intensified by the overlying weak sediments. 504 

Other deep lithospheric processes, such as eclogitization of the crust and delamination of the 505 

lithospheric mantle, are not considered in our models, they could also weaken the overriding plate and 506 

facilitate strain localization (Babeyko et al., 2006; Sobolev et al., 2006). However, in the southern 507 

Central Andes, there is no evidence of delamination and extensive eclogitization below the Western 508 

Sierras Pampeanas and Precordillera (Alvarado et al., 2007, 2009; Ammirati et al., 2013; 2015; 2018; 509 

Gilbert et al., 2006b; Marot et al., 2014). Thick, warm orogenic crust (>~45 km) can also be subjected 510 

to intracrustal convection and partial melting, further weakening the overriding plate (Babeyko et al., 511 

2006). Nevertheless, such thickness values are only reached  (Assumpção, 2013; Rodriguez Piceda et 512 

al., 2021) where the lack of volcanism between ~27°S - 33°S (Figure 1) indicates a decrease in the 513 

lithospheric basal heat flux during the last ~6 Ma (Barazangi & Isacks, 1976; Isacks et al., 1982; Jordan 514 

et al., 1983; Kay et al., 1987; 1991; Jordan et al., 1993; Ramos et al., 2002a; Ramos & Folguera, 2009; 515 

Rodriguez Piceda et al., 2022b), preventing partial melting and crustal convection in the southern 516 

Central Andes. 517 

4.3 Lower-plate control on strain localization 518 

In the SCA, the role of the flat-slab on the stress regime and the localization of deformation in the 519 

upper plate is a matter of ongoing debate (Jordan et al., 1983; Gutscher et al., 2000; Folguera et al., 520 

2009; Gutscher, 2018; Horton, 2018; Martinod et al., 2020). Along the tectonically active Pacific rim 521 

steep subduction is associated with a low degree of coupling, upper-plate extension, and back-arc 522 

spreading (Mariana type), while low-angle subduction cause close plate coupling, upper-plate 523 

compression and shortening (Chile type) (Barazangi & Isacks, 1976; Uyeda & Kanamori, 1979; Ramos 524 

& Folguera, 2009; Horton, 2018). Eastward-directed compression in the Central Andes is driven by 525 

basal shear stress exerted by the underlying flat-slab (Gutscher et al., 2000). Additionally, the passage 526 

of the flat-slab weakens the overriding plate mechanically by scraping the continental lithospheric 527 

mantle,  (‘bulldozed mantle-keel’ model, Liu & Currie, 2016; Gutscher, 2018; Axen et al., 2018) and 528 
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thermally by exposing the remaining lithosphere to the warmer asthenosphere (Isacks, 1988). More 529 

recent studies, however, have emphasized that the stress regime of the overriding plate is probably 530 

more influenced by the velocity difference between the overriding plate and the trench rather than by 531 

the subduction angle (Lallemand et al., 2008; Faccenna et al., 2017, 2021). The velocity of trench 532 

retreat can be perturbed by a rapid change in the subduction angle, which can be caused by the 533 

interaction between the slab and the mantle transition zone (Čížková & Bina, 2013; Cerpa et al., 2015; 534 

Briaud et al., 2020; Pons et al., 2022). The absolute motion of the South American plate prescribed in 535 

model S1 is considered to be the driving force of the Andean orogeny (Sobolev and Babeyko, 2005; 536 

Husson et al., 2008; Martinod et al., 2010); nevertheless, when viewed at shorter geological timescales, 537 

model variants  such as model S5b-d, illustrate that a similar strain rate as in model S1 can be achieved 538 

with a different redistribution of plate velocities while maintaining a similar convergence rate (Figure 539 

6 and 7). This implies that at shorter timescales, the parameter convergence rate is potentially more 540 

important than absolute plate velocity. 541 

In our simulations, the subduction angle of the oceanic slab also controls the distribution of strain 542 

localization in the upper plate. The flat slab propagates stresses eastward causing shortening to take 543 

place in front of the flat slab, as proposed by the ‘bulldozed mantle-keel’ models (‘slab bulldozing’, 544 

