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Abstract

In this study, we apply the three-dimensional Stockwell Transform (3DST) to a novel dataset, namely airglow imager data from

Rothera (68S, 68W). We use this approach to investigate small-scale high-frequency gravity waves (GWs) in the hydroxyl (OH)

airglow layer, at a height $\sim$87 km in the mesosphere and lower thermosphere (MLT). MLT GWs are often underrepresented

in models, being parameterised due to their small scale size and as such, the significant quantities of momentum and energy

transferred by these small waves are missed. Better quantification of these waves is thus needed to support future model

development. We find that the 3DST can identify waves and extract wave properties and their locations. Horizontal wavelengths

are observed ranging from 10 to 40 km and vertical wavelengths of 15 to 40 km, with wave periods of 5 to 9 minutes, peaking

at 7.5 minutes. These values are consistent with previous studies. Group speeds are found to be non-zero and large, implying

that these GWs travel horizontally and fast. This case study demonstrates that the 3DST can be applied to airglow imager

data and can successfully extract GW parameters. This is an important step in automating GW analysis in airglow.

1



manuscript submitted to JGR: Atmospheres

Observations of gravity waves in the OH airglow layer1

above Rothera (68◦S, 68◦W) using a three-dimensional2

S-Transform analysis3

Shaun M. Dempsey1,2, Corwin J. Wright1, Neil P. Hindley1, Nicholas J.4

Mitchell1,2, Tracy Moffat-Griffin2, Pierre-Dominique Pautet3and Michael J.5

Taylor 3
6

1Centre for Atmospheric and Oceanic Sciences, Department of Electronic and Electrical Engineering,7

University of Bath, Bath, UK8
2British Antarctic Survey, Cambridge, UK9

3Physics Department, Utah State University, Logan, Utah, USA10

Key Points:11

• We apply the 3D Stockwell Transform to two-dimensional time-varying airglow12

imagery13

• The majority of waves observed are short wavelength, fast waves with short pe-14

riods.15

• We can determine accurate spatiotemporal locations of the waves, periods and wave-16

lengths measured.17

Corresponding author: Corwin J. Wright, c.wright@bath.ac.uk

–1–



manuscript submitted to JGR: Atmospheres

Abstract18

In this study, we apply the three-dimensional Stockwell Transform (3DST) to a novel19

dataset, namely airglow imager data from Rothera (68◦S, 68◦W). We use this approach20

to investigate small-scale high-frequency gravity waves (GWs) in the hydroxyl (OH) air-21

glow layer, at a height ∼87 km in the mesosphere and lower thermosphere (MLT). MLT22

GWs are often underrepresented in models, being parameterised due to their small scale23

size and as such, the significant quantities of momentum and energy transferred by these24

small waves are missed. Better quantification of these waves is thus requried to support25

future model developement. We find that the 3DST can identify waves and extract wave26

properties and their locations. Horizontal wavelengths are observed ranging from 10 to27

40 km and vertical wavelengths of 15 to 40 km, with wave periods of 5 to 9 minutes, peak-28

ing at 7.5 minutes. These values are consistent with previous studies. Group speeds are29

found to be non-zero and large, implying that these GWs travel horizontally and fast.30

This case study demonstrates that the 3DST can be applied to airglow imager data and31

can successfully extract GW parameters. This is an important step in automating GW32

analysis in airglow.33

1 Introduction34

Atmospheric gravity waves (GWs) are fluid-dynamical waves which propagate through35

the atmosphere and are critical to the dynamics, transport and circulation of the strato-36

sphere, mesosphere and thermosphere (Fritts & Alexander, 2003; Fritts et al., 2006). They37

are mainly generated in the lower atmosphere by sources including mountains, convec-38

tive storms, and dynamical systems such as jets, and have spatial scales of ten to hun-39

dreds of kilometres and temporal scales from five minutes to several hours.40

Due to the decrease of density with height, GWs grow in amplitude as they ascend41

into the mesosphere and lower thermosphere, eventually overturning, breaking and de-42

positing the energy and momentum they transport from their source into the mean flow.43

This deposition is sufficiently large to force a meridional flow through zonal drag, driv-44

ing the mesopause temperature up to 100K from radiative equilibrium ((Lindzen, 1981;45

Becker, 2012), and initiating a residual circulation from the cold summer to the warm46

winter pole. As global circulation models extend upwards into the mesosphere/lower ther-47

mosphere (MLT) system and beyond, they must hence be able to reproduce either GWs48

and/or the energy and momentum they transport accurately. Current models fail to recre-49

ate much of the GW activity responsible for controlling and determining the global cir-50

culation, as the waves exist at spatial and temporal scales which are not resolved by mod-51

els of this type. To compensate for this missing effect, the waves are instead parameterised52

in such models. To do so effectively, the GW parametrisations must be tuned to repre-53

sent the real atmosphere, accurately depicting the waves’ impact on the atmosphere.54

Previous observational and modelling studies have found that GW activity is par-55

ticularly intense in the wintertime over the Southern Andes and the Antarctic Penin-56

sula (Kogure et al., 2021; Hindley et al., 2015; Baumgaertner & McDonald, 2007; Alexan-57

der & Teitelbaum, 2007). This region is distinguished by steep topography, high winds58

over the Southern Ocean, and ferocious frontal activity, which together lead to the gen-59

eration of strong orographic, convective, and jet-front GWs. As such, knowledge of the60

behaviour of the waves in the MLT above this region is especially important to guide fu-61

ture model development. This strong GW activity is well-known, and as such a wide range62

of wave-resolving instruments have been deployed to this region over the past few decades.63

Consequently, we are now able to investigate these GWs in many ways, such as satel-64

lites, rockets, balloons and ground-based techniques (Hindley et al., 2022; Perrett et al.,65

2021; Hindley et al., 2019; Moffat-Griffin & Colwell, 2017; Wright et al., 2017; Wüst &66

Bittner, 2008; Goldberg, 2004; Yoshimura et al., 2003).67
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One commonly-used technique for both satellite and ground-based GWs observa-68

tions is to exploit atmospheric airglow. Physically, this airglow is caused by photon emis-69

sions from chemiluminescent processes which involve species such as atomic oxygen, atomic70

nitrogen, and hydroxyl radicals (Khomich et al., 2008). This phenomenon, also known71

as nightglow, acts as a passive tracer for atmospheric dynamics in the MLT, facilitat-72

ing the study of GWs via imagers, rockets act satellites (e.g. Ganaie et al. (2022); Kogure73

et al. (2020); Hu, Ma, Yan, Hindley, Xu, and Jiang (2019a); Miller et al. (2015); Gard-74

ner and Taylor (1998); Takahashi et al. (1996); Taylor et al. (1993); Peterson (1979)).75

Several energy bands contribute to the total visible and short-wave infrared air-76

glow intensity observed at ground level, but the intensity in the short-wave infrared re-77

gion is substantially higher in hydroxyl (OH) than at other infrared wavelengths. Specif-78

ically, in the short-wave infrared regime lie the Meinel bands, initially studied by Meinel79

(1950), which arise from rotational and vibrational atomic transitions (von Savigny, 2015).80

OH is the primary radiation source of the near-infrared (NIR) airglow layer, which is cen-81

tred at 87 km in height and has a full-width-half-maximum of around 8 km (Baker &82

Stair, 1988), varying in altitude by typically a few kiolmetres (von Savigny, 2015; Wüst83

et al., 2016, 2022).84

GWs appear in airglow layers as a result of changes in pressure and temperature85

caused by the waves passing through the medium, which lead to intensity fluctuations86

in the observed emitted radiation. Many previous studies have shown that OH airglow87

emissions are excellent tracers for observing atmospheric properties and studying dynam-88

ical processes such as instabilities, ripples, small-scale GWs, and larger-scale atmospheric89

waves such as tides and planetary waves (Sedlak et al., 2020; J. Li et al., 2017; Cao &90

Liu, 2016). The spectral properties of small-scale GWs in the MLT, such as wavelengths,91

phase speeds, and propagation directions, can hence be directly observed in the airglow92

layers by using optical imagers. Previous studies have observed GWs with typical hor-93

izontal wavelengths of 20-100 km, intrinsic wave periods of 5 – 10 minutes, and horizon-94

tal phase speeds ranging from 30 to 100 ms−1 (Ejiri et al., 2003; Taylor et al., 1997; Z. Li95

et al., 2011). These limits are imposed by the spatial extent airglow imagers can observe96

and the cadence of images taken.97

In this study, we present a novel application of the three-dimensional Stockwell Trans-98

form (S-Transform) to OH airglow imager data from the British Antarctic Survey base99

at Rothera (68◦S, 68◦W), using data from the night of the 26th – 27th April 2012 as both100

as a case study and a demonstration of the technique. We use the S-Transform to ob-101

serve wave parameters (i.e. wavelengths and periods) and then calculate meteor radar102

winds from the same location to compensate for the Doppler-shifting effects of the wind103

and establish ‘intrinsic’ wave parameters, i.e. in the frame of reference of the wave.104

In Section 2 we describe the data sources, firstly from the airglow imager and sec-105

ondly from the meteor radar. Section 3 deals, firstly, with the airglow image processing,106

secondly with the S-Transform analysis, thirdly with the meteor radar winds and finally107

with the calculation of wave parameters. Section 5 discusses our method and results in108

the context of previous studies. Finally, in Section 6 we provide our conclusions and a109

future outlook on how this semi-automated method could be applied more broadly.110

2 Data111

2.1 Airglow Imager112

Airglow imagers have an extensive track record as a tool for detecting and char-113

acterising GWs in atmospheric airglow layers (e.g. Nielsen et al. (2009); Matsuda et al.114

(2014); Rourke et al. (2017)). Here, we use an all-sky (180◦) monochromatic filter imag-115

ing system to observe GWs in the ∼87 km OH airglow layer. The specific instrument used116

measures these OH signals with a 15-second exposure period, and also measures weaker117
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O2 and Na signals at 90-second and 120-second exposure periods respectively. Combined,118

this gives an overall measurement cadence of ∼ 6 min with an embedded 2-minute OH119

cadence. Figure 1 illustrates the approximate emission distribution of these layers as a120

function of height; we use only the OH data here as proof-of-concept, but future stud-121

ies could exploit these additional layers to provide 4D (i.e. distance/height/time) GW122

information from the same site. Similar systems have been used in past studies to anal-123

yse short-period GWs (e.g. Taylor et al. (1997); Pautet (2005); Nielsen et al. (2006))124

Figure 1. Diagrammatic representation of the heights and volume emission rate of four MLT

airglow species. Adapted from Nielsen (2007).

