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Abstract

Robustness analysis can support long-term planning, design and operation of large-scale water infrastructure projects confronting

deeply uncertain futures. Diverse actors, contextual specificities, sectoral interests, and risk attitudes make it difficult to identify

an acceptable and appropriate robustness metric to rank decision alternatives under deep uncertainty. Here, we contribute an

exploratory framework to demonstrate how methodological choices affect robustness evaluation. The framework is applied to a

multi-actor, multi-sector Inchampalli-Nagarjuna Sagar (INS) water transfer megaproject in Southern India. We evaluate a suite

of dynamic adaptive water transfer strategies discovered using evolutionary multi-objective direct policy search (EMODPS),

a status quo strategy of no water transfer, and a strategy proposed by regional authorities. We evaluate robustness across

wide-ranging scenarios that capture key uncertainties in potential future changes in reservoir inflows and water demands in the

basins. Results show that the priorities of different actors, sectoral perspectives, and risk attitude significantly affect robustness

rankings of strategies. We found that compromise strategies obtained from EMODPS are better able to balance the diverse

performance requirements across various actors and sectors when compared to the no-transfer and proposed transfer. We reveal a

key robustness tradeoff between the donor basin’s ecological requirements and the recipient basin’s socio-economic requirements.

While robustness analysis is central to water infrastructure planning, we show why exploratory robustness analyses that engage

with conflicting stakeholder objectives is vital for long-term sustainability. Furthermore, the selection of compromise solutions

should be guided by an explicit understanding of how assumed risk attitudes shape stakeholders’ understanding of consequential

vulnerabilities.
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Abstract17

Robustness analysis can support long-term planning, design and operation of large-scale18

water infrastructure projects confronting deeply uncertain futures. Diverse actors, con-19

textual specificities, sectoral interests, and risk attitudes make it difficult to identify an20

acceptable and appropriate robustness metric to rank decision alternatives under deep21

uncertainty. Here, we contribute an exploratory framework to demonstrate how method-22

ological choices affect robustness evaluation. The framework is applied to a multi-actor,23

multi-sector Inchampalli-Nagarjuna Sagar (INS) water transfer megaproject in South-24

ern India. We evaluate a suite of dynamic adaptive water transfer strategies discovered25

using evolutionary multi-objective direct policy search (EMODPS), a status quo strat-26

egy of no water transfer, and a strategy proposed by regional authorities. We evaluate27

robustness across wide-ranging scenarios that capture key uncertainties in potential fu-28

ture changes in reservoir inflows and water demands in the basins. Results show that29

the priorities of different actors, sectoral perspectives, and risk attitude significantly af-30

fect robustness rankings of strategies. We found that compromise strategies obtained from31

EMODPS are better able to balance the diverse performance requirements across var-32

ious actors and sectors when compared to the no-transfer and proposed transfer. We re-33

veal a key robustness tradeoff between the donor basin’s ecological requirements and the34

recipient basin’s socio-economic requirements. While robustness analysis is central to wa-35

ter infrastructure planning, we show why exploratory robustness analyses that engage36

with conflicting stakeholder objectives is vital for long-term sustainability. Furthermore,37

the selection of compromise solutions should be guided by an explicit understanding of38

how assumed risk attitudes shape stakeholders’ understanding of consequential vulner-39

abilities.40

1 Introduction41

Water resources in many parts of the world face growing hydroclimatic and socio-42

economic pressures (Kummu et al., 2010; Mekonnen & Hoekstra, 2016; Bijl et al., 2018).43

Globally, water scarcity is projected to increase due to climate change impacts on mean44

temperature and precipitation variability, as well as increasingly extreme floods and droughts45

(Greve et al., 2018; Masson-Delmotte et al., 2021). The economic consequences of wa-46

ter scarcity are highly uncertain and sensitive to regions’ capacities to adapt to these deeply47

uncertain hydro-climatic changes (Dolan et al., 2021). Large scale water infrastructure48

projects have a critical role in addressing these challenges (Grigg, 2019; Bhaduri et al.,49

2008; Gohari et al., 2013). Among them, inter-basin water transfer (IBWTs) megapro-50

jects with investments of approximately $2.7 trillion form a major global focus and pose51

severely challenging decision contexts (Shumilova et al., 2018).52

IBWTs must balance irrigation needs, domestic water supply, hydro-electricity gen-53

eration, and other uses across multiple participating river basins, requiring their design54

evaluation to consider the diverse interests of a broad array of sectors. Some IBWTs have55

been criticized for their ecological consequences and over-exploitation of donor basin’s56

water resources, indicating that traditional evaluations are perhaps myopic about the57

long-term impacts on the impacted stakeholders (Wu et al., 2020; Gohari et al., 2013;58

Zhuang, 2016). These multi-decadal megaprojects require an understanding of the dy-59

namic co-evolution of the coupled human-natural systems in which they are placed, es-60

pecially in key drivers of climate and demands. Projections of these drivers are often deeply61

uncertain, challenging the traditional use of aggregated cost-benefit analysis to discover62

transfer policies. Deep uncertainty refers to conditions where parties to a decision lack63

a consensus on the likelihoods and/or distributional forms of key system inputs (Knight,64

1921; Lempert, 2002; Lempert et al., 2006; Marchau et al., 2019). At the local scale, fu-65

ture runoff changes are deeply uncertain due to uncertainties associated with projections66

of potential future temperature and precipitation changes (Schewe et al., 2014; Bhave67

et al., 2018; Douville et al., 2021). Concurrent changes in socio-economic conditions are68
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also deeply uncertain, as they are a consequence of a multitude of factors pertaining to69

the coupled human-natural system, changes in water demand priorities, and changing70

policy landscapes (Quinn et al., 2018; Moallemi, Kwakkel, et al., 2020). Deep uncertainty71

compounds existing challenges to traditional design approaches for IBWTs. For exam-72

ple, a recent ex post evaluation of traditional design approaches for IBWTs have shown73

that they often systematically underestimate water scarcity in the donor basin and over-74

estimate the demands within the recipient basin (Huang et al., 2021).75

Exploratory modelling-based frameworks such as Robust Decision Making, Many-76

Objective Robust Decision Making (MORDM), Information Gap theory and Decision77

Scaling seek to discover robust alternatives that perform well across a range of deeply78

uncertain futures (Lamontagne et al., 2018; Moallemi, Zare, et al., 2020; Gold et al., 2019;79

Moallemi et al., 2021; Kwakkel & Haasnoot, 2019; Hadjimichael et al., 2020; Ben-Haim,80

2006; Brown et al., 2012). Robustness evaluation of IBWTs requires the analyst to de-81

cide how to represent the multiple stakeholders involved. Although challenging, robust-82

ness definition(s) should be identified through co-production of knowledge that includes83

all relevant stakeholders (Moallemi, Zare, et al., 2020; Wyborn et al., 2019; Eriksen et84

al., 2021; Bhave et al., 2022). This would be best achieved by stakeholder workshops,85

an iterative process that results in co-production of knowledge (Voinov et al., 2018). This86

remains highly challenging for large-scale infrastructure projects as by their very nature,87

they involve multiple actors spread across spatio-temporal and socio-economic gradients.88

There may also be socio-political limitations in engaging a diverse group of stakehold-89

ers due to differences in ideologies and varying degrees of understanding of the decision90

process (Eriksen et al., 2021).91

The emerging field of Decision Making Under Deep Uncertainty (DMDU) provides92

a starting point to frame robustness definitions for the design and evaluation of IBWTs93

(Marchau et al., 2019). Recent literature highlights a rapid proliferation of robustness94

metrics and their impact on the preferential rank ordering of proposed alternative de-95

signs and/or operational strategies (Borgomeo et al., 2018; Herman et al., 2015; Kwakkel,96

