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Abstract

Delta shoreline structure has long been hypothesized to encode information on the relative influence of fluvial, wave, and tidal

processes on delta formation and evolution. We introduce here a novel multiscale characterization of shorelines by defining

three process-informed morphological metrics. We show that this characterization yields self-emerging classes of morphologically

similar deltas, i.e., delta morphotypes, and also predicts the dominant forcing of each morphotype. Then we show that the

dominant forcings inferred from shoreline structure generally align with those estimated via relative sediment fluxes, while

positing that misalignments arise from spatiotemporal heterogeneity in deltaic sediment fluxes not captured in their estimates.

The proposed framework for shoreline characterization advances our quantitative understanding of how shoreline features reflect

delta forcings, and may aid in deciphering paleoclimate from images of ancient deposits and projecting delta morphologic

response to changes in sediment fluxes.
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Keypoints 11 
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multiscale shoreline features 13 
2. Unsupervised clustering of the shoreline metrics reveals 5 distinct delta morphotypes which 14 

correspond to distinct forcings 15 
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Abstract 17 

Delta shoreline structure has long been hypothesized to encode information on the relative 18 

influence of fluvial, wave, and tidal processes on delta formation and evolution. We introduce here 19 

a novel multiscale characterization of shorelines by defining three process-informed 20 

morphological metrics. We show that this characterization yields self-emerging classes of 21 

morphologically similar deltas, i.e., delta morphotypes, and also predicts the dominant forcing of 22 

each morphotype. Then we show that the dominant forcings inferred from shoreline structure 23 

generally align with those estimated via relative sediment fluxes, while positing that misalignments 24 

arise from spatiotemporal heterogeneity in deltaic sediment fluxes not captured in their estimates. 25 

The proposed framework for shoreline characterization advances our quantitative understanding 26 

of how shoreline features reflect delta forcings, and may aid in deciphering paleoclimate from 27 

images of ancient deposits and projecting delta morphologic response to changes in sediment 28 

fluxes. 29 

 30 

 31 



Plain Language Summary 32 

It has long been posited that the observed diversity in the shapes of river deltas reflects the relative 33 

strength of river, wave, and tide forcings acting on the delta. However, rigorous quantification of 34 

delta morphology and how it relates to forcing is still lacking. Here we introduce a new multiscale 35 

geometric framework which characterizes river delta morphology via measures of its shoreline 36 

structure and then use these measures to first separate deltas into morphological classes called 37 

morphotypes and second to infer the dominant forcing of each morphotype. We then show that the 38 

dominant forcings revealed by delta shoreline structure generally align with quantitative estimates 39 

of the relative amount of sediment transported by each forcing, and posit that misalignments may 40 

reflect space-time heterogeneities in the sediment transport rates not captured in their estimated 41 

values. The proposed framework enables easy and quantifiable delta classification based on 42 

readily-available remote sensing images and may yield insight into predicting deltaic geomorphic 43 

response to changing forcings. 44 

Introduction: 45 

River deltas are complex ecogeomorphic landscapes which are home to upwards of 300 million 46 

people due to their fertile soils and rich ecosystems (Edmonds et al., 2020). Their intricate 47 

hydromorphology controls nearshore biogeochemical function (Knights et al., 2020; Zoccarato et 48 

al., 2019), connectivity between surface and subsurface hydrogeology and reservoirs (Sawyer et 49 

al., 2015), coastal resilience (Hoitink et al., 2020; Tognin et al., 2021), and ecosystem services 50 

(Adams et al., 2018). Deltas are particularly vulnerable to climate change due to their low relief, 51 

coastal proximity, and large populations (Edmonds et al., 2020; Hoitink et al., 2020). It is therefore 52 

critical to understand how sea level rise and changing riverine sediment loads will impact these 53 

systems (Chadwick et al., 2020; Nienhuis et al., 2023) and towards this goal, developing a 54 



quantitative framework which links the driving forces forming deltas to delta morphology and 55 

function is imperative. 56 

Fifty years ago, Galloway introduced the paradigm that river deltas are shaped by the interplay of 57 

progradational riverine forcings and erosional marine (wave and tide) forcings, which has steered 58 

subsequent research on river delta evolution (Galloway, 1975; see also e.g. (Ainsworth et al., 2011; 59 

Anthony, 2015; Bhattacharya & Giosan, 2003; Nienhuis et al., 2020; Seybold et al., 2007; Syvitski 60 

& Saito, 2007). The relative balance of these forcings and the multiple spatio-temporal scales at 61 

which they operate result in a stunning degree of variability in shoreline structure and channel 62 

network geometry and topology (Fagherazzi et al., 2015; Hoitink et al., 2017; Jerolmack & 63 

Swenson, 2007; Konkol et al., 2022; Tejedor et al., 2016, 2017). Rivers act to prograde the delta 64 

planform at large scales and increase roughness at fine scales via the growth of mouth bars and 65 

distributary channel expansion (Fagherazzi et al., 2015; Wolinsky et al., 2010). Waves generate 66 

alongshore transport that diffuse sediment along the shoreline at fine scales but can lead to spits at 67 

coarser scales (Ashton & Giosan, 2011) and suppress mouth-bar development (Jerolmack & 68 

Swenson, 2007). Tidal forces widen distributary channels and construct headless channels which 69 

lack connections to the upstream river, roughening the shoreline at multiple scales (Hoitink et al., 70 

2017; Nienhuis et al., 2018).  71 

Recently, the relative magnitudes of the forcings in the Galloway framework have been quantified 72 

via a sediment flux approach (Nienhuis et al., 2020). However, shoreline shape, a crucial ingredient 73 

in the qualitative morphological classification originally posed by Galloway (See Table 2; 74 

(Galloway, 1975), has not been quantified in a way to differentiate between visually distinct deltas, 75 

nor has been shown to have a clear relationship with forcings, e.g. (Baumgardner, 2016). This is 76 

in part because analysis of shoreline structure has typically focused on a single length scale using 77 



metrics such as shoreline variability (Straub et al., 2015) roughness or rugosity measures 78 

(Baumgardner, 2016; Caldwell & Edmonds, 2014; Geleynse et al., 2012), and shape factors 79 

(Lauzon et al., 2019; Nienhuis et al., 2015; Wolinsky et al., 2010). Such metrics do not necessarily 80 

measure shoreline structure at process length scales, nor do they capture the multiscale variability 81 

caused by the interplay of the three driving forces. 82 

 83 

Figure 1. The morphologic variability of Earth’s deltas. River deltas show differences in 84 

shoreline structure attributed to the relative balance of river, wave, and tidal sediment fluxes 85 

(Galloway, 1975). Yellow dots show locations of a globally distributed sample of 54 deltas 86 

analyzed in this study. Satellite imagery courtesy of Landsat and Google Earth. 87 

Here, we propose a set of process-informed, multiscale metrics of river delta shoreline shape which 88 

combine geometric and spectral measures to develop a quantitative classification of delta 89 

morphology. Our approach utilizes localized analysis of shoreline structure both in space and 90 

wavenumber domains to isolate features corresponding to different processes acting at multiple 91 

scales. Unsupervised clustering of the shoreline morphometrics identifies five classes of 92 



morphologically similar deltas, i.e. delta morphotypes. Based on the values of the process-93 

informed metrics, dominant forcings are attributed to each morphotype, which we then show to 94 

generally align with the dominant forcings quantitatively estimated by their relative sediment 95 

fluxes (Supplementary Material; Nienhuis et al., 2020). We hypothesize that misalignments 96 

between the two are due to spatiotemporal heterogeneity in the sediment fluxes which are not 97 

captured by their estimated values. The novel shoreline-based delta morphology classification and 98 

comparison to sediment fluxes informs our understanding of how the form and function of these 99 

densely populated and biogeochemically rich landscapes might respond to projected changes in 100 

sediment fluxes, relative sea level rise, and anthropogenic modification (Chadwick et al., 2020; 101 

Edmonds et al., 2020; Hariharan et al., 2022; Hoitink et al., 2020; Moodie & Nittrouer, 2021; 102 

Nienhuis et al., 2020; Syvitski & Saito, 2007). It also offers potential application in inferring 103 

paleoclimate from ancient delta deposits and interpreting extraterrestrial delta morphology. 104 

Multiscale characterization of delta shorelines 105 

We analyzed the shorelines of 54 river deltas across a range of sizes and a mixture of morphologic 106 

features (Supporting Material, Fig. 1; Syvitski & Saito, 2007). River delta shorelines were defined 107 

using the Opening Angle Method (OAM) with a critical angle of 45 degrees (Shaw et al., 2008). 108 

To define a shoreline, the OAM requires a binary water mask, which was obtained by thresholding 109 

water occurrence masks from the Landsat-derived, 30-m spatial resolution Global Surface Water 110 

dataset (Pekel et al., 2016).  111 

We defined three scales at which delta shoreline structure exhibits variability, which are linked to 112 

the balance of river, tide, and wave forcings: a macroscale (overall delta planform), mesoscale 113 

(mouth width scale), and microscale (beach scale). We developed metrics to capture the variability 114 

at those scales as discussed below. 115 



 116 

Figure 2. Example of the multiscale features of shoreline structure on the Mahakam Delta, 117 