2.2 Meteor Radar125

Meteor radars are a well-established means of monitoring MLT winds at heights126

from 75 to 105 km. As such, they have been widely used for ground-based tidal and GW127

studies (e.g. Hindley et al. (2022); Stober et al. (2021); Dempsey et al. (2021); Davis et128

al. (2013); Beldon et al. (2006); Mitchell (2002)).129

Here, we use a SKYiMET meteor radar located at the British Antarctic Survey base130

at Rothera (68◦S, 68◦W).131

This instrument was deployed in 2005 and has been operating almost continuously132

from 2005 up to the present. Hocking et al. (2001) provide a full explanation of the SKiYMET133

radar operation.134

We calculate horizontal winds from raw meteor measurements according to the method135

outlined by Hindley et al. (2022), combining the inferred individual horizontal veloci-136

ties for each meteor using a Gaussian weighting in height and time around a specified137

height and time. These Gaussian weightings have full-width-half-maxima of 2 hours in138

time and 3 km in height. We move the centre of each Gaussian over the data in 1 hour139
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time and 1 km height steps, yielding winds at an hourly resolution across the height range140

from 75 to 105 km. This approach has previously been applied by both Dempsey et al.141

(2021) and Hindley et al. (2022). We use these inferred winds to convert our GW mea-142

surements from the ground-based to the intrinsic frame of reference, linearly interpolat-143

ing the winds to the time of each airglow image to provide local zonal and meridional144

wind estimates.145

3 Method146

Our S-Transform GW analysis, described below, is based on a Fourier Transform147

algorithm and thus requires the input data to be regularly-gridded in both space and time.148

We also need to remove fast- and slowly-varying background features. Accordingly, the149

data require some preprocessing before they can be analysed. Figure 2 presents the steps150

in our airglow image preprocessing and processing chain. The units of the data are ar-151

bitrary brightness units recorded by the imager, but are consistent between panels.152

Figure 2a shows an example raw image obtained from the instrument. GWs are153

visually apparent in the frame as curved striped features, but are overlaid by consider-154

able noise from stars and from the Milky Way Galaxy, which in this frame runs through155

the middle of the image. In addition, as there is no geographic metadata stored by the156

imager other than the time of each frame, we need to produce this geographic informa-157

tion.158

Therefore, we must first convert the observed pixel positions to a spatial location159

(i.e. latitude and longitude) and also remove the stars and the galaxy. The galaxy re-160

moval step is particularly important in this regard: as it is a bright rotating near-linear161

object, application of spectral analysis techniques are likely to identify its rotation as the162

wave to be studied, rather than the overlying small amplitude ripples and bands which163

are the our target.164

3.1 Airglow Imager Geometry165

We first convert coordinate frames, with the aim of geolocation each pixel in the166

raw data to a specific spatial distance and direction from the centre of rotation of the167

image, i.e. the vertical axis above the imager. For this purpose, we assume (i) that the168

airglow layer we are observing is at 87 km,(ii) that the zenith, i.e. directly above the Rothera169

airglow imager, is in the middle of the frame and (iii) that the edge of the frame repre-170

sents the horizontal plane of the ground. Using the angle subtended by each pixel from171

the centre pixel, we can then geometrically calculate the latitude and longitude, or ra-172

dius and direction, of each point in the frame.173

Figure 3 presents the geometry of the airglow layer used to compute this conver-174

sion. To do this, we calculate the arc length, a, from the zenith position. Under the as-175

sumption that the airglow layer is at a height h of 87 km above the observer at P , each176

pixel location Q makes a right-angled triangle with angle θ subtended. This angle allows177

us to calculate the arc length, a, of the point Q. RE is the radius of the Earth and r =178

RE + h.179

The first step is to calculate the location of P in the PQ plane, P+. This is given180

by:181

P+ = (P+
x , P+

y ) = (REcosθ,REsinθ) (1)

We may use this to calculate the angle β as:182

β = ϕ− α (2)
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Figure 2. Processing steps of the airglow images explained for one image. Panel a) presents

the raw image as given in the tif file, b) presents the image projected on a latitude/longitude

grid, c) is the centre 100 km square around the zenith, d) is the centre 100 km around the zenith

interpolated onto a regularly spaced grid, e) is the centre grid following the FFT galaxy removal

and finally f) presents the field of view with a final step of star removal performed.

tanα =
P+
x

P+
y

(3)

cosϕ =
P+
y

r
(4)

This means that:183

β = cos−1

(
P+
y

r

)
− tan−1

(
P+
x

P+
y

)
(5)

β = cos−1

(
REsinθ

r

)
− tan−1

(
REcosθ

REsinθ

)
(6)

The arc length is therefore given by:184
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Figure 3. Geometry of airglow layer at height h above the observer at P at a given point, Q.

This figure allows us to extract the arc length of a point in of the airglow given an angle sub-

tended by a pixel from the centre of the frame.

a = rβ = r

(
cos−1

(
REsinθ

r

)
+ θ − π

2

)
(7)

Therefore the arc length can be described by:185

a = rβ = rcos−1

(
REsinθ

RE + h

)
+ r

(
θ − π

2

)
(8)

Calculating this arc length for each point allows us to calculate a distance and di-186

rection from the zenith, which in turn allows us to find the latitude and longitude of each187

pixel location, as shown in Figure 2b. We have removed any pixel information below the188

horizon in this figure, but the image still exhibits many undesirable features. For exam-189

ple, at the edges of the image, the features are warped due to the fisheye lens used to190

record these all-sky data. This data hence cannot be reliably used to measure GW prop-191

erties without significant further preprocessing. To avoid this need in our proof-of-concept192

study, we avoid this issue by considering only a central locally-flat box.193

We define this box as a square region centred at image-centre and including all ar-194

eas within 100km in both the x and y directions of the image, i.e. eastwards and north-195

wards. This centre square is shown in Figure 2c. In this image, the stars and galaxy are196

still visually prominent, which will significantly impact our later spectral analysis. Fur-197

thermore, our data at this stage, while on a spatial grid, are not regularly-spaced, as re-198

quired for the S-Transform (or any Fourier-based) analysis. To address this, we linearly199

interpolate the data onto a 1 km grid in x and y. This re-gridded data is shown in Fig-200

ure 2d. During this step, we also ameliorate the strong signals due to stars by identify-201

ing bright points on the image and setting the values to the average of the surrounding202
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pixels. Only pixels exceeding a cutoff of the 98th percentile are dealt with this way, and203

this does leave some stellar signatures which we address below. We can see that we have204

not lost any geophysical information concerning the airglow layer in this step, and the205

waves present in the original image can still be seen.206

We now move onto the dominant background feature of the Milky Way galaxy. This207

is one of the most visually noticeable features of the sky, especially in dark locations such208

as Rothera. To remove this signal do this, we perform a three-dimensional FFT on the209

image and then remove low temporal frequencies, i.e. signals with long and regular tem-210

poral periods. This is done using a 3D Fast Fourier Transform, the inverse FFT returns211

Figure 2e, in which the signature of the galaxy has been very significantly ameliorated.212

The stars, however, are still present in the frame and could be identified by the S-Transform213

as strong waves with very short periods and wavelengths. The final step, therefore, is214

to more strongly remove the stars. We do this using a difference filter, where we com-215

pute the difference between adjacent pixels time, i.e. between frames. Specifically, we216

identify those pixels which show a difference of over 300 (in arbitrary units) between frames217

and remove the value, replacing it with the mean of the surrounding values. This returns218

Figure 2f where the processed data appears with no strong signatures of either stars or219

the galaxy and with the target waves now very visually prominent.220

3.2 S-transform Wave Analysis221

When extracting wave properties from airglow data, a conventional Fourier trans-222

form analysis can identify the frequencies present in the data; however, it cannot iden-223

tify where and when these frequencies occur in geospatial coordinates. For this, another224

method is required. Accordingly, in this study we apply the 3-D Stockwell transform (3DST)225

technique described by Wright et al. (2017) and Hindley et al. (2019) to measure the spec-226

tral properties of GWs, using two dimensions of space (northwards and eastwards) and227

one of time. Based upon the work of R. Stockwell et al. (1996) and Hindley et al. (2016),228

this method provides a voxel-by-voxel estimate of the amplitude, spatial and temporal229

frequency and direction of propagation of the strongest wavelike signal at every location230

in the 3-D (i.e. x, y, t) data volume. From these estimated properties, we are further able231

to infer properties such as phase speed and vertical wavelength, as described below.232

The S-transform has been extensively used in previous GW studies (R. G. Stock-233

well & Lowe, 2001; McDonald, 2012; Wright & Gille, 2013; Hindley et al., 2016; Hu, Ma,234

Yan, Hindley, Xu, & Jiang, 2019b; Hu, Ma, Yan, Hindley, & Zhao, 2019; Hindley et al.,235

