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Abstract

The factors controlling earthquake swarm duration are remain unclear, especially in the long-living ones. A severe earthquake

swarm struck the tip of the Noto peninsula, Japan. Ten M > 4.0 earthquakes occurred, and the sequence has continued more

than four years. We investigated the spatiotemporal characteristics of the swarm using relocated hypocenters to elucidate the

factors causing this long duration. The swarm consists of four seismic clusters-northern, northeastern, western, and southern-

the latter of which began first. Diffusive hypocenter migrations were observed in the western, northern, and northeastern

clusters with moderate to low diffusivities, implying a low-permeability environment. Rapid diffusive migration associated with

intermittent seismicity deep within the southern cluster suggests the presence of a highly pressurized fluid supply. We conclude

that the nature of this fluid supply combined with intermittent seismicity from the southern cluster and a low-permeability

environment are the key causes of this long-living swarm.

Hosted file

952930_0_art_file_10567660_rnhlzn.docx available at https://authorea.com/users/572749/

articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-

northeastern-tip-of-the-noto-peninsula-japan

1

https://authorea.com/users/572749/articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-of-the-noto-peninsula-japan
https://authorea.com/users/572749/articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-of-the-noto-peninsula-japan
https://authorea.com/users/572749/articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-of-the-noto-peninsula-japan


P
os
te
d
on

17
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
39
74
60
.0
94
20
59
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Noto Pen.

Pacific Ocean

Japan 
Islands

Toyama 
 Bay

a

37
.5

5˚
N

37
.4

5˚
N

137.2˚E 137.3˚E

W

N
NE

S 5 km

900

1200

1500
Time [day]

T1T2 T2’

T3 T3’

137.2˚E 137.3˚E137.16˚E 137.2˚E

137.25˚E 137.3˚E
5

10

15

20

De
pt

h 
[k

m
]

De
pt

h 
[k

m
]

10

15

T1’

b

c

d

e f

T1 T1’

T2 T2’ T3 T3’

M5.4 M5.0

M5.1

Hosted file

952930_0_supp_10567503_rnhk6z.docx available at https://authorea.com/users/572749/articles/

617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-

of-the-noto-peninsula-japan

2

https://authorea.com/users/572749/articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-of-the-noto-peninsula-japan
https://authorea.com/users/572749/articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-of-the-noto-peninsula-japan
https://authorea.com/users/572749/articles/617462-long-living-earthquake-swarm-and-intermittent-seismicity-in-the-northeastern-tip-of-the-noto-peninsula-japan


P
os
te
d
on

17
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
39
74
60
.0
94
20
59
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

137.1˚E 137.3˚E 10 15 20 25
Depth [km]

5

37
.6

˚N
37

.5
˚N

37
.4

˚N

a

b

d

e

f

1 2 3 4 5
Normalized RMS

c

3



P
os
te
d
on

17
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
39
74
60
.0
94
20
59
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

(b)(c) (d)(e) (f) (g) (h)(i)
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

1.0 × 100

5.0 × 10–1

1.0 × 10–1

1.0 × 100

5.0 × 10–1

2.5 × 10–1

1.0 × 101

5.0 × 100

1.0 × 100

2.0 × 102

5.0 × 101

1.0 × 102

1.0 × 101

5.0 × 100 1.0 × 100

5.0 × 101

5.0 × 100

1.0 × 101

3.0 × 100

5.0 × 10–1

1.5 × 100

5.0 × 101

5.0 × 100

1.0 × 101

Magnitude

4



P
os
te
d
on

17
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
39
74
60
.0
94
20
59
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

a

(1) (2) (3)

0

5

10

15
0 100 200 300 400 500

λ = 1.01

d
λ = 0.79

0

5

10

15

D
ep

th
 [k

m
]

Stress [MPa]
0 100 200 300 400 500

0 100 200 300

Sh
ea

r s
tre

ss
 [M

Pa
]

