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Abstract

In recent years, Machine Learning (ML) techniques have gained the attention of the hydrological community for their better

predictive skills. Specifically, ML models are widely applied for streamflow predictions. However, limited interpretability in

the ML models indicates space for improvement. Leveraging domain knowledge from conceptual models can aid in overcoming

interpretability issues in ML models. Here, we have developed the Physics Informed Machine Learning (PIML) model at

daily timestep, which accounts for memory in the hydrological processes and provides an interpretable model structure. We

demonstrated three model cases, including lumped model and semi-distributed model structures with and without reservoir. We

evaluate the first two model structures on three catchments in India, and the applicability of the third model structure is shown

on the two United States catchments. Also, we compared the result of the PIML model with the conceptual model (SIMHYD),

which is used as the parent model to derive contextual cues. Our results show that the PIML model outperforms simple ML

model in target variable (streamflow) prediction and SIMHYD model in predicting target variable and intermediate variables

(for example, evapotranspiration, reservoir storage) while being mindful of physical constraints. The water balance and runoff

coefficient analysis reveals that the PIML model provides physically consistent outputs. The PIML modeling approach can

make a conceptual model more modular such that it can be applied irrespective of the region for which it is developed. The

successful application of PIML in different climatic as well as geographical regions shows its generalizability.
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Abstract15

In recent years, Machine Learning (ML) techniques have gained the attention of the hy-16

drological community for their better predictive skills. Specifically, ML models are widely17

applied for streamflow predictions. However, limited interpretability in the ML models18

indicates space for improvement. Leveraging domain knowledge from conceptual mod-19

els can aid in overcoming interpretability issues in ML models. Here, we have developed20

the Physics Informed Machine Learning (PIML) model at daily timestep, which accounts21

for memory in the hydrological processes and provides an interpretable model structure.22

We demonstrated three model cases, including lumped model and semi-distributed model23

structures with and without reservoir. We evaluate the first two model structures on three24

catchments in India, and the applicability of the third model structure is shown on the25

two United States catchments. Also, we compared the result of the PIML model with26

the conceptual model (SIMHYD), which is used as the parent model to derive contex-27

tual cues. Our results show that the PIML model outperforms simple ML model in tar-28

get variable (streamflow) prediction and SIMHYD model in predicting target variable29

and intermediate variables (for example, evapotranspiration, reservoir storage) while be-30

ing mindful of physical constraints. The water balance and runoff coefficient analysis re-31

veals that the PIML model provides physically consistent outputs. The PIML model-32

ing approach can make a conceptual model more modular such that it can be applied33

irrespective of the region for which it is developed. The successful application of PIML34

in different climatic as well as geographical regions shows its generalizability.35

1 Introduction36

The reservoir operation, water resources planning and management, flood preven-37

tion, and risk evaluation can be handled better with reliable streamflow predictions (Z. Liu38

et al., 2015). Thus, accurate streamflow forecasting aids decision-makers in addressing39

issues related to water supplies, flood mitigation, and hydro-power generation (Yaseen40

et al., 2016). To meet these objectives, hydrologists often rely on a suite of hydrologi-41

cal models of varying complexities (e.g., lumped, distributed, and semi-distributed), scales42

(regional to global) and architectures (including data-driven, conceptual, empirical and43

physical) (Devia et al., 2015). Conceptual models are computationally efficient while rep-44

resenting various dominant catchment dynamics in a physically meaningful way with less45

number of parameters (Fenicia et al., 2011). Their potential is explored for hypothesis46

testing (Vaze et al., 2010; Fenicia et al., 2022), semi-distributed modeling (Aronica &47

Cannarozzo, 2000; Ajami et al., 2004; Das et al., 2008), and they have been used to sup-48

port operational forecasting (Feng et al., 2020). Some of the popular conceptual mod-49

els which are applied widely in the field of hydrology include GR4J (Perrin et al., 2003),50

Xinanjiang (Ren-Jun, 1992), Sacramento Soil Moisture Accounting Model (SAC-SMA),51

and SIMHYD (Chiew et al., 2002). However, these conceptual models are developed for52

a specific region. Thus, the purported ”uniqueness of place” is the cost of the apparent53

“simplicity” of conceptual models (Fenicia et al., 2011), which calls for cautious appli-54

cation of these models outside the given specific region.55

The emerging paradigm of data-driven approaches, specifically Deep Learning (DL)56

methods, has shown remarkable success in improving hydrological predictions, includ-57

ing streamflow modeling at multiple timescales (Gauch et al., 2021), streamflow predic-58

tions in ungauged basins (Kratzert et al., 2019) hinting towards the existence of inter-59

basin consistency which can further aid in developing a watershed-scale theory for the60

rainfall-runoff process (Nearing et al., 2021). Shen (2018) has provided a transdisciplinary61

review of DL applications and suggests that the DL has the potential to improve water62

science. However, the studies have applied a data-driven approach for the streamflow pre-63

diction with different inputs while ignoring the intermediate processes, and physical con-64

sistency checks (Parisouj et al., 2020; Thapa et al., 2020; Wu et al., 2022; Khosravi et65

al., 2022). Also, when constrained by the physics of processes, data-driven models of-66
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ten run into issues of equifinality and produce spurious insights (Bhasme et al., 2022; Re-67

ichstein et al., 2019). Thus, interpretability and physical consistency are the challenges68

associated with the application of purely data-driven models.69

A recent perspective in Nature argued that synergistically combining physics with70

machine learning could be a promising way to address the limitations associated with71

the individual models (Reichstein et al., 2019). Thus, the aforementioned issues of in-72

terpretability, physical consistency, and generalizability can possibly be resolved by com-73

bining interpretability from the conceptual model and predictive skills of the data sci-74

ence approach using the Machine Learning (ML) model in a systematic way. Recently75

researchers have made numerous attempts at the synergistic application of ML and physics-76

based or conceptual models in hydrology. Karpatne et al. (2017) have discussed differ-77

ent approaches to combining domain knowledge with predictive skills of data-driven mod-78

els under the umbrella of ”Theory Guided Data Science.” Willard et al. (2022) have clas-79

sified the integration of physical principles with machine learning into four classes: physics-80

guided loss function; physics-guided initialization; physics-guided design of architecture;81

and hybrid modeling. One of the ways of hybrid modeling is to use the output of physics-82

based models as input for ML models. Zhou et al. (2022) has proposed an integrated model83

which combines the Xinanjiang conceptual model with the Monotone Composite Quan-84

tile Regression Neural Network (MCQRNN) for forecasting flood probability density where85

they fed the output of Xinanjiang model for forecasted steps, observed streamflow and86

rainfall at past steps to the MCQRNN model. Merely considering the streamflow in the87

forecasted inputs makes the model sensitive to the performance of the physics-based model.88

Also, their model has limited interpretability and ignores the physical consistency of var-89

ious processes, as it doesn’t account for intermediate processes. Parisouj et al. (2022)90

have developed a physics-informed data-driven model for 1-day ahead streamflow fore-91

casting by applying ML with inputs as precipitation and observed streamflow at current92

and previous timestep with 1-day ahead forecasted streamflow from Hydrologic Engi-93

neering Center - Hydrologic Modeling System (HEC-HMS) model. However, ignoring94

intermediate processes in their study affects the interpretability of the model. Lu et al.95

(2021) has developed a physics-informed hybrid Long Short-Term Memory (LSTM) by96

using outputs of a physics-based model along with meteorological variables as inputs to97

the LSTM and improved the out-of-distribution (input data have very dry or very wet98

years for training period) streamflow predictions. However, their model structure does99

not consider any intermediate variable, which limits the interpretability of the model.100

K. Li et al. (2022) has demonstrated a physics-informed data-driven model for under-101

standing the factors responsible for the baseflow, interflow, and overflow dynamics among102

the different variables such as precipitation, air temperature, and irrigation. However,103

their study excludes soil moisture which may have crucial information about baseflow104

processes. Jia et al. (2021) has developed a physics-guided recurrent graph model to pre-105

dict the streamflow and temperature in the river network. They have used a pre-training106

technique that transfers the knowledge in the physics-based model to the ML model and107

also proposed a loss function that accounts for the river segments to balance the perfor-108

mance over it. However, their model does not account for physical consistency checks.109