2019), and demonstrated to be a highly capable technique for measuring and localising236

frequencies (or wavenumbers) and their associated amplitudes. However, these previous237

gravity wave studies have used it in spatial dimensions only, and applying it to mixed238

space/time data as we do here is a novel approach. By limiting the range of permitted239

frequencies over which the spectral windows are applied, we are also in principle able to240

select for different periods and wavelengths to allow the investigation of ripples and bands;241

however, as this study is a demonstration of the method, we have not, in this case, re-242

stricted the frequencies detected in this way.243

3.3 Calculating Wave Properties244

With the measured parameters from the S-Transform, supported by wind data from245

the meteor radar, we can calculate both observed and intrinsic wave parameters, i.e. the246

wave parameters in both ground-based Eulerian and wind-following Lagrangian frames247

of reference.248

To do this, we first use the 3DST to measure the horizontal wavenumbers (k and249

l in the zonal and meridional directions, respectively), period, frequencies, wavelengths250

and amplitudes of the observed waves. From these, we can directly compute the hori-251
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zontal wave phase speed cp as cp = ω/kh, where ω is the measured angular frequency252

and kh is the Pythagorean sum of k and l. We can then calculate the intrinsic frequency,253

ω̂, given by254

ω̂ = ω − kū− lv̄ (9)

where ū is the background zonal wind and v̄ is the background meridional wind. To do255

this, we use hourly wind values from the radar data linearly interpolated to each image256

time.257

The intrinsic horizontal phase speed, ĉp, can then be computed as ĉp = cp − ūh258

where ūh is the Pythagorean sum of u and v. Using the medium frequency GW approx-259

imation (Fritts & Alexander, 2003), such that the absolute value of vertical wavenum-260

ber, m, is given by |m| = N/|ĉp| where N is the Brunt-Väisälä frequency and ĉh is the261

intrinsic horizontal phase speed, this allows us to calculate λz = 1/m.262

We can then calculate the intrinsic frequency:263

ω̂ = N

∣∣∣∣khm
∣∣∣∣ (10)

and also the intrinsic group speed ĉg:264

ĉg = ū+
ω̂

kh
(11)

Once we have performed these calculations we have the following parameters:265

• horizontal and vertical wavelengths, λh and λz, respectively266

• observed and intrinsic frequencies, ω and ω̂, respectively267

• observed and intrinsic horizontal phase speeds, cp and ĉp, respectively268

• observed and intrinsic group speeds, cg and ĉg, respectively269

• direction270

• and finally period T .271

4 Results272

4.1 Initial Visual Analysis273

Figure 4 presents a time series of waves above an S-Transform-derived amplitude274

threshold over the time period 23:35 to 01:05 on the night of the 26th – 27th of April275

2012.276

In this figure, to highlight only the strongest wave features results are only shown277

where the S-Transform output amplitude is above a cutoff value of 200 units, illustrated278

by a faint semitransparent grey wrapper. This cutoff represents a value close to the 90th279

percentile of the full measured amplitude distribution including noise-dominated regions.280

Within this volume, red and blue isosurfaces represent phase fronts of positive and neg-281

ative perturbations from the background state as the wave moves across the imager’s field282

of view; the outer (semi-transparent) red and blue surfaces enclose values greater than283

10 units and the solid inner surfaces values greater than 45 units.284

The blue and red isosurfaces can then be interpreted as a visual depiction of the285

wave’s phase fronts as they advance through time. Distinct wavefronts can be seen through-286

out the chosen period, with the region falling within the amplitude cutoff envelope grad-287

ually increasing as the wave covers a larger fraction of the total observed area. We also288
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see two instances of other waves growing and then dissipating separately to the main wave289

envelope. We thus conclude that these waves are indeed persistent and large enough to290

proceed with our investigation.291

Figure 4. 3D visualisation of wave phase fronts over the time period 23:25 to 01:05 on the

night of the 26th – 27th April. Here we have selected waves based on an amplitude threshold.

This wave envelope is given in light grey shading around the wave packets. The wave is persistent

across the time period and the area of influence increases.

4.2 S-Transform Analysis - Example Results292

As described above, from the S-Transform we are able to extract wave amplitude,293

horizontal wavelengths, frequency and period of each pixel in an image. This allows us294

to build a picture of the waves and their properties as they vary over time.295

Figure 5 presents an example of a single frame from the output of the 3D S-Transform296

as applied to the airglow imager data over the night of the 26th – 27th April 2012. Fig-297

ure 5a shows the input data, b the reconstructed wave field based on the output, c the298

wave amplitude at each point on the image, d the horizontal wavelength calculated as299

a Pythagorean sum of the wavelengths in the x and y directions, e the direction of prop-300

agation and f the period in minutes. It can be seen from this example that the wave seen301

in the input data and our above time-varying example is clearly detected by the anal-302

ysis.303

In Figure 5a, we can visually identify wave fronts in the image, which are clear to304

the eye and free from major interference. This means that they are well-placed to be re-305

covered by the S-Transform. A similar picture is seen in Figure 5b, where we reconstruct306

the detected wave field reconstruction (as described by Hindley et al. (2016)). As this307

field is visually and quantitatively similar to the input, we can be confident that the wave308

properties we are calculating using the S-Transform are reliable. In Figure 5c we then309

show the amplitude calculated for each pixel on the image. We see that the area with310

more pronounced wave features marked with a black box in Figure 5a – d in the input311

data exhibits stronger amplitudes than signals in the rest of the figure.312
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Figure 5. Examples of the S-Transform output. In panel a, the input data following the

star and galaxy removal, b presents the reconstruction of the wave field given the wave proper-

ties, c shows the amplitude of the wave at each pixel, d presents the horizontal wavelength as a

Pythagorean sum of the x and y directions, e direction propagation of the dominant wave at each

pixel and f presents the period in minutes.

Further, we show the wavelength in the horizontal direction in Figure 5d. A brief313

visual check shows that the long wavelengths present in the input data are are picked314

up by the S-Transform in the reconstruction and in this field. Finally, the periods are315

shown in Figure 5f ranging from around 5 to 8 minutes. These are fast waves, as the Brunt-316

Väisälä period at this height is around 5 minutes (Wüst et al., 2017).317

4.3 S-Transform Analysis - All-Night Results318

We now show integrated results over the entire night. Figure 6 presents histograms319

of this output, as quantified at the voxel level. Specifically, we have defined this dataset320

such that each voxel above the 90th percentile threshold used previously for Figure 4 con-321

tributes a single count to each histogram. The histograms are defiend across 15 equally-322

sized bins, with the bin width calculated by computing the range between the maximum323

and minimum values and dividing this range into 15 equal-width bins. Here we present324

the horizontal wavelength λh in Figure 6a, the vertical wavelength λz in b, the angular325

frequency ω in c, the phase speed cp in d, the group speed cg in e, the direction in f, the326

temporal period T in g, the intrinsic angular frequency ω̂ in h, the intrinsic phase speed327

ĉp in i, and the intrinsic group speed ĉg in j.328

The distribution of horizontal wavelengths seen in Figure 6a shows that measured329

horizontal wavelengths are generally below 30 km. However, there is also a distinct peak330

at wavelengths ∼35 km. This peak likely arises due to the histograms being computed331

from voxel-level rather than wave-level data: such a feature is consistent with a promi-332
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Figure 6. Histograms of the wave properties extracted from the airglow images using the 3D

S-Transform for the night of 26th – 27th April 2012. Presented here are the horizontal wave-

length λh in a), the vertical wavelength λz in b), the angular frequency ω in c), the phase speed

cp in d), the group speed cg in e), the direction in f), the temporal period T in g), the intrinsic

angular frequency ω̂ in h), the intrinsic phase speed ĉp in i), and the intrinsic group speed ĉg in

j).

nent and persistent wave that lasts for multiple frames contibuted a large number of counts333

in this bin. If we had a method that counted a wave only once as it progressed over the334

image, we would expect this peak to be less pronounced. However, defining the limits335

of a wave packet within data of this type is is a non-trivial exercise and developing a method336

such as this is beyond the scope of this paper.337

Vertical wavelengths in Figure 6b shows smaller wavelengths below 20 km are more338

common than those above 20 km. We can see the peak of this distribution is around 16339

km.340

The angular frequencies computed for the waves, shown in Figure 6c, suggest a pref-341

erence for values below 2.5 rad s−1, but with a noticable secondary peak apparent at342

values ∼ 3.1 rad s−1. In Figure 6d the phase speeds show a preference for lower speeds343

with a peak at 20 ms−1 and at 35 ms−1. We can see phase speeds of 15 to 90 ms−1. Larger344

speeds are, however, less common. The group speed in Figure 6e shows presents two peaks,345

one at 55 ms−1 and one at 90 ms−1. Group speeds between 25 ms−1 and 75 ms−1 are346

more common than speeds between 75 ms−1 and 100 ms−1, but both are still prominent.347

Figure 6f presents the direction of the waves displayed as a bearing (clockwise from348

north). We can see that some directions are more prominent, i.e. northeast, east-southeast349

and west-southwest. There are also some waves travelling south.350

We present the periods of the waves in Figure 6g where the most common period351

is at 7 minutes, with periods from 5.5 mins to 8 mins also being present. Above 8 mins,352

there are limited instances of waves present.353

The following parameters are intrinsic wave parameters; that is, they are the wave354

parameters from the frame of reference of the wind the wave propagates through. In Fig-355

ure 6h, presenting intrinsic angular frequency, we can see an almost symmetrical distri-356
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bution surrounding 0 rad s−1 implying that in the wave frame of reference, waves are357

travelling both with and against the wind. In Figure 6i, we present the intrinsic phase358

speed where a preference for lower speeds is evident, specifically below 50 ms−1. Speeds359

between 100 ms−1 and 150 ms−1 are observed, but this is a very low occurrence. Finally,360

intrinsic group speed shows an almost log-normal distribution with speeds between 10361

ms−1 and 130 ms−1 with a peak at around 25 ms−1.362

In Figure 6e, we observe group speeds which are large and non-zero. This implies363

that the waves we see are not only travelling fast but horizontally propagating. This is364

at odds with common GW parameterisations which consider GWs as being constrained365

to the vertical column of a single gridbox and which can only propagate vertically within366

this column (Alexander et al., 2010; Kalisch et al., 2014). These results provide further367

evidence that this is not the case and that GW parametrisations which do not consider368

horizontal propagation are unsuitable for capturing these small-scale waves which carry369

significant quantities of energy and momentum (Geller et al., 2013; Alexander et al., 2010).370

