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Abstract

The South China coast has a high incidence of warm-sector heavy rainfall (WSHR) events. The ageostrophic winds in the

boundary layer in most of these events associated with the southwesterly boundary layer jets (BLJs) mainly exhibit strong

convergence at rainfall area. In this paper, we analyze two cases of WSHR in May 2013 and May 2015, which occurred in

similar synoptic environments but varied in intensity, extent, and duration of rainfall, where the ageostrophic winds are the

confrontational confluence and asymptotic confluence pattern, respectively. ERA-5 reanalysis data and the diagnostic equation

of ageostrophic wind are used to examine the factors affecting the ageostrophic winds in the northern land region and the southern

offshore region of the rainfall. The results suggest that land-sea contrast leads to the convergence of ageostrophic winds in the

rainfall area. Boundary layer friction dominates the northeasterly ageostrophic winds on land. The diurnal variation of BLJs

dominates the ageostrophic winds and their diurnal variation at sea, contributing southwesterly or southeasterly ageostrophic

winds, so the phase difference between the land and sea forms confrontational or asymptotic confluence, respectively. BLJs

with different intensities, extents, and diurnal variations can lead to different ageostrophic wind patterns and their confluence

modes. The land-sea thermal contrast can directly affect ageostrophic winds, and it can also affect the diurnal variation of

BLJs, thus affecting the ageostrophic winds and their confluence mode. It is further verified that the BLJs and thermal forcing

are important in warm-sector heavy rainfall processes in South China.
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Key Points: 15 

• Land-sea contrast leads to the strong convergence in the coastal warm-sector extreme 16 

heavy rainfall area in South China 17 

• Marine boundary layer jets and their diurnal variation can influence the ageostrophic 18 

winds and then affect the convergence 19 

• The land-sea thermal contrast can affect the ageostrophic winds and the convergence by 20 

changing the diurnal variation of boundary layer jets.  21 
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Abstract 22 

The South China coast has a high incidence of warm-sector heavy rainfall (WSHR) events. 23 

The ageostrophic winds in the boundary layer in most of these events associated with the 24 

southwesterly boundary layer jets (BLJs) mainly exhibit strong convergence at rainfall area. In 25 

this paper, we analyze two cases of WSHR in May 2013 and May 2015, which occurred in 26 

similar synoptic environments but varied in intensity, extent, and duration of rainfall, where the 27 

ageostrophic winds are the confrontational confluence and asymptotic confluence pattern, 28 

respectively. ERA-5 reanalysis data and the diagnostic equation of ageostrophic wind are used to 29 

examine the factors affecting the ageostrophic winds in the northern land region and the southern 30 

offshore region of the rainfall. The results suggest that land-sea contrast leads to the convergence 31 

of ageostrophic winds in the rainfall area. Boundary layer friction dominates the northeasterly 32 

ageostrophic winds on land. The diurnal variation of BLJs dominates the ageostrophic winds and 33 

their diurnal variation at sea, contributing southwesterly or southeasterly ageostrophic winds, so 34 

the phase difference between the land and sea forms confrontational or asymptotic confluence, 35 

respectively. BLJs with different intensities, extents, and diurnal variations can lead to different 36 

ageostrophic wind patterns and their confluence modes. The land-sea thermal contrast can 37 

directly affect ageostrophic winds, and it can also affect the diurnal variation of BLJs, thus 38 

affecting the ageostrophic winds and their confluence mode. It is further verified that the BLJs 39 

and thermal forcing are important in warm-sector heavy rainfall processes in South China.  40 

 41 

Plain Language Summary 42 

Extremely heavy rainfall frequently occurs in coastal Southern China, which causes great 43 

damage and is difficult to accurately forecast. Most of this kind of rainfall is associated with 44 

southwesterly wind in the lower atmosphere and strong convergence of the lower airflow. Our 45 

purpose is to better understand the factors that lead to strong convergence, which is an important 46 

factor for heavy rainfall. Since the geostrophic wind component has no divergence, the 47 

convergence is mostly contributed by the ageostrophic wind component, which doesn't conform 48 

to the geostrophic balance. We find that different intensities, ranges, and diurnal changes of the 49 

southwesterly wind in the lower atmosphere can lead to different distributions of ageostrophic 50 

winds in the South China Sea. The thermal difference between land and sea can influence the 51 

diurnal change of the southwesterly wind in the lower atmosphere, and it can also affect the 52 
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ageostrophic winds and their convergence. The results will potentially provide a better 53 

understanding of heavy rainfall events in Southern China and may lead to better forecasts and 54 

issuing of warnings. 55 

 56 

1 Introduction 57 

South China is one of the heavy rainfall centers in China that experiences abundant rainfall 58 

in the pre-rainy season from April to June, with the rainfall accounting for 40%–60% of the 59 

annual total (Chen et al., 2014; Luo et al., 2017; Sun et al., 2019). It is a region prone to a high 60 

frequency of meteorological disasters (Wu et al., 2019). Heavy rainfall in South China can be 61 

divided into warm-sector heavy rainfall (WSHR) and frontal heavy rainfall as a result of 62 

synoptic-scale forcing (Huang, 1986; Ding, 1994). Frontal heavy rainfall usually occurs in the 63 

inland area of the northern Guangdong province and is associated with cold fronts. WSHR 64 

occurs in the warm sector that is more than 200 km ahead of the surface front or in the area 65 

where the rainfall is influenced by southerly flow in the middle and lower troposphere (Liu et al., 66 