Eker, & Pruyt, 2016; McPhail et al., 2018; Bartholomew & Kwakkel, 2020). In general,97

robustness quantification requires the specification of methods for generating deeply un-98

certain futures and aggregating evaluations of strategy performance across these futures99

(Herman et al., 2015; McPhail et al., 2021). Generating deeply uncertain futures requires100

an understanding and careful exploration of important system drivers as well as their101

feasible ranges and plausible statistical properties (Quinn et al., 2018, 2020; McPhail102

et al., 2020). The aggregate rank evaluations of robustness require an explicit consid-103

eration of risk attitudes. Aggregation of robustness performance across sampled scenar-104

ios for the future can be based on expected value analysis (Wald, 1950); higher-order105

moments (Kwakkel, Haasnoot, & Walker, 2016); regret (Savage, 1951) or satisficing cri-106

teria (Simon, 1956). Building on the general framework proposed by Herman et al. (2015),107

McPhail et al. (2020, 2018) show that several underlying methodological choices tacit108

to measuring robustness can substantially influence robustness-based rankings of deci-109

sion alternatives. For example, performance aggregation across scenarios embeds assump-110

tions regarding levels of risk aversion of stakeholders. Measuring robustness using tra-111

ditional expected value focused metrics tacitly assumes risk neutrality, while minimax112

or worst-case performance across scenarios represents high levels of risk aversion. Thus,113

robustness criteria require a careful elicitation of requirements (or performance accept-114

ability limits) from stakeholders (Herman et al., 2015; Kwakkel, Eker, & Pruyt, 2016).115

In this study, we propose a framework to address the principal challenge of cap-116

turing diverse stakeholder views in robustness assessments for large multi-actor infras-117

tructure projects, a central concern when seeking to support co-production processes.118

Our framework contextualizes how exploratory analysis of multiple robustness metrics119

can better contextualize the implications of a broad range candidate robustness fram-120

ings in capturing diverse stakeholder preferences and shaping performance evaluations.121
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Our proposed exploratory robustness assessment provides a mechanism for formally broad-122

ening dialogue and the inclusion of diverse and potentially under-represented stakehold-123

ers. We apply this framework to the proposed Inchampalli- Nagarjuna Sagar (INS) IBWT124

in Southern India, which aims to transfer water from the Godavari (donor) to the Kr-125

ishna (recipient) river basin with significant implications for millions of farmers as well126

as the pharmaceutical and software hub of Hyderabad, India. We extensively assess po-127

tential impacts on the participating basins and their water related sectors considering128

deeply uncertain changes in precipitation patterns and river flows due to uncertain po-129

tential future changes in Indian Summer Monsoon and anthropogenic water demands.130

2 The Decision Context of the INS IBWT Megaproject131

India faces a daunting challenge of ensuring water, food and energy security in a132

changing climate and rapidly evolving socio-economic conditions. India’s National River133

Linking Project (NRLP) aims to improve water and food security via expansion of ir-134

rigated area by ≈350,000 km2 using 30 water transfer projects totaling in length of ≈14,900135

km and a network of 3000 storage structures (Joshi, 2013; Bagla, 2014). If implemented136

fully, the NRLP will incur massive water infrastructure investment of >$2 trillion, greater137

than 60% of the Indian economy of $3.17 trillion. Within NRLP, the INS IBWT pro-138

poses to transfer water from the Godavari (donor) to the Krishna (recipient) basin, the139

two largest river basins of Southern India (Figure 1). The INS IBWT by itself has been140

justified due to a growing disparity between demand and supply between its participat-141

ing basins. With a proposed 16,000 Mm3 annual water transfer over 299 km classified142

the INS IBWT as a megaproject (NWDA, 2021; Veena et al., 2021; Shumilova et al.,143

2018). The water transfer is a major socio-economic development intervention for the144

Nagarjuna Sagar reservoir, which is stressed due to increasing agricultural and urban (pri-145

marily Hyderabad city) water demand, as well as demands from another regional polit-146

ical capital, Vijayawada. The INS IBWT is also going to impact the aquatic ecosystems147

downstream of the donor and local tribal populations that rely on the maintenance of148

minimum environmental flows.149

Given the high stakes, deep uncertainty, and multi-stakeholder context, the INS150

IBWT requires a comprehensive evaluation to avoid potential decision lock-ins (Moallemi,151

Zare, et al., 2020). Average Godavari annual inflows at Perur gage station (77,017 Mm3)152

are more than double those at Nagarjuna Sagar on the river Krishna (29,625 Mm3) (Fig-153

ure 1b), while their respective command area water demands are ≈603 Mm3 and ≈8,535154

Mm3(Figure 1c) (Veena et al., 2021). Mean annual precipitation (temperature) is pro-155

jected to increase by 20-50% (1◦ – 5◦C) in both basins by the end of century (Mishra156

& Lilhare, 2016), but future water availability and demand dynamics will evolve in com-157

plex ways with changes in population as well as the efficiency of the multisectoral wa-158

ter dependent systems that evolve to meet the concomitant increasing human demands159

(Singh & Kumar, 2019), leading to deep uncertainty.160

In this study, we employ the systems model and cooperative adaptive strategies con-161

tributed by Veena et al. (2021). Their original analysis focused on the stationary his-162

torical uncertainties affecting Godavari and Krishna inflows, exploiting a water balance163

model to track reservoir related fluxes, and assessed water transfer strategies against dif-164

ferent priorities for environmental flows, domestic water supply and irrigation (please165

see Veena et al. (2021) for further details). The study formulated cooperative state-aware166

water transfer strategies where water transfers are decided based on the storage states167

of both the donor and the recipient reservoirs. Both the donor and the recipient reser-168

voirs are also committed to transfer water to other reservoirs, which impose additional169

demands on the INS IBWT. These transfers are termed as ‘predefined transfers’ (PT).170

In this study, we further evaluate the cooperative adaptive INS IBWT operational strate-171

gies under deeply uncertain futures and contribute an exploratory framework to guide172

assessments of their robustness.173
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Figure 1. (a) Location of the Inchampalli - Nagarjunsagar (INS) water transfer project con-

necting the donor (Godavari) and recipient (Krishna) basins. The irrigated command areas for

each basin is represented by shades of green. The predefined transfer from donor and recipient

basins are also shown by dot-dashed and dashed line respectively. (b) Monthly stochastic inflows

in donor basin (blue) and recipient basin (orange). (c) Monthly demands and predefined transfer

for both basins.

Large scale water infrastructure projects such as the INS IBWT involve a number174

of actors and sectors, each with their own preferences and risk attitudes. Thus, multi-175

ple world views are invariably involved in its decision context. Prior literature has ex-176

plored the consequences of multiple world views using multiple problem framings (Quinn177

et al., 2017; Kasprzyk et al., 2013; Singh et al., 2015; Lempert & Turner, 2021). Here,178

we propose a framework to support diverse stakeholders in exploring how they may de-179

fine the robustness of an operational strategy. This framework can be used for deliber-180

ative analysis of candidate stakeholder preferences and/or as an exploratory modeling181

strategy for discovering the conflicts between stakeholders. The main actors involved in182

the INS IBWT are the donor (Godavari) basin, the recipient (Krishna) basin, and other183

basins dependent on water transfers from either of these (i.e., predefined transfers, PT).184