5 Discussion371

Since in our study we apply a novel method, it is important to assess our results372

properly in the context of previous work using more conventional approaches. Accord-373

ingly, in this section we compare our results quantitatively to previous studies (section374

5.1), before discussing the advantages and disadvantages of our approach relative to other375

available methods (section 5.2).376

5.1 Results Comparison to Previous Studies377

We have found horizontal wavelengths ranging from around 5 to 45 km, with most378

voxels being associated with values between 20 – 25 km. This compares favourably with379

previous studies, which show wavelengths between 20 – 30 km (Kam et al., 2017; Pautet,380

2005; Ejiri et al., 2003; Hecht et al., 2001; R. Stockwell et al., 1996), and with peaks at381

35 km seen in (Hecht, 2002).382

Nielsen et al. (2009) investigated GWs in the hydroxyl airglow layer, using data383

from when the same imaging system used in our study was deployed instead to the British384

Antarctic Survey base at Halley, Antarctica (76◦S, 27◦W). They investigated the sea-385

sonal climatology of individual quasi-monochromatic, short-period gravity-wave char-386

acteristics at high-southern latitudes. These characteristics were observed over the 2000387

and 2001 austral winter seasons. They found horizontal wavelengths from 10 – 70 km,388

producing a log-normal distribution with a peak at 15 – 20 km. Comparatively, we have389

observed a range of 10 – 50 km with a high count at 35 km. As we test only a single night390

of data, this difference may simply be due to the most dominant wave on this specific391

night having this wavelength. As the S-Transform gives us voxel-level information, not392

individual wave events, we cannot say how many waves had this wavelength with this393

information alone.394

Similarly, for observed wave periods, we see a range of values from 5 – 9 ms−1 with395

a peak at around 7.5 ms−1. Nielsen et al. (2009) found a range of 5 – 30 ms−1 with a396

log-normal distribution with peak at ∼ 7.5 ms−1. This is broadly similar to the peak we397

have seen, which suggests that this is a common wave period. The wide range of peri-398

ods seen in their study will come from the two winters of data that have been used. We399

have used one night to benchmark our method resulting, therefore, in less data and fewer400

wave events.401

The directions observed by Nielsen et al. (2009) showed a clear preference for prop-402

agation towards the South Pole, and there is limited evidence of waves propagating North.403
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Similarly, we have shown that propagation southwards is apparent in our case; however,404

the directions we observed also peak significantly in the WSW and ESE directions.405

Kam et al. (2017) observed a very similar range of observed phase speeds as in our406

study; however, the periods we observe are faster, with a range from 5 – 9 minutes com-407

pared with the range of 5 – 60 minutes in the work of Kam et al. (2017). This also sug-408

gests that the results we have uncovered using the 3DST are plausible.409

With observed phase speed, Nielsen et al. (2009) saw a range from 0 to 100 ms−1
410

with a peak at 30 to 40 ms−1. This is an almost Gaussian distribution. We observe a411

range from 10 to 90 ms−1, very similar to that observed at Halley. We also observed a412

peak at 20 ms−1. This could be a persistent wave event that was spatially large and there-413

fore could be present over many voxels.414

5.2 Methodological Comparisons415

The addition of supporting meteor radar data also allows is to convert these pa-416

rameters from the ground-based to the intrinsic frame.417

5.2.1 The 2D Stockwell Transform418

Here, we apply the 3D Stockwell Transform to data of this type for the first time.419

The simpler two-dimensional S-Transform (2DST) has however previously been applied420

to airglow data. Specifically, R. G. Stockwell and Lowe (2001) applied the 2DST to 16421

x 16 pixel airglow images, covering a field of view of 1.5 km at the height of the airglow422

at 87 km. In addition to accounting for time variation, advances in computing power also423

allow us to work at a much larger scale, allowing us to apply the technique to a full night424

of observations totalling 360 frames, each of 101 by 101 pixels and hence covering an area425

of sky equivalent to 100 by 100 km on the surface.426

This combination of features allows us to quantify wave parameters over a much427

larger field of view than (R. G. Stockwell & Lowe, 2001), and to measure many additional428

parameters. In particular, the ability to simultaneously obtain both spatial information429

and the temporal frequency of these waves and how they covary is a key advantage over430

this older 2D approach.431

5.2.2 The Fast Fourier Transform432

An alternative approach is to use just a 3D FFT without the additional window-433

ing properties of the ST. This is computationally very significantly cheaper. As an ex-434

ample of this approach, Rourke et al. (2017) investigated short-period GWs and ripples435

at Davis Station, Antarctica (68 ◦S, 78 ◦E) using a scanning radiometer to measure hy-436

droxyl airglow perturbations.437

The approach of Rourke et al. (2017) identified the dominant wave feature in each438

frame using the FFT, with the period of the dominant wave determined from time-variations439

in the FFTs of the weighted centre of 32 successive images centred on the frame in ques-440

tion. Using a sampling rate of 1 min and a maximum window length of 32, the range441

of wave periods detectable by this approach was 2 to 16 minutes. They then used lag442

analysis to determine the wave direction and speed.443

Our method provides similar outputs, but whereas their approach gave results at444

the frame level our 3DST approach allows the measurement of geographically-decomposed445

parameters at the single-voxel level. This allows for more information to be extracted446

about the waves, and for multiple waves in the same panel to be measured.447
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5.2.3 Cospectral Analysis448

Another method of extracting wave properties is co-spectral analysis, as applied449

by e.g. Cao and Liu (2022) to airglow images observed at Andes Lidar Observatory (30.3450

◦S, 70.7 ◦W) in northern Chile.451

In this study, images were unwrapped to a flat field to account for the van Rhijn452

effect. They removed the galaxy using the Principal Component Analysis (PCA) method453

from Z. Li et al. (2014), then used three consecutive images to create two time-differenced454

images. Horizontal wave properties such as wavelength, observed phase speed, direction455

and relative emission perturbation amplitude were then derived from the co-spectra of456

the two images, supported as in our study by background winds from a SKiYMET me-457

teor radar system based at the Andes Lidar Observatory to convert between the intrin-458

sic and ground-based frames. Once this step was performed, any wavelengths below 10459

km and any periods below the buoyancy frequency were removed.460

This method, similar to our 3DST, allowed both observed and intrinsic parame-461

ters can be established along with relative emission amplitudes of consecutive images.462

However, the method also results in some lost information due to taking the direct dif-463

ferences between each frame. Furthermore, it also assumes that the phase difference from464

voxel to voxel in time is accurate; therefore, any noise present (very likely in real obser-465

vations) will impact significantly and directly upon the quality of the final results.466

5.2.4 The M-Transform467

The final method we discuss is the M-Transform. This was formulated by Matsuda468

et al. (2014) as a 3D method to extract wave properties, similar in underlying concep-469

tion to the S-Transform.470

As with the S-Transform, the M-Transform requires a time series of airglow images471

with fixed and consistent pixel time spacing. For this method, once again, the airglow472

images must be preprocessed to remove stars, the galaxy, and any lens effects, and must473

also be projected onto geographic coordinates. Once this has been done, the M-transform474

transforms the Power Spectral Density (PSD) in the wavenumber domain (k, l, ω), where475

k and l are the wavenumbers in the zonal and meridional direction, respectively and ω476

is the frequency in the phase velocity domain (vx, vy, ω) via the following equations:477

vx =
ωk

k2 + l2
(12)

vy =
ωl

k2 + l2
(13)

Where vx and vy are the orthogonal projections of the phase velocity onto zonal and merid-478

ional axes, respectively. This allows for the calculation of phase speed and azimuth as:479

(vx, vy) = c(sinϕ, cosϕ) (14)

Where c is the phase speed, and ϕ is the azimuth. Finally, the phase velocity is integrated480

to give a 2D phase velocity spectrum.481

The M-transform shares many benefits with the S-Transform method we present482

in this study. For instance, it is highly automated and does not require interaction with483

the user, it is 3D, and it provides many wave properties directly. However, the M-transform484

is statistical, and there is no information provided from the analysis about specific lo-485

cations and times within the dataset used - all properties are measured at the bulk level486

for the whole dataset. The ability of the S-Transform approach to resolve the same prop-487

erties at the voxel level is thus a significant advantage.488
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6 Conclusions489

In this study, we have presented a new application of a 3D spectral analysis tech-490

nique, the 3D S-Transform, to airglow imager data from the Antarctic Peninsula at the491

British Antarctic Survey Base at Rothera (68◦S, 68◦W).492

The method is automated and can identify wave properties for each pixel; we can,493

therefore, use it to investigate the spatial extent of the wave, as in Figure 4.494

We have found that:495

1. The 3D S-Transform method works well with processed airglow imager data and496

measures wave parameters consistent with the airglow literature497

2. The majority of waves seen in the airglow in this case study are small, fast GWs498

with short periods.499

3. We see a distribution of horizontal wavelengths between 10 to 50 km with a sharp500

peak at 35 km, possibly due to methodological reasons501

4. Vertical wavelengths peak at values below 20 km, peaking at around 15 km but502

with the largest peak at around 40 km.503

5. Phase speeds are generally low, and group speeds are high and non-zero This sug-504

gests that the waves observed are travelling horizontally and also fast, further sug-505

gesting that GW parametrisations which do not account for horizontal movement506

are inadequate507

6. Finally, we can give accurate locations of where the waves in the airglow are present508

due to the 3D S-Transform investigating waves on the pixel rather than wave event509

level.510

Future studies could advantageously use the S-Transform in tandem with an au-511

tomated image processing technique to improve the process thus allowing the identifi-512

cation of airglow images that are of sufficient clarity for use in the investigation of GWs.513