B. Liu et al. (2022) has developed a hybrid physics-data methodology for streamflow and110

flood simulation by processing the output of a process-based model with meteorologi-111

cal forcings using LSTM. However, their study ignores intermediate processes, which lim-112

its the interpretability of the model.113

One way to incorporate domain knowledge and include intermediate variables is114

to consider a conceptual or physics-based model structure with given inputs and inter-115

mediate variables, then employ ML algorithms to extract complex relationships between116

the variables involved in the processes (Willard et al., 2022). On a similar line, Khandelwal117

et al. (2020) have proposed a Physics Informed Machine Learning (PIML) for predict-118

ing daily streamflow, which follows a similar conceptual structure to the Soil and Wa-119

ter Assessment Tool (SWAT). However, their study ignores physical constraints required120
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at various stages; for example, actual evapotranspiration should be less than or equal121

to potential evapotranspiration. For streamflow prediction, researchers (Bhasme et al.,122

2022) have developed a lumped PIML model for monthly streamflow predictions and demon-123

strated how PIML architectures result in significant performance gains in predicting tar-124

get (streamflow) and intermediate (evapotranspiration) while ensuring physical consis-125

tency (mass balance) for basin scale hydrological processes. However, the coarse spatial126

scale and monthly temporal resolution limit the generalization of work to various wa-127

ter resource planning and management applications. We note that the scale issue in hy-128

drology is identified as one of the 23 unsolved problems in hydrology (Blöschl et al., 2019)129

where authors discuss the scale variance of hydrologic laws at the catchment scale. Thus,130

translating a lumped model to a semi-distributed scale is a non-trivial task, given the131

processes’ non-linearity.132

To address these multifaceted challenges, we propose an approach of partitioning133

the conceptual model into different process components, then modeling each process sep-134

arately using the ML models, and finally combining all the processes together while ap-135

plying checks at various stages and ensuring the physical consistency in the overall model136

outputs. For example, in the case of a semi-distributed model, we partition the SIMHYD137

model into evapotranspiration and streamflow process components for each of the sub-138

catchments within the catchment. Then we model evapotranspiration separately using139

the ML model for each subcatchment, and obtained output is fed to the streamflow mod-140

eling component. While with the predictive power of ML, both upstream and downstream141

parts streamflow is modeled together as the upstream part streamflow contributes down-142

stream part streamflow. However, the past timesteps of inputs are informed by the DE-143

LAY parameter of the Muskingum routing method, as an understanding of temporal lag144

in the catchment response may help better predictability at higher temporal scales. Fur-145

ther, we combine these outputs and check for water balance. In this way, the PIML ap-146

proach makes the conceptual model more generalizable while providing better predic-147

tive skills.148

Synergizing the conceptual model with ML while ensuring the conservation of mass149

and physical consistency opens the way to better process representation. In this study,150

we used SIMHYD conceptual model structure to build PIML, and then its lumped and151

semi-distributed variants are applied in the three unmanaged catchments of peninsular152

India, while the semi-distributed variant with reservoir is applied in the two managed153

catchments (reservoirs in the catchments) of the United States. We modeled actual evap-154

otranspiration (ET) and streamflow (Q) at daily timesteps for both upstream and down-155

stream parts in a semi-distributed structure while considering spatial heterogeneity in156

the model inputs. In the case of managed catchments, we also modeled reservoir stor-157

age and release. Though our proposed PIML model provides the choice of ML models,158

we used LSTM as the ML model for this study. The rest of the paper is organized as fol-159

lows: Section 2 gives details of the study area and data used in this study, followed by160

methods, including conceptual model cases and proposed PIML model cases. Section 4161

briefs about different model setups based on the model case. The results are discussed162

in Section 5. Further, Section 6 gives a conclusion of this work.163

2 Study area and data used164

In this study, we have developed three PIML model structures: lumped, semi-distributed165

without reservoir, and semi-distributed with reservoir. We have assessed the applicabil-166

ity of the proposed lumped model to three catchments in peninsular India (Figure 1 (a)),167

where each catchment belongs to the Baitarni, Krishna, and Mahanadi river basins. The168

details of the study area with respective training and testing periods are given in Table169

1. The required precipitation dataset is obtained from India Meteorological Department170

(IMD) (https://www.imdpune.gov.in/). Actual and potential evapotranspiration datasets171

are obtained from the latest version of (v3.6a) of Global Land Evaporation Amsterdam172

–4–



manuscript submitted to Water Resources Research

Model (GLEAM) (https://www.gleam.eu/) datasets (Martens et al., 2017; Miralles et173

al., 2011). While using the GLEAM dataset, we ensured that the sum of average annual174

actual evapotranspiration and streamflow is less than the average annual precipitation175

for the SIMHYD model calibration and validation period. The precipitation, actual, and176

potential evapotranspiration datasets are obtained at daily timestep with a spatial res-177

olution of 0.25o×0.25o. The precipitation is aggregated with the Thiessen polygon method178

to lumped scale, while actual and potential evapotranspiration are aggregated through179

averaging. The streamflow datasets for Anandpur, Kantamal, and Keesara hydrologi-180

cal observation stations are obtained from India Water Resources Information System181

(India-WRIS; https://indiawris.gov.in/wris/) portal.182

The semi-distributed model without a reservoir is also demonstrated on the three183

catchments used in the lumped modeling case. To divide the catchment into two parts,184

we considered hydrological observation stations in the upstream part of these catchments.185

Champua, Kesinga, and Madhira are the three upstream hydrological observation sta-186

tions in the Anandpur, Kantamal, and Keesara catchments (Figure 1 (a)), respectively187

(Table 1). The streamflow data for these stations is obtained from India-WRIS. The ac-188

tual and potential evapotranspiration are sourced from the GLEAM dataset, while pre-189

cipitation data is obtained from IMD. Similar to the lumped case, we ascertained that190

for upstream part of the catchment has the sum of average annual actual evapotranspi-191

ration, and streamflow is less than the average annual precipitation for the SIMHYD model192

calibration and validation period. In the results and discussion section, these catchments193

are referred to based on the name of downstream hydrological observation station (for194

example, Anandpur catchment).195

The application of semi-distributed model with reservoir is demonstrated on two196

catchments of the United States (Figure 1 (b)). These catchments have a single reser-197

voir in its upstream. The selection of catchments is based on the percentage of snow wa-198

ter equivalent in the precipitation. Since the SIMHYD model does not consider snow in199

the model, we select catchments having less than two percent of snow water equivalent200

in the precipitation throughout the modeling period, including the warmup period. The201

two selected reservoirs, Brady Creek reservoir and Canyon lake, belong to Colorado and202

Guadalupe river basins (Figure 1 (b)), respectively (Table 1). The reservoir release data203

is obtained from United States Geological Survey (USGS) (https://waterdata.usgs204

.gov/nwis) for sites USGS 08145000 and USGS 08167800 for Brady Creek reservoir and205

Canyon lake, respectively and consideration of these stations for release data is consis-206

tent with ResOpsUS (Steyaert et al., 2022), a recently developed inventory of observed207

reservoir operations for conterminous United States (CONUS). Hereafter the catchments208

with the reservoir are referred to based on the name of the reservoir: Brady catchment209

and Canyon catchment. While downstream gauge stations selected are USGS 08146000210

and USGS 08168500 for Brady and Canyon catchment, respectively. The reservoir stor-211

age data is obtained from Texas Water Development Board (https://www.waterdatafortexas212

.org/reservoirs/statewide). The actual and potential evapotranspiration is obtained213

from the GLEAM dataset. The daily precipitation data at 1 km resolution for US catch-214

ments is sourced from Daymet (Daily Surface Weather Data on a 1-km Grid for North215

America, Version 4 R1) (Thornton et al., 2022).216

We used thirteen years of data for calibration and six years of data for validation217

of SIMHYD model, while additional three years of data is required as a warmup period218

(Table 1). Similarly, for ML and PIML models, training and testing period datasets are219

of thirteen and six years, respectively.220

3 Methods221

To demonstrate the proposed PIML model, we use state of the art conceptual model222

(SIMHYD in this case), ML (LSTM in this case) model and combination thereof. The223
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Figure 1. Location of study area. (a) Catchments used to demonstrate lumped and semi-

distributed without reservoir modeling cases; (b) Catchments used to demonstrate the semi-

distributed with reservoir modeling case.