0

100
50

0

100
50

0 100 200 300

/

/

10 km depth

15 km depth

Effective normal stress [MPa]
0 100 200 300

0

100
50

0

100
50

0 100 200 300

/

/
0

100
50

0

100
50

b
0

5

10

15
0 100 200 300 400 500

λ = 0.91

c

0

100
50

0

100
50

e

Pf

Creation of high-permeability 
fluid pathway 

(σ3 = vertical stress)

Horizontal crack

After the Dec. 2020

activation

σ3 > Pf

σ3 < Pf

Crack

 opening

5



manuscript submitted to Geophysical Research Letters 

 

 1 

Long-living Earthquake Swarm and Intermittent Seismicity in the Northeastern Tip 2 

of the Noto Peninsula, Japan 3 

 4 

Y. Amezawa1, Y. Hiramatsu2, A. Miyakawa1, K. Imanishi1, and M. Otsubo1  5 

 6 

1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology. 7 

2School of Geosciences and Civil Engineering, College of Science and Technology, Kanazawa 8 

University. 9 

 10 

Corresponding author: Yuta Amezawa (amezawa.y@aist.go.jp)  11 

 12 

Key Points: 13 

• An energic and long-living earthquake swarm has been observed in the northeastern tip 14 

of the Noto peninsula, Japan. 15 

• Observed diffusive hypocenter migrations imply that pore fluid pressure migration is a 16 

driving factor of the swarm. 17 

• Intermittent seismicity at the bottom of the initial cluster suggests that a geyser-like fluid 18 

supply is a key factor in swarm longevity. 19 
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Abstract 25 

The factors controlling earthquake swarm duration are remain unclear, especially in the long-26 

living ones. A severe earthquake swarm struck the tip of the Noto peninsula, Japan. Ten M > 4.0 27 

earthquakes occurred, and the sequence has continued more than four years. We investigated the 28 

spatiotemporal characteristics of the swarm using relocated hypocenters to elucidate the factors 29 

causing this long duration. The swarm consists of four seismic clusters—northern, northeastern, 30 

western, and southern—the latter of which began first. Diffusive hypocenter migrations were 31 

observed in the western, northern, and northeastern clusters with moderate to low diffusivities, 32 

implying a low-permeability environment. Rapid diffusive migration associated with intermittent 33 

seismicity deep within the southern cluster suggests the presence of a highly pressurized fluid 34 

supply. We conclude that the nature of this fluid supply combined with intermittent seismicity 35 

from the southern cluster and a low-permeability environment are the key causes of this long-36 

living swarm. 37 

 38 

Plain Language Summary 39 

Earthquake swarms are sequences of several earthquakes occurring in a concentrated area over a 40 

given period. Unlike other major earthquakes, which have one main shock and several 41 

subsequent aftershocks, swarms lack a clear mainshock event. The causes of long-lasting 42 

earthquake swarms are not sufficiently understood. In the northeastern tip of the Noto Peninsula 43 

in Japan, more than 20,000 earthquakes occurred between May 2018 and June 2022, including 44 

ten events over magnitude 4.0. To understand the controlling factors of this long-living 45 

earthquake swarm, we investigated the spatiotemporal characteristics of the swarm using high-46 

resolution relocated hypocenter locations. The hypocenters of the swarm are spatially separated 47 

in four clusters and initiated from the southern cluster. We also observed a diffusive pattern in 48 

hypocenter distribution, which is typical of earthquake swarms surrounding volcanoes or fluid 49 

injection wells, implying the existence of fluid as a driving factor of the swarm. In the southern 50 

cluster specifically, we found many intermittent seismic activities with rapid diffusive changes in 51 

hypocenter distribution, suggesting the presence of a highly pressurized, deep-source fluid 52 

supply. The intermittent fluid supply from the southern cluster toward the others and the 53 
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relatively low-permeability environment are key factors in the longevity of this earthquake 54 

swarm. 55 

 56 

1 Introduction 57 

Earthquake swarms are patterns of seismic activity that have no clear mainshock and 58 

continue for a specific period (e.g., Mogi, 1963). Swarms are often observed around volcanoes, 59 

geothermal sites, and anthropogenic fluid injection wells (e.g., Chen & Shearer, 2011; Yukutake 60 

et al., 2011, Horton 2012). Previous studies have revealed the driving factors of swarms, such as 61 

the shear strength of faults or changes in the stress state around the swarm area by highly 62 

pressurized fluid intrusion (e.g., Shelly et al., 2016; Yoshida et al., 2017), aseismic slip (e.g., 63 