Indonesia. (A) The shoreline of the delta, defined using the Opening Angle Method (OAM) with 118 

a critical angle of 45 degrees, shows multiple scales of variability. At the macroscale, a delta 119 

may be convex due to river deposition, flat due to wave-driven along shore transport, or concave 120 

due to tidal widening and estuarine conditions. This is measured here by the ratio between the 121 

radius of curvature and the length of the shoreline. (B) Mouths formed by rivers and tides lead to 122 

undulations in the shoreline at a scale determined by the relative river and tide fluxes. (C) At the 123 

microscale, waves diffuse sediment parallel to the coast and smooth the shoreline, while rivers 124 

and tides roughen it. (D) To measure meso- and microscale variability, the 2D shorelines are 125 

mapped to a univariate signal defined as the distance from each point along the shoreline to the 126 

center of curvature, 𝑑𝑑𝑐𝑐(𝑠𝑠), where 𝑠𝑠 is the distance along the shoreline. (E) The wavelet transform 127 

is used to estimate the fraction of variance contributed by the mouths, 𝑓𝑓𝑓𝑓, marked in red in the 128 

preceding panels, and the Gini-corrected Finescale Variance 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, i.e. the variance from scales 129 

(wavelengths) between 300 to 1000 m. 130 

 131 



At the macroscale, riverine sediment deposition leads to delta progradation and growth into the 132 

receiving basin and generates extrusional shapes (i.e. convex shoreline; Caldwell & Edmonds, 133 

2014; Galloway, 1975). When wave-driven alongshore transport removes the majority of riverine 134 

sediment flux, the delta has no protrusion, and is linear (i.e. mostly flat shoreline; Nienhuis et al., 135 

2015). Lastly, tidal forcings erode subaerial sediment into the nearshore and construct a 136 

subaqueous platform (Hoitink et al., 2017). This net erosion from land leads to a funnel-shaped, 137 

concave subaerial delta, or estuary, which intrudes into the surrounding landscape (i.e. a concave 138 

shoreline). We therefore measured the curvature of the entire shoreline (Fig. 2; Jammalamadaka 139 

& SenGupta, 2001), to classify deltas as convex (extrusional), concave (intrusional), or flat (see 140 

Supporting Material). 141 

At the mesoscale, the influence of rivers, waves, and tides on channel mouths dictates multiple 142 

intermediate scales of variability on the shoreline. Tidal forces widen mouths exponentially 143 

(Nienhuis et al., 2018) which leads to multiscale undulations in the shoreline (e.g. Amazon and 144 

Ganges-Brahmaputra, GBM, delta; Fig. 1). Rivers form mouth bars and bifurcations leading to 145 

small but numerous mouths, which result in intermediate to fine scale undulations in the shoreline 146 

(e.g. Dnieper delta). Lastly, wave-driven sediment transport prevents mouth bar formation 147 

(Jerolmack & Swenson, 2007) and reduces the number of channels (Broaddus et al., 2022), 148 

resulting in long shorelines with few, small undulations (e.g. Ebro delta). To measure the 149 

contribution of mouths to the overall variability of the shoreline structure, we first projected the 150 

shoreline into a univariate spatial-series by recording the distance from each point along the 151 

shoreline to the center of curvature of the macroscale shape of the delta (Fig. 2). Then, we 152 

identified sections of the shoreline spatial-series corresponding to the mouths and measured via 153 



localized wavelet transforms (Kumar & Foufoula-Georgiou, 1994) the fraction of variance 154 

contributed by the mouths, fM (Supporting Material, Fig. 2).  155 

Finally, at the microscale, wave-driven alongshore transport diffuses sediment along the coast and 156 

smooths shorelines (Ashton et al., 2001), while rivers and tides introduce variability from 157 

distributary and headless channels (Wolinsky et al., 2010). Therefore, we measured the fine scale 158 

variance (FSV), as the variance at wavelengths of 300 to 1000 m, to capture these differences (Fig. 159 

2). The lower bound is the result of the minimum reliable scale above which discretization, 160 

aliasing, and smoothing effects do not affect the spectra, derived from 30-m spatial resolution 161 

Landsat imagery. The upper bound is an approximation of the range of scales within which waves 162 

act to smooth shorelines and below which large scale features such as spits begin to emerge. The 163 

results are robust to shifting the upper bound from 800 to 1100 m (Supporting Material). 164 

Furthermore, to separate shorelines that may have equal fine scale variance but relatively more 165 

power at larger wavelengths compared with shorelines that have relatively less power at those 166 

wavelengths, the FSV is adjusted by the degree of heterogeneity over the spectral range by 167 

multiplying by a spectral Gini coefficient, g, defining the gFSV. The spectral Gini coefficient is a 168 

measure of the deviation of the spectra from white noise, i.e. a random signal with a flat spectrum 169 

(Supporting Material). With these three metrics we quantitatively compare the shoreline 170 

morphology of river deltas and explore the possible emergence of distinct morphotypes.  171 

Shoreline morphometric space 172 

The proposed shoreline metrics construct a three-dimensional Shoreline Morphometric Space 173 

(SMS) within which deltas can be positioned and compared (Fig. 3). To objectively and robustly 174 

identify clusters that categorically classify deltas within this space, we used an unsupervised 175 

machine learning algorithm, k-prototypes (a modification of k-means clustering that accounts for 176 



categorical predictors such as the macroscale shape; Huang, 1998). Five morphotypes, i.e., clusters 177 

of morphologically similar deltas, emerge from the three-dimensional SMS (Fig. 3) and are 178 

displayed in Fig. 4. 179 

 180 

Figure 3. The Shoreline Morphometric Space (SMS). Deltas shorelines are positioned in the 181 

three-dimensional space constructed by the macroscale shape, 𝑓𝑓𝑓𝑓, and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 metrics. 182 

Unsupervised clustering of the SMS using k-protoypes reveals five self-emergent delta 183 

morphotypes, i.e. classes of morphologically similar systems. The relative position of the deltas in 184 

the SMS elucidates the dominant forcing acting on each morphotype, e.g increased fM a signature 185 

of greater tidal influence. The classified deltas are shown in Fig. 4. The arrow indicates the shift 186 

in the SMS position of the river distributary section of the Parana shoreline (ParanaRO) compared 187 

with the shoreline of the entire Parana, see text for details.  188 



 189 

Figure 4. Deltaic morphotypes identified from the SMS. The deltas corresponding to the five 190 

morphotypes which emerged from the SMS (Fig. 3). Shorelines are shown in orange with 191 

underlying imagery from Landsat or Google Earth. 192 

 193 

The first morphotype is denoted as the “tidal morphotype” as these deltas are concave and flat with 194 

mouth-dominated shorelines and low finescale variance, indicative of tide-domination (Fig. 4), for 195 

example, the Fly and Amazon deltas. It also includes valley-confined deltas like the Ob and 196 



Yenisei due to their wide mouths (Fig. 4). The second morphotype is denoted as the “river 197 

morphotype” as these deltas are characterized by an intermediate fraction of variance contributed 198 

by mouths, are rough at fine scales, and have a convex planform, for example, the Selenga and 199 

Mississippi deltas (Fig. 4). Valley-confined deltas such as the Dnieper and Don, which are concave 200 

and flat but have high fine scale variability, are also included as part of the river morphotype. The 201 

third morphotype is denoted as the “wave morphotype” as these deltas are flat, lack a subaerial 202 

protrusion formed by river deposition, and smooth at fine scales, for example, the Eel and Orange 203 

deltas (Fig. 4). The fourth morphotype is denoted as the “river-wave morphotype” as these deltas 204 

are convex, smooth at fine scales, typically have spits or flying spits, and little to no variability 205 

contributed by mouths, for example, the Ebro and Rhone deltas. Lastly, the fifth morphotype is 206 

denoted as the “river-tide morphotype” as it contains convex deltas with tidally widened mouths 207 

and headless channels, resulting in intermediate variability contributed by mouths, for example, 208 

the Mahakam and Orinoco deltas.  209 

The dominant forcings determined by the quantitative classification of shorelines correspond with 210 

expert assessment of the dominant forcings based on qualitative comparisons of delta morphology 211 

(Ainsworth et al., 2011; Nienhuis et al., 2020) suggesting that shoreline structure carries a distinct 212 

signature of the processes that generated that delta. An interesting further step is to check whether 213 

the inferred dominant forcings align with the relative sediment fluxes driven by each forcing, for 214 

which we use the recently developed sediment flux estimation framework of Nienhuis et al., 215 

(2020). 216 

Are delta morphotypes aligned with relative sediment fluxes?  217 

Each of the 54 deltas was projected onto the ternary Galloway diagram according to the relative 218 

sediment flux transported by rivers, waves, and tides as estimated in Nienhuis et al., (2020) (Fig 219 



5). Before contrasting delta morphotypes with their relative sediment fluxes we note a few 220 

important issues which we anticipate to cause discrepancies in the mapping between the 221 

morphotype and dominant sediment flux. First, the marine sediment fluxes are estimated using 222 

simplified, although nonlinear, physical models which transform tidal amplitudes and offshore 223 

wave-climate into tidal and wave sediment fluxes, respectively. Therefore, any uncertainty in the 224 

tidal amplitude and wave climate will propagate into uncertainty in the sediment flux estimate. 225 

Second, sediment fluxes are estimated using single, representative locations for wave climate, tidal 226 

amplitude, and fluvial discharge, not acknowledging possible multi-mouth or multi-lobe structure 227 