SIMHYD model (Figure 2(a)) is lumped conceptual hydrological model that works at224

daily time-step (Chiew et al., 2002). It is widely applied for various hydrological stud-225

ies, including hypothesis testing (Vaze et al., 2010), understanding impact of land-use226

change on catchment hydrology (Siriwardena et al., 2006), assessing climate change im-227

pact on runoff (Mpelasoka & Chiew, 2009; Chiew et al., 2010), runoff predictions in un-228

gauged catchments (F. Li et al., 2014), and analyzing grid-based regionalization in data-229

sparse region (H. Li & Zhang, 2017). We applied the SIMHYD model at both lumped230

and semi-distributed scales. For the lumped modeling total nine parameters are used to231

calibrate the model against the observed ET and Q (See Text S1 in Supplementary In-232

formation (SI) for the SIMHYD model details and equations). While for the semi-distributed233

modeling, we made two cases: semi-distributed SIMHYD without reservoir, and semi-234

distributed SIMHYD with a reservoir which are discussed as follows:235
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Table 1. Study area details with respective training, testing periods, and DELAY parameter

obtained in the SIMHYD model calibration. The model structures includes: (a) Lumped model;

(b) Semi-distributed model without reservoir; (c) Semi-distributed model with reservoir.

Catchment Subcatchment Area (sq.km) training period∗ testing period DELAY (days)

(a) Lumped model

Anandpur - 8671.27 1999 - 2011 2012 - 2017 1.24
Kantamal - 20236.07 2000 - 2012 2013 - 2018 1.63
Keesara - 10220.27 1998 - 2010 2011 - 2016 1.76

(b) Semi-distributed model without reservoir

Anandpur
Champua - Anandpur 6849.89 1999 - 2011 2012 - 2017 0.87

Champua 1821.38 1999 - 2011 2012 - 2017 0.50

Kantamal
Kesinga - Kantamal 8401.21 2000 - 2012 2013 - 2018 0.62

Kesinga 11834.86 2000 - 2012 2013 - 2018 1.18

Keesara
Madhira - Keesara 8456.94 1998 - 2010 2011 - 2016 1

Madhira 1763.33 1998 - 2010 2011 - 2016 0.54

(c) Semi-distributed model with reservoir

Brady
d/s of Brady reservoir 6531.48 2003 - 2015 2016 - 2021 1.29

Brady reservoir 1353.30 2003 - 2015 2016 - 2021 0.23

Canyon
d/s of Canyon lake 266.05 2003 - 2015 2016 - 2021 0.04

Canyon lake 3713.27 2003 - 2015 2016 - 2021 1.43

∗Additional three years of data is used as a warmup period for calibration of SIMHYD model cases.

3.1 Semi-distributed SIMHYD without reservoir236

Researchers have tested conceptual models to the semi-distributed modeling (Aronica237

& Cannarozzo, 2000; Ajami et al., 2004; Das et al., 2008) with different calibration strate-238

gies, including lumped, semi-lumped and semi-distributed. In the case of lumped cal-239

ibration strategy, the model inputs are provided in aggregated format with single time240

series for a given variable while keeping the same parameter for all the subcatchments.241

However, in the semi-lumped calibration strategy, the model inputs are provided sep-242

arately for each subcatchment, while parameters are kept the same for all the subcatch-243

ments. The semi-distributed calibration strategy shows that inputs and parameters are244

spatially varied for all the subcatchments involved. Ajami et al. (2004) reported that the245

semi-lumped strategy outperformed other strategies in their study. F. Li et al. (2013)246

has calculated grid-wise runoff using the SIMHYD model. We have experimented with247

distributed parameters, and calculated average Nash Sutcliffe Efficiency (NSE) in the248

calibration period for the evapotranspiration and streamflow at both upstream and down-249

stream parts of the catchment as 0.52 which is lesser than 0.63 for the model with the250

same parameters for all subcatchments. Thus, we used the same model parameters for251

the upstream and downstream parts of the catchment while having different inputs for252

the subcatchments. This model case requires two additional parameters for routing the253

runoff from upstream part of the catchment. However, the routing parameters are dif-254

ferent for both subcatchments as they provide temporal lag in the catchment response,255

further assisting in the PIML model. The model is calibrated with target variables, in-256

cluding evapotranspiration at upstream (ETu/st) and downstream (ETd/st) part of the257

catchment, streamflow at upstream (Qu/st) and downstream (Qd/st) hydrological ob-258

servation stations. The ETu/st, ETd/st, and Qu/st are considered the target variables259

as these variables are later used to test the physical consistency in the PIML model.260
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3.2 Semi-distributed SIMHYD with reservoir261

Reservoirs have significant effect on the flow regime characteristics and thus influ-262

ences the ecological processes (Ekka et al., 2022). Hence, it is imperative to include reser-263

voirs in modeling managed catchment. We considered two catchments with reservoirs264

to demonstrate the semi-distributed SIMHYD with a reservoir. Similar to the previous265

case of semi-distributed SIMHYD without a reservoir, the catchment is divided into two266

parts in which the upstream part is considered up to the reservoir location, and the down-267

stream part is considered between the reservoir and downstream hydrological observa-268

tion station. Recently, Turner et al. (2021) has developed weekly reservoir operation poli-269

cies for all large reservoirs of CONUS and suggested that these policies may be applied270

to the daily time step. However, converting weekly reservoir release values to daily val-271

ues may not be able to capture the variations observed at the daily time step. Since em-272

ploying the best reservoir operation technique is outside the scope of this study, we used273

a generic reservoir routing model for release estimation. Gutenson et al. (2020) has com-274

pared two reservoir routing methods, including the method by Hanasaki et al. (2006) and275

Döll et al. (2003) applied on United States Army Corps of Engineers (USACE) operated276

60 reservoirs for daily timesteps and found that later one is outperforming former. Thus,277

we used the empirical equation (Eq. 1) given by Döll et al. (2003) for the estimation of278

release. The semi-distributed SIMHYD with reservoir requires one additional parame-279

ter than without reservoir case attributed to reservoir release. While using the empir-280

ical release equation, mass conservation is also ensured by Eq. 2. Since reservoir inflow281

data is not available for both of the reservoirs, the model is calibrated with target vari-282

ables including ETu/st and ETd/st, Qd/st, reservoir live storage (St) and release (Rt).283

Rt = kr ∗ St ∗
(

St

Smax

)1.5

(1)284

where, the kr is outflow coefficient and Smax is the maximum live storage capacity.285

St +Rt = St−1 +Qint (2)286

where, Qint is the reservoir inflow.287

3.3 Physics informed machine learning model288

The PIML takes advantage of the contextual cues from the SIMHYD model. The289

choice of predictors and predictands are based on governing equations of the SIMHYD290

model. In the PIML (Physics Informed Machine Learning) model, the ”physics informed”291

is attributed to model structure, imposing physical constraints wherever required and292

possible, choice of predictors and predictands, while ”machine learning” is for extract-293

ing complex relationships between the predictors and predictands. The complexity of294

temporal dynamics in the catchment response increases with the temporal resolution of295

the model. The hydrological processes aggregated at lower temporal resolution may not296

capture the variations in various fluxes at the higher resolution important for a flood.297

However, understanding temporal lag in the catchment response may help in better pre-298

dictability at a higher temporal scale. In this study, we have considered a delay in the299

catchment response with the help of a routing mechanism through the application of the300

Muskingum routing method. The DELAY parameter in the Muskingum routing method301

shows the time taken by flow in traveling river reach (O’Sullivan et al., 2012) (Refer Text302

S1 for Muskingum method equations and details). We have demonstrated three versions303

of PIML based on spatial scale and the mode of operation in the catchment. The dif-304

ferent spatial scale includes lumped and semi-distributed scales, while the mode of op-305

eration considers managed and unmanaged catchment based on the reservoir availabil-306

ity in the upstream part of the catchment.307

The proposed PIML model is flexible for choice of ML models, however in this study308

we used Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), a recur-309
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rent neural network based architecture known for its ability to learn long-term informa-310

tion. It has been applied in various hydrological studies, including post-processing of physics-311

based model outputs (Frame et al., 2021), prediction of extreme events (Frame et al.,312

2022), leverage synergy when multiple datasets are used for given variable (Kratzert et313

al., 2021), flood forecasting (Nevo et al., 2022; Feng et al., 2020), improvement in the314

streamflow predictions of ungauged basins (Kratzert et al., 2019), streamflow prediction315

for multiple timescales (Gauch et al., 2021). Refer Text S2 and Figure S1 (in SI) for the316

LSTM model details and equations. We briefly discuss the PIML versions as follows:317

3.3.1 Lumped PIML318

The proposed PIML version of lumped scale (Figure 2(b)) combines process un-319

derstanding from the conceptual model with the ability of ML models to extract the com-320

plex relationship between predictors and predictands. Here we used actual evapotran-321

spiration (ETt) as an intermediate variable to introduce interpretability in the model.322

However, to incorporate physical constraint, we predict a ratio of ETt with potential evap-323

otranspiration (PETt) as this ratio will not exceed one, and it is easy to apply this con-324

straint using sigmoid activation function in the LSTM model structure. The output of325

the sigmoid activation function has a range of [0, 1]. The ratio of ETt with PETt is the326

function of precipitation (Pt), PETt and soil moisture at previous timestep (SMSt−1)327