Gutscher, 2018; Axen et al., 2018). Strain localization could be favoured by inherited crustal-scale 545 

structures such as the Transbrazilian lineament in the SCA (see Section 4.2.1). Conversely, the cratonic 546 

domain also transmits horizontal stresses westward across the continental plate and amplifies the 547 

intensity of deformation (Figure 5). Interestingly, our results predict almost no deformation in the 548 

upper plate overlying the flat-slab segment (27°S–32°S). This is consistent with limited seismic activity 549 

observed in the orogenic domain overlying the flat slab segment (Figure S2). We suggest that this is 550 

the result of upper-plate strengthening at these latitudes due to cooling as discussed above (cf. section 551 

4.2.2) and caused by the underplated oceanic slab at the base of the continental lithosphere. The 552 

notion that the upper plate is shielded from deformation in the flat-slab segment is also supported by 553 

the decrease in shortening in the Precordillera at ~9Ma at 30°S following the arrival of the Juan 554 

Fernandez Ridge at 12 Ma (Yáñez et al., 2001; Allmendinger & Judge, 2014; Bello-González et al., 2018). 555 

 The colder subduction interface along the flat-slab segment (Figure 5a) also contributes to an 556 

increase in the coupling between the plates, and can locally reach shear stresses >35 MPa (Figure S4). 557 

Moreover, the low temperatures of the subduction interface combined with its low frictional strength 558 

could deepen the BDT of this discontinuity to 100 km depth (Figure 5a). The shear stresses at the plate 559 

interface decrease southward, which is supported by the increased thickness of the trench-fill 560 

sediments south of 33°S (Bangs & Cande, 1997; Völker et al., 2013). A comparison with the average 561 

shear stress at the plate interface suggested by Lamb & Davis (2003; Figure S4) shows that our 562 
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reference model (f=0.015) may underestimate the shear stress at the flat-slab interface, whereas 563 

model S2d (f=0.07) may overestimate it.  564 

In contrast to the flat-slab segment, deformation in the steep-slab segment (36°S–40°S) localizes 565 

along the front of the orogen, which shows that deformation cannot be efficiently propagated to the 566 

eastern domain if the oceanic slab is steeply dipping. Alternatively, the transition between the steep 567 

and flat-slab geometry results in the formation of an intermediary shallow segment (32°S–36°S). Above 568 

this segment a large crustal shear zone develops in the broken foreland that results from the offset of 569 

strain localization between the flat and steep slabs. In such a scenario deformation takes place via 570 

multiple faults that border the basement ranges of the Sierras Pampeanas (Figure 5d), and the strain 571 

localization along these faults is enhanced by the presence of weak sediments (Models S2, Figure 6a-572 

d). From a dynamic point of view, we suggest that the shallowing of the slab generates crustal 573 

contraction prior to slab flattening in response to a large transpressive shear zone in the southern 574 

Sierras Pampeanas. Accordingly, deformation could be accommodated by a combination of strike-slip 575 

deformation at the borders of the uplifted basement blocks and block rotation. This mechanism, that 576 

we name “flat-slab conveyor”, is further investigated in a related publication (Pons et al., 2023, related 577 

manuscript). 578 

 579 

Figure 9 Summary of the main contributors to strain localization in the Southern Central Andes 580 

indicates a north-south-directed switch from deep to shallow-seated factors.  581 
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5.  Conclusions 583 

Using 3D data-driven geodynamic subduction modeling, we analyzed the relative contribution of 584 

subducting plate geometry and shallow and deep-seated crustal-scale and lithospheric structures of 585 

the overriding plate on strain localization in the SCA. Our modelling results provide a better 586 

understanding the Cenozoic interaction between the Pampean flat slab and the South American plate 587 

in the region of the southern Central Andes between 27° and 32°S and within the transition to a steeper 588 

subduction segment farther south. The flat slab controls upper-plate deformation in the northern part 589 

of the SCA by strengthening the lithosphere of the upper-plate and by cooling the overriding plate 590 

through underplating, thus shielding the upper plate of the flat-slab subduction system from 591 

pronounced deformation.  Consequently, deformation propagates toward the eastern edge of the flat 592 

slab by a bulldozing effect. This deformation is accommodated in the eastern broken foreland, where 593 

the slab is already dipping steeply.  594 

The inherited structures in the overriding plate contribute to the strain localization in multiple 595 

different ways.  (i) In the compressional Cenozoic setting of the flat-slab region sediment distribution 596 

can be viewed as a proxy for the distribution of major faults, because depocenters usually form at their 597 

footwalls. Weaker sediments, and therefore weaker faults, significantly intensify deformation in the 598 

flat-slab segment. (ii) Inherited crustal-scale fault zones, such as the TBL located within the transition 599 

to the cratonic domain, may be preferentially reactivated and localize deformation as seen in the 600 

eastern Sierras Pampeanas. (iii) The localization of deformation in the forearc may be controlled by 601 

strain partitioning and long-term strain weakening related to the obliquity of convergence. (iv) A thick 602 

crust may control the temperature of the continental crust due to the contribution of radiogenic 603 

heating, thus affecting the depth of the brittle-ductile transition (BDT). For a thicker felsic crust the 604 