2019). Compared with frontal heavy rainfall, WSHR is characterized by higher intensity, higher 67 

spatial concentration, abruptness, and lower predictability (Luo et al., 2017; Huang & Luo, 2017; 68 

Du & Chen, 2018; Wu et al., 2020a, b). The coastal area of Guangdong is the main region where 69 

WSHR occurs (Sun et al., 2019). A better understanding of the mechanisms of coastal WSHR 70 

has important implications for improving prediction and warning. 71 

The triggering mechanisms of WSHR in the South China coastal area are complex and 72 

influenced by land–sea contrast, complex coastal topography, mesoscale convergence lines, 73 

southerly low-level jets (LLJs), and other boundary layer disturbances (Huang, 1986; Lin et al., 74 

2006; Chen et al., 2014; Du & Chen, 2018), among which LLJs have received particular 75 

attention. There is a close relationship between the low-level southwesterly jet and heavy 76 

precipitation over East Asia (Chen et al., 2005; Chen & Yu, 1988). LLJs can transport warm and 77 

humid air to South China (Huang & Luo, 2017). They can also produce strong shear instability, 78 

and the terminus of the LLJ is often associated with low-level convergence. In addition, the 79 

combination of the LLJ and topography enhances coastal convergence (Chen et al., 2017; Du & 80 

Chen, 2018, 2019a). The secondary circulation formed by LLJs can provide lifting conditions. 81 

Therefore, LLJs can provide both dynamical and thermal conditions for heavy rainfall. 76% of 82 
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WSHR events in South China are associated with LLJs (Li et al., 2021). The inland frontal 83 

rainband in southern China is closely related to the synoptic-system-related LLJ which has its 84 

peak speed between 850 and 700 hPa, while the coastal WSHR is associated with the boundary 85 

layer jets (BLJs) at 925 hPa (Du & Chen, 2019), so the behaviors of coastal WSHR are closely 86 

related to the BLJs. 87 

The BLJs have an obvious diurnal variation with a maximum at night. Mechanisms believed 88 

to explain the diurnal variation of BLJs are mainly the Blackadar mechanism (Blackadar, 1957; 89 

Du & Rotunno, 2014) and the Holton mechanism (Holton, 1967). The Blackadar mechanism 90 

mainly considers the effect of an inertial oscillation due to the diurnal variation of boundary 91 

layer friction. The ageostrophic wind vector would rotate clockwise with time at a period of 92 2𝜋/𝑓  where 𝑓  is the Coriolis parameter in idealized conditions (Blackadar, 1957). If the 93 

directions of the ageostrophic wind and the geostrophic wind are the same at night, a super-94 

geostrophic wind will appear, causing the acceleration of BLJs. The Holton mechanism mainly 95 

considers the diurnal change in the pressure gradient force due to the diurnal topographic thermal 96 

forcing. The Blackadar theory can explain the behaviors of the BLJs over the Great Plains of the 97 

United States better than the Holton mechanism (Shapiro et al., 2016). Chen et al. (2009) found 98 

the low-level winds over southern China were strongest at late night or in the early morning, and 99 

they pointed out that this diurnal change was closely related to ageostrophic wind component and 100 

suggested the clockwise rotation of wind vector at night was probably due to the inertial 101 

oscillation. Many studies show that the formation of the BLJs in China may be attributed to the 102 

combination of the two mechanisms (Chen & Yu, 1988; Du et al., 2015; Xue et al., 2018; Fu et 103 

al., 2019). To investigate the effects of the two mechanisms, Du and Rotunno (2014) proposed a 104 

simple 1D model with diurnal thermal forcing and diurnally varying boundary layer friction. 105 

This model can not only combine but also separate Blackadar and Holton mechanisms. The 1D 106 

model can roughly reproduce these mesoscale model-simulated diurnal boundary layer winds in 107 

the coastal ocean of South China (Du et al., 2015). 108 

In addition to the diurnal variation of BLJs, studies have shown that from May to June, the 109 

diurnal thermally forced land-sea breeze circulations also affect the diurnal variation of rainfall 110 

in the Pearl River Delta (PRD) region (Chen et al., 2015). Chen et al. (2015, 2019) found that 111 

rainfall events without LLJ are more frequent than those with LLJ, and the land-sea breeze 112 
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circulation is more important to the generation and propagation of convection than convergence 113 

due to the contrast of sea-land friction. 114 

Heavy rainfall can be divided into short-duration heavy rainfall and persistent heavy rainfall 115 

according to its duration. Compared to short-duration heavy rainfall, persistent heavy rainfall 116 

processes cause more serious casualties and economic losses. Zhang et al. (2021) proposed the 117 

concept of extreme persistent heavy rainfall (EPHR). In their definition of EPHR, the duration of 118 

hourly precipitation exceeding 20 mm at a fixed location should be at least 5 hr (although there 119 

can be an interruption of up to 1 hr). Most of the coastal EPHR in South China can be classified 120 

as WSHR, and the majority of the cases are accompanied by southwest BLJs (Huang et al., 121 