(Nienhuis et al., 2020). Moreover, the sediment fluxes are estimated using contemporary wave 228 

climate, tidal amplitude measurements, and modelled, pre-anthropogenically-influenced riverine 229 

discharge and sediment loads (Supporting Material; Nienhuis et al., 2020), and represent snapshots 230 

of the relative sediment flux, while delta morphology represents the temporally integrated effect 231 

of the forcings acting on the delta (Syvitski et al., 2022). Accordingly, any significant 232 

spatiotemporal heterogeneity or non-stationarity in the fluxes over each delta’s evolution might 233 

not be reflected in the contemporary sediment flux estimates. Therefore, some misalignments 234 

between delta morphotype and dominant sediment flux are expected, hoping however, that a 235 

general agreement will emerge.  236 

The dominant forcings inferred from the delta morphotypes generally align with the estimated 237 

relative sediment fluxes driven by each forcing (Fig. 5). For example, the river morphotype and 238 

wave morphotype deltas lie in the right corners of the Galloway diagram, and the river-wave 239 

morphotype deltas span the space in-between these two end member classes with varying degree 240 

of relative tidal influence. Note that deltas in the river morphotype typically have relative river 241 

sediment flux more than 80%, although there are notable outliers. A similar observation is made 242 



for deltas in the wave morphotype. Morphological expression of dominance by a single forcing is 243 

therefore limited only to small corners of the Galloway space. Morphologically similar deltas 244 

which appear scattered or as misalignments between shoreline-inferred dominant forcing and 245 

dominant relative sediment flux in the Galloway diagram yield valuable insight into the 246 

relationship between observed shoreline structure and the relative sediment fluxes.  247 

 248 

Figure 5. Comparison of delta morphotypes to sediment flux budget. The 54 deltas, colored 249 

by their morphotype emergent from the SMS (Fig. 3), are positioned in the Galloway diagram 250 

based on their estimated relative sediment fluxes (Nienhuis et al., 2020). Misalignments highlight 251 

spatiotemporal heterogeneity in the relative sediment fluxes not captured by their contemporary 252 

estimates (see text for discussion). 253 



 254 

As discussed before, some misalignments arise due to uncertainty in the sediment fluxes estimates. 255 

For example, deltas in the tidal morphotype such as the Kolyma and Tigris-Euphrates are assigned 256 

relatively low tidal sediment fluxes (Nienhuis et al., 2020), despite displaying clear tidal widening, 257 

suggesting under-estimation of the tidal sediment fluxes for these deltas. Similarly, river 258 

morphotype deltas such as the Colville, Kuparuk, and Apalachicola, are characterized by abundant 259 

mouthbars but have high estimated wave sediment fluxes which are expected to inhibit mouthbar 260 

formation (Jerolmack & Swenson, 2007). The Kuparuk and Apalachicola are associated with 261 

valley-confined or sheltered shorelines where wave climate data may be particularly uncertain. 262 

These misalignments highlight that the shoreline morphometric approach may be more robust than 263 

the sediment flux approach for delta classification as it is less sensitive to its defining parameters 264 

(e.g. critical angle or range considered for fine scales; see Supporting Material).  265 

Further misalignments of interest are the river-tide morphotype deltas and tide morphotype deltas 266 

which are scattered across a range of relative tidal influence. This mixture arises as the river-tide 267 

and tide morphotypes consist of deltas with intermediate to high fraction of variance contributed 268 

by mouths (fM) due to headless and wide channels. However, the river-tide morphotype consists 269 

solely of deltas that are convex at the macroscale, e.g. the Irrawaddy, Indus, and Mahakam, which 270 

is a signature of historical progradation of the delta planform due to fluvial deposition. Also deltas 271 

such as the Zambezi and Rufiji are convex with wide headless channels and have abundant tidal 272 

mangroves (Anthony et al., 2021; Erftemeijer & Hamerlynck, 2005), suggesting historical 273 

significant river and tidal influence, but have otherwise smooth, sandy shorelines and translating 274 

spits indicating recent wave influence. This suggests that although these systems at present have 275 

large relative tidal sediment fluxes, the estimated relative sediment fluxes do not capture the 276 



historical river dominance which constructed them. Thus, as tides widen and preserve former 277 

distributary channels (Hoitink et al., 2017), and the timescale for waves to erase the convex 278 

depositional system formed by river progradation could be on the order of centuries (Nienhuis et 279 

al., 2016), the signature of a river remains on its delta long after it has stopped flowing. Therefore, 280 

careful consideration must be given to possible temporal heterogeneities in each of the sediment 281 

fluxes when computing their relative values and assessing the relationship between morphotype 282 

and relative sediment flux (Bhattacharya & Giosan, 2003). This is especially critical for 283 

characterizing morphologic response to sediment flux changes, e.g., decreasing riverine sediment 284 

delivery or changes in wave climate, and for projecting delta futures under climate change. 285 

Lastly, we hypothesize that some of the misalignments arise because the morphologic metrics are  286 

computed along the length of the entire shoreline, although the sediment fluxes are computed via 287 

point estimates and don’t convey information on spatial heterogeneity in the forcings acting on the 288 

delta. For example, the Parana delta lies in the wave morphotype although it has a complex 289 

distributary network in its southern half and is dominated by riverine sediment flux (Figs. 3-5). 290 

However, the Parana’s depositional environment is unique as the Uruguay river runs parallel to its 291 

northern shore (Milana & Kröhling, 2015), which we posit acts as a longshore current that 292 

smoothens the shoreface but is not captured by the global sediment flux estimation framework 293 

which only includes wind-driven longshore transport. To test this hypothesis, we computed the 294 

three multiscale metrics of shoreline structure only on the section of the shoreline between the 295 

active distributaries in the southern section, terming it ParanaRO, and found that the ParanaRO 296 

indeed lies in the river morphotype (Fig. 3), in agreement with its dominant riverine sediment flux 297 

(Fig. 5).  298 



Note that the multiscale framework presented herein allows us to further interrogate spatially 299 

explicit variability in shoreline structure. In particular, some deltas might exhibit lobes 300 

corresponding to distinct morphotypes (e.g. abandoned distributary lobes reworked by marine 301 

forces following channel avulsion), shedding further light on the alignment between sediment flux 302 

and morphology. However, the framework for estimating sediment fluxes (Nienhuis et al., 2020) 303 

will likely need to be adjusted to account for highly spatially variable sediment fluxes given multi-304 

lobe or multi-mouth structures or variable wave climate (Syvitski et al., 2022). We note that 305 

combining shoreline metrics with metrics of network complexity (Konkol et al., 2022; Tejedor et 306 

al., 2015a, 2015b, 2016, 2017) may help to separate deltas further within the SMS and identify 307 

subnetworks that need to be treated separately in terms of their morphology and sediment fluxes. 308 

Network information may disaggregate the relatively large river-tide morphotypes and the tide 309 

morphotypes, with a possible separation of the valley-confined Ob and Yenisei deltas from 310 

estuarine systems such as the Kolyma, Ganges Brahmaputra, and Colorado. This further sub-311 

division of deltas may also be able to yield insight into the influence of other controls on delta 312 

morphology including grain size (Caldwell & Edmonds, 2014), valley confinement, cold region 313 

processes, or sea level history (Nienhuis et al., 2023; Overeem et al., 2022). Interestingly, no 314 

systematic signature of near-shore sea-ice, permafrost, or river-ice was detected on shoreline 315 

structure (Lauzon et al., 2019; Overeem et al., 2022; Piliouras et al., 2021), except for a lack of 316 

wave influenced Arctic systems which may relate to the short wind fetch present due to sea ice 317 

(Barnhart et al., 2014) or the presence of a shallow subaqueous ramp dampening wave runup and 318 

breakup at the subaerial shoreline (Overeem et al., 2022). 319 

 320 

 321 



Conclusion 322 

We have introduced a novel quantitative framework to classify river delta morphology based on a 323 

multiscale characterization of delta shoreline structure through geometric and spectral metrics 324 

which form a three-dimensional shoreline morphometric space (SMS). Unsupervised classification 325 

of 54 deltas projected in the SMS reveals self-emergent morphologically similar deltas, i.e. delta 326 

morphotypes which are further associated with dominant forcings based on the metrics. We then 327 

found that dominant forcings inferred from shoreline structure generally align with the dominant 328 

forcings quantitatively estimated by their relative sediment fluxes. We posit that misalignments 329 

arise due to possible spatiotemporal variability in the dominant forcings not captured in the relative 330 

sediment fluxes, providing a basis for more detailed analysis of those deltas. The proposed 331 

shoreline morphologic classification framework relies on readily available satellite imagery 332 

making it easily applicable for remote, poorly instrumented coastlines and basins as well as on 333 

extraterrestrial bodies, for which forcings are not available. 334 
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Keypoints 11 
1. Three process-informed, geometric, and spectral metrics are introduced to characterize 12 

multiscale shoreline features 13 
2. Unsupervised clustering of the shoreline metrics reveals 5 distinct delta morphotypes which 14 

correspond to distinct forcings 15 
3. Morphotypes can be robustly estimated from readily available satellite imagery 16 

Abstract 17 

Delta shoreline structure has long been hypothesized to encode information on the relative 18 

influence of fluvial, wave, and tidal processes on delta formation and evolution. We introduce here 19 

a novel multiscale characterization of shorelines by defining three process-informed 20 

morphological metrics. We show that this characterization yields self-emerging classes of 21 

morphologically similar deltas, i.e., delta morphotypes, and also predicts the dominant forcing of 22 

each morphotype. Then we show that the dominant forcings inferred from shoreline structure 23 

generally align with those estimated via relative sediment fluxes, while positing that misalignments 24 

arise from spatiotemporal heterogeneity in deltaic sediment fluxes not captured in their estimates. 25 