Lohman & MacGuire, 2007; Dublanchet & De Barros, 2021), and magmatic dyke intrusion (e.g., 64 

Toda et al., 2002).  65 

An important concern regarding earthquake swarms is the duration of swarm activity. 66 

Previous studies have reported plausible factors that control swarm duration, such as the distance 67 

from a volcano (Vidale et al., 2006), heterogeneity of crustal permeability (Ross et al., 2020), 68 

and diffusivity of hypocenter migration as a function of crustal permeability (Amezawa et al., 69 

2021). The duration of an earthquake swarm can range from a few days to several years. Swarms 70 

spanning several years have been reported, such as the Matsushiro, Japan swarm (e.g., Hagiwara 71 

& Iwata, 1968; Cappa et al., 2009), the Ubaye Valley, French Alps swarm (Jenatton et al., 2007; 72 

Thouvenot et al., 2016), the Cahuilla Valley, USA swarm (Hauksson et al., 2019; Ross et al., 73 

2020), the Tohoku, Japan swarms (Amezawa et al., 2021), and swarms in Southern California 74 

(Ross & Cochran, 2021). Understanding the causes of earthquake swarm longevity is an 75 

important step in elucidating the overall nature of earthquake swarms and assessing the risk to 76 

human life when a swarm area is close to anthropogenic activity. 77 

In this study, we examined the driving mechanisms of a long-living earthquake swarm in 78 

the northeastern tip of the Noto Peninsula in central Japan (Figure 1). The swarm activity began 79 

in June 2018 and has continued for over four years. More than 20,000 earthquakes, including 80 

three M ≥ 5.0 events, were detected within a 15 km2 area at the tip of the peninsula. The activity 81 

drastically increased in December 2020, and three novel seismic clusters formed in the western, 82 
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northern, and northeastern areas adjacent to the initial cluster (hereafter referred to as the W, N, 83 

NE, and S clusters, respectively) (Figure 1). The largest earthquake recorded during this 84 

timeframe (M5.4) occurred on 19 June 2022 at the west rim of the NE cluster. The focal 85 

mechanisms provided by the F-net moment tensor catalog (National Research Institute for Earth 86 

Science and Disaster Resilience, 2019a) indicate mostly reverse faults with northwest-southeast 87 

compression. These focal mechanisms are comparable to the regional reverse fault-dominated 88 

stress field (Terakawa & Matsu’ura, 2010). To reveal the mechanisms perpetuating this long-89 

living swarm, we performed a detailed analysis of the spatiotemporal change in hypocenter 90 

distribution using a high-resolution relocated hypocenter catalog. 91 

  92 
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swarm area. Blue dots show the seismicity between May 2018 and June 2022 from the unified 96 

catalog of the Japan Meteorological Agency. Orange inverse triangles represent seismic stations 97 

used in this study. b Index map. c Areal map of the study area. Colored dots show the relocated 98 

epicenter distribution of the swarm, displayed in order of the elapsed days from 13 May 2018. 99 

White rectangles delineate cluster borders (S, W, N, and NE clusters). Bidirectional arrows 100 

indicate the cross-section lines (T1–T1′, T2–T2′, T3–T3′) corresponding to d, e, and f, 101 

respectively. Black and red beach balls represent the F-net focal mechanism solutions for 4.0 ≤ 102 

M < 5.0 and M ≥ 5.0, respectively. d–f Cross-sectional views for the S, W, and N-NE clusters 103 

respectively. 104 

 105 

2 Data and Methods 106 

2.1 Hypocenter Relocation 107 

We used the double-difference algorithm (Waldhauser & Ellsworth, 2000) to relocate the 108 

hypocenters of 20,542 events detected in the swarm area by the Japan Meteorological Agency 109 