(Eq. 3). The streamflow (Qt) is the function of ETt, precipitation, soil moisture, ground-328

water storage (Eq. 4). The exact form of a (Eq. 3) and b (Eq. 4) is determined by ML329

model. However, a number of past timesteps (of predictors) which we referred as mem-330

ory in the hydrological processes, are decided based on the DELAY parameter in the Musk-331

ingum routing. This DELAY parameter is evaluated in the SIMHYD model since we used332

the Muskingum routing method for streamflow routing. As the PIML model is devel-333

oped for daily timestep, we approximated DELAY to the greater integer in case of a float334

value. For example, when DELAY (Table 1) is 1.24, then it is approximated as 2 (j in335

Eq. 4). This approximation is useful since our model works at daily timestep, essentially336

integer. The proposed PIML model consists of two layers of LSTM models. The first layer337

output is multiplied with respective PETt to get ETt which is later fed to the second338

layer LSTM model along with other predictors to predict Qt.339

ETt

PETt
= a(Pt, PETt, SMSt−1) (3)340

Qt = b(Pt, ETt, SMSt, GWt, ..., Pt−j , ETt−j , SMSt−j−1, GWt−j−1) (4)341

3.3.2 Semi-distributed PIML without reservoir342

The semi-distributed PIML without reservoir (Figure 2(c)) is the extended version343

of the lumped PIML while considering the spatial heterogeneity in the model inputs and344

intermediate processes such as evapotranspiration. Here we considered a simple case for345

semi-distributed modeling by distributing the catchment into two different subcatchments346

based on the location of the hydrological observation stations. The required input of spa-347

tial soil moisture and groundwater storage is obtained from the semi-distributed SIMHYD348

model. Similar to lumped PIML, we are predicting a ratio of ETt with PETt for both349

the upstream and downstream parts of catchments, which is further used as one of the350

inputs for the streamflow generation. The ratio of ETt with PETt is the function of Pt,351

PETt and SMSt−1 in the respective upstream (Eq. 5) and downstream (Eq. 6) part of352

the catchment. Later, streamflow at the outlet of both upstream (Qu/st) and downstream353

(Qd/st) part of the catchment are predicted together by introducing physical loss. This354

physical loss (Eq. 8) is based on the physical constraint over the annual contribution of355

the upstream part streamflow at the downstream outlet, which should be always less than356

or equal to the annual downstream streamflow. The deployment of the loss function is357

such that whenever the annual streamflow contribution constraint is violated, the penalty358
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Figure 2. Different model architectures used in this study: (a) SIMHYD model structure.

The IMAX, PET, INR, RMO, REC, ETS, SMF, and SMSC are the maximum interception, po-

tential evapotranspiration, runoff after an interception, remaining moisture, recharge to ground-

water store, soil evapotranspiration, part of RMO going into soil moisture store, and soil moisture

store capacity, respectively; (b) Lumped PIML structure for no delay in catchment response

(DELAY = 0). Blue arrows show evapotranspiration (ETt) prediction using Machine Learning

algorithm - 1 (ML - 1), while red arrows display streamflow (Qt) prediction with the help of ML

- 2; (c) Structure of semi-distributed PIML without reservoir model for 0 delays (DELAY = 0)

in both subcatchments. The blue arrows show evapotranspiration predictions in both subcatch-

ments using ML - 1 and ML - 2 for upstream (ETu/st) and downstream (ETd/st) parts of the

catchment, respectively. The red arrows depict the combined prediction of streamflow at both

upstream (Qu/st) and downstream (Qd/st) hydrological observation stations with the help of

ML-3; (d) Structure of semi-distributed PIML with reservoir model for 0 delays (DELAY = 0)

in both subcatchments. Similar to semi-distributed PIML without a reservoir model, blue ar-

rows show evapotranspiration predictions in both subcatchments using ML - 1 and ML - 2 for

upstream (ETu/st) and downstream (ETd/st) parts of the catchment respectively. The dark

green arrows exhibit the prediction of reservoir release (Rt) with ML - 3, while the purple arrow

conveys the reservoir storage (St) predictions using ML - 4. The red arrows show the streamflow

prediction at the downstream hydrological observation station (Qd/st) with the help of ML - 5.

is applied in the loss function. The Qu/st and Qd/st are the function of ETt, precip-359

itation, soil moisture, groundwater storage at upstream and downstream parts (Eq. 7)360

with past timesteps informed by Muskingum DELAY parameter (l and m in Eq. 7)).361
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The exact functional forms of c, d, and e are determined by ML model. The semi-distributed362

PIML without reservoir consists of three layers of LSTM (Figure 2(c)), of which two lay-363

ers will provide ETt on multiplication of its outputs with respective PETt values for an364

upstream and downstream part in each of the layers. Later, this obtained ETt would be365

fed to the third layer of LSTM with other variables such as precipitation, soil moisture,366

and groundwater storages.367

ETu/st
PETu/st

= c(Pu/st, PETu/st, SMSu/st−1) (5)368

369

ETd/st
PETd/st

= d(Pd/st, PETd/st, SMSd/st−1) (6)370

371

Qu/st, Qd/st = e(Pu/st, ETu/st, SMSu/st, GWu/st, ..., Pu/st−l, ETu/st−l,372

SMSu/st−l−1, GWu/st−l−1, Pd/st, ETd/st, SMSd/st, GWd/st, ..., Pd/st−m, ETd/st−m,373

SMSd/st−m−1, GWd/st−m−1)
(7)

374

375

376

loss =

λ ∗

(
Qu/spred∗Aratio

Qd/spred
− 1

)
+MSE(Qpred, Qact) if Qu/spred ∗Aratio > Qd/spred

MSE(Qpred, Qact) otherwise
(8)377

Where λ is the penalty and Aratio is the area ratio of upstream subcatchment and to-378

tal catchment.379

3.3.3 Semi-distributed PIML with reservoir380

We demonstrated semi-distributed PIML with a reservoir (Figure 2(d)) using a sim-381

ple case where the catchment is divided into parts based on the location of the reservoir382

and hydrological observation station. The model includes predictions of ratio of ETt with383

PETt at upstream and downstream parts, Qd/st, reservoir storage (St) and release (Rt).384

Similar to the earlier case of semi-distributed PIML without reservoir, the ratio of ETt385

with PETt is the function of Pt, PETt and SMSt−1 in the respective upstream (Eq. 5)386

and downstream (Eq. 6) part of the catchment. In the absence of reservoir water demand387

data, the St and Rt are dependent on reservoir inflow, reservoir storage at the previous388

time step (St−1) based on the continuity equation for the reservoir (Eq. 2). Since the389

observed inflow is not available at both reservoirs, we used a similar approach as of lumped390

PIML. Thus the reservoir inflow can be presented in the form of its predictors (For ex-391

ample, Pu/st, ETu/st, SMSu/st, SMSu/st−1, GWu/st, GWu/st−1 are the predictors392

of reservoir inflow for 0 DELAY). In the case of St prediction, physical constraint sim-393

ilar to ETt is used. We predict a ratio of St with maximum live reservoir storage capac-394

ity (Smax) as this ratio will always be less than or equal to one. The Rt and ratio of St395

with Smax (Eq. 9) are the function of ETt, precipitation, soil moisture, groundwater stor-396

age at upstream part, and St−1. Further the obtained ETd/st and Rt along with pre-397

cipitation, soil moisture, groundwater storage at downstream part are used predict Qd/st398

(Eq. 10). The semi-distributed PIML with reservoir consists of five layers of LSTM, of399

which two layers will provides ETt for an upstream and downstream part in each of the400

layers on processing with respective PETt. Later the ETu/st will be fed to the third and401

fourth layer of LSTM with other variables such as precipitation, soil moisture, ground-402

water storages at current and past time steps based on the Muskingum DELAY param-403

eter obtained in the SIMHYD model (p in Eq. 9) and reservoir storage at previous timestep404

to predict Rt and ratio of St with Smax in the respective layers. The final St values are405

obtained by multiplying output of the fourth layer in PIML model with Smax. Further,406

the predicted Rt is fed the fifth LSTM layer with other variables such as precipitation,407

ETd/st (from the second layer), soil moisture, and groundwater storages at current and408
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past time steps based on the Muskingum DELAY parameter obtained in the SIMHYD409

model for downstream part (q in Eq. 10). The exact functional form of f (Eq. 9) and410

g (Eq. 10) can be identified by ML model (LSTM for this study).411

Rt,
St

Smax
= f(Pu/st, ETu/st, SMSu/st, GWu/st, ..., Pu/st−p, ETu/st−p, SMSu/st−p−1,412

GWu/st−p−1, St−1)
(9)