2022). In addition, in most cases, there is strong convergence in the lower troposphere in the 122 

coastal rainfall area, and the ageostrophic winds exhibit obvious confluence patterns (Huang et 123 

al., 2022). The intensity and duration of heavy rainfall events vary with different confluence 124 

patterns of the ageostrophic wind. Holton (2004) pointed out that the ageostrophic wind was 125 

influenced by the local tendency of the geostrophic wind and geostrophic advection. Yet, his 126 

conclusion was derived under the hypothesis that there was no friction in the free troposphere 127 

and the ageostrophic winds were much smaller than the geostrophic winds, which is not 128 

applicable in the lower troposphere.  129 

Considering the role of ageostrophic wind in the diurnal change of BLJs, and the boundary 130 

layer convergence of the ageostrophic wind in the coastal WSHR in South China, we focus on 131 

the mechanisms of ageostrophic wind in our study. We attempt to investigate whether the 132 

ageostrophic winds are related to the southwest BLJs and the thermal forcing in South China, 133 

which will deepen our understanding of WSHR. We selected two typical WSHR events with 134 

different confluence patterns of the ageostrophic wind for analysis. And we have conducted a 135 

diagnostic analysis of the formation of ageostrophic winds to explore the influencing factors of 136 

the ageostrophic winds. The remainder of the paper is organized as follows. Section 2 presents 137 

the data and methods used in this study. Two cases of WSHR in South China are outlined in 138 

Section 3. Section 4 discusses the ageostrophic wind patterns and the diagnostic results, and 139 

Section 5 further elucidates the formation mechanisms of ageostrophic winds and the resulting 140 

convergence.  The final section summarizes the study's results. 141 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

2 Data and Methods 142 

2.1 Data 143 

The hourly gauge-satellite merged precipitation product from the China Meteorological 144 

Data Service Centre (CMDC) with a spatial grid spacing of 0.1° × 0.1° is used for quantitative 145 

precipitation analysis (Shen et al., 2014). This product combines the quality-controlled hourly 146 

precipitation data from the national automatic observation stations and the Climate Prediction 147 

Center Morphing (CMORPH) satellite precipitation estimates. It has been demonstrated to 148 

accurately reflect heavy rainfall characteristics (Zhou et al., 2015). 149 

The fifth generation of the European Centre for Medium-Range Weather Forecasts 150 

(ECMWF) atmospheric reanalysis (ERA5) hourly data on pressure levels with a horizontal grid 151 

spacing of 0.25° × 0.25° is used for the analysis of synoptic environments and wind diagnosis. 152 

ERA5 hourly data on single levels are used to analyze the convective available potential energy 153 

(CAPE) and 2-m temperature. 154 

2.2 Barnes Filtering 155 

To separate the ageostrophic component from the total wind, the geopotential height field 156 

should first be smoothed by the Barnes low-pass filter, also known as the Gaussian-weighted 157 

objective analysis method (Barnes, 1964; Koch et al., 1983; Barnes & Colman, 1993, 1994). This 158 

method can effectively filter small-scale noise and retain synoptic-scale or sub-synoptic-scale 159 

flow patterns. It has been widely used to separate the flow field into synoptic-, meso-, and 160 

convective scales (Xu et al., 2017; Wei et al., 2022) and study the physical mechanisms of 161 

diurnal variability of low-level ageostrophic winds (Xue et al., 2018). By using the same weight 162 

constant settings (g = 0.3 and c = 30,000) as Huang et al. (2022), the geopotential height is 163 

filtered to damp most of the waves shorter than 500 km and obtain most of the geostrophic 164 

motion with wavelengths greater than 1000 km, so the ageostrophic scales are mostly damped. 165 

Then the geostrophic wind component is computed from the filtered geopotential height fields. 166 

The ageostrophic wind is obtained by subtracting the geostrophic wind from the total wind. 167 
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2.3 Diagnostic Equation of Ageostrophic Winds 168 