The proposed framework for shoreline characterization advances our quantitative understanding 26 

of how shoreline features reflect delta forcings, and may aid in deciphering paleoclimate from 27 

images of ancient deposits and projecting delta morphologic response to changes in sediment 28 

fluxes. 29 

 30 

 31 



Plain Language Summary 32 

It has long been posited that the observed diversity in the shapes of river deltas reflects the relative 33 

strength of river, wave, and tide forcings acting on the delta. However, rigorous quantification of 34 

delta morphology and how it relates to forcing is still lacking. Here we introduce a new multiscale 35 

geometric framework which characterizes river delta morphology via measures of its shoreline 36 

structure and then use these measures to first separate deltas into morphological classes called 37 

morphotypes and second to infer the dominant forcing of each morphotype. We then show that the 38 

dominant forcings revealed by delta shoreline structure generally align with quantitative estimates 39 

of the relative amount of sediment transported by each forcing, and posit that misalignments may 40 

reflect space-time heterogeneities in the sediment transport rates not captured in their estimated 41 

values. The proposed framework enables easy and quantifiable delta classification based on 42 

readily-available remote sensing images and may yield insight into predicting deltaic geomorphic 43 

response to changing forcings. 44 

Introduction: 45 

River deltas are complex ecogeomorphic landscapes which are home to upwards of 300 million 46 

people due to their fertile soils and rich ecosystems (Edmonds et al., 2020). Their intricate 47 

hydromorphology controls nearshore biogeochemical function (Knights et al., 2020; Zoccarato et 48 

al., 2019), connectivity between surface and subsurface hydrogeology and reservoirs (Sawyer et 49 

al., 2015), coastal resilience (Hoitink et al., 2020; Tognin et al., 2021), and ecosystem services 50 

(Adams et al., 2018). Deltas are particularly vulnerable to climate change due to their low relief, 51 

coastal proximity, and large populations (Edmonds et al., 2020; Hoitink et al., 2020). It is therefore 52 

critical to understand how sea level rise and changing riverine sediment loads will impact these 53 

systems (Chadwick et al., 2020; Nienhuis et al., 2023) and towards this goal, developing a 54 



quantitative framework which links the driving forces forming deltas to delta morphology and 55 

function is imperative. 56 

Fifty years ago, Galloway introduced the paradigm that river deltas are shaped by the interplay of 57 

progradational riverine forcings and erosional marine (wave and tide) forcings, which has steered 58 

subsequent research on river delta evolution (Galloway, 1975; see also e.g. (Ainsworth et al., 2011; 59 

Anthony, 2015; Bhattacharya & Giosan, 2003; Nienhuis et al., 2020; Seybold et al., 2007; Syvitski 60 

& Saito, 2007). The relative balance of these forcings and the multiple spatio-temporal scales at 61 

which they operate result in a stunning degree of variability in shoreline structure and channel 62 

network geometry and topology (Fagherazzi et al., 2015; Hoitink et al., 2017; Jerolmack & 63 

Swenson, 2007; Konkol et al., 2022; Tejedor et al., 2016, 2017). Rivers act to prograde the delta 64 

planform at large scales and increase roughness at fine scales via the growth of mouth bars and 65 

distributary channel expansion (Fagherazzi et al., 2015; Wolinsky et al., 2010). Waves generate 66 

alongshore transport that diffuse sediment along the shoreline at fine scales but can lead to spits at 67 

coarser scales (Ashton & Giosan, 2011) and suppress mouth-bar development (Jerolmack & 68 

Swenson, 2007). Tidal forces widen distributary channels and construct headless channels which 69 

lack connections to the upstream river, roughening the shoreline at multiple scales (Hoitink et al., 70 

2017; Nienhuis et al., 2018).  71 

Recently, the relative magnitudes of the forcings in the Galloway framework have been quantified 72 

via a sediment flux approach (Nienhuis et al., 2020). However, shoreline shape, a crucial ingredient 73 

in the qualitative morphological classification originally posed by Galloway (See Table 2; 74 

(Galloway, 1975), has not been quantified in a way to differentiate between visually distinct deltas, 75 

nor has been shown to have a clear relationship with forcings, e.g. (Baumgardner, 2016). This is 76 

in part because analysis of shoreline structure has typically focused on a single length scale using 77 



metrics such as shoreline variability (Straub et al., 2015) roughness or rugosity measures 78 

(Baumgardner, 2016; Caldwell & Edmonds, 2014; Geleynse et al., 2012), and shape factors 79 

(Lauzon et al., 2019; Nienhuis et al., 2015; Wolinsky et al., 2010). Such metrics do not necessarily 80 

measure shoreline structure at process length scales, nor do they capture the multiscale variability 81 

caused by the interplay of the three driving forces. 82 

 83 

Figure 1. The morphologic variability of Earth’s deltas. River deltas show differences in 84 

shoreline structure attributed to the relative balance of river, wave, and tidal sediment fluxes 85 

(Galloway, 1975). Yellow dots show locations of a globally distributed sample of 54 deltas 86 

analyzed in this study. Satellite imagery courtesy of Landsat and Google Earth. 87 

Here, we propose a set of process-informed, multiscale metrics of river delta shoreline shape which 88 

combine geometric and spectral measures to develop a quantitative classification of delta 89 

morphology. Our approach utilizes localized analysis of shoreline structure both in space and 90 

wavenumber domains to isolate features corresponding to different processes acting at multiple 91 

scales. Unsupervised clustering of the shoreline morphometrics identifies five classes of 92 



morphologically similar deltas, i.e. delta morphotypes. Based on the values of the process-93 

informed metrics, dominant forcings are attributed to each morphotype, which we then show to 94 

generally align with the dominant forcings quantitatively estimated by their relative sediment 95 

fluxes (Supplementary Material; Nienhuis et al., 2020). We hypothesize that misalignments 96 

between the two are due to spatiotemporal heterogeneity in the sediment fluxes which are not 97 

captured by their estimated values. The novel shoreline-based delta morphology classification and 98 

comparison to sediment fluxes informs our understanding of how the form and function of these 99 

densely populated and biogeochemically rich landscapes might respond to projected changes in 100 

sediment fluxes, relative sea level rise, and anthropogenic modification (Chadwick et al., 2020; 101 

Edmonds et al., 2020; Hariharan et al., 2022; Hoitink et al., 2020; Moodie & Nittrouer, 2021; 102 

Nienhuis et al., 2020; Syvitski & Saito, 2007). It also offers potential application in inferring 103 

paleoclimate from ancient delta deposits and interpreting extraterrestrial delta morphology. 104 

Multiscale characterization of delta shorelines 105 

We analyzed the shorelines of 54 river deltas across a range of sizes and a mixture of morphologic 106 

features (Supporting Material, Fig. 1; Syvitski & Saito, 2007). River delta shorelines were defined 107 

using the Opening Angle Method (OAM) with a critical angle of 45 degrees (Shaw et al., 2008). 108 

To define a shoreline, the OAM requires a binary water mask, which was obtained by thresholding 109 

water occurrence masks from the Landsat-derived, 30-m spatial resolution Global Surface Water 110 

dataset (Pekel et al., 2016).  111 

We defined three scales at which delta shoreline structure exhibits variability, which are linked to 112 

the balance of river, tide, and wave forcings: a macroscale (overall delta planform), mesoscale 113 

(mouth width scale), and microscale (beach scale). We developed metrics to capture the variability 114 

at those scales as discussed below. 115 



 116 

Figure 2. Example of the multiscale features of shoreline structure on the Mahakam Delta, 117 

Indonesia. (A) The shoreline of the delta, defined using the Opening Angle Method (OAM) with 118 

a critical angle of 45 degrees, shows multiple scales of variability. At the macroscale, a delta 119 

may be convex due to river deposition, flat due to wave-driven along shore transport, or concave 120 

due to tidal widening and estuarine conditions. This is measured here by the ratio between the 121 

radius of curvature and the length of the shoreline. (B) Mouths formed by rivers and tides lead to 122 

undulations in the shoreline at a scale determined by the relative river and tide fluxes. (C) At the 123 

microscale, waves diffuse sediment parallel to the coast and smooth the shoreline, while rivers 124 

and tides roughen it. (D) To measure meso- and microscale variability, the 2D shorelines are 125 

mapped to a univariate signal defined as the distance from each point along the shoreline to the 126 

center of curvature, 𝑑𝑑𝑐𝑐(𝑠𝑠), where 𝑠𝑠 is the distance along the shoreline. (E) The wavelet transform 127 

is used to estimate the fraction of variance contributed by the mouths, 𝑓𝑓𝑓𝑓, marked in red in the 128 

preceding panels, and the Gini-corrected Finescale Variance 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, i.e. the variance from scales 129 

(wavelengths) between 300 to 1000 m. 130 

 131 



At the macroscale, riverine sediment deposition leads to delta progradation and growth into the 132 

receiving basin and generates extrusional shapes (i.e. convex shoreline; Caldwell & Edmonds, 133 

2014; Galloway, 1975). When wave-driven alongshore transport removes the majority of riverine 134 

sediment flux, the delta has no protrusion, and is linear (i.e. mostly flat shoreline; Nienhuis et al., 135 

2015). Lastly, tidal forcings erode subaerial sediment into the nearshore and construct a 136 

subaqueous platform (Hoitink et al., 2017). This net erosion from land leads to a funnel-shaped, 137 

concave subaerial delta, or estuary, which intrudes into the surrounding landscape (i.e. a concave 138 

shoreline). We therefore measured the curvature of the entire shoreline (Fig. 2; Jammalamadaka 139 

& SenGupta, 2001), to classify deltas as convex (extrusional), concave (intrusional), or flat (see 140 