(JMA) between January 2018 and June 2022. The magnitudes of the relocated events were 110 

greater than or equal to 0.0. We prepared differential-time data using both the travel-time data 111 

taken from the unified catalog of JMA and cross-correlation delay times. Calculations using the 112 

JMA catalog yielded 497,446 and 490,057 differential-time data for P and S wave, respectively. 113 

The number of differential-time data calculated using the P and S waveform cross-correlation 114 

delay times was 373,090 and 481,843, respectively. To calculate the cross-correlation, we 115 

gathered data on the vertical component waveforms from at least six stations around the swarm 116 

area and applied a bandpass filter between 5 and 10 Hz. The time window for P and S waves was 117 

before and after 1.0 s of the theoretical travel time. We calculated the cross-correlation function 118 

for all event pairs and adopted delay times with the maximum correlation as differential-times. 119 

The lower limit of the cross-correlation coefficient was 0.8. We used the JMA2001 1-D velocity 120 

model (Ueno, 2002), which is routinely used at the JMA for hypocenter determination in Japan. 121 

We performed 30 iterations of hypocenter relocation. In the first half of the iterations, the catalog 122 

data were weighted 100 times higher than the cross-correlation data to constrain the relative 123 
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locations of the hypocenters. In the second half of the iterations, we weighted the cross-124 

correlation data 100 times higher than the catalog data to constrain fine-scale structures. 125 

2.2 Evaluation of Hypocenter Migration 126 

To determine the hypocenter migration features for comparison with earthquake swarms 127 

in other regions, we estimated the diffusivity of hypocenter migration by fitting an isotropic 128 

pore-fluid pressure diffusion model proposed by Shapiro et al. (1997). According to this model, 129 

the front line of hypocenter migration can be represented as follows:  130 𝑟 = √4𝜋𝐷𝑡#ሺ1ሻ  
where r [m] is the distance from the diffusion origin, t [s] is the elapsed time from the beginning 131 

of diffusion, and D [m2/s] is the hydraulic diffusivity. For model fitting, we followed the 132 

procedure of Amezawa et al. (2021), which stably estimated the diffusivity of multiple swarms in 133 

northeastern Japan using unified criteria. Using equation (1), the diffusivity D was estimated by 134 

linear regression. The data in the 95th percentile for distance were calculated for events that 135 

occurred in a 30-day moving time bin that overlapped by a day. During curve-fitting, we found 136 

that some hypocenter migrations ceased in the middle of the sequence (Figure 2(a), 2(c)). To 137 

address this, we considered their end-time to be the date when the cumulative number of events 138 

in each cluster reached 30% of the total. 139 

For theoretical curve fitting, we needed to determine the spatial and temporal origins of 140 

hypocenter migration. Because the true diffusion origin was unknown, we employed a grid 141 

search algorithm to identify it. We separated the swarm area (Figure 2) into 0.01° × 0.01° × 1.0 142 

km spatial grid points, and prepared temporal origin candidates as the time before the origin time 143 

of the first event in each cluster. The temporal origin was searched in five-day increments within 144 

the range of 0 to 15 days before the first event in each cluster. We then performed theoretical 145 

curve fitting on all diffusion origin candidates to identify the best-fitting result. 146 

  147 
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3 Results 148 

We successfully relocated 99% of the initial hypocenters (20,399 events). The differential 149 

time residuals for the catalog data and cross-correlation data decreased from 134 to 53 ms and 150 

from 251 to 4 ms, respectively. The relocated hypocenter locations revealed the spatiotemporal 151 

development of the swarm in detail (Figure 1, Movie S1 in Supporting Information). Seismic 152 

activity initiated deep within (10–15 km) the S cluster and continued for approximately two 153 

years in almost the same area. On 27–28 December 2020, numerous small earthquakes suddenly 154 

occurred deeper (15–20 km) within the S cluster, followed by three novel, swarm-like sequences 155 

in areas 5 km west, north, and northeast of the S cluster (W, N, and NE cluster, respectively). 156 