413

414

415

Qd/st = g(Pd/st, ETd/st, SMSd/st, GWd/st, ..., Pd/st−q, ETd/st−q, SMSd/st−q−1,416

GWd/st−q−1, Rt)
(10)

417

418

The model performance is evaluated with Nash-Sutcliffe Efficiency (NSE) (Nash419

& Sutcliffe, 1970), Root Mean Square Error (RMSE), and Percent Bias (PBIAS) widely420

applied in the field of hydrology (Swain & Patra, 2017; Paul et al., 2019; Wagena et al.,421

2020). The details of these metrics can be referred from Text S3 in SI.422

4 Model setups423

4.1 Conceptual model setup424

We used Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002)425

applied for multi-objective optimization in the various hydrological studies (Shin et al.,426

2015; Fowler et al., 2016; Mostafaie et al., 2018) for calibration of different cases in the427

SIMHYD model. This study applies NSGA-II with population size and maximum gen-428

eration numbers of 100 and 500, respectively for all SIMHYD model cases. Same objec-429

tive function is used for calibration of all cases in SIMHYD model and it is given by Eq.430

(11). The best parameters are selected based on the average SIMHYD model’s perfor-431

mance in predicting intermediate variables and streamflow. The lumped SIMHYD model432

is calibrated against observed ETt and Qt. It involves nine parameters such as INSC (in-433

terception store capacity), COEFF (maximum infiltration loss), SQ (infiltration loss ex-434

ponent), SMSC (soil moisture store capacity), SUB (constant of proportionality in in-435

terflow equation), CRAK (constant of proportionality in groundwater recharge equation),436

K (baseflow linear recession parameter), DELAY (delay parameter in Muskingum rout-437

ing (days)), x (storage weight parameter in Muskingum routing) having range of [0.5,438

5], [50, 400], [0, 6], [50, 500], [0, 1], [0, 1], [0.003, 0.3], [0.5, 10] and, [0, 0.5], respectively.439

The best parameters obtained in the calibration process of lumped SIMHYD model are440

listed in the Table S1 in SI.441

The semi-distributed without reservoir SIMHYD model is calibrated against ob-442

served ETu/st, Qu/st, ETd/st, Qd/st. We used the same model parameters for both443

the upstream and downstream parts, similar to the lumped model. However, additional444

routing parameters are employed for the upstream part, which results in a total of 11445

parameters for without a reservoir case. Table S2 shows the best parameters obtained446

in the calibration process for the semi-distributed without reservoir SIMHYD model. In447

the case of the semi-distributed with reservoir SIMHYD model, due to the absence of448

reservoir inflow data, we used ETu/st, Rt, St, ETd/st, and Qd/st for model calibration.449

In addition to the without reservoir case, a model with reservoir requires one more pa-450

rameter (kr) attributed to the empirical formula (Eq. 1) used for reservoir release, and451

its value ranges from [0.01, 0.9]. Thus, the semi-distributed with reservoir SIMHYD model452

has a total of 12 parameters. Since catchment size is comparatively small in the case of453

upstream and downstream parts of Brady and Canyon catchments, respectively, we re-454

stricted DELAY parameter for calibration process in upstream and downstream parts455

of Brady catchment as [0, 0.5] and [1, 1.5], respectively based on the travel time men-456

tioned in David et al. (2011) while for the Canyon catchment it is restricted to [1, 1.5]457
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and [0, 0.25] for upstream and downstream parts respectively. The best parameters ob-458

tained in the calibration process for without reservoir case are provided in the Table S3.459

The SIMHYD model output for the training and testing periods are generated using the460

best parameters obtained in the calibration process as the soil moisture store, and ground-461

water storage variables are further used as inputs in the PIML model.462

Objective = 1−NSE (11)463

4.2 PIML model setup464

The proposed PIML models have the capability to use different ML models in the465

model structure. In this study, we have demonstrated it with LSTM as an ML model,466

applied using Tensorflow (Abadi et al., 2015). The lumped PIML model constitutes two467

layers of LSTM models (Figure 2(b)). In this case, both the LSTM models are trained468

and tested separately and sequentially. Both LSTMs have a single dense layer. We used469

the ’mean square error’ loss function and ’Adam’ optimizer for both models. The first470

layer predicts the ratio of ETt with PETt, which uses the sigmoid activation function471

to avoid violation of known physical constraint over the ratio of ETt with PETt. We have472

preprocessed input data with MinMax Scaler while the target variable lies between 0 to473

1, due to which the target variable is not preprocessed. This selective preprocessing will474

help in executing the physical constraint. This same approach is applied in all PIML cases475

for evapotranspiration prediction. However, in the case of streamflow prediction, we have476

not preprocessed input as it is observed that preprocessing of data is not improving the477

model predictions. The second layer of lumped PIML is fed with the processed output478

(ETt) of the first layer, precipitation, soil moisture store, and groundwater store (both479

obtained from the SIMHYD model) at current and past time steps based on the Musk-480

ingum DELAY parameter. The ReLU activation function is employed to have meaning-481

ful (non-negative) streamflow predictions. The LSTM model is tuned by applying dif-482

ferent sets of hyperparameters, including dropout rate (0.1, 0.2, 0.3, 0.4), units (10, 20,483

30, 40, 50, 60, 70, 80, 90, 100) and, epochs (100, 200, 300, 400, 500, 600, 700, 800, 900,484

1000). The different batch sizes (32, 64, 128, 256, 360) are also tried. Table S4 shows hy-485

perparameters applied in the lumped PIML model. Similar sets of hyperparameters are486

also applied for LSTM as a simple ML model for the prediction of streamflow using pre-487

cipitation and potential evapotranspiration, which are also inputs for the SIMHYD model.488

The final hyperparameters used in the ML modeling are listed in Table S5.489

The semi-distributed PIML without a reservoir includes three layers of the LSTM490

model (Figure 2(c)). The first layer predicts ratio of ETu/st with PETu/st while the491

second layer predicts ratio of ETd/st with PETd/st using respective precipitation and492

potential evapotranspiration at the current timestep and soil moisture store at the pre-493

vious timestep obtained from SIMHYD model output. The later processed output (ETu/st494

and ETd/st) of these two layers are supplied to the third LSTM model with respective495

precipitation, soil moisture store, and groundwater store at the current and previous timesteps496

based on the DELAY parameter of Muskingum routing. The third LSTM model is used497

to predict both upstream (Qu/st) and downstream (Qd/st) streamflow while having two498

dense layers. We incorporated physical constraint through a custom loss function. This499

loss function ensures that annual contribution of the upstream part streamflow at the500

downstream outlet is always less than or equal to the annual downstream streamflow and501

it can be achieved using a batch size of 360 (close to 365 days in a year) which means502

that 360 samples are processed before model updation. Similar to streamflow prediction503

in the lumped PIML, the same sets of dropout rate, units, and model settings, such as504

optimizer and activation function, are used for both upstream (Qu/st) and downstream505

(Qd/st) streamflow prediction in the semi-distributed PIML without reservoir. The fi-506

nal hyperparameters used for semi-distributed PIML without a reservoir model are listed507

in the Table S6.508
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The third case of PIML is the semi-distributed PIML with a reservoir. It involves509

five layers of the LSTM models (Figure 2(d)). Similar to semi-distributed PIML with-510

out a reservoir model, these model predicts ratio of ETt with PETt in respective sub-511

catchments in the first two layers. Later, ETu/st is fed to the third and the fourth layer512

of LSTM with other inputs such as upstream part precipitation, soil moisture store, and513

groundwater store at current timestep and previous timesteps based on the DELAY pa-514

rameter of Muskingum routing in the upstream part of the catchment, and reservoir stor-515

age at previous timestep. The third layer predicts reservoir release (Rt) using similar model516

settings (activation function, optimizer, loss function), hyperparameter sets (dropout rate,517

units, batch size) to the Qt prediction from lumped PIML model. The fourth layer pre-518

dicts ratio reservoir storage (St) with maximum storage capacity (Smax) using the same519

inputs required for the prediction of Rt. However, the inputs are not preprocessed for520

the third and fourth layers. To impose physical constraint over reservoir storage, we fol-521

low a similar approach for predicting the ratio of ETt with PETt. The predicted Rt is522

then fed to the fifth layer of the LSTM model with downstream part precipitation, ETd/st523