Supporting Material). 141 

At the mesoscale, the influence of rivers, waves, and tides on channel mouths dictates multiple 142 

intermediate scales of variability on the shoreline. Tidal forces widen mouths exponentially 143 

(Nienhuis et al., 2018) which leads to multiscale undulations in the shoreline (e.g. Amazon and 144 

Ganges-Brahmaputra, GBM, delta; Fig. 1). Rivers form mouth bars and bifurcations leading to 145 

small but numerous mouths, which result in intermediate to fine scale undulations in the shoreline 146 

(e.g. Dnieper delta). Lastly, wave-driven sediment transport prevents mouth bar formation 147 

(Jerolmack & Swenson, 2007) and reduces the number of channels (Broaddus et al., 2022), 148 

resulting in long shorelines with few, small undulations (e.g. Ebro delta). To measure the 149 

contribution of mouths to the overall variability of the shoreline structure, we first projected the 150 

shoreline into a univariate spatial-series by recording the distance from each point along the 151 

shoreline to the center of curvature of the macroscale shape of the delta (Fig. 2). Then, we 152 

identified sections of the shoreline spatial-series corresponding to the mouths and measured via 153 



localized wavelet transforms (Kumar & Foufoula-Georgiou, 1994) the fraction of variance 154 

contributed by the mouths, fM (Supporting Material, Fig. 2).  155 

Finally, at the microscale, wave-driven alongshore transport diffuses sediment along the coast and 156 

smooths shorelines (Ashton et al., 2001), while rivers and tides introduce variability from 157 

distributary and headless channels (Wolinsky et al., 2010). Therefore, we measured the fine scale 158 

variance (FSV), as the variance at wavelengths of 300 to 1000 m, to capture these differences (Fig. 159 

2). The lower bound is the result of the minimum reliable scale above which discretization, 160 

aliasing, and smoothing effects do not affect the spectra, derived from 30-m spatial resolution 161 

Landsat imagery. The upper bound is an approximation of the range of scales within which waves 162 

act to smooth shorelines and below which large scale features such as spits begin to emerge. The 163 

results are robust to shifting the upper bound from 800 to 1100 m (Supporting Material). 164 

Furthermore, to separate shorelines that may have equal fine scale variance but relatively more 165 

power at larger wavelengths compared with shorelines that have relatively less power at those 166 

wavelengths, the FSV is adjusted by the degree of heterogeneity over the spectral range by 167 

multiplying by a spectral Gini coefficient, g, defining the gFSV. The spectral Gini coefficient is a 168 

measure of the deviation of the spectra from white noise, i.e. a random signal with a flat spectrum 169 

(Supporting Material). With these three metrics we quantitatively compare the shoreline 170 

morphology of river deltas and explore the possible emergence of distinct morphotypes.  171 

Shoreline morphometric space 172 

The proposed shoreline metrics construct a three-dimensional Shoreline Morphometric Space 173 

(SMS) within which deltas can be positioned and compared (Fig. 3). To objectively and robustly 174 

identify clusters that categorically classify deltas within this space, we used an unsupervised 175 

machine learning algorithm, k-prototypes (a modification of k-means clustering that accounts for 176 



categorical predictors such as the macroscale shape; Huang, 1998). Five morphotypes, i.e., clusters 177 

of morphologically similar deltas, emerge from the three-dimensional SMS (Fig. 3) and are 178 

displayed in Fig. 4. 179 

 180 

Figure 3. The Shoreline Morphometric Space (SMS). Deltas shorelines are positioned in the 181 

three-dimensional space constructed by the macroscale shape, 𝑓𝑓𝑓𝑓, and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 metrics. 182 

Unsupervised clustering of the SMS using k-protoypes reveals five self-emergent delta 183 

morphotypes, i.e. classes of morphologically similar systems. The relative position of the deltas in 184 

the SMS elucidates the dominant forcing acting on each morphotype, e.g increased fM a signature 185 

of greater tidal influence. The classified deltas are shown in Fig. 4. The arrow indicates the shift 186 

in the SMS position of the river distributary section of the Parana shoreline (ParanaRO) compared 187 

with the shoreline of the entire Parana, see text for details.  188 



 189 

Figure 4. Deltaic morphotypes identified from the SMS. The deltas corresponding to the five 190 

morphotypes which emerged from the SMS (Fig. 3). Shorelines are shown in orange with 191 

underlying imagery from Landsat or Google Earth. 192 

 193 

The first morphotype is denoted as the “tidal morphotype” as these deltas are concave and flat with 194 

mouth-dominated shorelines and low finescale variance, indicative of tide-domination (Fig. 4), for 195 

example, the Fly and Amazon deltas. It also includes valley-confined deltas like the Ob and 196 



Yenisei due to their wide mouths (Fig. 4). The second morphotype is denoted as the “river 197 

morphotype” as these deltas are characterized by an intermediate fraction of variance contributed 198 

by mouths, are rough at fine scales, and have a convex planform, for example, the Selenga and 199 

Mississippi deltas (Fig. 4). Valley-confined deltas such as the Dnieper and Don, which are concave 200 

and flat but have high fine scale variability, are also included as part of the river morphotype. The 201 

third morphotype is denoted as the “wave morphotype” as these deltas are flat, lack a subaerial 202 

protrusion formed by river deposition, and smooth at fine scales, for example, the Eel and Orange 203 

deltas (Fig. 4). The fourth morphotype is denoted as the “river-wave morphotype” as these deltas 204 

are convex, smooth at fine scales, typically have spits or flying spits, and little to no variability 205 

contributed by mouths, for example, the Ebro and Rhone deltas. Lastly, the fifth morphotype is 206 

denoted as the “river-tide morphotype” as it contains convex deltas with tidally widened mouths 207 

and headless channels, resulting in intermediate variability contributed by mouths, for example, 208 

the Mahakam and Orinoco deltas.  209 

The dominant forcings determined by the quantitative classification of shorelines correspond with 210 

expert assessment of the dominant forcings based on qualitative comparisons of delta morphology 211 

(Ainsworth et al., 2011; Nienhuis et al., 2020) suggesting that shoreline structure carries a distinct 212 

signature of the processes that generated that delta. An interesting further step is to check whether 213 

the inferred dominant forcings align with the relative sediment fluxes driven by each forcing, for 214 

which we use the recently developed sediment flux estimation framework of Nienhuis et al., 215 

(2020). 216 

Are delta morphotypes aligned with relative sediment fluxes?  217 

Each of the 54 deltas was projected onto the ternary Galloway diagram according to the relative 218 

sediment flux transported by rivers, waves, and tides as estimated in Nienhuis et al., (2020) (Fig 219 



5). Before contrasting delta morphotypes with their relative sediment fluxes we note a few 220 

important issues which we anticipate to cause discrepancies in the mapping between the 221 

morphotype and dominant sediment flux. First, the marine sediment fluxes are estimated using 222 

simplified, although nonlinear, physical models which transform tidal amplitudes and offshore 223 

wave-climate into tidal and wave sediment fluxes, respectively. Therefore, any uncertainty in the 224 

tidal amplitude and wave climate will propagate into uncertainty in the sediment flux estimate. 225 

Second, sediment fluxes are estimated using single, representative locations for wave climate, tidal 226 

amplitude, and fluvial discharge, not acknowledging possible multi-mouth or multi-lobe structure 227 

(Nienhuis et al., 2020). Moreover, the sediment fluxes are estimated using contemporary wave 228 

climate, tidal amplitude measurements, and modelled, pre-anthropogenically-influenced riverine 229 

discharge and sediment loads (Supporting Material; Nienhuis et al., 2020), and represent snapshots 230 

of the relative sediment flux, while delta morphology represents the temporally integrated effect 231 

of the forcings acting on the delta (Syvitski et al., 2022). Accordingly, any significant 232 

spatiotemporal heterogeneity or non-stationarity in the fluxes over each delta’s evolution might 233 

not be reflected in the contemporary sediment flux estimates. Therefore, some misalignments 234 

between delta morphotype and dominant sediment flux are expected, hoping however, that a 235 

general agreement will emerge.  236 

The dominant forcings inferred from the delta morphotypes generally align with the estimated 237 

relative sediment fluxes driven by each forcing (Fig. 5). For example, the river morphotype and 238 

wave morphotype deltas lie in the right corners of the Galloway diagram, and the river-wave 239 

morphotype deltas span the space in-between these two end member classes with varying degree 240 

of relative tidal influence. Note that deltas in the river morphotype typically have relative river 241 

sediment flux more than 80%, although there are notable outliers. A similar observation is made 242 



for deltas in the wave morphotype. Morphological expression of dominance by a single forcing is 243 

therefore limited only to small corners of the Galloway space. Morphologically similar deltas 244 

which appear scattered or as misalignments between shoreline-inferred dominant forcing and 245 

dominant relative sediment flux in the Galloway diagram yield valuable insight into the 246 

relationship between observed shoreline structure and the relative sediment fluxes.  247 

 248 

Figure 5. Comparison of delta morphotypes to sediment flux budget. The 54 deltas, colored 249 

by their morphotype emergent from the SMS (Fig. 3), are positioned in the Galloway diagram 250 

based on their estimated relative sediment fluxes (Nienhuis et al., 2020). Misalignments highlight 251 

spatiotemporal heterogeneity in the relative sediment fluxes not captured by their contemporary 252 

estimates (see text for discussion). 253 



 254 

As discussed before, some misalignments arise due to uncertainty in the sediment fluxes estimates. 255 