Used together, these processes would allow airglow images to be processed and analysed514

in one programme with little input from the user, allowing for a fully automated pro-515

cess. This would result in GW parameters and their locations on each frame. More work516

on the spatial extent of the wave could then be performed and investigated.517
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Wüst, S., Wendt, V., Schmidt, C., Lichtenstern, S., Bittner, M., Yee, J.-H., . . .816

III, J. M. R. (2016, February). Derivation of gravity wave potential energy817

density from NDMC measurements. Journal of Atmospheric and Solar-818

Terrestrial Physics, 138-139 , 32–46. Retrieved from https://doi.org/819

10.1016/j.jastp.2015.12.003 doi: 10.1016/j.jastp.2015.12.003820

Yoshimura, R., Iwagami, N., & Oyama, K.-I. (2003, September). Rocket mea-821

surement of electron density and atomic oxygen density modulated by at-822

mospheric gravity waves. Advances in Space Research, 32 (5), 837–842. Re-823

trieved from https://doi.org/10.1016/s0273-1177(03)00422-8 doi:824

10.1016/s0273-1177(03)00422-8825

–22–



manuscript submitted to JGR: Atmospheres

Observations of gravity waves in the OH airglow layer1

above Rothera (68◦S, 68◦W) using a three-dimensional2

S-Transform analysis3

Shaun M. Dempsey1,2, Corwin J. Wright1, Neil P. Hindley1, Nicholas J.4

Mitchell1,2, Tracy Moffat-Griffin2, Pierre-Dominique Pautet3and Michael J.5

Taylor 3
6

1Centre for Atmospheric and Oceanic Sciences, Department of Electronic and Electrical Engineering,7

University of Bath, Bath, UK8
2British Antarctic Survey, Cambridge, UK9

3Physics Department, Utah State University, Logan, Utah, USA10

Key Points:11

• We apply the 3D Stockwell Transform to two-dimensional time-varying airglow12

imagery13

• The majority of waves observed are short wavelength, fast waves with short pe-14

riods.15

• We can determine accurate spatiotemporal locations of the waves, periods and wave-16

lengths measured.17

Corresponding author: Corwin J. Wright, c.wright@bath.ac.uk

–1–



manuscript submitted to JGR: Atmospheres

Abstract18

In this study, we apply the three-dimensional Stockwell Transform (3DST) to a novel19

dataset, namely airglow imager data from Rothera (68◦S, 68◦W). We use this approach20

to investigate small-scale high-frequency gravity waves (GWs) in the hydroxyl (OH) air-21

glow layer, at a height ∼87 km in the mesosphere and lower thermosphere (MLT). MLT22

GWs are often underrepresented in models, being parameterised due to their small scale23

size and as such, the significant quantities of momentum and energy transferred by these24

small waves are missed. Better quantification of these waves is thus requried to support25

future model developement. We find that the 3DST can identify waves and extract wave26

properties and their locations. Horizontal wavelengths are observed ranging from 10 to27

40 km and vertical wavelengths of 15 to 40 km, with wave periods of 5 to 9 minutes, peak-28

ing at 7.5 minutes. These values are consistent with previous studies. Group speeds are29

found to be non-zero and large, implying that these GWs travel horizontally and fast.30

This case study demonstrates that the 3DST can be applied to airglow imager data and31

can successfully extract GW parameters. This is an important step in automating GW32

analysis in airglow.33

1 Introduction34

Atmospheric gravity waves (GWs) are fluid-dynamical waves which propagate through35

the atmosphere and are critical to the dynamics, transport and circulation of the strato-36

sphere, mesosphere and thermosphere (Fritts & Alexander, 2003; Fritts et al., 2006). They37

are mainly generated in the lower atmosphere by sources including mountains, convec-38

tive storms, and dynamical systems such as jets, and have spatial scales of ten to hun-39

dreds of kilometres and temporal scales from five minutes to several hours.40

Due to the decrease of density with height, GWs grow in amplitude as they ascend41

into the mesosphere and lower thermosphere, eventually overturning, breaking and de-42

positing the energy and momentum they transport from their source into the mean flow.43

This deposition is sufficiently large to force a meridional flow through zonal drag, driv-44

ing the mesopause temperature up to 100K from radiative equilibrium ((Lindzen, 1981;45

Becker, 2012), and initiating a residual circulation from the cold summer to the warm46

winter pole. As global circulation models extend upwards into the mesosphere/lower ther-47

mosphere (MLT) system and beyond, they must hence be able to reproduce either GWs48

and/or the energy and momentum they transport accurately. Current models fail to recre-49

ate much of the GW activity responsible for controlling and determining the global cir-50

culation, as the waves exist at spatial and temporal scales which are not resolved by mod-51

els of this type. To compensate for this missing effect, the waves are instead parameterised52

in such models. To do so effectively, the GW parametrisations must be tuned to repre-53

sent the real atmosphere, accurately depicting the waves’ impact on the atmosphere.54

Previous observational and modelling studies have found that GW activity is par-55

ticularly intense in the wintertime over the Southern Andes and the Antarctic Penin-56

sula (Kogure et al., 2021; Hindley et al., 2015; Baumgaertner & McDonald, 2007; Alexan-57

der & Teitelbaum, 2007). This region is distinguished by steep topography, high winds58

over the Southern Ocean, and ferocious frontal activity, which together lead to the gen-59

eration of strong orographic, convective, and jet-front GWs. As such, knowledge of the60

behaviour of the waves in the MLT above this region is especially important to guide fu-61

ture model development. This strong GW activity is well-known, and as such a wide range62

of wave-resolving instruments have been deployed to this region over the past few decades.63

Consequently, we are now able to investigate these GWs in many ways, such as satel-64

lites, rockets, balloons and ground-based techniques (Hindley et al., 2022; Perrett et al.,65

2021; Hindley et al., 2019; Moffat-Griffin & Colwell, 2017; Wright et al., 2017; Wüst &66

Bittner, 2008; Goldberg, 2004; Yoshimura et al., 2003).67
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One commonly-used technique for both satellite and ground-based GWs observa-68

tions is to exploit atmospheric airglow. Physically, this airglow is caused by photon emis-69

sions from chemiluminescent processes which involve species such as atomic oxygen, atomic70

nitrogen, and hydroxyl radicals (Khomich et al., 2008). This phenomenon, also known71

as nightglow, acts as a passive tracer for atmospheric dynamics in the MLT, facilitat-72

ing the study of GWs via imagers, rockets act satellites (e.g. Ganaie et al. (2022); Kogure73

et al. (2020); Hu, Ma, Yan, Hindley, Xu, and Jiang (2019a); Miller et al. (2015); Gard-74

ner and Taylor (1998); Takahashi et al. (1996); Taylor et al. (1993); Peterson (1979)).75

Several energy bands contribute to the total visible and short-wave infrared air-76

glow intensity observed at ground level, but the intensity in the short-wave infrared re-77

gion is substantially higher in hydroxyl (OH) than at other infrared wavelengths. Specif-78

ically, in the short-wave infrared regime lie the Meinel bands, initially studied by Meinel79

(1950), which arise from rotational and vibrational atomic transitions (von Savigny, 2015).80

OH is the primary radiation source of the near-infrared (NIR) airglow layer, which is cen-81

tred at 87 km in height and has a full-width-half-maximum of around 8 km (Baker &82

Stair, 1988), varying in altitude by typically a few kiolmetres (von Savigny, 2015; Wüst83

et al., 2016, 2022).84

GWs appear in airglow layers as a result of changes in pressure and temperature85

caused by the waves passing through the medium, which lead to intensity fluctuations86

in the observed emitted radiation. Many previous studies have shown that OH airglow87

emissions are excellent tracers for observing atmospheric properties and studying dynam-88

ical processes such as instabilities, ripples, small-scale GWs, and larger-scale atmospheric89

waves such as tides and planetary waves (Sedlak et al., 2020; J. Li et al., 2017; Cao &90

Liu, 2016). The spectral properties of small-scale GWs in the MLT, such as wavelengths,91

phase speeds, and propagation directions, can hence be directly observed in the airglow92

layers by using optical imagers. Previous studies have observed GWs with typical hor-93

izontal wavelengths of 20-100 km, intrinsic wave periods of 5 – 10 minutes, and horizon-94

tal phase speeds ranging from 30 to 100 ms−1 (Ejiri et al., 2003; Taylor et al., 1997; Z. Li95

et al., 2011). These limits are imposed by the spatial extent airglow imagers can observe96

and the cadence of images taken.97

In this study, we present a novel application of the three-dimensional Stockwell Trans-98

form (S-Transform) to OH airglow imager data from the British Antarctic Survey base99

at Rothera (68◦S, 68◦W), using data from the night of the 26th – 27th April 2012 as both100

as a case study and a demonstration of the technique. We use the S-Transform to ob-101

serve wave parameters (i.e. wavelengths and periods) and then calculate meteor radar102

winds from the same location to compensate for the Doppler-shifting effects of the wind103

and establish ‘intrinsic’ wave parameters, i.e. in the frame of reference of the wave.104

In Section 2 we describe the data sources, firstly from the airglow imager and sec-105

ondly from the meteor radar. Section 3 deals, firstly, with the airglow image processing,106

secondly with the S-Transform analysis, thirdly with the meteor radar winds and finally107

with the calculation of wave parameters. Section 5 discusses our method and results in108

the context of previous studies. Finally, in Section 6 we provide our conclusions and a109

future outlook on how this semi-automated method could be applied more broadly.110

2 Data111

2.1 Airglow Imager112

Airglow imagers have an extensive track record as a tool for detecting and char-113

acterising GWs in atmospheric airglow layers (e.g. Nielsen et al. (2009); Matsuda et al.114

(2014); Rourke et al. (2017)). Here, we use an all-sky (180◦) monochromatic filter imag-115

ing system to observe GWs in the ∼87 km OH airglow layer. The specific instrument used116

measures these OH signals with a 15-second exposure period, and also measures weaker117
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O2 and Na signals at 90-second and 120-second exposure periods respectively. Combined,118

this gives an overall measurement cadence of ∼ 6 min with an embedded 2-minute OH119

cadence. Figure 1 illustrates the approximate emission distribution of these layers as a120

function of height; we use only the OH data here as proof-of-concept, but future stud-121

ies could exploit these additional layers to provide 4D (i.e. distance/height/time) GW122

information from the same site. Similar systems have been used in past studies to anal-123

yse short-period GWs (e.g. Taylor et al. (1997); Pautet (2005); Nielsen et al. (2006))124

Figure 1. Diagrammatic representation of the heights and volume emission rate of four MLT

airglow species. Adapted from Nielsen (2007).