The seismicity characteristics between each cluster are quite different. In the S cluster, 157 

small earthquakes (M ≤ 2.0) were predominant, and seismic activity was intermittent. The 158 

notable features of the hypocenter distribution in this cluster were deep activity (10–20 km) and 159 

a corn-like shape (Figure 1(c), 1(d), and Movie S2 Supporting Information). The W cluster was 160 

also composed of earthquakes of M ≤ 2.0 (Figure 1(c), 1(e)), but showed continuous seismic 161 

activity. The seismicity in the N cluster was consistently energetic, involving more than 10 162 

earthquakes of M ≥ 4.0. The hypocenter distribution showed many parallel planes approximately 163 

1 km in length striking northeast-southwest and dipping approximately 45° to the east side 164 

(Figure 1(c), 1(f), and Movie S3 in Supporting Information). Seismicity in the NE cluster was 165 

relatively quiet from January to July 2021 (predominantly M ≤ 2.0 earthquakes), but not long 166 

after, six M ≥ 4.0 occurred, including an M5.1 earthquake on 16 September 2021, an M5.4 on 19 167 

July 2022, and an M5.0 on 20 June 2022 (Figure 1(c), 1(f)). 168 

Diffusive hypocenter migrations were observed over the entire period in the W, N, and 169 

NE clusters (Figure 2). The hypocenter migration diffusivities in the W, N, and NE clusters were 170 

estimated to be (9.8 × 10–2 ± 5.3 × 10–3 m2/s), (9.4 × 10–2 ± 4.7 × 10–3 m2/s), and (1.2 × 10–1 ± 171 

3.2 × 10–3 m2/s), respectively. The locations of the diffusion origins are shown in Figure 2(d–f). 172 

The time origins were estimated to be 15 days before the first event in any cluster. Although we 173 

could not observe clear diffusive migration throughout the entire period of the S cluster, many 174 

intermittent activities with diffusive migration were observed (Figure 3). We roughly estimated 175 

the diffusivities of these migrations from each first event using the diffusion model (Equation 176 
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4 Discussion and Conclusions 196 

We observed diffusive hypocenter migrations in the swarm. Because diffusive 197 

hypocenter migration often occurs in swarms associated with anthropogenic fluid injection 198 

(Shapiro et al., 1997, 2002), our observations imply the presence of fluid in the swarm area. In 199 

addition, we found a corn-shaped hypocenter distribution in the deeper part of the S cluster 200 

(Figure 1(c), 1(d), and Movie S2 Supporting Information). This characteristic distribution is 201 

often present beneath volcanoes and is commonly interpreted as a circular dyke or the collapse of 202 

the chamber roof (Acocella, 2007). Although no volcanism has occurred around the swarm area 203 

since the Neogene (Ishiyama et al., 2017), there are hot springs with high geothermal gradients 204 

(Tanaka et al., 2004) and one with a high 3He/4He ratio (Umeda et al., 2009) near the swarm area. 205 

These facts support the inference that mantle-origin fluid exists beneath the swarm area. Recent 206 

findings in other studies on this swarm corroborate this suggestion; Nishimura et al. (2022) 207 

reported crustal deformation around the swarm— there has been 1.2 cm of horizontal 208 

displacement and 3.0 cm of uplift during the year since January 2021. They also reported an 209 

annual volumetric increase of approximately 2.5 × 107 m3 at a depth of approximately 12 km, 210 

assuming a spherical inflation source. Nakajima (2022) performed seismic travel-time 211 

tomography around the swarm area and detected a low-velocity anomaly just beneath the S 212 

cluster. Considering these facts, we suggest that this swarm is plausibly driven by fluid stored 213 

beneath the S cluster migrating through the fractures created by Neogene volcanism.  214 

The swarm was initiated in the S cluster and intensified after the end of December 2020 215 

(Figure 1, Movie S1 in Supporting Information). We divided the swarm activity into two stages: 216 

precursor activity below 5 km depth of the S cluster (Figure 4(a), periods (1) and (2)), and 217 

subsequent intense activity involving novel seismicity in other clusters (Figure 4(a), period (3)). 218 