For example, deltas in the tidal morphotype such as the Kolyma and Tigris-Euphrates are assigned 256 

relatively low tidal sediment fluxes (Nienhuis et al., 2020), despite displaying clear tidal widening, 257 

suggesting under-estimation of the tidal sediment fluxes for these deltas. Similarly, river 258 

morphotype deltas such as the Colville, Kuparuk, and Apalachicola, are characterized by abundant 259 

mouthbars but have high estimated wave sediment fluxes which are expected to inhibit mouthbar 260 

formation (Jerolmack & Swenson, 2007). The Kuparuk and Apalachicola are associated with 261 

valley-confined or sheltered shorelines where wave climate data may be particularly uncertain. 262 

These misalignments highlight that the shoreline morphometric approach may be more robust than 263 

the sediment flux approach for delta classification as it is less sensitive to its defining parameters 264 

(e.g. critical angle or range considered for fine scales; see Supporting Material).  265 

Further misalignments of interest are the river-tide morphotype deltas and tide morphotype deltas 266 

which are scattered across a range of relative tidal influence. This mixture arises as the river-tide 267 

and tide morphotypes consist of deltas with intermediate to high fraction of variance contributed 268 

by mouths (fM) due to headless and wide channels. However, the river-tide morphotype consists 269 

solely of deltas that are convex at the macroscale, e.g. the Irrawaddy, Indus, and Mahakam, which 270 

is a signature of historical progradation of the delta planform due to fluvial deposition. Also deltas 271 

such as the Zambezi and Rufiji are convex with wide headless channels and have abundant tidal 272 

mangroves (Anthony et al., 2021; Erftemeijer & Hamerlynck, 2005), suggesting historical 273 

significant river and tidal influence, but have otherwise smooth, sandy shorelines and translating 274 

spits indicating recent wave influence. This suggests that although these systems at present have 275 

large relative tidal sediment fluxes, the estimated relative sediment fluxes do not capture the 276 



historical river dominance which constructed them. Thus, as tides widen and preserve former 277 

distributary channels (Hoitink et al., 2017), and the timescale for waves to erase the convex 278 

depositional system formed by river progradation could be on the order of centuries (Nienhuis et 279 

al., 2016), the signature of a river remains on its delta long after it has stopped flowing. Therefore, 280 

careful consideration must be given to possible temporal heterogeneities in each of the sediment 281 

fluxes when computing their relative values and assessing the relationship between morphotype 282 

and relative sediment flux (Bhattacharya & Giosan, 2003). This is especially critical for 283 

characterizing morphologic response to sediment flux changes, e.g., decreasing riverine sediment 284 

delivery or changes in wave climate, and for projecting delta futures under climate change. 285 

Lastly, we hypothesize that some of the misalignments arise because the morphologic metrics are  286 

computed along the length of the entire shoreline, although the sediment fluxes are computed via 287 

point estimates and don’t convey information on spatial heterogeneity in the forcings acting on the 288 

delta. For example, the Parana delta lies in the wave morphotype although it has a complex 289 

distributary network in its southern half and is dominated by riverine sediment flux (Figs. 3-5). 290 

However, the Parana’s depositional environment is unique as the Uruguay river runs parallel to its 291 

northern shore (Milana & Kröhling, 2015), which we posit acts as a longshore current that 292 

smoothens the shoreface but is not captured by the global sediment flux estimation framework 293 

which only includes wind-driven longshore transport. To test this hypothesis, we computed the 294 

three multiscale metrics of shoreline structure only on the section of the shoreline between the 295 

active distributaries in the southern section, terming it ParanaRO, and found that the ParanaRO 296 

indeed lies in the river morphotype (Fig. 3), in agreement with its dominant riverine sediment flux 297 

(Fig. 5).  298 



Note that the multiscale framework presented herein allows us to further interrogate spatially 299 

explicit variability in shoreline structure. In particular, some deltas might exhibit lobes 300 

corresponding to distinct morphotypes (e.g. abandoned distributary lobes reworked by marine 301 

forces following channel avulsion), shedding further light on the alignment between sediment flux 302 

and morphology. However, the framework for estimating sediment fluxes (Nienhuis et al., 2020) 303 

will likely need to be adjusted to account for highly spatially variable sediment fluxes given multi-304 

lobe or multi-mouth structures or variable wave climate (Syvitski et al., 2022). We note that 305 

combining shoreline metrics with metrics of network complexity (Konkol et al., 2022; Tejedor et 306 

al., 2015a, 2015b, 2016, 2017) may help to separate deltas further within the SMS and identify 307 

subnetworks that need to be treated separately in terms of their morphology and sediment fluxes. 308 

Network information may disaggregate the relatively large river-tide morphotypes and the tide 309 

morphotypes, with a possible separation of the valley-confined Ob and Yenisei deltas from 310 

estuarine systems such as the Kolyma, Ganges Brahmaputra, and Colorado. This further sub-311 

division of deltas may also be able to yield insight into the influence of other controls on delta 312 

morphology including grain size (Caldwell & Edmonds, 2014), valley confinement, cold region 313 

processes, or sea level history (Nienhuis et al., 2023; Overeem et al., 2022). Interestingly, no 314 

systematic signature of near-shore sea-ice, permafrost, or river-ice was detected on shoreline 315 

structure (Lauzon et al., 2019; Overeem et al., 2022; Piliouras et al., 2021), except for a lack of 316 

wave influenced Arctic systems which may relate to the short wind fetch present due to sea ice 317 

(Barnhart et al., 2014) or the presence of a shallow subaqueous ramp dampening wave runup and 318 

breakup at the subaerial shoreline (Overeem et al., 2022). 319 

 320 

 321 



Conclusion 322 

We have introduced a novel quantitative framework to classify river delta morphology based on a 323 

multiscale characterization of delta shoreline structure through geometric and spectral metrics 324 

which form a three-dimensional shoreline morphometric space (SMS). Unsupervised classification 325 

of 54 deltas projected in the SMS reveals self-emergent morphologically similar deltas, i.e. delta 326 

morphotypes which are further associated with dominant forcings based on the metrics. We then 327 

found that dominant forcings inferred from shoreline structure generally align with the dominant 328 

forcings quantitatively estimated by their relative sediment fluxes. We posit that misalignments 329 

arise due to possible spatiotemporal variability in the dominant forcings not captured in the relative 330 

sediment fluxes, providing a basis for more detailed analysis of those deltas. The proposed 331 

shoreline morphologic classification framework relies on readily available satellite imagery 332 

making it easily applicable for remote, poorly instrumented coastlines and basins as well as on 333 

extraterrestrial bodies, for which forcings are not available. 334 
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metric classification sensitivity to the definition of the fine scale variance, and tabulated

values of the morphometrics and sediment flux data.
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Text S1. Extended Methodology

Shoreline Extraction

The Opening Angle Method (OAM; (Shaw et al., 2008)) was used to define the shorelines

of the deltas under study. The OAM and related methods (Geleynse et al., 2012) are used

in river mouth impacted coastlines where the traditional definition for a shoreline as the

land water interface is not meaningful as the interface can extend far upstream of the

actual river mouth.

To utilize the OAM, it is first necessary to generate a binary water mask of the subaerial

extent of the delta. Water masks were generated from the Landsat-derived Global Surface

Water (GSW) dataset, which provides 30-m spatial and monthly temporal resolution

water masks from 1984 to 2018 and is available via Google Earth Engine (Pekel et al.,

2016). An individual water mask was used for each delta. In order to account for missing

data due to cloud cover and seasonal heterogeneity in water cover, water masks were

generally obtained by thresholding the 1984 to 2018 occurrence product, which measures

the fraction of time a pixel was covered by water from 1984 to 2018. In deltas with

active shorelines e.g. the Danube or Wax Lake, the occurrence for a single representative

year was used (Table S1), i.e. maps which measure the fraction of time a pixel was

covered by water for a specific year. In the Arctic, snowmelt-driven floods from April to

June lead to significant seasonal variability in inundation and apparent subaerial delta

extent, therefore the June occurrence was used to identify maximum mouth extent (Vulis

et al., 2021). When necessary, masks were manually cleaned to edit or remove features

such as jetties or rice paddies, which are visible from contemporaneous satellite imagery

,
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and the GSW has difficulty accounting for at its 30-m spatial resolution. Lastly, the

OAM algorithm computes an opening angle on all water pixels that lie within the convex

hull of the land in the water mask, which leads to unnecessary computations in channel

sections upstream of the mouth which are entirely blocked by land. Therefore, these

upstream sections were manually marked as land which decreased OAM runtime, as has

been previously proposed (Baumgardner, 2015). The OAM was then run on the water

mask corresponding to each delta. We made computational improvements to the OAM

which significantly improved runtime, and have published this as an R package available

via GitHub (https://github.com/lvulis/ROAM). A critical angle θc of 45
◦ was then used

to define the shoreline as an ordered set of coordinates SR
45 : {(x, y)45}, although we found

that the emergent shoreline classification does not change when using a critical angle θc

of 50◦. The shoreline defined in SR
45 only extends over the subaerial extent of the delta

with start and end points of the shoreline defining the limits of the delta. The subaerial

delta was visually outlined and compared with geologic maps where the extent was not

clear from Landsat imagery. Note that in several deltas, non-depositional sections of the

coastline were included in SR
45, e.g. in valley confined systems such as the Dnieper and Don,

and these were removed. Also note that the Missisippi Head of Passes, the Atchafayla, and

Wax Lake deltas were all analyzed as separate systems due to their spatial independence

in line with other studies (Galloway, 1975; Geleynse et al., 2012; Konkol et al., 2022;

Knights et al., 2020).