2.2 Meteor Radar125

Meteor radars are a well-established means of monitoring MLT winds at heights126

from 75 to 105 km. As such, they have been widely used for ground-based tidal and GW127

studies (e.g. Hindley et al. (2022); Stober et al. (2021); Dempsey et al. (2021); Davis et128

al. (2013); Beldon et al. (2006); Mitchell (2002)).129

Here, we use a SKYiMET meteor radar located at the British Antarctic Survey base130

at Rothera (68◦S, 68◦W).131

This instrument was deployed in 2005 and has been operating almost continuously132

from 2005 up to the present. Hocking et al. (2001) provide a full explanation of the SKiYMET133

radar operation.134

We calculate horizontal winds from raw meteor measurements according to the method135

outlined by Hindley et al. (2022), combining the inferred individual horizontal veloci-136

ties for each meteor using a Gaussian weighting in height and time around a specified137

height and time. These Gaussian weightings have full-width-half-maxima of 2 hours in138

time and 3 km in height. We move the centre of each Gaussian over the data in 1 hour139
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time and 1 km height steps, yielding winds at an hourly resolution across the height range140

from 75 to 105 km. This approach has previously been applied by both Dempsey et al.141

(2021) and Hindley et al. (2022). We use these inferred winds to convert our GW mea-142

surements from the ground-based to the intrinsic frame of reference, linearly interpolat-143

ing the winds to the time of each airglow image to provide local zonal and meridional144

wind estimates.145

3 Method146

Our S-Transform GW analysis, described below, is based on a Fourier Transform147

algorithm and thus requires the input data to be regularly-gridded in both space and time.148

We also need to remove fast- and slowly-varying background features. Accordingly, the149

data require some preprocessing before they can be analysed. Figure 2 presents the steps150

in our airglow image preprocessing and processing chain. The units of the data are ar-151

bitrary brightness units recorded by the imager, but are consistent between panels.152

Figure 2a shows an example raw image obtained from the instrument. GWs are153

visually apparent in the frame as curved striped features, but are overlaid by consider-154

able noise from stars and from the Milky Way Galaxy, which in this frame runs through155

the middle of the image. In addition, as there is no geographic metadata stored by the156

imager other than the time of each frame, we need to produce this geographic informa-157

tion.158

Therefore, we must first convert the observed pixel positions to a spatial location159

(i.e. latitude and longitude) and also remove the stars and the galaxy. The galaxy re-160

moval step is particularly important in this regard: as it is a bright rotating near-linear161

object, application of spectral analysis techniques are likely to identify its rotation as the162

wave to be studied, rather than the overlying small amplitude ripples and bands which163

are the our target.164

3.1 Airglow Imager Geometry165

We first convert coordinate frames, with the aim of geolocation each pixel in the166

raw data to a specific spatial distance and direction from the centre of rotation of the167

image, i.e. the vertical axis above the imager. For this purpose, we assume (i) that the168

airglow layer we are observing is at 87 km,(ii) that the zenith, i.e. directly above the Rothera169

airglow imager, is in the middle of the frame and (iii) that the edge of the frame repre-170

sents the horizontal plane of the ground. Using the angle subtended by each pixel from171

the centre pixel, we can then geometrically calculate the latitude and longitude, or ra-172

dius and direction, of each point in the frame.173

Figure 3 presents the geometry of the airglow layer used to compute this conver-174

sion. To do this, we calculate the arc length, a, from the zenith position. Under the as-175

sumption that the airglow layer is at a height h of 87 km above the observer at P , each176

pixel location Q makes a right-angled triangle with angle θ subtended. This angle allows177

us to calculate the arc length, a, of the point Q. RE is the radius of the Earth and r =178

RE + h.179

The first step is to calculate the location of P in the PQ plane, P+. This is given180

by:181

P+ = (P+
x , P+

y ) = (REcosθ,REsinθ) (1)

We may use this to calculate the angle β as:182

β = ϕ− α (2)
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Figure 2. Processing steps of the airglow images explained for one image. Panel a) presents

the raw image as given in the tif file, b) presents the image projected on a latitude/longitude

grid, c) is the centre 100 km square around the zenith, d) is the centre 100 km around the zenith

interpolated onto a regularly spaced grid, e) is the centre grid following the FFT galaxy removal

and finally f) presents the field of view with a final step of star removal performed.

tanα =
P+
x

P+
y

(3)

cosϕ =
P+
y

r
(4)

This means that:183

β = cos−1

(
P+
y

r

)
− tan−1

(
P+
x

P+
y

)
(5)

β = cos−1

(
REsinθ

r

)
− tan−1

(
REcosθ

REsinθ

)
(6)

The arc length is therefore given by:184

–6–



manuscript submitted to JGR: Atmospheres

Figure 3. Geometry of airglow layer at height h above the observer at P at a given point, Q.

This figure allows us to extract the arc length of a point in of the airglow given an angle sub-

tended by a pixel from the centre of the frame.

a = rβ = r

(
cos−1

(
REsinθ

r

)
+ θ − π

2

)
(7)

Therefore the arc length can be described by:185

a = rβ = rcos−1

(
REsinθ

RE + h

)
+ r

(
θ − π

2

)
(8)

Calculating this arc length for each point allows us to calculate a distance and di-186

rection from the zenith, which in turn allows us to find the latitude and longitude of each187

pixel location, as shown in Figure 2b. We have removed any pixel information below the188

horizon in this figure, but the image still exhibits many undesirable features. For exam-189

ple, at the edges of the image, the features are warped due to the fisheye lens used to190

record these all-sky data. This data hence cannot be reliably used to measure GW prop-191

erties without significant further preprocessing. To avoid this need in our proof-of-concept192

study, we avoid this issue by considering only a central locally-flat box.193

We define this box as a square region centred at image-centre and including all ar-194

eas within 100km in both the x and y directions of the image, i.e. eastwards and north-195

wards. This centre square is shown in Figure 2c. In this image, the stars and galaxy are196

still visually prominent, which will significantly impact our later spectral analysis. Fur-197

thermore, our data at this stage, while on a spatial grid, are not regularly-spaced, as re-198

quired for the S-Transform (or any Fourier-based) analysis. To address this, we linearly199

interpolate the data onto a 1 km grid in x and y. This re-gridded data is shown in Fig-200

ure 2d. During this step, we also ameliorate the strong signals due to stars by identify-201

ing bright points on the image and setting the values to the average of the surrounding202
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pixels. Only pixels exceeding a cutoff of the 98th percentile are dealt with this way, and203

this does leave some stellar signatures which we address below. We can see that we have204

not lost any geophysical information concerning the airglow layer in this step, and the205

waves present in the original image can still be seen.206

We now move onto the dominant background feature of the Milky Way galaxy. This207

is one of the most visually noticeable features of the sky, especially in dark locations such208

as Rothera. To remove this signal do this, we perform a three-dimensional FFT on the209

image and then remove low temporal frequencies, i.e. signals with long and regular tem-210

poral periods. This is done using a 3D Fast Fourier Transform, the inverse FFT returns211

Figure 2e, in which the signature of the galaxy has been very significantly ameliorated.212

The stars, however, are still present in the frame and could be identified by the S-Transform213

as strong waves with very short periods and wavelengths. The final step, therefore, is214

to more strongly remove the stars. We do this using a difference filter, where we com-215

pute the difference between adjacent pixels time, i.e. between frames. Specifically, we216

identify those pixels which show a difference of over 300 (in arbitrary units) between frames217

and remove the value, replacing it with the mean of the surrounding values. This returns218

Figure 2f where the processed data appears with no strong signatures of either stars or219

the galaxy and with the target waves now very visually prominent.220

3.2 S-transform Wave Analysis221

When extracting wave properties from airglow data, a conventional Fourier trans-222

form analysis can identify the frequencies present in the data; however, it cannot iden-223

tify where and when these frequencies occur in geospatial coordinates. For this, another224

method is required. Accordingly, in this study we apply the 3-D Stockwell transform (3DST)225

technique described by Wright et al. (2017) and Hindley et al. (2019) to measure the spec-226

tral properties of GWs, using two dimensions of space (northwards and eastwards) and227

one of time. Based upon the work of R. Stockwell et al. (1996) and Hindley et al. (2016),228

this method provides a voxel-by-voxel estimate of the amplitude, spatial and temporal229

frequency and direction of propagation of the strongest wavelike signal at every location230

in the 3-D (i.e. x, y, t) data volume. From these estimated properties, we are further able231

to infer properties such as phase speed and vertical wavelength, as described below.232

The S-transform has been extensively used in previous GW studies (R. G. Stock-233

well & Lowe, 2001; McDonald, 2012; Wright & Gille, 2013; Hindley et al., 2016; Hu, Ma,234

Yan, Hindley, Xu, & Jiang, 2019b; Hu, Ma, Yan, Hindley, & Zhao, 2019; Hindley et al.,235