(from the second layer), soil moisture store, and groundwater store at the current timestep524

and previous timesteps based on the DELAY parameter of Muskingum routing in the525

downstream part of the catchment to predict Qt. For the fifth layer, we kept similar model526

settings (activation function, optimizer, loss function) and hyperparameter sets (dropout527

rate, units, batch size) as of in Qt prediction from lumped PIML model. Since each of528

the LSTM models in the semi-distributed PIML with reservoir predicts a single variable529

for a given timestep, all of them are operated using a single dense layer. Table S7 shows530

the final hyperparameters used in the semi-distributed PIML with a reservoir model.531

5 Results and discussions532

5.1 Performance evaluation of lumped model533

We compared the performances of SIMHYD and PIML models in the predictions534

of evapotranspiration and streamflow. While the results of the ML model are also com-535

pared for streamflow. We used the performance metrics including NSE, RMSE and PBIAS536

to evaluate the models. Figure 3 shows NSE, RMSE, and PBIAS in the subplots (a), (b),537

and (c), respectively for the model predictions in the testing period. In the actual evap-538

otranspiration (ET) predictions, the PIML model shows higher NSE (Figure 3(a)) and539

lower RMSE (Figure 3(b)) than the SIMHYD model while the PIML model shows PBIAS540

(Figure 3(c)) near to zero as compared to SIMHYD model in the all catchments. Thus541

it shows that the PIML model outperforms the conceptual model in predicting the in-542

termediate variable (actual evapotranspiration in this case) while ensuring the physical543

constraint over its ratio with PET . For streamflow (Q) predictions, the PIML model dis-544

plays higher NSE (Figure 3(a)), lower RMSE (Figure 3(b)), and lesser PBIAS (in mag-545

nitude) (Figure 3(c)) than SIMHYD model while ML model performs well in terms of546

RMSE and PBIAS than SIMHYD. The Kantamal and Keesara catchments shows lesser547

PBIAS (in magnitude) for ML models than PIML and SIMHYD models, however its poor548

NSE and higher RMSE values indicates that PIML model performs better than SIMHYD549

and ML model in all the catchments. Thus, PIML shows robustness in the predictions550

of intermediate (ET) and target (Q) variables.551

5.2 Performance evaluation of semi-distributed without reservoir model552

Here we compare the performance of SIMHYD and PIML models in the evapotran-553

spiration and streamflow predictions in both upstream and downstream parts of the catch-554

ment. Figure 4 shows model performance in terms of NSE, RMSE, and PBIAS in the555

subplots (a), (b), and (c), respectively. In ETu/s prediction, the PIML model shows higher556

NSE (Figure 4(a)), lower RMSE (Figure 4(b)) and lesser PBIAS (in magnitude) (Fig-557

ure 4(c)) than SIMHYD model. Similar performance is shown for the prediction of ETd/s.558
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Figure 3. Performance assessment of lumped SIMHYD, PIML, and ML models in testing

period. (a) The NSE is plotted for the prediction of ET, and Q. Hollow, filled and filled with

hatching markers, shows the performance of the SIMHYD, PIML, and ML models, respectively.

(b) Similar to NSE, the RMSE is plotted for the prediction of ET and Q. (c) The PBIAS is plot-

ted. The positive and negative PBIAS value shows underestimation and overestimation in the

model output.

Thus, the PIML model outperforms the SIMHYD model in predicting ET , an impor-559

tant intermediate variable in the rainfall-runoff process. We note that all the daily ET560

values predicted by PIML follow its physical constraint with PET , which is achieved through561

proper choice of the activation function (sigmoid) and predictand (ratio of ET with PET ).562

In the case of upstream streamflow predictions, Anandpur and Keesara catchments show563

a higher NSE (Figure 4(a)) in the PIML model than SIMHYD model, while for the Kan-564

tamal catchment, both models show comparable NSE values. The PIML model shows565

lesser RMSE than the SIMHYD model in all three catchments (Figure 4(b)). In the Keesara566

and Kantamal catchments, the PIML model shows lesser PIBAS (in magnitude) than567

the SIMHYD model while conversely for the Anandpur catchment. However, overall PIML568

model performs better in predicting streamflow at the outlet of the upstream part of the569

catchment. The PIML model outperforms the SIMHYD model while the former shows570

higher NSE (Figure 4(a)), lower RMSE (Figure 4(b)) and lesser PBIAS (in magnitude)571

(Figure 4(c)) in comparison with later in downstream streamflow prediction. While get-572

ting better predictions, we ensured physical constraint in the contribution of upstream573

part streamflow at the outlet of the downstream part by employing a custom loss func-574

tion (Eq. 8). Thus the semi-distributed without reservoir PIML model follows physical575

constraints and has better predictability than the SIMHYD model.576

5.3 Performance evaluation of semi-distributed with reservoir model577

Across the globe, around 77 % of the rivers are influenced by reservoir operation578

(Grill et al., 2019). Thus it is imperative to consider the reservoir in developing a hy-579

drological model to study managed catchments. The applicability of the proposed semi-580

distributed PIML model with reservoir is demonstrated on two US catchments. In both581

catchments, ETu/s and ETd/s predictions of the PIML model show higher NSE (Fig-582

ure 5(a)), lower RMSE (Figure 5(b)) and lesser PBIAS (in magnitude) (Figure 5(c)) than583

SIMHYD model while following physical constraint with PET . In the case of Rt pre-584

dictions, the PIML model displays higher NSE (Figure 5(a)), lower RMSE (Figure 5(b))585

in comparison with SIMHYD model while in the PBIAS case it shows higher and lower586
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Figure 4. Performance assessment of semi-distributed without reservoir SIMHYD, and PIML

models in testing period. (a) The NSE is plotted for the prediction of ET, and Q for both up-

stream and downstream parts of catchment. Hollow, and filled shows the performance of the

SIMHYD, and PIML models, respectively. (b) Similarly, the RMSE is plotted. (c) The PBIAS is

plotted for upstream and downstream part ET and Q.

value (in magnitude) for Brady and Canyon catchments respectively than the SIMHYD587

model. The PIML model shows higher NSE (Figure 5(a)), lower RMSE (Figure 5(b))588

and lesser PBIAS (in magnitude) (Figure 5(c)) for St predictions than SIMHYD model.589

We ensured that the PIML model gives a meaningful prediction of St while imposing phys-590

ical constraint with the help of the sigmoid activation function and proper choice of pre-591

dictand (ratio of St with Smax) to consistent with the output of activation function. Though592

the SIMHYD model shows negative NSE for St predictions in both catchments, it shows593

a high correlation (0.76 for Brady catchment and 0.80 for Canyon catchment) with ob-594

served reservoir storages. The PIML model gives a robust performance in predicting stream-595

flow at the outlet of the downstream part of the catchment with higher NSE (Figure 5(a)),596

lower RMSE (Figure 5(b)) and lesser PBIAS (in magnitude) (Figure 5(c)) than SIMHYD597

model. Thus semi-distributed PIML with a reservoir model outperforms the SIMHYD598

model while ensuring physical consistency at various stages.599

5.4 Water balance and runoff coefficient analysis600

We evaluate the physical consistency of the SIMHYD and PIML models using wa-601

ter balance. As precipitation data is the same for both models, we calculate deviation602

in the average annual sum of ET and Q with the average annual sum of observed data603

for respective variables in the testing period. For Keesara, Kantamal, and Anandpur catch-604

ments, we considered three cases, including an upstream part in the semi-distributed model,605

the total catchment in the semi-distributed model, and the total catchment in the lumped606

model. For example, a deviation is calculated for the average annual sum of model sim-607

ulated ETu/s and Qu/s with the average annual sum of observed ETu/s and Qu/s for608

both SIMHYD and PIML models. In the Keesara catchment, all three cases of PIML609

model shows lesser deviation than the SIMHYD model (Figure 6(a)). Similar results are610

obtained in the Kantamal (Figure 6(b)) and Anandpur (Figure 6(c)) catchments. Also,611

we noted that the semi-distributed PIML model shows lesser deviation than lumped PIML612

model for the Kantamal (Figure 6(b)) and Anandpur (Figure 6(c)) catchments while Keesara613

catchment (Figure 6(a)) it shows comparable values which implies that semi-distributed614

structure can encapsulate spatial heterogeneity while performing better than lumped model615

structure. We did a similar analysis for Brady (Figure 6(d)) and Canyon (Figure 6(e))616

–16–



manuscript submitted to Water Resources Research

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

-1.5

-1.0

-0.5

0.0

0.5

1.0

N
SE

ETus ETds Rt St Qds

(a)

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

RM
SE

ETus ETds Rt St Qds

(b)