Herein, we discuss a plausible mechanism for this two-stage activation. As mentioned prior, we 219 

believe that a main driving factor of this swarm is the decrease in effective normal stress due to 220 

the intrusion of over-pressurized fluid from depth below the S cluster. Figure 4(b–d) shows the 221 

inferred principal stress profiles during the sequence and Mohr’s circle diagrams at two 222 

representative depths (see Text S1 in Supporting Information for detailed analysis). In the early 223 

stage of the precursor activity ((1) in Figure 4(a)), fluid supply from more than 15 km deep 224 

causes an increase in pore fluid pressure at a depth of approximately 15 km, initiating swarm 225 
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activity. The stress conditions at this stage are shown in Figure 4(b). Subsequent fluid supply 226 

further increases the pore fluid pressure within the S cluster, which changes the stress condition, 227 

as shown in Figure 4(c), to that in Figure 4(d) (namely, the increase in the pore fluid pressure 228 

ratio, 𝝀). This model explains the migration of swarm activity to the shallower area (5–10 km) in 229 

the S cluster ((2) in Figure 4(a)). As time passes, the pore fluid pressure eventually exceeds the 230 

minimum principal stress (𝜎ଷ) at depth (Figure 4(d)), which widens the pre-existing fractures.  231 

  232 



233 

234 

235 

236 

237 

238 

Figure 4
direction

clusters, 

circle for

dotted lin

4. Comparing

n. a The red d

respectively

r 10 and 15 k

ne indicate th

manuscr

g the tempor

dots and gray

y. b–d Stress

km depths (t

he changes i

ript submitted t

ral change in

y translucen

s magnitude 

two lower pa

in the maxim

to Geophysical

 

n the seismic

nt dots indica

in the depth 

anels). Red, b

mum principa

l Research Let

city with the 

ate seismicity

 direction (u

blue, and pu

al stress, min

tters 

stress state o

y in the S clu

upper panel) 

urple solid lin

nimum princ

of depth 

uster and oth

and Mohr’s

nes and the 

cipal stress, 

her 

s 

pore 



manuscript submitted to Geophysical Research Letters 

 

fluid pressure, and hydrostatic pressure in the depth direction, respectively. 𝝀 in upper panels 239 

indicates the pore fluid pressure ratio. e Diagram showing the spatial relationship between the S 240 

cluster (dots colored in time order) and other clusters (left image) and fluid pathway creation 241 

(right image). 242 

 243 

The reverse fault-type focal mechanism solutions (Figure 1) suggest that the minimum 244 

principal stress axis is vertical. We infer that the open cracks both created the pathways of fluid 245 

supply and allowed additional supply between the S cluster and the surrounding areas, which 246 

enhanced the novel swarm activities in the other clusters ((3) in Figure 4(a)). Figure 4(e) shows a 247 

schematic diagram of the swarm activity with respect to the creation of fluid pathways and 248 

spatiotemporal swarm development. Sill-like horizontal cracks may have formed in the area due 249 

to the increased pore fluid pressure. In this stage, the fluid dissipated toward the other clusters, 250 

thus reducing the pore pressure and quiescing the seismic activity in the initial S cluster area 251 

(10–15 km depth) (Figure 4(a), 4(e)). Approximately 50 days after the initiation of intense 252 

activity in cluster S, novel seismic activities began in the W, N, and NE clusters beyond 253 

approximately 5 km of low-seismicity areas (Figure 1, Figure 4(a)). If fluid migrated through 254 

these low-seismicity areas, assuming density is 103 kg/m3 and dynamic viscosity is 10-3 Pa∙s (e.g., 255 

Talwani et al., 2007), the permeability would be on the order of 10-8 m2. This value is notable 256 

higher than the seismogenic permeability (5 × 10-16 to 5 × 10-14 m2) estimated for injection-257 

induced seismicity (Talwani et al., 2007). This high permeability implies that rapid, aseismic 258 

fluid flow is occurring in these areas. 259 

The swarm exhibits diffusive hypocenter migrations with varying diffusivities. According 260 

to previous studies that compiled the diffusivities with earthquake swarms (Talwani et al., 2007; 261 