We also define a baseline system level actor that captures a risk neutral rational social185

planner acting on the expected value of performance objectives averaged over donor and186

recipient outcomes, following a standard assumption in simulation-optimization litera-187

ture (Giuliani & Castelletti, 2016; McPhail et al., 2018; Loucks & Van Beek, 2017). Sim-188

ilarly, requirements of all other basins that depend upon the donor (Godavari) and re-189

cipient (Krishna) are represented by a system level PT actor.190

The different sectors impacted by the INS IBWT are domestic, industrial, agricul-191

tural, and ecological. Domestic, industrial and agricultural sectors together constitute192

the water supply sector. Ecology is affected in two ways. First, minimum environmen-193

tal flows (MEF) downstream of both reservoirs are dependent upon the transfer and reser-194

voir operation rules. MEF has direct consequence on tribal communities downstream of195

the donor (Godavari) basin that depend upon fishing, thus it is also included here to rep-196

resent the interests of the marginalized communities (Eriksen et al., 2021). Second, the197

volume of water transferred (transferred volume, TV) is also considered as a proxy of198

ecological impact. The lower the amount of water transferred, the lower the potential199

ecological impact of mixing waters of diverse quality and aquatic compositions. Using200

this rationale, we constructed two ecology related sectors: ecology-TV, and ecology-MEF.201

Thus, we envisage 12 actor-sector combinations that may emerge in the decision context202
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Table 1. Multiple actor-sector combinations explored for the INS IBWT. In each row, the

X’s identify which actor-sector combinations are used in robustness calculations. PT: predefined

transfers for other reservoirs, TV: transfer volume, MEF: minimum environmental flows.

Combination of Actor-Sector
Actor Sector

Donor Recipient System PT System Water Supply Ecology-TV Ecology-MEF

1 X X
2 X X
3 X X
4 X X
5 X X
6 X X
7 X X
8 X X X
9 X X X
10 X X
11 X X X
12 X X X X X X X

of the INS IBWT (Table 1). The performance requirements for these are quantified us-203

ing definitions discussed in the methods section below.204

3 Methodology205

Our main contribution is a formal exploratory modeling framework for better un-206

derstanding and transparently mapping the consequences of diverse actor and sector pref-207

erences as well as risk attitudes when defining robustness metrics within the MORDM208

framework (highlighted boxes in Figure 2). As is typical for the MORDM framework (Kasprzyk209

et al., 2013), our exploration of the INS IBWT begins with the identification of the de-210

cision context, alternative candidate problem formulations and generation of alternatives211

using many-objective optimization considering historical well-characterized uncertain-212

ties (WCU) (Section 3.1). Deeply uncertain factors that shape the performance of the213

alternative operational designs of the transfer are then identified and sampled in Step214

II (Section 3.2). We then explore tradeoffs across potential combinations of stakeholder215

preferences across multiple actors and sectors involved in or affected by the decision pro-216

cess (Section 3.3). These preference combinations together with risk attitude specifica-217

tion are used to re-evaluate the Pareto approximate operational transfer design strate-218

gies from Step I across scenarios identified in Step II (Section 3.4). In addition to eval-219

uating robustness under deep uncertainties (DU), we also analyze robustness under the220

internal hydroclimatic variability in the stochastic WCU baseline. The multivariate ro-221

bustness estimates thus obtained are further analyzed to identify key actor/sector trade-222

offs with a specific focus on the stability of alternatives ranking (Section 3.5). Finally,223

we identify the main drivers of system failure from uncertainties explored and clarify-224

ing how choice of robustness definitions affect inferences related to consequential trade-225

offs/vulnerabilities across stakeholder interests (Section 3.6).226

Building on and extending McPhail et al. (2018), Figure 3 elaborates key steps227

in the exploratory evaluation of robustness considering candidate choices associated with228

stakeholder preferences, their risk attitudes and scenario generation methods. Robust-229

ness calculations require specification of deeply uncertain factors and their sampling strate-230

gies (ψ, purple boxes). Each deeply uncertain world will be characterized by stochastic-231

ity (s, green boxes). Each decision alternative, θ, is re-evaluated using the systems model232

to quantify values of multiple performance objectives (f, dark green boxes) representing233

preferences of various actors and sectors. The vectors of performance objectives can be234

combined in different ways to represent combinations of stakeholder preferences (m1, m2,. . . ,mn,235

yellow boxes). Finally, alternative representations of risk-attitudes in candidate robust-236
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II
Sampling Deeply 

Uncertain Factors

Hydroclima�c 

Condi�ons

Socioeconomic

Factors

I
Many-Objec�ve 

Op�miza�on

Model Objec�ves

DecisionsUncertainty

Robustness Calcula�on

Mul�ple Robustness

Metrics based on 

level of risk aversion

Reevalua�on Under 

Stochas�c  and Deep 

Uncertainty

Sample 

Combina�ons

of Stakeholder 

Preferences

VIII

V
Impact of Mul�variate Robustness

Stability of ranking of 

alterna�ves

Impact of di�erent

robustness choices

VI Iden��ca�on of Robustness Controls

Iden�fy Sensi�ve factorsIden�fy failure regions

Actor Sector 

Tradeo�s

Type of Scenario Spread

Figure 2. The six main stages in applying the MORDM framework to a decision problem.

Black outlines highlight stages that include stakeholder preferences and their risk attitudes in the

robustness assessment. This figure illustrates extension of MORDM framework adapted from the

taxonomy of robustness frameworks presented in Herman et al. (2015).
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Figure 3. Evaluating the impact of metric definitions representing risk attitudes (orange),

performance objectives (dark green) and their combinations (yellow) representing different

stakeholders, and sampling strategies for stochastic (green) and deep (blue, purple) uncer-

tainties on resultant robustness values. Shown are steps to quantify robustness under a) well-

characterized, and b) deep uncertainties. Pareto-approximate alternatives (grey) are generated

by many-objective optimization using stochastic streamflow realizations in (a). Each alterna-

tive is re-evaluated for a vector of performance objectives across a much larger stochastic set in

(a). Deeply uncertain SOWs cover the multi-dimensional factor space using uniform, target, and

diverse scenario spread types (blue box in b).

ness metrics are explored in terms of how they aggregate the performance of a decision237

alternative across sampled deeply uncertain states-of-the-world (SOWs, R1, R2, . . . Rm,238

orange box). In this way, we explore the influence of the choice of actor and sector com-239

binations, decision alternatives, robustness metrics, number of scenarios, and type of spread240

of scenarios on robustness estimates. As noted by Hadjimichael et al. (2020), it is dif-241

ficult in institutionally complex large-scale water resources systems for stakeholders to242

define and understand the implications of the alternative framings of robustness that could243

be considered. This study addresses this challenge by providing an exploratory frame-244

work that can broaden the representation of concerns while clarifying the consequences245

of incorporating them into alternative metrics of robustness. The following sections de-246

tail each of the key steps used to compute robustness.247

3.1 Many-Objective Optimization248

Veena et al. (2021) explored four problem formulations for the INS IBWT that249

quantified the tradeoffs across five system level objectives. The term ‘system-level’ refers250

to the fact that the performance objectives were regionally averaged across the partic-251

ipating basins. The objectives included reliability, resilience, and vulnerability of water252

demand satisfaction, reliability of maintaining minimum environmental flows, and re-253

liability of avoiding high flow exceedances. The formulations compare dynamic and adap-254

tive rule-based operational designs against the status quo of no water transfer and a re-255

gional operational rule that has been suggested by the regional authorities, referred to256
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as the proposed rule throughout the paper. To better understand the value of informa-257

tion coordination across the donor and recipient basins, two types of dynamic rules were258

formulated by Veena et al. (2021): noncooperative that only condition the transfer de-259

cisions on the states of the donor reservoir and cooperative that condition them on the260

states of both the donor and recipient reservoirs. Pareto approximate strategies were gen-261

erated using evolutionary multi-objective direct policy search (EMODPS) considering262

stochastic uncertainty (or WCU) of inflows. Stochasticity is represented using 10,000 re-263

alizations of synthetic inflows (s1, s2, . . . , s10000) generated from historical inflows (1967-264