Since the geostrophic and quasi-geostrophic approximation conditions are not satisfied 169 

during the WSHR events in South China and the turbulent friction effects should be considered 170 

in the boundary layer, we need to derive the diagnostic equation of ageostrophic wind from the 171 

original horizontal momentum equation in the pressure (P) coordinate system: 172 

ௗ௏→ௗ௧ = −𝛻௣𝛷 − 𝑓𝑘→ × 𝑉→ + 𝐹→௛  ,                                                   (1) 173 

where 𝑉→ is the total wind,  𝛷 is the geopotential height,  𝑓 is the Coriolis parameter, 𝐹௛→
 is the 174 

friction force, and 𝑘→ is the unit vector in the vertical direction. Decomposing the total wind into 175 

geostrophic and ageostrophic winds on the right-hand side:  𝑉→ = 𝑉→௚ + 𝑉→௔, neglecting the variation 176 

of  𝑓 with latitude and adhering to the definition of the geostrophic wind 𝑉௚→ = − ଵ௙ 𝛻௣𝛷 × 𝑘→, we 177 

get  178 

𝑉௔→ = ଵ௙ 𝑘→ × ௗ௏→ௗ௧ − ଵ௙ 𝑘→ × 𝐹௛→
  ,                                                      (2) 179 

then expanding the total derivative, we get 180 

𝑉௔→ = ଵ௙ 𝑘→ × డ௏→డ௧ + ଵ௙ 𝑘→ × ቂቀ𝑉→ · 𝛻ቁ 𝑉→ቃ + ଵ௙ 𝑘→ × ቆ𝜔 డ௏→డ௣ቇ − ଵ௙ 𝑘→ × 𝐹௛→
  ,                        (3) 181 

where 𝜔 is the vertical wind velocity, and 𝑝 is the pressure. Decomposing the total wind velocity 182 

in the third term on the right-hand side of Equation 3, and using the thermal wind equilibrium 183 

equation 𝑘→ × డ௏೒→డ௣ = ோ௣௙ 𝛻௣𝑇,  we obtain:     184 

 ,                  (4) 185 

where 𝑅 is the gas constant and 𝑇 is the temperature. Equation 4 is the diagnostic equation of the 186 

ageostrophic wind. There are five terms on the right-hand side: LT is the local tendency of total 187 

wind, IA is the inertial advection, BE is the baroclinic effects caused by the temperature gradient, 188 

BLF is the boundary layer friction term, and the fifth term is the vertical transport of the 189 
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ageostrophic wind, which is calculated to be negligible compared to the previous four terms and 190 

will not be considered later. In this paper, we mainly focus on the ageostrophic winds at 925 hPa. 191 

The LT term is the geostrophic deviation contributed by the unsteadiness of the wind field. 192 

The IA term is contributed by the advection of total wind, which is caused by the inhomogeneity 193 

of the wind along the direction of motion and the curvature of the streamline on the isobaric 194 

surface. The tangential and normal ageostrophic wind components of the streamline can be 195 

obtained by adhering to a natural coordinate system: 196 𝑉௦௔ଶ = − ଵ௙ 𝐾𝑉ଶ   and                                                         (5) 197 

𝑉௡௔ଶ = ௏௙ డ௏డ௦  ,                                                                      (6) 198 

where 𝐾 is the curvature of the streamline.  199 

The BE term refers to the geostrophic deviation contributed by the temperature gradient, 200 

which is proportional to the product of 𝜔 and the temperature gradient on the isobaric surface. 201 

This ageostrophic wind component appears in the case of horizontal temperature gradient and 202 

vertical motion. When there is vertical ascent, then the ageostrophic wind is consistent with the 203 

direction of −𝛻௣𝑇. 204 

The BLF term is mainly the ageostrophic wind component due to turbulence friction and 205 

vertical diffusion. In the northern hemisphere, this ageostrophic wind component is on the right 206 

side of 𝐹௛→  and perpendicular to it. Since there is no explicit solution for this term, the other five 207 

terms in Equation 4 are first calculated using reanalysis data, and then the value of BLF can be 208 

derived. Slater et al. (2014) proposed that the residual term of the horizontal momentum equation 209 

included errors arising from the time-interpolation and implicit horizontal diffusion of the model. 210 

Based on the analysis of Du et al. (2014), the residual term in their horizontal momentum model 211 

comprises friction, vertical advection, and other uncertainties, and the friction force dominates 212 

this term, and Luo et al. (2022) also used reanalysis data to calculate the friction term as the 213 

residual term. We use the data at 900 hPa and 950 hPa to obtain the vertical variation of 214 

ageostrophic wind in the last term at 925 hPa. 215 
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2.4 Two-dimensional Linear Horizontal Momentum Equation 216 

To investigate the mechanisms underlying the diurnal variation of winds, we expand the 217 

simple 1D linear motion model of frictional flow on a 𝑓 plane proposed by Du and Rotunno 218 

(2014) into a 2D model: 219 డ௨డ௧ − 𝑓𝑣 = − డఃడ௫ − 𝛼𝑢 ,                                                （ 7）     220 

డ௩డ௧ + 𝑓𝑢 = − డఃడ௬ − 𝛼𝑣 ,                                                （ 8）  221 

− డఃడ௫ = 𝐹௫ + 𝐹௫̂ሾ ሿ , and                                                （ 9）  222 

− డఃడ௬ = 𝐹௬ + 𝐹௬̂ሾ ሿ  .                                                    （ 10）  223 