Chen & Shearer, 2012; Amezawa et al., 2021), the diffusivities estimated for the W, N, and NE 262 

cluster are moderate to low. These values are smaller than the diffusivities estimated for swarms 263 

around active volcanoes (e.g., Yukutake et al., 2011; Shelly et al., 2016). This suggests that 264 

swarms in the W, N, and NE clusters have been driven by relatively slow pore fluid pressure 265 

diffusion in a low-permeability environment. Ross et al. (2020) imaged the fine 3-D 266 

spatiotemporal development of a long-living earthquake swarm in Cahuilla, California. They 267 
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found strike-parallel channels of relatively high seismicity with hundreds of meters of vertical 268 

separation and suggested that a 3-D heterogeneous permeability structure with sub-horizontal 269 

permeability barriers in the fault zone controlled the slow spatiotemporal development of the 270 

swarm. We also found multiple clear planar hypocenter distributions, such as the one in the N 271 

cluster (Figure 1(d) and Movie S3 in Supporting Information). This situation is very similar to 272 

that in the Cahuilla swarm and implies strong spatial heterogeneity in the permeability structure 273 

in this area. This may be one of the factors contributing to the longevity of the swarm. On the 274 

contrary, many intermittent seismic activities in the S cluster showed rapid hypocenter migration 275 

with high diffusivity (101–102 m2/s) (Figure 3(d), 3(e), 3(g), 3(h)). This is greater than the 276 

hypocenter migration associated with the common earthquake swarms described above (10–3–101 277 

m2/s), and less than the diffusion speed of migration of slow earthquakes (103–105 m2/s) 278 

observed at plate boundaries (e.g., Ide, 2010; Kato & Nakagawa, 2020). The former is thought to 279 

be related to spatiotemporal changes in pore fluid pressure, including fluid flow (e.g., Yukutake 280 

et al., 2011; Shelly et al., 2016), while the latter is thought to reflect stress diffusion (e.g., Ando 281 

et al., 2012). Thus, intermittent diffusive seismic activities in the S cluster may be a hybrid of 282 

both physical processes or simply the rapid fluid flow in a high-permeability environment. 283 

Quantitatively evaluating these processes and their interactions is open for the future work. 284 

The intermittent seismic activity in the much deeper part of cluster S is critically 285 

important for understanding this long-living earthquake swarm. We observed rapid diffusive 286 

hypocenter migrations, especially after the activation of deep seismicity. Each burst of activity 287 

ceased within ten minutes (Figure 3). As mentioned above, these rapid diffusive migrations are 288 

related to not only diffusive spatiotemporal changes in the stress field, but also diffusive pore 289 

fluid pressure changes due to the release of highly pressurized fluid. Furthermore, the geothermal 290 

gradient of 80 K/km near the swarm area (Tanaka et al., 2004) and deep hypocenter distribution 291 

(Figure 1(d)) suggest that intermittent seismic activity occurs under a temperature and pressure 292 

environment on the order of 102 °C and 102 MPa, respectively. Thus, we propose two reasons for 293 

the intermittent seismic activity: the first is due to the high confining pressure around the deeper 294 

part of the S cluster (at least 350 MPa in 15–20 km); as soon as the fluid pressure diffuses, the 295 

effective normal stress reduction becomes inadequate for fault failure. The second is the rapid 296 

recovery of fault strength due to silica precipitation caused by abrupt depressurization when 297 

earthquakes occur (e.g., Weatherley & Henley, 2013; Ujiie et al., 2018; Amagai et al., 2019). 298 
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These intermittent seismic activities cause the geyser-like fluid supply from the S cluster to 299 

diffuse toward the other clusters through the high-permeability (low-seismicity) areas discussed 300 

above. In addition, the relatively small diffusivities observed in the W, N, and NE clusters 301 

suggests that once the supplied fluid reaches these areas, its dispersal is slowed by the relatively 302 

low permeability, allowing the pore fluid pressure to increase such that seismic activity escalates. 303 

Thus, the geyser-like fluid supply from beneath the S cluster coupled with the relatively low-304 

permeability in the other cluster areas has made this swarm a long-living one. 305 
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