2012) (Veena et al., 2021; Kirsch et al., 2013; Herman et al., 2015) (Supplementary ma-265

terial S4). The procedure uses Cholesky decomposition to preserve the autocorrelation266

of inflows between the donor and recipient sites. Cooperative adaptive strategies outper-267

formed all others indicating the importance of coordination between donor and recip-268

ient basins for managing water transfers and are, therefore, used in this study (79 in num-269

ber) (Veena et al., 2021). Thus, we considered 81 INS IBWT operational design alter-270

natives including the proposed and the status quo of no-transfer. These strategies are271

decisions (Step I in Figure 2, θ in Figure 3) to transfer water used for re-evaluating their272

performance under changing climates and demands to understand the long-term conse-273

quences of the INS IBWT for all the stakeholders involved. A brief overview of the model,274

objective functions, constraints and optimization procedure is included in Supplemen-275

tary Material S1 to S3 and Table S1.276

3.2 Sampling of deeply uncertain factors277

Here, we explore eight deeply uncertain factors (ψ, Figure 3) to capture potential278

impacts on river flows due to uncertain future changes in Indian Summer Monsoon pre-279

cipitation patterns and demands; six related to inflows and two related to demands (Ta-280

ble 2, ψ in Figure 3). Demand factors are applied as multipliers to the historical demands281

to represent candidate increases in the future. Six factors are used to generate different282

monsoon dynamics in the inflows including changes in log-space annual mean, log-space283

standard deviation and interannual variability of inflows. The equations to generate in-284

flows from monsoon factor ranges are adapted from Quinn et al. (2018). Each deeply285

uncertain inflow defined by a combination of six monsoon related factors is paired with286

10,000 realizations of inflows that represent WCU. The generated inflows are evaluated287

using available climate projections for the study region from the Inter-Sectoral Impact288

Model Intercomparison Project. These span five GCMs and four representative concen-289

tration pathways (RCPs) (Warszawski et al., 2014; Singh & Kumar, 2019) (Figure S1).290

Deeply uncertain futures are sampled from within the space of plausible ranges of291

uncertain factors. We explore alternative sampling approaches that vary in how they fo-292

cus on specific regions of the space or cover the entire space following McPhail et al. (2020).293

Vectors of the eight factors listed in Table 2 are generated using three sampling strate-294

gies - diverse, target, and uniform. Diverse sampling identifies locations of interest within295

the feasible range of uncertain factors, then generate samples around those locations (Anghileri296

et al., 2018; Giuliani & Castelletti, 2016; Haasnoot et al., 2012; Huskova et al., 2016; McPhail297

et al., 2018). This represents the general scenario generation approach followed in cli-298

mate change impact studies where, first specific carbon emissions trajectories are spec-299

ified, followed by using multiple climate models to generate possible climates for each300

trajectory. On the other hand, the targeted approach samples the scenario space such301

that different uncertain factors increase or decrease together monotonically (Beh et al.,302

2015b, 2014, 2015a). It follows that targeted sampling is useful in contexts where, changes303

in uncertain factors are highly correlated and would cover a smaller region of the over-304

all feasible space. Finally, uniform sampling explores the entire multi-dimensional sce-305

nario space by sampling points within this space using Latin hypercube sampling (Herman306

et al., 2015; Kasprzyk et al., 2013; Kwakkel, 2017; Kwakkel et al., 2015; McPhail et al.,307

2018; Singh et al., 2015; Quinn et al., 2018). Further details on the generation of sam-308

ples are provided in Supplementary Figure S2. For each sampling scheme, 20, 40, 60, 80,309
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Table 2. List of deep uncertain factors used to generate scenarios with change in monsoonal

dynamics and socio-economic changes.

Deeply uncertain
factors

Lower bound Upper bound Remarks

Log-space mean
multiplier, inflows

0.95 1.05 Annual increase or decrease
in mean annual inflows

Log-space std
multiplier, inflows

0.5 1.5 Change in interannual
variability of inflows

Log-space C1

multiplier, inflows
0.5 1.5 Change in amplitude of

annual monsoon

Log-space C2

multiplier, inflows
0.5 1.5 Change in amplitude of

semiannual monsoon

Log-space φ1 delta
(radians), inflows

-2π/12 +2π/12 Shift of annual monsoon

Log-space φ2 delta
(radians), inflows

-2π12 +2π12 Shift of semiannual monsoon

Demand factor,
donor basin

1 1.5 Relative increase in donor
demand

Demand factor,
recipient basin

1 1.5 Relative increase in recipient
demand

and 100 samples of vectors are generated. The reader is encouraged to refer to McPhail310

et al. (2020) for more details on the distributional sampling of scenarios for targeted spread311

and diverse futures.312

3.3 Sampling combinations of stakeholder preferences313

As detailed in section 2, we explore 12 actor-sector combinations that represent the314

diverse stakeholders involved in the INS IBWT. To quantify the water supply related315

sectoral performances, the vulnerability measure (Vul) is used as follows,316

V ul =

∑T

t=1
(adt − dt)

∑T

t=1
adt

× 100 (1)

In equation 1, dt is the demand satisfied, adt is the actual demand, for each time period317

t, and T is the total number of time periods. The vulnerability measure can also be ex-318

pressed in terms of average volumetric deficits by multiplying with the total demand.319

Preferences of the ecology-TV sector is quantified as the mean annual transfer volumes320

for a water transfer alternative. The performance for the Ecology-MEF (JEF ) sector is321

quantified using a reliability measure as,322

JEF =

(

1−

∑T

t=1
EF t

T

)

(2)

EF t =

{

1 if (ef t < mef t)
0 else

(3)

where ef t is the flow released as environmental flow and mef t is the MEF at time323

t. MEF to be released downstream are set at 30% of the mean historical flow following324

recommendation by Smakhtin (2006). These sectoral performances are evaluated at the325

donor, recipient, and system level.326
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3.4 Robustness metrics327

Several robustness metrics have been developed and applied to analyze performance328

of complex water resources systems, each representing a unique way to attain aggregate329

performance rankings for alternative solution strategies across a large number of uncer-330

tain SOWs (McPhail et al., 2018, 2020; Herman et al., 2015; Giuliani & Castelletti, 2016;331

Kwakkel, Eker, & Pruyt, 2016). The means of computing these aggregations are impor-332

tant in how they tacitly indicate the risk attitude of the decision maker(s). Here, we il-333

lustrate four aggregation strategies for robustness metrics that have been commonly used334

in the literature and represent a range of risk-attitudes (in order of increasing risk aver-335

sion): the maximax, Laplace, minimax regret, and maximin metrics (Table 3). The max-336

imax metric (i.e., ‘best’) represents a low inherent level of risk aversion, as its calcula-337

tion is only based on the best performance over all the scenarios. In contrast, the max-338

imin metric (i.e., ‘worst’) has a very high level of intrinsic risk aversion as it only con-339

siders the worst performance of all scenarios, leading to a very conservative solution (Bertsimas340