Finally, to remove discretization artifacts on the shorelines which arise from being de-

fined at the 30-m pixel scale, the raw shoreline in SR
45 was first smoothed using a Nadaraya-

,
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Watson kernel smoother with a bandwidth of 180-meters (Strimas-Mackey, 2021) and then

resampled at a 60-meter interval, resulting in the shoreline S45 used in the geometric and

spectral analysis.

Macroscale – Shape

To measure the shape of the delta, a circle with parameters {(xc, yc), Rc} was fit to S45

using least squares (Jammalamadaka & Sengupta, 2001). The shoreline may correspond

only to a sector of a circle, which the least squares fit captures. The center of the circle

(xc, yc) corresponds to the center of curvature and Rc the radius of curvature. Deltas with

a center of curvature lying in the ocean are concave, while those with a center of curvature

lying over land are convex. When Rc is significantly larger than the arc length LC of the

circular sector corresponding to the shoreline, the shoreline is essentially flat. That is,

when the ratio Lc/Rc = φ, where φ is the angle of the sector, is smaller than a cutoff

φmin, the shoreline is flat. We found that a cutoff φmin = 2π/12 = 30◦ clearly separated

flat from concave and convex deltas, i.e. if the shoreline corresponds to a circular sector

with a radius at least 12 times its length, it is flat.

Mesoscale – Fraction of variance contributed by mouths

To measure the fraction of variance contributed by mouths (fM ), first sections of S45 cor-

responding to mouths were identified by denoting which points in SR
45 are not a part of S

R
90,

the shoreline corresponding to a critical angle of θc = 90◦, i.e. MR
45 = {(xi, yi)|(xi, yi) ∈ SR

45

and /∈ SR
90}. This is because OAM-defined shorelines using different critical angles do not

overlap within local concavities (e.g. mouths or embayments). This definition may include

embayments such as lagoons sheltered by spits, therefore MR
45 was manually inspected and

,
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cleaned to represent only mouths. Lastly, the same smoothing procedure used to trans-

form SR
45 to S45 was used to smooth MR

45 and produce M45, which identifies the set of

points in the smoothed shoreline as mouths.

Then to measure what fraction of variability in S45 is contributed byM45 we used wavelet

analysis to locally estimate the variance in shoreline structure at multiple scales (Kumar

& Foufoula-Georgiou, 1994). For the wavelet analysis a univariate series representing

the shoreline was produced as the distance dc from every point in S45 to the center of

curvature (xc, yc), defining a signal dc(l), where l is the distance along the shoreline. For

convex deltas, the mouths show up as minima, which can be seen in the Mahakam Delta

(Fig. 2). We found that this mapping of the shoreline to a univariate series is preferable

to approaches such as extracting the local curvature series, which is effectively a high-

pass filter removing large scale features and is sensitive to discretization, see Text S3.

Note that mouth widths are typically non-uniform within a delta, resulting in multiscale

variability in the dc(l) signal, supporting the use of localized analysis of variance in the

spatial domain. Then, the wavelet transform of dc(l) was computed using the Morlet

wavelet, which has optimal time-frequency localization, with a central frequency of 6

rad/s (Kumar & Foufoula-Georgiou, 1994). The wavelet coefficients are given by Ψk,l at

a wavenumber (spatial frequency) k and location l along the shoreline, and are used to

estimate the power, Ψ2
k,l (Fig. S2). Finally, the fM is defined as the ratio of the integrated

wavelet power for all scales over coefficients corresponding to the mouths, Ψk,l∈M over the

total power (i.e. variance) of the signal (Eqn. 1), where L is the length of the shoreline

and kmin and kmax are the minimum and maximum wavenumbers, respectively. Note

,
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that typically, wavelet coefficients inside the cone of influence (COI) are excluded from

the computation of the variance as they are impacted by edge effects. However, in some

deltas the mouths may contain very large features, sometimes spanning over one third of

the length of the signal, therefore for all deltas these coefficients were included for more

robust estimation of the relative energy in these locations.

fM =
∫ kmax

kmin

∫ L

0
Ψ2

k,l∈Mdldk/
∫ kmax

kmin

∫ L

0
Ψ2

k,ldldk. (1)

Microscale – Gini-Corrected Fine Scale Variance

Lastly the wavelet transform (Kumar & Foufoula-Georgiou, 1994) was used to estimate

the variance at fine scales, i.e. from 300 to 1000 meters (Eqn. 2). Note that here edge

effects from the COI can significantly influence the estimated amount of energy at the

scales of the features under study, therefore coefficients inside the COI are excluded and

the power at each wavenumber k is normalized by the number of points at that frequency,

Nk. The sensitivity of the lower bound of 1000 meters was evaluated and no significant

changes in the classification were found (Fig. S1).

FSV1000 =
1

Nk

∫ 1/300

1/1000

∫ L

0
Ψ2

k,ldldk. (2)

Although two systems may have the same variance at fine scales, one may lack structural

variability (i.e. correspond to white noise), while another may have peaks or increased

variability at distinct scales. To account for this structured variability, the power spectral

density (PSD) of the actual shoreline spatial series is compared to a white noise series with

equivalent variance. Specifically, a spectral Gini coefficient g, which measures the total

deviation of the cumulative PSD (cPSD) from the cPSD of white noise is computed over

,
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the fine scales, and used as a multiplier to the FSV1000, defining the gFSV = g ∗FSV1000.

This multiplier is low when shoreline variability is similar to white noise, and high when

shoreline variability has defined structures (i.e. peaks or higher energy at finer or coarser

scales), and helps to separate deltas with similar FSV1000 but distinct modes of variability

(see Text S2 for details).

All analyses were performed in R using open source geospatial, statistical, and spectral

analyses packages (Strimas-Mackey, 2021; Pebesma, 2018, 2021; Pau et al., 2010; Morgan-

Wall, 2021; Aybar, 2022; Gouhier et al., 2021).

Sediment Flux Data

Sediment fluxes for every delta were obtained from version 3 of the Nienhuis et al. (2020)

database, which used the WBMSed hydrologic model forced with 1981 to 2010 hydrocli-

mate and assuming no human intervention of landscape properties to estimate riverine

sediment fluxes, QR, (Cohen et al., 2013), angular wave climate data from WaveWatch

3.0 (Chawla et al., 2013) averaged from 1979 to 2009 to estimate wave sediment fluxes,

QW , and tidal constituents from TXPOv8 inverted from satellite altimetry measurements

from 1992 to 2006 (Egbert & Erofeeva, 2002) to estimate tidal sediment fluxes, QT . To

reduce uncertainty in tidal amplitude estimates associated with the delta outlet location

being located too far upstream of the coastline in the global delta database, for all deltas

tidal amplitudes from the TXPO grid were obtained at the OAM shoreline extracted at

a critical angle 90◦. This only resulted in a difference of more than 5 cm for 9 out of 54

deltas, all with significantly widened mouths.

,
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Sediment flux data represents a delta-wide value, see (Nienhuis et al., 2020) and refer-

ences therein for details. For every delta, the relative sediment flux rx, where x represents

either the river, wave, or tide component is defined as:

rx =
Qx

QR +QT +QW

. (3)

,
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Text S2. Spectral Gini Coefficient Definition In order to help separate wave-

influenced deltas which are smooth and lack distinct features in the fine scale ranges from

the river and tide influenced deltas which contain structure at fine scales, we adjusted

the finescale variance by a spectral gini coefficient. To define the spectral gini coefficient

and interpert this adjustment, first consider the wavelet-estimated power spectral density,

given by Eqn. 4,

PSD(k) =
1

Nk

∫ L

0
Ψ2

k,ldl, (4)

where l is the location and k the wavenumber (scale). The spectral variance SV for a

range of wavenumbers (scales) k0 to k1 is found by integrating with respect to k:

SV =
∫ k1

k0
PSD(k)dk. (5)

In general, two signals may have identical SV for a given range of scales but distinct

structure. For example, white noise, which by definition has a constant PSD, i.e.

PSDWN = P , and lacks any structural variability, may have the same SV as a sig-

nal with structured variability. To measure the deviation from white noise, consider the

normalized PSD, PSD∗(k), given in (Eqn. 6). PSD∗(k) is analogous to a probability

density function (PDF), where the integral over the support (i.e. from k0 to k1) is 1.

PSD∗(k) =
PSD(k)

SV
. (6)

White noise has a uniform spectrum (i.e. flat PSD), while the PSD of another signal

may be distributed heterogeneously over the range of wavenumbers (Fig. S2). We then

consider the normalized cumulative power spectral density, cPSD∗(k), where k can take

,
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on any value up to k1:

cPSD∗(k) =
∫ k

k0
PSD∗(u)du. (7)

White noise has a linear cPSD∗, while the shoreline cPSD∗ is skewed towards relatively

coarser scales for k0 = 1
1000

m−1 and k1 = 1
300

m−1 (Fig. S2). For these skewed distribu-

tions, a natural measure of the deviation from a uniform distribution is the Gini Coeffi-

cient, g, which measures the area between the cPSD∗(k) of white noise, cPSD∗
WN(k), and

the cPSD∗(k) of the shoreline, normalized by the area under the curve of cPSD∗
WN(k).

As these distribution functions represent spectra this is a spectral Gini Coefficient.

g =

∫ k1
k0

(cPSD∗
WN(k)− cPSD∗(k))dk∫ k1

k0
cPSD∗

WN(k)dk
. (8)

The coefficient g increases towards a maximum value of 1 as the PSD is more hetero-

geneous and approaches zero as the PSD approximates white noise. This coefficient is

used as a multiplier to the FSV, computed from k0 = 1
1000

m−1 to k1 = 1
300

m−1, of the

shoreline spectra, accounting for the heterogeneous distribution of variance among scales

indicative of distinct scale-dependent features (Fig. S2).