Here, ሺ𝑢, 𝑣ሻ  are wind components of  ሺ𝑥, 𝑦ሻ  direction. 𝛼 = 𝛼଴ሾ1 + sinሺ𝑡 − 𝑡଴ሻ𝜔ሿ  is the 224 

diurnally varying frictional coefficient, which has a maximum at 1300 local standard times (LST, 225 

UTC = LST - 8hr) and a minimum at 0100 LST, and 𝛼଴ is the diurnal average. Three momentum 226 

tendency terms affect the total tendency of wind speed in this 2D model, including Coriolis 227 

force, pressure gradient force, and friction. The pressure gradient forces in the 𝑥 and 𝑦 directions 228 

have two parts: the mean ൫𝐹௫ , 𝐹௬൯ and the diurnally varying ൬𝐹௫̂ሾ ሿ , 𝐹௬̂ሾ ሿ൰ contributions, where 229 ሾ ሿ has the form of cos𝜎𝑡 or sin𝜎𝑡 and 𝜎 is the diurnal frequency (2𝜋 day-1). 230 

The numerical solution of the 2D model is 231 

𝑢௧ା∆௧ = 𝑢௧ + ∆𝑡 ൬𝑓𝑣௧ + 𝐹௫ + 𝐹௫̂ሾ ሿ − 𝛼𝑢௧൰ and                         （ 11）  232 

𝑣௧ା∆௧ = 𝑣௧ + ∆𝑡 ൬−𝑓𝑢௧ + 𝐹௬ + 𝐹௬̂ሾ ሿ − 𝛼𝑣௧൰ .                          （ 12）  233 𝛼଴ is calculated using reanalysis data by way of Equations 7 and 8. The pressure gradient 234 

force input in the model is obtained by fitting the diurnal variation with the form of cos𝜎𝑡 or 235 sin𝜎𝑡. The mean state of this term is calculated by the average of the heavy rainfall day. Its 236 

diurnal state is derived from the monthly mean during the whole of May to avoid the impacts of 237 

synoptic weather systems on diurnal variation (Luo et al., 2022). 238 
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In this 2D model, when the Blackadar mechanism is investigated individually, the diurnally 239 

varying component of the pressure gradient force is not considered, and only the diurnal mean 240 

value ൫𝐹௫ , 𝐹௬൯   is introduced into the model. When the Holton mechanism is considered 241 

individually, the diurnal variation of the friction coefficient should not be considered. 242 

3 Overview of WSHR Cases 243 

This paper selects two WSHR cases found by Huang et al. (2022) in South China, which 244 

occurred on 21-22 May 2013 and 16-17 May 2015, respectively. And referring to Huang et al. 245 

(2022), we define these two confluence patterns of the ageostrophic wind as confrontational 246 

confluence pattern and asymptotic confluence pattern, respectively. There are generally two 247 

main ageostrophic wind directions in the north and south sides of the rainfall area. If the 248 

difference between these two directions exceeds 120°, we define the confluence type of the 249 

ageostrophic wind as the confrontational confluence, otherwise, it is defined as the asymptotic 250 

confluence. We can clearly distinguish the two cases from Figure 3: Figure 3b shows that the 251 

directions of the ageostrophic winds on the north and south sides of the rainfall area in case 1 are 252 

almost opposite, presenting a confrontational pattern, so it is a confrontational confluence type. 253 

Figures 3c and 3b show that the angle between the north and south sides of the ageostrophic 254 

winds in case 2 is less than 120°. These two ageostrophic winds with similar wind directions 255 

gradually converge to the rain area, so it belongs to the asymptotic confluence type. Both cases 256 

occurred in similar synoptic situations without the influence of fronts in the lower troposphere.  257 

3.1 Spatial Patterns and Temporal Variations of Rainfall 258 

The rainfall of case 1 was mainly located in the central and eastern coastline of Guangdong 259 

Province (Figure 1a), with a large range of heavy rainfall centered in the PRD region, which 260 

showed a maximum of the 1-day total accumulated rainfall exceeding 300 mm. The rainfall 261 

covered about 500 km along the coastline. The rainfall of case 2 was mainly concentrated in the 262 

western coastal region of the PRD, and it covered about only 200 km along the coastline, with a 263 

maximum of the 1-day total accumulated rainfall exceeding 200 mm (Figure 1b). The blue 264 

rectangles in Figures 1a and 1b are the same selected rainfall areas, which cover most of the 265 

rainfall near the coastline in both cases. The center of heavy rainfall in case 1 was located 266 

roughly in the middle of the blue rectangle, and the rainfall in case 2 is located in the western 267 
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ageostrophic winds in the first and second quadrants were mostly easterly or northeasterly, and 386 

the diurnal variation of wind direction in these two quadrants was not distinct. The difference 387 

between the two cases was confined mainly to the third and fourth quadrants at sea. The 388 

ageostrophic winds in case 1 had a notable clockwise rotation trend after nightfall, which 389 

changed from southeasterly ageostrophic winds in the early period of precipitation to 390 

southwesterly winds (Figures 3a, 3b, and 6a), which was likely due to the inertial oscillation in 391 

the boundary layer. And at 0700 LST on 22 May 2013, the horizontal divergence in the rainfall 392 

area was at its minimum (Figure 4c). During the period represented by the bold wind vector in 393 