& Sim, 2004). Thus, across all decision alternatives, the alternative that has the max-341

imum worst-off performance across all deeply uncertain scenarios is deemed to be most342

robust. Similarly, the minimax regret metric assumes that the selected decision alter-343

native will minimize the largest regret possible, focusing again on the worst-case rela-344

tive performance. Laplace’s principle of insufficient reason, referred to as Laplace from345

hereon, is representative of a risk neutral metric as its calculation is based on the mean346

performance over all the scenarios considered. For each performance objective, values347

are estimated and rescaled between 0 and 1 to allow a comparison between objectives348

in calculation of robustness metrics.349

When multiple actors and sectors are involved, the implications of performance ag-350

gregation across the actor-sector combinations as well as scenarios need to be explored351

carefully. Stakeholders and decision makers are not likely to know a priori the complex352

effects of aggregation or how to specify robustness metrics as noted in Hadjimichael et353

al. (2020). To better aid stakeholders in understanding the relative implications of al-354

ternative robustness metrics, we more carefully distinguish the conceptual definition of355

candidate metrics across how they are aggregated with respect to scenarios as well as356

performance objectives. For example, when applied to a single performance objective,357

the maximin metric would focus on the minimum (‘worst’) performance value across all358

scenarios. The multi-objective version of maximin selects the worst performing objec-359

tive across all of the performance objectives as well as scenarios considered (Table 3).360

This version of the metric tracks maximal regret or loss across the four performance ob-361

jectives across alternatives and scenarios. A total of 12 actor-sector combinations along362

with four levels of risk aversion result in 48 combinations of stakeholder interests and363

risk attitude assumptions.364

3.5 Impact of multivariate robustness365

A total of 432,000,000 robustness evaluations were carried out for each of the 81366

alternatives. These result from a combination of 12 performance objectives, 4 robust-367

ness metrics, 300 (20+40+60+80+100) scenario sample sizes, 10000 stochastic realiza-368

tions, and 3 scenario spread types (Figure 3). Rank stability of alternatives across the369

candidate specifications of robustness definitions is evaluated 720 times, representing 12370

performance objectives, 4 robustness metrics, 5 scenario sample sizes, and 3 scenario spread371

types. An alternative is ranked 81 if it attains the highest robustness value and 1 for the372

least robustness value. We summarize the rankings via the median and the interquar-373

tile range (IQR) of the ranks under WCU and DU sampling cases. A strategy is defined374

as having a stable ranking if there is little or no change in median rank defined under375

WCU and DU. We classify a strategy as having an unstable ranking when the difference376

in median rank between WCU and DU is greater than 20 or has high (>60) IQR rank377
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Table 3. List of different robustness metrics considered in the analysis along with equations

for aggregation. The multi-objective version of each metric is applied when multiple performance

objectives are included. In the equations listed, n denotes the number of performance objectives

considered, f denotes objective function performance, s denotes the set of SOWs in the analysis, a

denotes the value to be evaluated across all alternatives and j denotes the jth SOW from the set

of s. For example, considering the actor-sector combination in row 8 of Table 1, two performance

objectives considered in robustness calculations would be the vulnerability of water supply of

donor (Godavari) and recipient (Krishna) basins. When evaluated across deeply uncertain scenar-

ios, the worst value across donor and recipient basins would be selected for each alternative. The

alternative with the maximum-worst off case would then be identified as most robust.

Metri
namec

Description Method of com-
bining multiple
performance
objectives (ag-
gregation of ”n”
metrics)

Equation Metric
Choice

Maximin Worst-case
perfor-
mance

worst case perfor-
mance among ’n’
objectives

min(minf1(s),minf2(s), ...,minfn(s)) Max

Maximax Best-case
perfor-
mance

best case perfor-
mance among ’n’
objectives

max(maxf1(s),maxf2(s), ...,maxfn(s)) Max

Laplace’s
principle
of insuf-
ficient
reason

Mean per-
formance

mean perfor-
mance among ’n’
objectives

mean(meanf1(s),meanf2(s), ...,meanfn(s)) Max

Minimax
regret

The worst
case of
making
a wrong
decision
in a given
scenario

worst case cost
of wrong decision
in any given sce-
nario among ’n’
objectives

max(max r1(s),max r2(s), ...,max rn(s))

ri(sj) = max((f(s))− f(sj) Min
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under DU. We also explore the impact of these choices on the inferred stability of a strat-378

egy.379

Along with the rank stability of a strategy, the degree of change in the quantified380

robustness of a transfer strategy when moving from the internal variability focus of WCU381

sampling to broader DU sampling could also be of interest to stakeholders. We define382

this change in terms of median and IQR rank of strategies. We classify the strategy as383

“improving” for an increase in median rank or decrease in IQR rank, “deteriorating” for384

a decrease in median rank or increase in IQR rank, or “similar” for a difference in me-385

dian or IQR rank that falls within ±2 ranked slots of original WCU value. We also as-386

sess the impact of using various actor-sector combinations on resultant robustness per-387

ception of strategies. For the transfer strategies identified, we perform a detailed assess-388

ment of robustness controls to identify which factors among the many considered are driv-389

ing robustness gradients across deeply uncertain scenarios (Step V, Figure 2).390

3.6 Identification of robustness controls391

This step identifies which deeply uncertain factors are most responsible for the fail-392

ure of alternatives to meet the performance requirements implied for each of the differ-393

ent robustness metrics (robustness controls). We use Classification and Regression Trees394

(CART) to identify the relative importance of different factors for meeting performance395

requirements specified across alternative robustness metrics across sampled scenarios.396

CART requires input of the uncertain factors of focus and their performance outcomes397

(success or failure) (Step VI, Figure 2). The method then recursively partitions the fac-398

tor space into subgroups to explain variation in failure or success outcomes (e.g., iden-399

tifying the combinations of uncertain factors as well as their specific values that result400

in performance failures). Given that CART identifies the region of factor space that leads401

to failures, it facilitates scenario discovery where decision makers can more carefully pin-402

point the most consequential scenarios of concern for a given INS IBWT operational de-403

sign alternative. This step was completed using the ’rpart’ package to generate pruned404

trees and prevent overfitting using a ten-fold cross-validation process (Breiman et al.,405

1984; Therneau et al., 2010).406

4 Results407

4.1 Multi-sectoral performance of transfer strategies408

We first analyze the multi-sector tradeoffs across the 81 water transfer strategies409

for the INS IBWT for the three sectors: ecology-TV, water supply, and ecology-MEF.410

Their performance is analyzed at the system level by estimating the average performances411

across both donor (Godavari) and recipient (Krishna) basins (Figure 4a, b). The sys-412

tem level performance of each strategy across all SOWs under WCU (DU) is plotted as413

a line crossing the three vertical axes, each representing a sectoral performance in Fig-414

ure 4a(b). Across the 79 Pareto-approximate strategies, the average volumetric deficits415

ranged from 222-348 Mm3 (2.4% - 3.8% of total demands) for the water supply sector416

under WCU (Figure 4a). For these strategies, the reliability of maintaining MEF ranged417

from 97-98% for the ecology-MEF sector, while mean annual transfer volumes ranged418

from 4985-7730 Mm3 for the ecology-TV sector, under WCU. Notable is the tradeoff be-419

tween the ecology-MEF and water supply sectors at the system level, a 1% increase in420

MEF reliability requires a concurrent increase of 118 Mm3 in average volumetric deficits.421

The proposed strategy results in the worst performance for the ecology-MEF (MEF re-422

liability of 96.3%) and ecology-TV (mean annual transfer volume of 13,437 Mm3) sec-423

tors. The no-transfer strategy results in the worst performance of the water supply sec-424

tor with an average volumetric deficit of 1547 Mm3 (17% of total demands), respectively,425

at the system level. We surmise that the transfer of water between the Godavari and Kr-426
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ishna basins is likely to force decision makers to consider the significant tradeoffs between427

the water supply and ecology sectors in both basins.428

On further analyzing these strategies under deeply uncertain futures, we find a sub-429

stantial deterioration in the performance of the water supply and ecology-MEF sectors430

when compared to the narrower evaluation of performance under WCU (DU, Figure 4b).431

The average volumetric deficits across the Pareto-approximate strategies increase from432

