SKB Task Force GWFTS: Pragmatic Validation Using Predictive Modeling Exercises

Björn Gylling¹, B Gylling^{2,3}, S Finsterle¹, P Bruines¹, M Stigsson¹, N Marsic¹, J.-O Selroos¹, and A Poteri¹

January 17, 2023

¹Affiliation not available

²SKB Task Force GWFTS

³Gylling GeoSolutions

SKB Task Force GWFTS: Pragmatic Validation Using Predictive Modeling Exercises

B. Gylling¹, S. Finsterle², P. Bruines³, M. Stigsson³, N. Marsic³, J.-O. Selroos³, A. Poteri⁴

Abstract ID: 1131754

1. Gylling GeoSolutions, USA; 2. Finsterle GeoConsulting, LLC, USA; 3. SKB, Sweden; 4. Posiva, Finland

H52K-0610

1. SKB Task Force GWFTS

Data from rock blocks from the

Flivik quarry in Sweden

← 1N1 to 5N5 (70x100mm)

15.2.2.5 (1100x740mm)

15.2.2.1 (1100x200mm)

15.2.2.4 | 15.2.2.3 | 15.2.2.2

- The international SKB Task Force on Modeling of Groundwater Flow and Transport of Solutes (TF GWFTS) was established 1992 to support and interpret field experiments (www.skb.se/taskforce).
- Further objectives: To develop, test and improve tools for conceptual understanding and simulating groundwater flow and transport of solutes in fractured rocks.
- Work is organized in collaborative modeling tasks.

- The participating organizations in TF GWFTS: BMWi (Germany), DOE (USA), NUMO (Japan), NWMO (Canada), KAERI (Korea), Posiva (Finland), SKB (Sweden) and SURAO (Czech Republic)
- The Modeling Teams are: BMWi: GRS; DOE: LANL; NUMO: JAEA; NWMO: Uni. of Waterloo; KAERI: KAERI; Posiva: VTT; SKB: Amphos21, SU; SURAO: PROGEO, TUL

2. Task 10 – Pragmatic Validation

Task 10 focuses on pragmatic validation* of hydrogeological and transport models with **discrete features**. Of importance for Task 10 are:

- Pragmatic validation consistent with the IAEA definition of "fit for purpose" validation considering limited available data.
- Use of multiple conceptual and numerical models to quantify uncertainties/sensitivities.
- Confidence building considering model conditioning, calibration and rejection.
- Sensitivity and uncertainty assessment of key parameters.
- Progressive validation as additional data are collected.
- Robust model audit to identify and evaluate assumptions and limitations.
- Prediction-outcome (P/O) exercises to evaluate whether a model is an adequate representation of the real system.

*) Finsterle S, Lanyon B. Pragmatic Validation of Numerical Models Used for the Assessment of Radioactive Waste Repositories: A Perspective. Energies 2022, 15, 3585. doi: 10.3390/en15103585

3. Task 10.2.1 – An ongoing P/O exercise

The objectives of the Task 10.2 exercises are to:

- Develop concepts and models for flow and transport at the single fracture scale.
- Consider importance of **hydro-mechanical coupling** on flow and transport.
- Develop modelling approaches for prediction of:
- Flow and transport in single fractures. Upscaled fracture properties from borehole to deposition hole scale.
- Build starting points for pragmatic validation; Task 10.2.1 is a prediction-outcome exercise.

Fracture roughness

- Predictions of the fracture roughness distributions on the 1 m scale
- Calculate fracture roughness Performance Measures (PMs)
- Determine the uncertainty range
- **Compare** the results with acceptance criteria, i.e., expected spread of PMs

Fracture aperture

- Predictions of the aperture distribution
- Calculate fracture aperture PMs
- Determine the uncertainty range
- **Compare** the results with the expected spread of PMs

4. Task 10.2.2 – Another ongoing P/O exercise

The main objectives of this subtask are:

- Prediction and validation of the upscaled fracture geometry from borehole sized fracture geometry and/or fracture trace geometry.
- **Prediction** and **validation** of **flow** along a fracture at different normal stresses.
- Support the development and demonstration of pragmatic validation workflow at the single fracture scale

In brief, the modelers are expected to:

- **Predict aperture distributions** at normal stresses of 0, 1 and 4 MPa and predict the **flow** in two orthogonal directions for these three normal stresses.
- Calculate the **flow rates** at normal stresses of 10, 20, 30 and 40 MPa in the 2-4 direction.
- Explore aspects to be tackled in subsequent subtasks (e.g., transport, or flow and transport on deposition hole, block and tunnel scales).
- Address the other items of the Pragmatic Validation Workflow.