Figure 6a from 0300 LST to 1500 LST on 22 May 2013, the angles between the ageostrophic 394 

winds in the first two quadrants and the last two quadrants mostly exceeded 120°. At 0900 LST 395 

and 1200 LST, the angles were even close to 180°, which is more clear in Figure 3b, resulting in 396 

the formation of a confrontational confluence pattern. During this time, the total hourly 397 

precipitation in the blue rectangle exceeded 4000 mm (Figure 1c), and the hourly precipitation 398 

range at 0800 LST on 22 May was larger than that at 0400 LST (Figures 3a and 3b), which 399 

extended to the south of Fujian with greater intensity. The periods of the heaviest rainfall 400 

correspond to when the ageostrophic winds on the north and south sides are most 401 

confrontational, which coincides with the greatest convergence (Figure 4c). The variation of 402 

ageostrophic winds after nightfall at sea in case 2 was not notable, and they mostly maintained 403 

southeasterly (Figure 6b). Even during the heavy rainfall period from 0900 LST to 1200 LST on 404 

17 May 2015, the angle between the two sides was smaller than 120°, and the wind velocity was 405 

also weaker than that in case 1, and Figure 4d shows less value of horizontal convergence. 406 

Therefore, the asymptotic confluence pattern was the result, and the precipitation intensity had 407 

no notable change (Figures 1d, 3c, and 3d). 408 

The distribution of the ageostrophic winds mainly had two characteristics in the two cases. 409 

First, in both cases, the diurnal variation of the ageostrophic wind direction on land was not 410 

distinct compared with that at sea, so the diurnal variation phase difference of ageostrophic 411 

winds between the sea and land led to the convergence in the rainfall area. Second, over the sea, 412 

the diurnal variation of ageostrophic winds was more distinct in case 1 than in case 2, the 413 

characteristic of inertial oscillations after nightfall was more obvious, and the ageostrophic wind 414 

velocity was also stronger, which led to confrontational confluence in case 1 and asymptotic 415 
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5.1 The Mechanisms of LT Term 488 

The previous section shows that the ageostrophic wind component of the LT term is 489 

characterized by an inertial oscillation at night, especially in case 1, while the other three terms 490 

are not. This can be explained by Equation 4: The inertial oscillation mechanism is established 491 

under the assumptions that the horizontal pressure gradient force is constant with time, the 492 

motion is horizontal, and there is no friction at night (Blackadar,1957). After simplifying 493 

Equation 4 using these assumptions, only LT and IA terms are left on the right side, and the 494 

component of IA is relatively weaker, so the inertial oscillation is reflected in the LT term. 495 

Since the effect of the LT term was more notable at sea, and its difference between the two 496 

cases was mainly in the third and fourth quadrants, only the winds in the last two quadrants in 497 

case 1 were discussed in this section. And for case 2, the rainfall area was between the second 498 

and third quadrants, so we only focus on the winds in the third quadrant in case 2. The LT term is 499 

mainly caused by the unsteadiness of wind, so the different behaviors of the LT term indicate the 500 

difference in the diurnal variation of the total wind between the two cases. In both cases, the 501 

winds offshore were mainly the BLJs, so the diurnal variation of the BLJs had differences. 502 

The boundary layer friction variation will affect the diurnal variation of BLJ through the 503 

Blackadar mechanism. In addition, the rainfall region is located in the coastal area of South 504 

China, and there is a diurnal variation of thermal forcing because of the difference in thermal 505 

properties between the ocean and land. Therefore, the Holton mechanism also has an impact on 506 

the diurnal variation of BLJ in this region. This paper used a simple 2D model to analyze the 507 

relative contribution of these two mechanisms. Figures 9a–d and 10a–d show that the individual 508 

momentum tendency terms of Equations 7 and 8 calculated by the ERA5 reanalysis data agreed 509 

with those obtained from the combined 2D model simulation. It indicates that the combined 2D 510 

model could reproduce the momentum budget very well and thus could be used for subsequent 511 

analysis.  512 

Figures 9e and 9f show that the peak regional average u-component of the wind in case 1 513 

occurred at 1600 LST on 22 May 2013, and the peak v-component occurred at 0400 LST on 22 514 