222 Mm3- 348 Mm3 to 1,593 Mm3-1,820 Mm3 as we transition from an emphasis on hy-433

droclimatic internal variability in the WCU evaluations to the broader uncertainties posed434

by climate and demand changes. Similarly, the reliability of maintaining MEFs reduces435

from 97-98% under WCU to 90- 91% under DU. The mean annual transfer volume re-436

duces from 13,437 Mm3 under WCU to 8302 Mm3 under DU for the proposed strategy.437

However, the annual volumetric transfers do not change substantially for the 79 dynamic438

state-aware solutions as they adapt to changing inflow and demand conditions under the439

DU SOWs. The proposed strategy attains a 90% reliability of maintaining MEF, the worst440

performance for the ecology-MEF sector under the DU SOWs across all strategies. The441

no-transfer strategy attains the highest performance for the ecology-MEF sector under442

DU futures but still results in the lowest performance for the water supply sector. Thus,443

even under the more challenging DU SOWs, the Pareto approximate strategies deteri-444

orate less than the proposed and no-transfer strategies.445

We further identify four strategies that represent different possible compromises446

between the three sectors at the system level. The Best Water Supply strategy attains447

the highest performance in the water supply sector from the system perspective under448

WCU (red line, Figure 4). This strategy is likely to be of high interest to all water users449

including farmers and urban centers as well as regional water planners who typically pri-450

oritize augmentation of freshwater supply. The Best Ecology-MEF strategy attains the451

highest performance for the ecology-MEF sector at the system level under both the WCU452

and DU SOWs (purple line, Figure 4). Considering the ecological services provided by453

the Godavari River downstream of the proposed Inchampalli dam site, these strategies454

would be of interest to ecologists and dependent downstream water users. The Best Ecology-455

TV strategy results in the lowest annual volumetric transfers from the Godavari to the456

Krishna river under both the WCU and DU SOWs (yellow line, Figure 4). This strat-457

egy would be of interest to stakeholders who would be concerned about the potential im-458

plications of mixing the waters of the Godavari with the Krishna, resulting in the intro-459

duction of new aquatic species in the Krishna River. It will also be of interest to stake-460

holders concerned with the cost of constructing and maintaining of the INS IBWT it-461

self. The Compromise strategy represents the willingness of stakeholders to negotiate462

across sectors under both the WCU and DU SOWs (blue line, Figure 4). Together, these463

four strategies along with the proposed and no-transfer strategies, represent a range of464

stakeholders’ interests including regional planning authorities, environmentalists, ecol-465

ogists, water users, tribal populations dependent on MEFs, etc. We further examine these466

in more detail w.r.t to implied actor-sector tradeoffs as well as implications of robust-467

ness definitions.468

4.1.1 Key Actor-Sector Tradeoffs under WCU and DU469

We now examine the tradeoffs between the three sectors for each actor perspective470

(donor-Godavari, recipient-Krishna, and system) associated with the INS IBWT to fur-471

ther understand the compromises faced by the participating basins (Figure 5). The av-472

erage demand deficits for the water supply sector under WCU ranged from 24-33 Mm3,473

415-672 Mm3, and 222-348 Mm3 for the donor, recipient and system, respectively. The474

reliability of maintaining MEF, representing the ecology-MEF sector, ranges from 94-475

97%, 99-99%, and 97-98% under WCU for the donor, recipient, and system, respectively.476

A key tradeoff emerges between the ecology-MEF and water supply sectors of the donor477

basin where increasing demand satisfaction by 9 Mm3 is attained at the cost of 2% re-478
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a) b)
Well-characterised uncertainty (WCU) Deep uncertainty (DU)

Direction of 

preference

Figure 4. (a) Parallel coordinate plots showing performance of each sector for the system

actor for all strategies under well-characterized uncertainty (WCU). Each vertical axis represents

sectoral performance ranging from lowest (bottom) to highest (top) performance. Each strategy

is represented by a line crossing the three axes. (b) Same as (a) but for all strategies reevaluated

under deeply uncertain (DU) futures.

duction in MEF requirements under WCU. Notably, the proposed strategy attains the479

highest performance (99.4%) in the ecology-MEF sector for the recipient-Krishna basin,480

but it does so by incurring a concurrent loss of MEF reliability in the donor-Godavari481

basin (93%). This results in the proposed strategy performing the worst for the ecology-482

MEF sector at the system level (96.3%). Thus, gains by sharing water between the Go-483

davari and Krishna basins will entail a tradeoff between the water supply sector of the484

recipient-Krishna basin and ecology-MEF sector of the donor-Godavari basin, even when485

considering historical hydroclimatic variability.486

The ecology-MEF sector witnesses a substantial system level performance reduc-487

tion under DU futures, which is primarily due to the deteriorating MEF reliability of the488

donor-Godavari basin. Under DU futures, we observe a small reduction in MEF relia-489

bility for the recipient-Krishna basin despite an overall reduction in mean annual wa-490

ter transferred. This suggests that water transfers may alleviate some MEF shortages491

in the recipient basin. We also find a reduction in system level water supply performance492

under DU futures, driven primarily by substantial reduction in for the recipient-Krishna493

basin. Historically, the donor-Godavari basin has had lower demand and hence the im-494

pact on water supply performance is limited. Importantly, for all strategies, including495

proposed and no-transfer, a reduced performance for water supply and ecology-MEF sec-496

tors for all actors, and an increased performance for ecology-TV sector, is observed un-497

der DU futures compared to WCU. Reduced transfer volumes under DU compared to498

WCU is due to change in water availability and increased demands in both the basins499

4.2 Rank stability of strategies500

Decision analysis frameworks should provide insights for how problem framing in-501

fluences the preferential ordering of suggested actions across the diverse actors and sec-502

tors that have stakes. In our study, different robustness metrics represent alternative world503

views by exploring candidate performance goals across actor-sector combinations and504

their risk attitudes. It further follows that each robustness metric is likely to result in505

a different rank ordering of decision alternatives. The rank stability of the decision al-506

ternatives may thus be an additional feature of interest to planners, especially in deci-507

sion contexts where it is conceptually challenging to define the appropriate robustness508
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a) b) c)

d) e) f)

Direction of
preference

MEF: Minimum

environmental flows

Figure 5. Trade-off between (a-c) vulnerability of water supply and reliability of maintaining

MEF; (d-f) vulnerability of water supply and mean annual transfer volumes for (b, e) donor,

(c, f) recipient and (a, d) system. The Pareto-approximate strategies are highlighted by circles.

Performance under well-characterized uncertainties is shown by light grey circles while deep

uncertainties in dark grey. MEF: minimum environmental flows.

metrics such as the INS IBWT. To investigate this, we plot the median and inter-quartile509

range (IQR) of the rank obtained by a strategy across all 720 robustness metric defini-510

tions under both WCU and DU (Figure 6a, b). A strategy with highest median rank and511

lowest IQR of rank indicates a high robustness irrespective of the choice of robustness512

definitions. The plausible highest rank in this study is 81 as there are 81 strategies and513

lowest is rank 1. Note that a strategy with high rank under WCU may not maintain its514

rank under DU. This can occur when a strategy is overly trained on historical data and515

exhibits a high-performance deterioration when exposed to DU futures. We further de-516

fine a strategy as stable when the difference in median rank of WCU and DU is less than517

20 or IQR rank of strategy is smaller than 60 under DU (shaded regions in Figure 6a,518

b). This choice of thresholds was determined after investigating the impact of different519

thresholds on resultant inferences of solution stability (Figure S3).520

We find that the ranking of strategies is quite stable across the WCU and DU SOWs521

indicating that strategies tend to maintain similar relative performance under both cases522