2019), and demonstrated to be a highly capable technique for measuring and localising236

frequencies (or wavenumbers) and their associated amplitudes. However, these previous237

gravity wave studies have used it in spatial dimensions only, and applying it to mixed238

space/time data as we do here is a novel approach. By limiting the range of permitted239

frequencies over which the spectral windows are applied, we are also in principle able to240

select for different periods and wavelengths to allow the investigation of ripples and bands;241

however, as this study is a demonstration of the method, we have not, in this case, re-242

stricted the frequencies detected in this way.243

3.3 Calculating Wave Properties244

With the measured parameters from the S-Transform, supported by wind data from245

the meteor radar, we can calculate both observed and intrinsic wave parameters, i.e. the246

wave parameters in both ground-based Eulerian and wind-following Lagrangian frames247

of reference.248

To do this, we first use the 3DST to measure the horizontal wavenumbers (k and249

l in the zonal and meridional directions, respectively), period, frequencies, wavelengths250

and amplitudes of the observed waves. From these, we can directly compute the hori-251
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zontal wave phase speed cp as cp = ω/kh, where ω is the measured angular frequency252

and kh is the Pythagorean sum of k and l. We can then calculate the intrinsic frequency,253

ω̂, given by254

ω̂ = ω − kū− lv̄ (9)

where ū is the background zonal wind and v̄ is the background meridional wind. To do255

this, we use hourly wind values from the radar data linearly interpolated to each image256

time.257

The intrinsic horizontal phase speed, ĉp, can then be computed as ĉp = cp − ūh258

where ūh is the Pythagorean sum of u and v. Using the medium frequency GW approx-259

imation (Fritts & Alexander, 2003), such that the absolute value of vertical wavenum-260

ber, m, is given by |m| = N/|ĉp| where N is the Brunt-Väisälä frequency and ĉh is the261

intrinsic horizontal phase speed, this allows us to calculate λz = 1/m.262

We can then calculate the intrinsic frequency:263

ω̂ = N

∣∣∣∣khm
∣∣∣∣ (10)

and also the intrinsic group speed ĉg:264

ĉg = ū+
ω̂

kh
(11)

Once we have performed these calculations we have the following parameters:265

• horizontal and vertical wavelengths, λh and λz, respectively266

• observed and intrinsic frequencies, ω and ω̂, respectively267

• observed and intrinsic horizontal phase speeds, cp and ĉp, respectively268

• observed and intrinsic group speeds, cg and ĉg, respectively269

• direction270

• and finally period T .271

4 Results272

4.1 Initial Visual Analysis273

Figure 4 presents a time series of waves above an S-Transform-derived amplitude274

threshold over the time period 23:35 to 01:05 on the night of the 26th – 27th of April275

2012.276

In this figure, to highlight only the strongest wave features results are only shown277

where the S-Transform output amplitude is above a cutoff value of 200 units, illustrated278

by a faint semitransparent grey wrapper. This cutoff represents a value close to the 90th279

percentile of the full measured amplitude distribution including noise-dominated regions.280

Within this volume, red and blue isosurfaces represent phase fronts of positive and neg-281

ative perturbations from the background state as the wave moves across the imager’s field282

of view; the outer (semi-transparent) red and blue surfaces enclose values greater than283

10 units and the solid inner surfaces values greater than 45 units.284

The blue and red isosurfaces can then be interpreted as a visual depiction of the285

wave’s phase fronts as they advance through time. Distinct wavefronts can be seen through-286

out the chosen period, with the region falling within the amplitude cutoff envelope grad-287

ually increasing as the wave covers a larger fraction of the total observed area. We also288
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see two instances of other waves growing and then dissipating separately to the main wave289

envelope. We thus conclude that these waves are indeed persistent and large enough to290

proceed with our investigation.291

Figure 4. 3D visualisation of wave phase fronts over the time period 23:25 to 01:05 on the

night of the 26th – 27th April. Here we have selected waves based on an amplitude threshold.

This wave envelope is given in light grey shading around the wave packets. The wave is persistent

across the time period and the area of influence increases.

4.2 S-Transform Analysis - Example Results292

As described above, from the S-Transform we are able to extract wave amplitude,293

horizontal wavelengths, frequency and period of each pixel in an image. This allows us294

to build a picture of the waves and their properties as they vary over time.295

Figure 5 presents an example of a single frame from the output of the 3D S-Transform296

as applied to the airglow imager data over the night of the 26th – 27th April 2012. Fig-297

ure 5a shows the input data, b the reconstructed wave field based on the output, c the298

wave amplitude at each point on the image, d the horizontal wavelength calculated as299

a Pythagorean sum of the wavelengths in the x and y directions, e the direction of prop-300

agation and f the period in minutes. It can be seen from this example that the wave seen301

in the input data and our above time-varying example is clearly detected by the anal-302

ysis.303

In Figure 5a, we can visually identify wave fronts in the image, which are clear to304

the eye and free from major interference. This means that they are well-placed to be re-305

covered by the S-Transform. A similar picture is seen in Figure 5b, where we reconstruct306

the detected wave field reconstruction (as described by Hindley et al. (2016)). As this307

field is visually and quantitatively similar to the input, we can be confident that the wave308

properties we are calculating using the S-Transform are reliable. In Figure 5c we then309

show the amplitude calculated for each pixel on the image. We see that the area with310

more pronounced wave features marked with a black box in Figure 5a – d in the input311

data exhibits stronger amplitudes than signals in the rest of the figure.312
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Figure 5. Examples of the S-Transform output. In panel a, the input data following the

star and galaxy removal, b presents the reconstruction of the wave field given the wave proper-

ties, c shows the amplitude of the wave at each pixel, d presents the horizontal wavelength as a

Pythagorean sum of the x and y directions, e direction propagation of the dominant wave at each

pixel and f presents the period in minutes.

Further, we show the wavelength in the horizontal direction in Figure 5d. A brief313

visual check shows that the long wavelengths present in the input data are are picked314

up by the S-Transform in the reconstruction and in this field. Finally, the periods are315

shown in Figure 5f ranging from around 5 to 8 minutes. These are fast waves, as the Brunt-316

Väisälä period at this height is around 5 minutes (Wüst et al., 2017).317

4.3 S-Transform Analysis - All-Night Results318

We now show integrated results over the entire night. Figure 6 presents histograms319

of this output, as quantified at the voxel level. Specifically, we have defined this dataset320

such that each voxel above the 90th percentile threshold used previously for Figure 4 con-321

tributes a single count to each histogram. The histograms are defiend across 15 equally-322

sized bins, with the bin width calculated by computing the range between the maximum323

and minimum values and dividing this range into 15 equal-width bins. Here we present324

the horizontal wavelength λh in Figure 6a, the vertical wavelength λz in b, the angular325

frequency ω in c, the phase speed cp in d, the group speed cg in e, the direction in f, the326

temporal period T in g, the intrinsic angular frequency ω̂ in h, the intrinsic phase speed327

ĉp in i, and the intrinsic group speed ĉg in j.328

The distribution of horizontal wavelengths seen in Figure 6a shows that measured329

horizontal wavelengths are generally below 30 km. However, there is also a distinct peak330

at wavelengths ∼35 km. This peak likely arises due to the histograms being computed331

from voxel-level rather than wave-level data: such a feature is consistent with a promi-332
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Figure 6. Histograms of the wave properties extracted from the airglow images using the 3D

S-Transform for the night of 26th – 27th April 2012. Presented here are the horizontal wave-

length λh in a), the vertical wavelength λz in b), the angular frequency ω in c), the phase speed

cp in d), the group speed cg in e), the direction in f), the temporal period T in g), the intrinsic

angular frequency ω̂ in h), the intrinsic phase speed ĉp in i), and the intrinsic group speed ĉg in

j).

nent and persistent wave that lasts for multiple frames contibuted a large number of counts333

in this bin. If we had a method that counted a wave only once as it progressed over the334

image, we would expect this peak to be less pronounced. However, defining the limits335

of a wave packet within data of this type is is a non-trivial exercise and developing a method336

such as this is beyond the scope of this paper.337

Vertical wavelengths in Figure 6b shows smaller wavelengths below 20 km are more338

common than those above 20 km. We can see the peak of this distribution is around 16339

km.340

The angular frequencies computed for the waves, shown in Figure 6c, suggest a pref-341

erence for values below 2.5 rad s−1, but with a noticable secondary peak apparent at342

values ∼ 3.1 rad s−1. In Figure 6d the phase speeds show a preference for lower speeds343

with a peak at 20 ms−1 and at 35 ms−1. We can see phase speeds of 15 to 90 ms−1. Larger344

speeds are, however, less common. The group speed in Figure 6e shows presents two peaks,345

one at 55 ms−1 and one at 90 ms−1. Group speeds between 25 ms−1 and 75 ms−1 are346

more common than speeds between 75 ms−1 and 100 ms−1, but both are still prominent.347

Figure 6f presents the direction of the waves displayed as a bearing (clockwise from348

north). We can see that some directions are more prominent, i.e. northeast, east-southeast349

and west-southwest. There are also some waves travelling south.350

We present the periods of the waves in Figure 6g where the most common period351

is at 7 minutes, with periods from 5.5 mins to 8 mins also being present. Above 8 mins,352

there are limited instances of waves present.353

The following parameters are intrinsic wave parameters; that is, they are the wave354

parameters from the frame of reference of the wind the wave propagates through. In Fig-355

ure 6h, presenting intrinsic angular frequency, we can see an almost symmetrical distri-356
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bution surrounding 0 rad s−1 implying that in the wave frame of reference, waves are357

travelling both with and against the wind. In Figure 6i, we present the intrinsic phase358

speed where a preference for lower speeds is evident, specifically below 50 ms−1. Speeds359

between 100 ms−1 and 150 ms−1 are observed, but this is a very low occurrence. Finally,360

intrinsic group speed shows an almost log-normal distribution with speeds between 10361

ms−1 and 130 ms−1 with a peak at around 25 ms−1.362

In Figure 6e, we observe group speeds which are large and non-zero. This implies363

that the waves we see are not only travelling fast but horizontally propagating. This is364

at odds with common GW parameterisations which consider GWs as being constrained365

to the vertical column of a single gridbox and which can only propagate vertically within366

this column (Alexander et al., 2010; Kalisch et al., 2014). These results provide further367

evidence that this is not the case and that GW parametrisations which do not consider368

horizontal propagation are unsuitable for capturing these small-scale waves which carry369

significant quantities of energy and momentum (Geller et al., 2013; Alexander et al., 2010).370