May 2013, and both components had great diurnal variations. The difference between the 515 

maximum and minimum values of the v-component was about 9 m s-1, thus, it could generate a 516 

strong local wind speed tendency. From the LT term in Equation 4, the u-component of 517 
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speed was also similar, while the pure Holton mechanism resulted in an earlier peak of about 7 557 

hours. For the v-component (Figure 9f), the peak of the pure Holton mechanism appeared almost 558 

at the same time as the ERA5 result at about 0400 LST. The peak of the pure Blackadar 559 

mechanism was also close to reality with about 2 hours later. This indicated that for case 1, the 560 

pure Blackadar mechanism scenario could well simulate the diurnal cycle of winds in both 561 

directions. Figures 9a and 9b show that after night, the total tendency was consistent with the 562 

sum of pressure gradient force and Coriolis force in both directions, which suggested the 563 

boundary decoupled during the night due to surface cooling. Accordingly, the Blackadar 564 

mechanism played important role in the diurnal variation of the BLJ in case 1, making the v-565 

component reach its maximum in the early morning. 566 

For case 2, the effect of the pure Holton mechanism on the u-component was closer to 567 

reality. The peak of the pure Blackadar mechanism was not distinct (Figure 10e). The v-568 

component in the Holton mechanism approached its maximum at about 1700 LST, delaying 569 

about 2 hours compared to reality, while the peak of the Blackadar mechanism appeared about 5 570 

hours earlier. The diurnal variation of the v-component of the pure Holton mechanism was also 571 

constant with the reanalysis data. Figures 10a and 10b show that the boundary decoupling at 572 

night was not significant in case 2. Therefore, the Holton mechanism dominated the diurnal 573 

variation of the BLJ in case 2, that is, the land-sea thermal forcing had a more important effect.  574 

To investigate the thermal difference between land and sea in the two cases, the difference 575 

in temperature at 2 m between the southern boundary of the third and fourth quadrants and the 576 

southern boundary of the first and second quadrants was calculated for case 1 (Figure 9f), and 577 

the difference between the southern boundary of the third quadrant and the southern boundary of 578 

the second quadrant was calculated for case 2 (Figure 10f). In case 1, the temperature difference 579 

was maintained above 3 K throughout the day, and the average difference reached 4.58 K when 580 

the regional cumulative hourly precipitation exceeded 4000 mm. In case 2, the difference was 581 

generally smaller, and the average temperature difference during heavy precipitation was only 582 

2.56 K. The minimum difference appeared at 1100 LST due to the warming by solar radiation on 583 

land. When the temperature on land increases, the meridional sea-land thermal difference 584 

decreases, and the low-level thermal circulation will weaken, which is conducive to the 585 

strengthening of southerly winds. The temperature on land was closer to that at sea at noon in 586 

case 2, so the v-component could get stronger in the afternoon. This verified that the thermal 587 
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difference between the sea and land surface plays a more important role in case 2 than in case 1 588 

during the WSHR. 589 

The Blackadar mechanism and Holton mechanism dominate the diurnal variation of BLJs in 590 

case 1 and case 2, respectively, resulting in the maximum wind speed in case 1 and case 2 591 

appearing in the early morning and afternoon, respectively. Therefore, the behaviors of LT term 592 

in these two cases were different. The diurnal variation of the boundary layer friction and the 593 

land-sea thermal contrast dominate the LT term in case 1 and case 2, respectively, thus 594 

influencing the ageostrophic winds. 595 

5.2 The Mechanisms of IA Term 596 

Since the IA term is the geostrophic deviation contributed by the advection of total wind, 597 

Equation 4 also shows that this term is proportional to the total wind speed and its gradient, so a 598 

different horizontal distribution of total wind will cause a difference in the ageostrophic wind. 599 

Figures 7b and 8b show that the ageostrophic winds on land were weaker because the total wind 600 

speed and its gradient were weaker there than that at sea. The distribution and intensity of the 601 

BLJ over the South China Sea were very different during the two heavy rainfall events. In case 1, 602 

most region of the third quadrant were located in the BLJ core. While in case 2, the range of the 603 

BLJ was smaller, and the third quadrant was mostly located to the southeast of the BLJ axis. The 604 

distribution of the IA ageostrophic wind component can be derived from Equations 5 and 6. 605 

Taking 1200 LST on May 22, 2013, as an example, Figure 11 shows the horizontal distribution 606 

of streamlines and total wind velocity. For point A, the curvature of the streamlines 𝐾 < 0, and 607 

the variation of the total wind speed along with the streamlines 𝜕𝑉/𝜕𝑠 < 0, so the tangential 608 

ageostrophic wind component satisfied 𝑉௦௔ଶ > 0, and the normal component satisfied 𝑉௡௔ଶ < 0. 609 

The result was that the ageostrophic wind component of IA term at this point was westerly. And 610 

for point B, 𝐾~0 and 𝜕𝑉/𝜕𝑠 < 0, then we got 𝑉௦௔ଶ~0 and 𝑉௡௔ଶ < 0, so the ageostrophic wind 611 

component here was northwesterly. The results were consistent with Figure 7b. The same 612 

method can be used to verify the distribution of this ageostrophic wind component at other times 613 

and in case 2, which demonstrates that a difference in the distribution of BLJ can cause a 614 

difference in the ageostrophic wind component of the IA term.  615 
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Therefore, the stronger the total wind speed is, the stronger the ageostrophic wind component 637 

contributed by the BLF term is, even on the oceanic surface. The BLJ is also subjected to strong 638 

friction, and the friction is stronger at sea in case 1 with a stronger and wider BLJ than in case 2. 639 