(see also supplementary Figure S3). The stability of a strategy implies that the alter-523

native robustness-based preferential ordering of that strategy is largely consistent across524

multiple worldviews. The proposed strategy attains low median rank and high IQR of525

rank suggesting an overall low robustness with high variability across robustness defi-526

nitions. The no-transfer strategy attains the highest median rank across all robustness527

definitions under both WCU and DU SOWs but also exhibits a greater instability in rank-528

ing as indicated by its highest IQR in both cases. Table 4 summarizes the median rank,529

IQR of rank, as well as the stability ranking outcomes for the selected water transfer strate-530

gies. The Pareto-approximate strategies attain lower median ranks (i.e., higher median531

rank is preferred over lower ranks) when compared to the no-transfer strategy. They also532
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Direction of
preference

a) b)

Figure 6. The (a) median and (b) interquartile range (IQR) of rank for a strategy under

WCU (x-axis) and DU (y-axis). A total of 81 strategies are ranked using 720 robustness metrics

under both WCU and DU. The ideal point with highest median rank and lowest interquartile

range is highlighted by a plus symbol in both panels. Grey shading represents regions of instabil-

ity w.r.t strategy ranking. See text for more details.

maintain higher rank stability as exhibited by their low IQR (i.e., low IQR is preferred)533

as well as consistency of ranking between the WCU and DU SOWs. The Best Ecology-534

MEF strategy attains the highest median rank among the Pareto approximate strate-535

gies and has low IQR. The Compromise strategy has a relatively high median ranking,536

as well as lower IQR of rank under both WCU and DU SOWs. The Best Ecology-TV537

strategy is found to be unstable based on the criteria discussed above, which is mainly538

attributed to the poor performance of this strategy for the water supply sector. Over-539

all, the selected strategies display advantages over one another either w.r.t individual sec-540

toral performance or in rank stability across robustness choices. Ideally, a strategy with541

the highest median rank and lowest IQR of rank across the robustness definitions should542

be preferred. Such a strategy would maintain performance irrespective of the choice of543

actor-sector combinations and risk attitudes. However, we find that the median rank and544

IQR of rank have a trade-off across the set of strategies analyzed here. This indicates545

that strategies that attain a high rank across robustness metrics also display greater vari-546

ability of ranking, resulting in lower performances in certain actor-sector combinations.547

Thus, choosing an appropriate water transfer strategy for the INS IBWT would be dif-548

ficult and require careful consideration of involved tradeoffs under deeply uncertain fu-549

tures.550

4.3 Impact of stakeholder(s) interests and risk-attitudes on perceived551

robustness552

A key objective of this study is to demonstrate how decision makers may explore553

different risk attitudes or stakeholders’ interests in the evaluation of design alternatives554

robustness using the complex context of the INS IBWT. The exploratory evaluation of555

the consequences of the different risk attitudes across candidate robustness metrics can556

provide a broader context for how outcomes may be classified as being consequential across557

the range from full optimism to extreme pessimism. We visualize the variation of robust-558

ness values across actor-sector combinations, and risk attitudes for six selected strate-559

gies under DU SOWs as bar plots in Figure 7. We reiterate that across the candidate560

operational strategies for the INS IBWT, the preferred robustness for the Maximax, Laplace,561

and maximin metrics assumes maximization. Similarly, to choose the best robustness562

value for the minimax regret metric, the robustness values are subtracted from a value563

of 1 for consistency as this regret measure is minimized. Across all robustness metrics,564
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Table 4. The median and IQR of rank for selected strategies under WCU and DU.

Strategy
Name

Selection
criteria

Median Rank IQR rank Comment on Stability Whether
median
(IQR rank)
improves
from WCU
to DU

WCU DU WCU DU

Difference
in median
rank of
WCU and
DU

Based on
IQR rank
of strategy

Proposed
Baseline strat-
egy

1.5 1 79 63 Stable Instable
Similar (Im-
proving)

No-transfer Status quo 80 80 80 79 Stable Instable
Same (Simi-
lar)

Best
Ecology-
TV

Strategy with
minimum trans-
fer volume
under WCU
and DU

17.5 43.5 70.5 63.5 Instable Instable
Improving
(Improving)

Best
Ecology-
MEF

Best perfor-
mance for
ecology-MEF
under DU

69 69 43.5 30.5 Stable Stable
Same (Im-
proving)

Best Water
Supply

Best perfor-
mance for water
supply under
WCU and DU

41 50 36.5 34 Stable Stable
Improving
(Improving)

Compromise

Strategy with
compromise
performance
across sectors

50 52 44.5 40 Stable Stable
Similar

(Improving)
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the highest robustness value is attained by a variety of strategies depending upon the565

choice of actor-sector combination is emphasized. This shows that a single robust INS566

IBWT operational strategy cannot easily be identified without a deeper engagement with567

the trade-offs between different risk attitudes and carefully evaluating the choice of which568

actor-sectors that have a central role in decision making.569

Figure 7 shows that the no-transfer strategy attains the highest robustness value570

compared to the other strategies across all levels of risk aversion for actor-sector com-571

binations of donor water supply, donor ecology-MEF and system ecology-TV. It is ex-572

pected that the no-transfer strategy results as being robust for the donor (Inchampalli)573

water supply and donor ecology-MEF combination as it avoids conflicts in resource shar-574

ing with the recipient basin. The proposed strategy is found to be robust for the recip-575

ient (Nagarjuna Sagar dam) water supply across all metrics and recipient ecology-MEF576

except for minimax regret. In summary, for donor related combinations, the no-transfer577

strategy is robust, while for recipient related combinations the highest metric value is578

attained by the proposed strategy. Not opting for the water transfer would be in the best579

interest of donor’s water supply and ecology goals, while the proposed strategy entails580

the highest possible value of annual volumetric transfers. Similarly, for system ecology-581

TV which focuses on minimizing the transfer volume, the no-transfer strategy attains582

the highest robustness as the transfer volume is set to the minimum value of zero. Al-583

ternatively, system level actors for the INS IBWT are mainly decision makers focused584

on the overall average benefits across both the Inchampalli and Nagarjuna Sagar com-585

mand areas.586

As expected, the INS IBWT increases the robustness of water supply at the sys-587

tem level. Across all levels of risk aversion, the Pareto optimal strategies display greater588

robustness when compared to the no-transfer strategy for the water supply sector at the589

system level. Note also that at the system level, the robustness of strategies for Ecology-590

MEF sector is markedly different than for the water supply sector suggesting that stake-591

holders with a high preference towards the water supply sector may select strategies that592

pose higher risks for violating MEFs. The no-transfer strategy attains greater robust-593

ness compared to other strategies for the Laplace and maximin metrics at the system594

level for the ecology-MEF sector as well as across all actors and sectors (‘All’ in Figure595

7). The Laplace metric captures risk-neutral mean performance across scenarios while596

the maximin metric captures risk averse performance. Among the optimal strategies, the597

Best Ecology MEF strategy attains high robustness for the maximin metric. The Best598

Ecology TV strategy attains the highest robustness when considering the minimax re-599

gret metric across all actors and sectors. Recall that this metric emphasizes alternative600

INS IBWT operational strategies that have minimal deterioration in their performance601

from an optimal baseline.602

Metric combination number 12 (Table 4) represented as “All” in Figure 7 consid-603

ers all actors and sectors related to the INS IBWT. This robustness assessment metric604

is more stringent and difficult to attain high levels of performance compared to other actor-605

sector combinations. However, it does identify INS IBWT operational strategies that are606

consistently classified as robust across the different levels of risk aversion. This consis-607

tency is partially an artifact of the compensatory effects of combining actors and sec-608

tors in the measure of robustness. For example, the water supply sector may fail in cer-609

tain scenarios, but those failures are in aggregate countered by increasing levels of suc-610

cess for the ecology-MEF sector. Overall, we find that assumed levels of risk aversion611

has a far more dominant effect on candidate robustness measures than the number of612

samples and type of sampling strategy (Figure S4). In summary, we find that the no-613

transfer strategy remains robust when considering donor water supply, donor ecology-614