BDT is shallower, which promotes the development of deep-seated, asymmetric décollements and 605 

simple-shear shortening in the fold-and-thrust belts. In contrast, a thinner upper continental crust 606 

causes a deeper BDT as observed in the Sierras Pampeanas and fosters the activity of multiple 607 

symmetric faults and pure-shear shortening.  (v) Surface topography may also exert a significant 608 

influence on strain localization within the orogen by transmitting horizontal stresses toward the 609 

foreland. 610 

  611 
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Text S1 

Figures S1 to S4 

This file includes a comparison between the  topography resulting from the model and the real 

topography (Text S1, Figure S1). Additionally, the file includes the supplementary figures mentioned 

in the main text (Figure S2 to S4).  

mailto:ponsm@gfz-potsdam.com


Text S1. Checking model densities  

One advantage of implementing the data-driven model of Rodriguez Piceda et al. (2021) into a 

geodynamic simulation is the possibility of testing the evolution of topography as a response to the 

imposed structural and density configuration (Figure S1b). The thickness, geometry and density of the 

lithospheric layers were obtained by integration of geological and geophysical data and testing with 

the gravity field. Then, the densities were inferred with the gravity using an iterative forward modelling 

approach. The residual gravity (Figure S1d) indicates a good fit between the lithospheric model and 

the gravity. Using the average temperature for each layer we recalculated their average reference 

density (Table 1). Subsequently we ran a geodynamic model, without prescribing any velocity and let 

the model re-equilibrate. The topography is smoothed with a moving filter with a radius of ~50 km in 

order to avoid local strong topographic gradients (Figure S1b). After 100ka, we calculate the residual 

topography by subtracting the model to the present-day topography (Figure S1e). The residual 

topography indicates a consistency in the area covered by data. Whereas the modelled topography is 

underestimated on the eastern border (+1 km) and overestimated locally at the trench (-1km). The 

orogenic domain is close to the present-day topography and range between (± 0.5 km). Variations on 

the east suggest that thickness of the layers may vary far from the orogen where additional data are 

required.  



 

Figure S1 Comparison between the modelled and the real topography. a Real topography smoothed 

with a radial filter of 50 km. b Topography altered after 100 kyr of model time. c Isostatic contribution of 

the sea water. d Residual gravity of the density model (modified from Rodriguez Piceda et al., 2021). e 

Residual topography. Black circles illustrate local data of the crustal thickness (see references in Rodriguez 

Piceda et al., 2021). Grey lines denote the boundaries between morphotectonic provinces. 



 

 

Figure S2 Distribution of seismic events in the Sierras Pampeanas (International Seismological Centre, 

2021; Lentas et al., 2019). Few events are recorded on the top of the flat-slab (blue area) compared to the 

East and South front and the South front (orange area).  JFR corresponds to the Juan Fernandez hotspot 

ridge. A greater density of events occurs in line with the inland extension of the ridge. Also shown are: the 

extent of the modelled area (black rectangle), the isobaths of the top of the slab (white lines, Hayes et al., 

2018), and the boundaries between morphotectonic provinces (grey lines). The labels of these provinces 

are defined in Figure 1.  

 

 

 



 

Figure S3 Residual obtained by subtracting the Reference model S1 to the model variants. Black squares delimit 

the deformational domains (e.g. Trench, flat subduction, shallow subduction and steep subduction). Blue and red 

colors indicate smaller or higher rate of deformation than in the reference model, respectively. 



  

 

Figure S4 Shear stress at subduction interface. a Shear stress (Syz - pressure) from the reference model.  

Isobaths of the slab (in white, Hayes et al., 2018) and volcanic edifices (red triangles) are represented. The 

yellow lines indicate the brittle-ductile transition. b Modelled shear stress (models S1 and S2d) averaged 

at each latitude over a plate-interface depth of 120 km and compared to previous estimates by Lamb & 

Davis (2003, L&D2003). 
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