It’s well known that the effect of friction is an ageostrophic deflection of the winds towards 640 

lower pressure, so the component of BLF term was almost easterly. The direction of the 641 

ageostrophic wind component of the BLF term can also be explained by Equation 4. Its direction 642 

is perpendicular to the friction and points to its right in the northern hemisphere. Considering that 643 

the direction of friction is opposite of the total wind velocity, the ageostrophic wind component 644 

is perpendicular to the total wind velocity pointing to its left in the northern hemisphere. In these 645 

two cases, the total wind speed was almost southerly and southeasterly on land (Figure 3), so the 646 

ageostrophic wind component was easterly and northeasterly.  647 

6 Summary and Discussion 648 

In this paper, two typical cases were selected from the WSHR events in the coastal region 649 

of South China influenced by the southwesterly BLJs. Both cases have strong convergence of 650 

ageostrophic winds at 925 hPa, which were the confrontational confluence type and asymptotic 651 

confluence type, respectively. The convergence can not only represent uplift conditions but also 652 

induce strong moisture convergence. This paper used the ERA5 reanalysis data to diagnose the 653 

contributions of the ageostrophic wind and to investigate the mechanisms that cause the 654 

convergence of ageostrophic winds. The main conclusions are as follows: 655 

(1) The diagnostic equation of ageostrophic wind derived from the original horizontal 656 

momentum equation shows that the factors affecting the ageostrophic wind mainly include the 657 

local tendency of total wind speed, inertial advection, baroclinic effect, and boundary layer 658 

friction. The diagnostic analysis of typical cases shows that the main factors that contribute to the 659 

ageostrophic winds in the WSHR in South China were the local tendency of total wind speed and 660 

boundary layer friction. The inertial advection can also contribute to the ageostrophic wind 661 

component, while the contribution of baroclinic effects was not notable. 662 

(2) The convergence of ageostrophic winds on the north and south sides of the rainfall area 663 

was caused by the difference between sea and land. On land, the BLF term dominates, 664 

contributing easterly and northeasterly ageostrophic winds. The diurnal variation of the LT 665 

component was obvious, but its wind speed was weaker, contributing little to the diurnal 666 
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variation of total ageostrophic wind. In contrast, at sea, the contribution of the LT term was more 667 

important, leading to a more distinct diurnal variation of ageostrophic wind direction and 668 

contributing a southerly ageostrophic wind. Therefore, there was a phase difference in the 669 

diurnal variation between the sea and land, causing convergence of ageostrophic winds on the 670 

coast and promoting the generation of WSHR. 671 

(3) The BLJ in the South China Sea has an important impact on the ageostrophic winds and 672 

their confluence mode. Due to the strong total wind speed in the BLJ area, friction can contribute 673 

to strong ageostrophic winds. The areas with strong wind speed gradients in the BLJ area will 674 

contribute strong ageostrophic winds by the effect of inertial advection. In addition, if the diurnal 675 

variation of the BLJs is significant, strong ageostrophic winds will also be contributed by the 676 

local tendency of wind speed. Since the BLJ in case 1 was stronger and more extensive than in 677 

case 2, and its diurnal variation was also more significant, southwesterly ageostrophic wind 678 

component existed in the south of the rainfall area, producing a confrontational confluence 679 

pattern. And there was only an asymptotic confluence pattern in case 2. 680 

(4) The land-sea thermal contrast can also influence the ageostrophic winds and their 681 

confluence mode. The land-sea thermal difference can affect the diurnal change of BLJs through 682 

the Holton mechanism, then affect the ageostrophic winds through the local tendency of the total 683 

wind. In case 2, the land-sea thermal difference was smaller at noon, so the v-component of the 684 

BLJ was stronger afternoon, making the behavior of the LT term in case 2 different from case 1. 685 

In addition, the greater thermal difference between land and sea also contributed stronger 686 

ageostrophic winds through the baroclinic effect, which is conducive to generating the 687 

confrontational confluence pattern in case 1. 688 

In this paper, the diagnostic equation was used to decompose the ageostrophic wind into 689 

four terms, and the mechanisms of these terms were specifically investigated to explore the 690 

factors contributing to the ageostrophic winds and convergence in coastal WSHR in South 691 

China. These results show that the intensity and extent of BLJs and their diurnal variation can 692 

influence the ageostrophic winds and the strength and extent of convergence on the coast of 693 

South China. Land-sea thermal difference can also affect the ageostrophic winds. The important 694 

effects of southwest BLJs and land-sea thermal forcing were further verified, providing a better 695 

understanding of the WSHR process.  696 
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The present study is based on the reanalysis data and the selected two cases. In the future, 697 

more WSHR cases in the coastal area in South China will be studied to examine the effect of 698 

BLJs and land-sea thermal forcing in other atmospheric conditions, and their combined effect 699 

with other factors, such as terrain, should also be considered. We took the friction effect as the 700 

residual term of the diagnostic equation in this paper, so high-resolution numerical simulations 701 

are needed to verify its rationality and to investigate the detailed characteristics of different 702 

scales. 703 
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