MEF and system ecology-TV actor-sector combinations, across all deeply uncertain fu-615

tures. On the other hand, the best water supply strategy performs the best for system616

water supply and donor, recipient water supply actor-sector combinations (Figure 7). Fur-617
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Actor Sector

Donor Water Supply

Recipient Water Supply

Donor Ecology-MEF

Recipient Ecology-MEF

System Water Supply

System Ecology-MEF

PT System Water Supply

Donor, 

Recipient
Water Supply

Donor, 

Recipient

Ecology-MEF

System Ecology-TV

System
Water supply,

Ecology-TV

All All

Level of risk aversionLow High

Maximax Laplace Minimax
Regret Maximin

Figure 7. Robustness of selected strategies (from Table 1) for each combination of actor-

sector and varying levels of risk aversion for uniform type sampling of scenarios. The arrow

represents the increasing level of risk aversion with Maximax as least risk averse and maximin as

highest risk averse.
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thermore, when considered the most risk averse metric, the no-transfer strategy emerges618

as the most robust as it balances the deterioration in recipient water supply actor-sector619

against improvement in donor ecology-MEF and system ecology-TV actor-sector.620

4.4 Influence of deeply uncertain factors621

Scenario discovery helps identify deeply uncertain factors, which drive the perfor-622

mance deterioration of objective functions and potential strategy failure. Here, we iden-623

tify which uncertain factors control the robustness of transfer alternatives to DU SOWs624

using CART to perform scenario discovery for each of the 79 Pareto-approximate strate-625

gies (Step VI of Figure 2). As an example, we perform this analysis for the system level626

water supply metric, the actor sector combination 5 for a uniform sampling of scenar-627

ios (Figure 8). Notably, the order of influence of the deeply uncertain factors on strat-628

egy failure is found to be the same across all strategies: amplitude of inflows to the donor629

and recipient basins, mean inflows to the donor and recipient basins, standard deviation630

of inflows to the donor and recipient basins and demands in the donor basin. Climate631

models struggle to reproduce the complex spatio-temporal patterns of the Indian Sum-632

mer Monsoon (Kodra et al., 2012; Konduru & Takahashi, 2020; Saha et al., 2021), but633

understanding potential future river flows is crucial to understanding potential strategy634

failure. Our analysis suggests an urgent need to focus on understanding the potential635

temporal dynamics of future hydro-climatology of this region given its significantly im-636

portant role in influencing strategy failure.637

5 Conclusion638

We apply an innovative framework to a major water transfer project in India, to639

illustrate how the role of different sectoral priorities, stakeholder preferences, policy op-640

tions, uncertainties and robustness metrics, affect robustness assessments. This study641

contributes a proof-of-concept to demonstrate how evolving analytical frameworks can642

support infrastructure planning and decision making under uncertainty. Our results re-643

veal how tacit assumptions within robustness metrics could influence the perceived ro-644

bustness of INS IBWT policies. We find stronger variation in robustness values across645

different risk-attitudes and actor-sector combinations compared to sampling choices. Dif-646

ferent actor-sector combinations may yield different robustness values of selected strate-647

gies. For example, when risk averse measures of robustness are applied to donor favoured648

measures of system performance, we find that the no-transfer strategy has the highest649

robustness. Alternatively, the proposed transfer is also identified as the highest rank for650

a selected stakeholder preferences which are recipient centred. Our analysis suggests that651

while the high-cost INS IBWT infrastructure investment may be considered feasible un-652

der historically observed stationary climatic conditions, that future climate change ef-653

fects have the potential to strongly degrade its robustness performance across all of the654

operational strategies and actor-sector concerned assessed. In assessing the robustness655

of the INS IBWT, the distribution of scenarios has a greater impact on the inferred ro-656

bustness values versus the number of scenarios considered, in agreement with prior anal-657

ysis by McPhail et al. (2020). Overall, this study highlights the importance of an ex-658

ploratory evaluation of the robustness of mega-investments projects.659

The choice of robustness metric presents a daunting challenge for the complex de-660

cision context of the INS IBWT. It follows that an easy to attain performance goal will661

lead to high robustness values while a stricter performance requirement that maintain662

key system performance goals may result in lower robustness values. The ranking across663

robustness metrics therefore does not distinguish the relative value or importance of the664

underlying metrics to real operations, but rather the consequences of risk attitudes and665

stakeholder preferences. This could be altered in future studies with stakeholder elici-666

tation to discover acceptable and stricter performance values. For example, the proposed667
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Figure 8. Understanding the importance of different uncertain factors on performance of

optimized strategies using classification and regression trees (CART). Shown are the ranking of

deeply uncertain factors: changes in amplitude, standard deviation, demands in recipient, mean,

demand donor and phase shift in determining robustness of strategies. Purple, blue, green and

lime green colors represent primary, secondary, tertiary and higher factor ranking. The CIRCOS

plot displays the uncertain factors as the circles outer edge in red and each optimized strat-

egy is shown on the circle’s outer edge in black. A purple line connecting a strategy to a factor

indicates that factor being the primary control on strategy failure under deeply uncertain futures.
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strategy attains 90% reliability of maintaining MEF under the DU SOWs which is the668

worst performance compared to other strategies. Here, the contention between differ-669

ent decision makers on the acceptable level of risk emphasizes that future work would670

need to clarify the accepted value of reliability or other performance requirements. In671

other words, 90% reliability may be seen as a failure or sufficient across diverse decision672

makers.673

In this study, we constructed combinations of actor-sector preferences based on an674

understanding of the stakeholders involved in the INS IBWT. The exploratory robust-675

ness assessment framework contributed here has significant potential to provide a quan-676

titative basis for stakeholder elicitations using a participatory modeling framework and677

aid in building a shared understanding of potential irreversible decision lock-ins. Such678

participatory approaches require inclusive thinking to account for different worldviews,679

priorities and preferences of marginalized communities and avoiding the monopolization680

of project benefits (Eriksen et al., 2021). While we know that the ‘planners’ associated681

with this project want to minimize system level deficits and that all stakeholders are nei-682

ther well represented nor consulted, there are issues regarding their understanding of de-683

cision analysis terminology and techniques. So, to facilitate an appropriate uptake of such684

approaches, it will require investments in building capacity and understanding of robust-685

ness, uncertainty, risks, and participatory stakeholder engagement. Additionally, research686

on the applicability and usefulness of approaches such as dynamic planning , will help687

improve the design and management of institutionally complex water resources systems688

balancing conflicting demands and complex interdependent risks.689

Recent research has highlighted the complex nature of IBWTs and their multi-faceted690

challenges. We contribute to this growing body of literature by highlighting the type of691

information that advanced decision support can provide for better engaging a variety of692

stakeholders. This framework could also be extended to other robustness metrics such693

as satisficing criteria and higher-order moments. Analyzing the robustness of alterna-694

tives against different thresholds using the satisficing criteria, usefully indicates their sta-695

bility and is worth exploring, especially during participatory engagement. Stakeholders696

may implicitly favor one actor-sector over others because of hidden assumptions within697

their robustness analysis. The framework in this paper offers a means of revealing those698

hidden assumptions and making the decision process transparent. This has benefits of699

1) ensure stakeholders are not blind to potential risks and trade-offs and 2) aid the co-700

production process by providing insight into the implications for all actors-sectors.701
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