5 Discussion371

Since in our study we apply a novel method, it is important to assess our results372

properly in the context of previous work using more conventional approaches. Accord-373

ingly, in this section we compare our results quantitatively to previous studies (section374

5.1), before discussing the advantages and disadvantages of our approach relative to other375

available methods (section 5.2).376

5.1 Results Comparison to Previous Studies377

We have found horizontal wavelengths ranging from around 5 to 45 km, with most378

voxels being associated with values between 20 – 25 km. This compares favourably with379

previous studies, which show wavelengths between 20 – 30 km (Kam et al., 2017; Pautet,380

2005; Ejiri et al., 2003; Hecht et al., 2001; R. Stockwell et al., 1996), and with peaks at381

35 km seen in (Hecht, 2002).382

Nielsen et al. (2009) investigated GWs in the hydroxyl airglow layer, using data383

from when the same imaging system used in our study was deployed instead to the British384

Antarctic Survey base at Halley, Antarctica (76◦S, 27◦W). They investigated the sea-385

sonal climatology of individual quasi-monochromatic, short-period gravity-wave char-386

acteristics at high-southern latitudes. These characteristics were observed over the 2000387

and 2001 austral winter seasons. They found horizontal wavelengths from 10 – 70 km,388

producing a log-normal distribution with a peak at 15 – 20 km. Comparatively, we have389

observed a range of 10 – 50 km with a high count at 35 km. As we test only a single night390

of data, this difference may simply be due to the most dominant wave on this specific391

night having this wavelength. As the S-Transform gives us voxel-level information, not392

individual wave events, we cannot say how many waves had this wavelength with this393

information alone.394

Similarly, for observed wave periods, we see a range of values from 5 – 9 ms−1 with395

a peak at around 7.5 ms−1. Nielsen et al. (2009) found a range of 5 – 30 ms−1 with a396

log-normal distribution with peak at ∼ 7.5 ms−1. This is broadly similar to the peak we397

have seen, which suggests that this is a common wave period. The wide range of peri-398

ods seen in their study will come from the two winters of data that have been used. We399

have used one night to benchmark our method resulting, therefore, in less data and fewer400

wave events.401

The directions observed by Nielsen et al. (2009) showed a clear preference for prop-402

agation towards the South Pole, and there is limited evidence of waves propagating North.403
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Similarly, we have shown that propagation southwards is apparent in our case; however,404

the directions we observed also peak significantly in the WSW and ESE directions.405

Kam et al. (2017) observed a very similar range of observed phase speeds as in our406

study; however, the periods we observe are faster, with a range from 5 – 9 minutes com-407

pared with the range of 5 – 60 minutes in the work of Kam et al. (2017). This also sug-408

gests that the results we have uncovered using the 3DST are plausible.409

With observed phase speed, Nielsen et al. (2009) saw a range from 0 to 100 ms−1
410

with a peak at 30 to 40 ms−1. This is an almost Gaussian distribution. We observe a411

range from 10 to 90 ms−1, very similar to that observed at Halley. We also observed a412

peak at 20 ms−1. This could be a persistent wave event that was spatially large and there-413

fore could be present over many voxels.414

5.2 Methodological Comparisons415

The addition of supporting meteor radar data also allows is to convert these pa-416

rameters from the ground-based to the intrinsic frame.417

5.2.1 The 2D Stockwell Transform418

Here, we apply the 3D Stockwell Transform to data of this type for the first time.419

The simpler two-dimensional S-Transform (2DST) has however previously been applied420

to airglow data. Specifically, R. G. Stockwell and Lowe (2001) applied the 2DST to 16421

x 16 pixel airglow images, covering a field of view of 1.5 km at the height of the airglow422

at 87 km. In addition to accounting for time variation, advances in computing power also423

allow us to work at a much larger scale, allowing us to apply the technique to a full night424

of observations totalling 360 frames, each of 101 by 101 pixels and hence covering an area425

of sky equivalent to 100 by 100 km on the surface.426

This combination of features allows us to quantify wave parameters over a much427

larger field of view than (R. G. Stockwell & Lowe, 2001), and to measure many additional428

parameters. In particular, the ability to simultaneously obtain both spatial information429

and the temporal frequency of these waves and how they covary is a key advantage over430

this older 2D approach.431

5.2.2 The Fast Fourier Transform432

An alternative approach is to use just a 3D FFT without the additional window-433

ing properties of the ST. This is computationally very significantly cheaper. As an ex-434

ample of this approach, Rourke et al. (2017) investigated short-period GWs and ripples435

at Davis Station, Antarctica (68 ◦S, 78 ◦E) using a scanning radiometer to measure hy-436

droxyl airglow perturbations.437

The approach of Rourke et al. (2017) identified the dominant wave feature in each438

frame using the FFT, with the period of the dominant wave determined from time-variations439

in the FFTs of the weighted centre of 32 successive images centred on the frame in ques-440

tion. Using a sampling rate of 1 min and a maximum window length of 32, the range441

of wave periods detectable by this approach was 2 to 16 minutes. They then used lag442

analysis to determine the wave direction and speed.443

Our method provides similar outputs, but whereas their approach gave results at444

the frame level our 3DST approach allows the measurement of geographically-decomposed445

parameters at the single-voxel level. This allows for more information to be extracted446

about the waves, and for multiple waves in the same panel to be measured.447
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5.2.3 Cospectral Analysis448

Another method of extracting wave properties is co-spectral analysis, as applied449

by e.g. Cao and Liu (2022) to airglow images observed at Andes Lidar Observatory (30.3450

◦S, 70.7 ◦W) in northern Chile.451

In this study, images were unwrapped to a flat field to account for the van Rhijn452

effect. They removed the galaxy using the Principal Component Analysis (PCA) method453

from Z. Li et al. (2014), then used three consecutive images to create two time-differenced454

images. Horizontal wave properties such as wavelength, observed phase speed, direction455

and relative emission perturbation amplitude were then derived from the co-spectra of456

the two images, supported as in our study by background winds from a SKiYMET me-457

teor radar system based at the Andes Lidar Observatory to convert between the intrin-458

sic and ground-based frames. Once this step was performed, any wavelengths below 10459

km and any periods below the buoyancy frequency were removed.460

This method, similar to our 3DST, allowed both observed and intrinsic parame-461

ters can be established along with relative emission amplitudes of consecutive images.462

However, the method also results in some lost information due to taking the direct dif-463

ferences between each frame. Furthermore, it also assumes that the phase difference from464

voxel to voxel in time is accurate; therefore, any noise present (very likely in real obser-465

vations) will impact significantly and directly upon the quality of the final results.466

5.2.4 The M-Transform467

The final method we discuss is the M-Transform. This was formulated by Matsuda468

et al. (2014) as a 3D method to extract wave properties, similar in underlying concep-469

tion to the S-Transform.470

As with the S-Transform, the M-Transform requires a time series of airglow images471

with fixed and consistent pixel time spacing. For this method, once again, the airglow472

images must be preprocessed to remove stars, the galaxy, and any lens effects, and must473

also be projected onto geographic coordinates. Once this has been done, the M-transform474

transforms the Power Spectral Density (PSD) in the wavenumber domain (k, l, ω), where475

k and l are the wavenumbers in the zonal and meridional direction, respectively and ω476

is the frequency in the phase velocity domain (vx, vy, ω) via the following equations:477

vx =
ωk

k2 + l2
(12)

vy =
ωl

k2 + l2
(13)

Where vx and vy are the orthogonal projections of the phase velocity onto zonal and merid-478

ional axes, respectively. This allows for the calculation of phase speed and azimuth as:479

(vx, vy) = c(sinϕ, cosϕ) (14)

Where c is the phase speed, and ϕ is the azimuth. Finally, the phase velocity is integrated480

to give a 2D phase velocity spectrum.481

The M-transform shares many benefits with the S-Transform method we present482

in this study. For instance, it is highly automated and does not require interaction with483

the user, it is 3D, and it provides many wave properties directly. However, the M-transform484

is statistical, and there is no information provided from the analysis about specific lo-485

cations and times within the dataset used - all properties are measured at the bulk level486

for the whole dataset. The ability of the S-Transform approach to resolve the same prop-487

erties at the voxel level is thus a significant advantage.488
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6 Conclusions489

In this study, we have presented a new application of a 3D spectral analysis tech-490

nique, the 3D S-Transform, to airglow imager data from the Antarctic Peninsula at the491

British Antarctic Survey Base at Rothera (68◦S, 68◦W).492

The method is automated and can identify wave properties for each pixel; we can,493

therefore, use it to investigate the spatial extent of the wave, as in Figure 4.494

We have found that:495

1. The 3D S-Transform method works well with processed airglow imager data and496

measures wave parameters consistent with the airglow literature497

2. The majority of waves seen in the airglow in this case study are small, fast GWs498

with short periods.499

3. We see a distribution of horizontal wavelengths between 10 to 50 km with a sharp500

peak at 35 km, possibly due to methodological reasons501

4. Vertical wavelengths peak at values below 20 km, peaking at around 15 km but502

with the largest peak at around 40 km.503

5. Phase speeds are generally low, and group speeds are high and non-zero This sug-504

gests that the waves observed are travelling horizontally and also fast, further sug-505

gesting that GW parametrisations which do not account for horizontal movement506

are inadequate507

6. Finally, we can give accurate locations of where the waves in the airglow are present508

due to the 3D S-Transform investigating waves on the pixel rather than wave event509

level.510

Future studies could advantageously use the S-Transform in tandem with an au-511

tomated image processing technique to improve the process thus allowing the identifi-512

cation of airglow images that are of sufficient clarity for use in the investigation of GWs.513

Used together, these processes would allow airglow images to be processed and analysed514

in one programme with little input from the user, allowing for a fully automated pro-515

cess. This would result in GW parameters and their locations on each frame. More work516

on the spatial extent of the wave could then be performed and investigated.517
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