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

SIM
HYD

PIM
L

-150.0

-100.0

-50.0

0.0

50.0

PB
IA

S

ETus ETds Rt St Qds

(c)

Performance of SIMHYD model in Brady catchment
Performance of SIMHYD model in Canyon catchment

Performance of PIML model in Brady catchment
Performance of PIML model in Canyon catchment

Figure 5. Performance assessment of semi-distributed with reservoir SIMHYD, and PIML

model in testing period. (a) The NSE is plotted for the prediction of ET, reservoir storage (S),

reservoir release (R) in the upstream and ET, Q for downstream parts of catchment. Hollow, and

filled shows the performance of the SIMHYD, and PIML models, respectively. (b) Similarly, the

RMSE is plotted. (c) The PBIAS is plotted for the ET, S, and R in the upstream part and ET,

Q in the downstream part of the catchments.

catchments while accounting for reservoir storage and release. It considers two cases, which617

includes an upstream part in the semi-distributed model, the total catchment in the semi-618

distributed model. In Brady and Canyon catchments, the PIML models show lesser de-619

viation in the both cases than its respective values for SIMHYD model. Overall, the PIML620

model shows consistent performance irrespective of the scale (lumped or semi-distributed)621

and catchment type (managed or unmanaged).622

We noted that the ET dataset used in this study is the GLEAM model output. Thus623

we investigated deeper while calculating the average annual runoff coefficient and com-624

pared it with the observed. Similar to the previous deviation analysis, three cases, viz.625

upstream part in the semi-distributed model, total catchment in the semi-distributed model,626

and the total catchment in the lumped model, are considered for Keesara, Kantamal and627

Anandpur catchments. In the Keesara (Figure 6(f)) and Kantamal (Figure 6(g)) catch-628

ments, for all three cases, the PIML model shows a runoff coefficient close to the observed629

value than the SIMHYD model cases. However, the lumped PIML and semi-distributed630

PIML models show comparable performance in the Keesara catchment. While in the Kan-631

tamal catchment, semi-distributed PIML shows better agreement with observed than lumped632

PIML model. In the Anandpur (Figure 6(h)) catchment, for the upstream part SIMHYD633

model shows a runoff coefficient close to observed as compared to the PIML model. How-634

ever, both lumped and semi-distributed PIML performs better in terms of runoff coef-635

ficient than respective SIMHYD model cases for the total catchment. Similar analysis636

is carried out for with reservoir case. For Brady and Canyon catchments we consider up-637

stream part in the semi-distributed model, and total catchment in the semi-distributed638

model for runoff coefficient analysis. In the Brady (Figure 6(i)) and Canyon (Figure 6(j))639

catchments, the PIML model shows a runoff coefficient closer to observed than the SIMHYD640

model for both upstream part and total catchment. This runoff coefficient analysis high-641

lights that runoff is also modeled well in the PIML model compared to the SIMHYD model.642

Thus it shows robustness of the PIML model in predicting physically consistent outputs.643

644

6 Conclusion645

The PIML approach facilitates the synergistic use of interpretability from concep-646

tual models and predictability from data-driven models. In this study, we have devel-647
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Figure 6. The first row shows comparison of deviation in the average annual sum of ET and

Q with the average annual sum of observed data for respective variables in the testing period. It

includes upstream part of catchment and total catchment in semi-distributed without reservoir

model cases and total catchment in lumped model case for SIMHYD and PIML models. The

catchments included in the analysis are: (a) Keesara, (b) Kantamal, (c) Anandpur, (d) Brady,

and (e) Canyon; The second row compares average annual runoff coefficients of upstream part of

the catchment and total catchment in semi-distributed without reservoir model cases as well as

for total catchment in lumped model case for SIMHYD and PIML models with observed average

annual runoff coefficient. The catchment used for this analysis are listed as: (f) Keesara, (g) Kan-

tamal, (h) Anandpur, (i) Brady, and (j) Canyon.

oped the PIML model, which accounts for memory in the hydrological processes and pro-648

vides interpretability through an intermediate variable. The predictors in the PIML model649

are selected based on the functional relationship shown by the conceptual (SIMHYD)650

model governing equations. Also, this study attempts to take advantage of long-term in-651

formation learning capability in the LSTM model, which encapsulates the catchment re-652

sponse with temporal lag. We demonstrated three model cases considering different scales653

and mode of operation in the catchment. These three cases includes lumped model struc-654

ture, semi-distributed model structures with and without reservoir. Our results shows655

that the PIML outperforms the conceptual as well as simple data-driven model. Also,656

water balance and runoff coefficient analysis shows that the PIML model predicts phys-657

ically consistent outputs. The PIML is now materialized for hydrological processes as658

we demonstrated its application at both temporal (daily, monthly (Bhasme et al., 2022))659

and spatial scales (lumped (Bhasme et al., 2022), semi-distributed) and also with man-660

aged and unmanaged catchments. We argue that our PIML modeling approach can make661

conceptual models more modular as it can be applied irrespective of the region for which662

it is developed. The application of PIML in different climatic as well as geographical re-663

gions shows its generalizability. The PIML approach has already shown flexibility in in-664
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corporating different ML methods in the conceptual model premise (Bhasme et al., 2022).665

Also, it shows the opportunity to build a flexible modeling framework similar to SUPER-666

FLEX (Fenicia et al., 2011), where the modeler has choices for both modeling compo-667

nents, which accounts for physical processes and ML models to learn the complex inter-668

action between the different components.669

The current conceptual modeling approach is based on the mass balance where evap-670

otranspiration (ET) is mainly dependent on precipitation and soil moisture. Researchers671

have shown the significance of soil moisture in flood modeling and forecasting (Wasko672

et al., 2020; Nanditha et al., 2022). However, the ET estimation largely rules the accu-673

racy in the soil moisture estimation before the flood events, while the empirical relation-674

ship of actual ET with PET considers water balance and ignores other factors, includ-675

ing meteorological conditions (Fang et al., 2017). The inclusion of energy balance in mod-676

eling will serve the aforementioned purposes as hydrological processes are governed by677

both water balance as well as energy balance. ET prediction is a non-linear process, which678

can be handled better with the ML model (Walls et al., 2020; Cui et al., 2021). We can679

apply a similar approach as PIML while exploiting ML predictive ability in identifying680

complex non-linear relationships between ET and its governing factors in a separate ET681

modeling component. Further merging it in the overall model structure ensures both en-682

ergy balance and mass balance.683
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Text S1: Review of the SIMHYD model

The SIMHYD model is lumped conceptual hydrological model that works at daily time-

step (Chiew et al., 2002). It is widely applied for various hydrological studies, including

hypothesis testing (Vaze et al., 2010), the understanding impact of land-use change on

catchment hydrology (Siriwardena et al., 2006), analysis of climate change impact on

runoff (Mpelasoka & Chiew, 2009; Chiew et al., 2010), runoff predictions in ungauged

catchments (F. Li et al., 2014), analyzing grid-based regionalization in data-sparse region

(H. Li & Zhang, 2017). The model consists of seven parameters and requires daily precip-

itation and potential evapotranspiration (PET) as input. Additionally, two parameters
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(DELAY and X) for the Muskingum routing method (McCarthy, 1938) are used. The

interception store in the SIMHYD model first intercepts the precipitation (RAIN). The

maximum interception (IMAX) (Eq. 1) is the minimum of interception store capacity

(INSC) and potential evapotranspiration. Thus, interception (INT) (Eq. 2) will be the

minimum of maximum interception and precipitation. The infiltration function handles

the precipitation excess of interception. The precipitation that reaches the ground (Eq.

3) that exceeds the infiltration capacity becomes part of streamflow as infiltration excess

runoff (IRUN) (Eq. 5). The soil moisture function governed the infiltrated water. It is

divided into three parts saturation excess runoff (SRUN) (Eq. 6), soil moisture (SMF)

(Eq. 8) in soil moisture store (SMS), and groundwater store (GW) through recharge

(REC). The SRUN and REC are linearly dependent on the ratio of SMS and SMSC. The

evapotranspiration (ETS) (Eq. 10) from soil moisture store is also a function of the ratio

of SMS and soil moisture store capacity (SMSC), but it is limited to the potential rate

(POT) (Eq. 9). The actual evapotranspiration (ET) is calculated with the sum of ETS

and INT (Zhang et al., 2009). The excess of SMSC joins the GW as a recharge. The

baseflow (GD) (Eq. 11) is derived from GW through a linear relationship. The SRUN and

IRUN together form direct runoff (DR) (Eq. 12). The GD and DR collectively generate

the runoff (Eq. 13). Later this runoff is routed using the Muskingum routing method

(Eq. 14 - 17), and the final streamflow (Q) is obtained.