,
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Text S3. Unsuitability of curvature mapping for shoreline characterization

A common technique to quantitatively analyze meandering rivers is to map the 2D curve

corresponding to the channel centerline to a 1D spatial-series represented by its curvature,

e.g. (Schwenk et al., 2015), which could also be applied to delta shorelines to perform

wavelet analysis. However, for the problem of shoreline characterization we found that the

high-pass filter properties of the curvature operator make it unsuitable for extraction of

large scale patterns such as channel mouths using spectral analysis. A synthetic example

using sinusoids is given to demonstrate these high-pass filter properties. Consider two

sinusoids of differing wavenumber with random additive error, z1(s) = 5 sin (s) +N (0, .5)

and z2(s) = 20 sin ( s
2π
) +N (0, 2), along with their sum z3(s) = z2(s) + z1(s) (Fig. S3).

The sinusoids represent spatial-series with s being some distance along the shoreline, and

are sampled with spatial step ∆s = 1. To analyze the oscillations, the Fourier transform

ẑ(k) with wavenumber k is taken, with the power spectral density of each signal given in

the right panel of (Fig. S3). The additive signal z3 has clearly defined peaks at k = (2π)−1

and k = (2π)−2.

In the case where the functional relationship between z and s is not known, we may

want to map the set of coordinates of each {(s, z)i} to a univariate series to employ

spectral analysis to characterize the curve. One such common mapping is defining the

local curvature κ. For an ordered set of coordinates {(x, y)i} constituting a 2D planar

curve, a stable and smooth estimator of the local curvature κ = 1/R is given in (Schwenk

et al., 2015):

,
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R =
1

2

√
(a2

x + a2
y)(b

2
x + b2

y)(c
2
x + c2y)

(aybx − axby)
, (9)

where ax = xi−xi−1, bx = xi+1−xi−1,cx = xi+1−xi. This definition and related curvature

operators given in (Schwenk et al., 2015) clearly depend on the sampling resolution of the

2-D planar curve.

The curvature is computed for each curve given by the {(s, z)} coordinate pairs to

define a univariate series κ(l), where l is the distance along the curve (Fig. S4). The noise

present in the original signals is amplified by taking local differences and results in the

large variation seen in κ2 and κ3. The corresponding power spectral density shows that

for the high wavenumber series, κ1, the curvature mapping still captures the wavenumber

observed in z1, but κ2 and κ3 have no power near the real wavenumber of (2π)−2. This is

because taking finite differences to compute the curvature filters out the low wavenumber

signal.

The sensitivity or ability to capture the low wavenumber signal likely depends on the

ratio of the sampling wavenumber ks = ∆s−1 to the wavenumber of interest ku, ks/ku. By

the Nyquist theorem, this ratio must be at least 2 to resolve ku. When the ratio approaches

2 from a larger value, noise may not be amplified by the curvature transformation, but

when it is much larger than 2 noise is amplified. Some value sufficiently optimal to capture

ku using the curvature transformation may exist. However, mouth widths are not constant

on deltas and can vary at least by a factor of 2, therefore ku can vary significantly, so a

ks optimal for the narrowest mouth will amplify noise in the remaining, larger mouths.

Moreover, a sufficiently high ks to capture mouths would filter out information at low

,
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wavenumbers, e.g. large scale features such as deltaic lobes. For these reasons the mapping

of curvature is not suitable for the problem of shoreline characterization.

References

Aybar, C. (2022). rgee: R bindings for calling the ’earth engine’ api [Computer software

manual]. Retrieved from https://CRAN.R-project.org/package=rgee (R package

version 1.1.3)

Baumgardner, S. E. (2015). Quantifying galloway: Fluvial, tidal and wave influence

on experimental and field deltas (Unpublished doctoral dissertation). University of

Minnesota.

Chawla, A., Spindler, D. M., & Tolman, H. L. (2013). Validation of a thirty year wave

hindcast using the climate forecast system reanalysis winds. Ocean Modelling , 70 ,

189–206.

Cohen, S., Kettner, A. J., Syvitski, J., & Fekete, B. M. (2013). Wbmsed, a distributed

global-scale riverine sediment flux model: Model description and validation. Com-

puters & Geosciences , 53 , 80–93.

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean

tides. Journal of Atmospheric and Oceanic technology , 19 (2), 183–204.

Galloway, W. E. (1975). Process framework for describing the morphologic and strati-

graphic evolution of deltaic depositional system. In Deltas: Models for exploration

(pp. 87–98). Houston Geological Society.

Geleynse, N., Voller, V., Paola, C., & Ganti, V. (2012). Characterization of river delta

shorelines. Geophysical research letters , 39 (17).

,



VULIS ET AL.: DELTA MORPHOTYPES X - 15

Gouhier, T. C., Grinsted, A., & Simko, V. (2021). R package biwavelet: Conduct

univariate and bivariate wavelet analyses [Computer software manual]. Retrieved

from https://github.com/tgouhier/biwavelet ((Version 0.20.21))

Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular statistics (Vol. 5).

world scientific.

Knights, D., Sawyer, A. H., Barnes, R. T., Piliouras, A., Schwenk, J., Edmonds, D. A.,

& Brown, A. M. (2020). Nitrate removal across ecogeomorphic zones in wax lake

delta, louisiana (usa). Water Resources Research, 56 (8), e2019WR026867.

Konkol, A., Schwenk, J., Katifori, E., & Shaw, J. B. (2022). Interplay of river and tidal

forcings promotes loops in coastal channel networks. Geophysical Research Letters ,

49 .

Kumar, P., & Foufoula-Georgiou, E. (1994). Wavelet analysis in geophysics: An intro-

duction. Wavelets in geophysics , 4 , 1–43.

Morgan-Wall, T. (2021). rayshader: Create maps and visualize data in 2d and

3d [Computer software manual]. Retrieved from https://CRAN.R-project.org/

package=rayshader (R package version 0.24.10)

Nienhuis, J. H., Ashton, A. D., Edmonds, D. A., Hoitink, A., Kettner, A. J., Rowland,

J. C., & Törnqvist, T. E. (2020). Global-scale human impact on delta morphology

has led to net land area gain. Nature, 577 (7791), 514–518.

Pau, G., Fuchs, F., Sklyar, O., Boutros, M., & Huber, W. (2010). Ebimage—an r package

for image processing with applications to cellular phenotypes. Bioinformatics , 26 (7),

979–981. doi: 10.1093/bioinformatics/btq046

,



X - 16 VULIS ET AL.: DELTA MORPHOTYPES

Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector

Data. The R Journal , 10 (1), 439–446. Retrieved from https://doi.org/10.32614/

RJ-2018-009 doi: 10.32614/RJ-2018-009

Pebesma, E. (2021). stars: Spatiotemporal arrays, raster and vector data cubes [Com-

puter software manual]. Retrieved from https://CRAN.R-project.org/package=

stars (R package version 0.5-5)

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping

of global surface water and its long-term changes. Nature, 540 (7633), 418–422.

Schwenk, J., Lanzoni, S., & Foufoula-Georgiou, E. (2015). The life of a meander bend:

Connecting shape and dynamics via analysis of a numerical model. Journal of Geo-

physical Research: Earth Surface, 120 (4), 690–710.

Shaw, J. B., Wolinsky, M. A., Paola, C., & Voller, V. R. (2008). An image-based method

for shoreline mapping on complex coasts. Geophysical Research Letters , 35 (12).

Strimas-Mackey, M. (2021). smoothr: Smooth and tidy spatial features [Computer

software manual]. Retrieved from https://CRAN.R-project.org/package=smoothr

(R package version 0.2.2)

Vulis, L., Tejedor, A., Zaliapin, I., Rowland, J. C., & Foufoula-Georgiou, E. (2021).

Climate signatures on lake and wetland size distributions in arctic deltas. Geophysical

Research Letters , 48 (20), e2021GL094437.

,



VULIS ET AL.: DELTA MORPHOTYPES X - 17

(A)

(B)

(C)

gFSV900

gFSV800

gFSV1100

Shoreline Morphometric Space

Delta
Morphotype

Wave
River-Wave

River
River-Tide

Tide

Figure S1. Insensitivity of the emergent classes to the upper bound of the

finescale variance. There is almost no discernible difference in the deltas belonging

to each emergent morphotype when adjusting the upper wavelength of the Gini-corrected

Fine Scale Variance (gFSV ) between 800 m to 1100 m. Only the Selenga and Yana switch

from the river morphotype to river-wave morphotype for an upper wavelength of 1100 m,

but lay on the boundary of the two classes.
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Figure S2. Cumulative Power Spectral Density (cPSD∗) of the shoreline

signals. (A) The cPSD∗ curves of the 54 analyzed delta shorelines, each normalized to

have a value of one over the fine scales. The straight black line is cPSD∗
WN and overlaps

for each delta due to the normalization to have unit power. (B) Example of the deviation

between an arbitrarily selected real shoreline and white noise with equivalent energy. The

Gini Coefficient (g) is the area between the two curves normalized by the area under the

white noise.
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Figure S3. Synthetic sinusoids and their corresponding power spectral den-

sity.
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Figure S4. Result of the curvature operator on sinusoids. The sinusoids from

Fig. S3 transformed to curvature spatial-series using Equation (9). Note that κ2 and κ3

fail to capture the low frequency signal present in z2 and z3.
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