IMAX = min{INSC, PET} (1)

INT = min{IMAX,RAIN} (2)

INR = RAIN − INT (3)

RMO = min{COEFF ∗ e−SQ∗SMS/SMSC , INR} (4)
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IRUN = INR−RMO (5)

SRUN = SUB ∗RMO ∗ SMS/SMSC (6)

REC = CRAK ∗ (RMO − SRUN) ∗ SMS/SMSC (7)

SMF = RMO − SRUN −REC (8)

POT = PET − INT (9)

ETS = min{10 ∗ SMS/SMSC,POT} (10)

GD = K ∗GW (11)

DR = SRUN + IRUN (12)

RUNOFF = GD +DR (13)

Ot = C1 ∗ It + C2 ∗ It−∆t + C3 ∗Ot−∆t (14)

C1 =
0.5 ∗∆t−DELAY ∗ x

(1− x) ∗DELAY + 0.5 ∗∆t
(15)

C2 =
DELAY ∗ x+ 0.5 ∗∆t

(1− x) ∗DELAY + 0.5 ∗∆t
(16)

C3 =
−0.5 ∗∆t+ (1− x) ∗DELAY

(1− x) ∗DELAY + 0.5 ∗∆t
(17)

Where Ot and It are the inflow and outflow at time t. The DELAY and x are the

storage constant and dimensionless weighing factor respectively, two parameters used in

the Muskingum routing method and C1, C2 and C3 are routing coefficients. The DELAY

depicts approximate time taken required for flow travel in the given reach of the river

(O’Sullivan et al., 2012).

Text S2: Review of the LSTM model: The Long Short Term Memory (LSTM)

(Hochreiter & Schmidhuber, 1997) is applied widely in time series modeling due to its
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ability to learn long-term information. It has been applied successfully in various hydro-

logical studies, including post-processing of physics-based model outputs (Frame et al.,

2021), prediction of extreme events (Frame et al., 2022), leverage synergy when multiple

datasets are used for given variable (Kratzert et al., 2021), flood forecasting (Nevo et al.,

2022; Feng et al., 2020), improvement in the streamflow predictions of ungauged basins

(Kratzert et al., 2019), streamflow prediction for multiple timescales (Gauch et al., 2021).

The LSTM is a special type of Recurrent Neural Network (RNN) in which the vanishing

or exploding gradient issue of RNN is solved by incorporating gates and memory cells.

The flow of information to the memory cells is controlled by gates. The wi, wf , wc, wo,

Ui, Uf , Uc, and Uo denotes weights associated with the layers and bi, bf , bc, bo depicts the

biases. The forget gate decides the amount of information retained by the cell state. The

process of storing new information in the cell state is carried out in two parts, includes

information that can be updated in the cell state is decided by the input gate, and the

tanh layer generates a new candidate value that is further added to the state then the

cell state gets updated. Later, the output gate controls the passage of information from

the cell state to the new hidden state, which is obtained by multiplying a tanh function

of the cell state by the output from the output gate.

ft = σ(Wfxt + Ufht−1 + bf ) (18)

it = σ(Wixt + Uiht−1 + bi) (19)

C̃t = tanh(Wcxt + Ucht−1 + bc) (20)

Ct = ft × Ct−1 + it × C̃t (21)

ot = σ(Woxt + Uoht−1 + bo) (22)
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ht = ot × tanh(Ct) (23)

Text S3: Performance evaluation metrics: The model performance is evaluated

with Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), Root Mean Square Error

(RMSE), and Percent Bias (PBIAS) widely applied in the field of hydrology (Swain &

Patra, 2017; Paul et al., 2019; Wagena et al., 2020). The value of NSE (Eq. 24) ranges

from −∞ to 1.0. When NSE is 1, it shows that both simulated and observed data

perfectly match each other. The RMSE (Eq. 25) is used to measure the error in the

model predictions where its value ranges from 0 to ∞. The PBIAS shows model behavior

in estimating the average magnitude of model output. Its optimal value is 0 while having

a range of −∞ to ∞. The positive and negative values of PBIAS show underestimation

and overestimation of average modeled output, respectively.

NSE = 1−
∑n

i=1(Oi − Si)
2∑n

i=1(Oi − Ō)2
(24)

where Si, Oi, and Ō are model output, observed data, and mean of observed data, respec-

tively.

RMSE =

√∑n
i=1(Oi − Si)2

n
(25)

PBIAS =

∑n
i=1(Oi − Si)∑n

i=1 Oi

× 100 (26)
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Table S2. SIMHYD model parameters for semi-distributed without reservoir model case.
Catchment Subcatchment INSC COEFF SQ SMSC SUB CRAK K DELAY (days) x

Anandpur
Champua - Anandpur 1.283 106.799 0.545 439.362 0.266 0.932 0.076 0.871 0.149

Champua 1.283 106.799 0.545 439.362 0.266 0.932 0.076 0.500 0.0004

Kantamal
Kesinga - Kantamal 1.327 134.364 1.624 499.388 0.702 0.955 0.038 0.619 0.188

Kesinga 1.327 134.364 1.624 499.388 0.702 0.955 0.038 1.185 0.087

Keesara
Madhira - Keesara 1.154 188.348 1.729 355.487 0.363 0.546 0.007 0.999 0.105

Madhira 1.154 188.348 1.729 355.487 0.363 0.546 0.007 0.543 0.006

Table S3. SIMHYD model parameters for semi-distributed with reservoir model case.
Catchment Subcatchment INSC COEFF SQ SMSC SUB CRAK K DELAY (days) x kr

Brady
d/s of Brady reservoir 1.777 251.159 0.574 276.010 0.011 0.005 0.25 1.289 0.438 -

Brady reservoir 1.777 251.159 0.574 276.010 0.011 0.005 0.25 0.228 0.462 0.014

Canyon
d/s of Canyon lake 0.841 347.774 1.093 118.446 0.050 0.359 0.003 0.040 0.207 -

Canyon lake 0.841 347.774 1.093 118.446 0.050 0.359 0.003 1.435 0.359 0.011

Table S4. PIML model hyperparameters for lumped model case.

Catchment Variable Dropout rate Epochs Units Batch size Model

Anandpur
ETt 0.2 600 100 32 ML - 1
Qt 0.2 200 60 32 ML - 2

Kantamal
ETt 0.1 800 90 64 ML - 1
Qt 0.3 300 60 32 ML - 2

Keesara
ETt 0.1 1000 90 64 ML - 1
Qt 0.4 600 100 64 ML - 2

Table S5. ML model hyperparameters for prediction of streamflow in lumped model case.

Catchment Variable Dropout rate Epochs Units Batch size
Anandpur Qt 0.1 400 90 128
Kantamal Qt 0.3 500 10 32
Keesara Qt 0.1 400 90 128

Table S6. PIML model hyperparameters for semi-distributed without reservoir model case.

Catchment Subcatchment Variable Dropout rate Epochs Units Batch size Model

Anandpur
Champua - Anandpur

ETd/st 0.3 600 80 32 ML - 2
Qd/st 0.3 900 100 360 ML – 3

Champua
ETu/st 0.4 1000 50 32 ML - 1
Qu/st 0.3 900 100 360 ML – 3

Kantamal
Kesinga - Kantamal

ETd/st 0.1 800 90 32 ML - 2
Qd/st 0.4 300 70 360 ML – 3

Kesinga
ETu/st 0.4 1000 40 64 ML - 1
Qu/st 0.4 300 70 360 ML – 3

Keesara
Madhira - Keesara

ETd/st 0.1 900 100 32 ML - 2
Qd/st 0.2 800 90 360 ML – 3

Madhira
ETu/st 0.3 600 100 32 ML - 1
Qu/st 0.2 800 90 360 ML – 3
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Table S7. PIML model hyperparameters for semi-distributed with reservoir model case.

Catchment Subcatchment Variable Dropout rate Epochs Units Batch size Model

Brady

d/s of Brady reservoir
ETd/st 0.1 1000 90 32 ML – 2
Qd/st 0.3 900 80 256 ML – 5

Brady reservoir
ETu/st 0.2 900 40 32 ML – 1

Rt 0.4 300 10 256 ML – 3
St 0.4 100 90 360 ML – 4

Canyon

d/s of Canyon lake
ETd/st 0.1 500 40 32 ML – 2
Qd/st 0.2 200 90 32 ML – 5

Canyon lake
ETu/st 0.4 200 100 64 ML – 1

Rt 0.2 1000 90 32 ML – 3
St 0.2 900 90 360 ML – 4

January 13, 2023, 1:17pm


