
P
os
te
d
on

17
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
39
74
17
.7
46
06
22
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Advocating for Equality of Contribution: The Research Software

Engineer (RSE) (Heliophysics Decadal Survey 2024)

Rebecca Ringuette1,2, Nicholas Murphy3, Maksym Petrenko2, Kevin Reardon4,5, Josh
Rigler6, Leila Mays2, Silvina Guidoni2,7, Darren De Zeeuw2,8, Robert Weigel9, Thomas Y
Chen10, Mike Liemohn11, Ryan Timmons12, Yihua Zheng2, Alexa Halford2, Jeff Klenzing2,
Lutz Rastaetter2, Sam Schonfeld13, and Micah Weberg9

1ADNET Systems Inc
2NASA Goddard Space Flight Center
3Center for Astrophysics — Harvard & Smithsonian
4National Solar Observatory
5University of Colorado
6USGS, Geomagnetism Program
7American University
8Catholic University of America
9George Mason University
10Columbia University
11University of Michigan
12Affiliation not available
13Institute for Science Research, Boston College

January 17, 2023

1

1

Cover Page

Category: State of the Profession

Advocating for Equality of Contribution: The Research Software Engineer (RSE)

Rebecca Ringuette1,2, Nicholas Murphy3, Maksym Petrenko2, Kevin Reardon4,5, Josh Rigler6, Leila

Mays2, Silvina Guidoni2,7, Darren De Zeeuw2,8, Robert Weigel9, Thomas Y. Chen10, Mike

Liemohn11, Ryan Timmons12, Yihua Zheng2, Alexa Halford2, and Jeff Klenzing2.
1ADNET Systems Inc, 6720B Rockledge Dr., Suite 504, Bethesda, MD 20817, USA,
2NASA Goddard Space Flight Center, Greenbelt, MD 20769, USA
3Center for Astrophysics | Harvard & Smithsonian
4National Solar Observatory, Boulder, CO, 80303, USA
5University of Colorado, Boulder, CO 80303, USA
6USGS, Geomagnetism Program, Golden, CO 80225, USA
7American University, Washington, DC 20016, USA
8Catholic University of America, Washington, DC 20064, USA
9George Mason University, Fairfax, VA 22030, USA
10Columbia University, New York, NY 10027, USA
11University of Michigan, Ann Arbor, MI 48109, USA
12USGS

Co-signers:

Lutz Rastaetter2, Sam Schonfeld13, and Micah Weberg9.
2NASA Goddard Space Flight Center, Greenbelt, MD 20769, USA
13Institute for Science Research, Boston College, Newton, MA 02459, USA
9George Mason University, Fairfax, VA 22030, USA

Synopsis: (limit of 400 characters)

Heliophysics depends on RSEs to properly engineer software. However, RSEs receive unequal

treatment compared to their science counterparts, resulting in unsustainable talent loss. These

restrictions include lack of credit for their contributions and insufficient training. This paper

describes what a RSE is and proposes solutions, including implementing appropriate recognition

standards.

2

Current Landscape:

Today’s scientific software in space weather and Heliophysics is predominantly developed and

maintained by scientists who have learned to code and software engineers that have learned

science, whether by formal or informal training (e.g. the Van Allen Probes Science Gateway, and

open source code packages: Burrell et al 2018 and Angelopoulos et al. 2019). Producing such

stable, quality software for public scientific use requires a complex skill set — that of a scientist

combined with a software engineer (SE). A person with this complex skill set is known as a

Research Software Engineer (RSE). While there are shining examples of well-developed

software packages that have become pillars of the community, there are many more examples

of codes produced for a single or series of publications. Transitioning such codes into public use

takes a significant amount of effort, which unfortunately is not properly recognized or funded

by the scientific community and leadership at various organizational levels. Those that do

perform this task, typically one or more RSEs, spend an appreciable amount of time to gain and

refine the necessary skills.

For those that become skilled in this area, the lack of key elements such as reputational growth,

proper training, and attractive career options preclude any resemblance of success in space

weather and Heliophysics, resulting in a constant flow of talent from our field into the software

industry. Realistically, some of the flow of software talent to the industry is driven by salary

differentials, with little that can be done to resolve it. However, if the field does not strengthen

its offerings of proper training, enhanced recognition, intellectual stimulation, and more

relaxed and congenial workplace culture, we will never be able to compete.

In some cases, this flow of talent benefits our efforts by igniting collaborations between the

software industry and government and academic efforts. However, this outflow of talent more

typically results in significant setbacks in our technological growth as we are left with the task

of training or recruiting new talent. Thus, a new batch of graduate/post-doctoral students are

acquired for software development, who then become skilled and leave the field for more

promising careers with better salaries and faster promotion cycles. This constant cycle of

training and depletion in skilled scientific software developers and engineers is a waste of our

resources. We must focus on retaining the talent we train and more efficiently training those

who are interested. Our efforts as currently directed are not sustainable in the long term, and

warrant immediate attention in the face of our growing technological demands.

In practice, we have observed four loosely defined categories of people involved in software

development for research purposes.

- Scientists who put in the effort to apply best practices to code development.

3

- SEs who work to find a middle ground between applying the most modern standards

and meeting specific science goals.

- Scientists who focus on publication-oriented code or single use code for the specific

analysis within the paper without applying best practices.

- SEs who focus on implementing the most updated standards and technology at the

expense of the science goal.

Codes produced by the first pair of categories tend to be more stable and more easily usable by

others in the community. In comparison, codes developed by the second pair of categories tend

to either be inoperable on other machines or too costly to maintain due to the constant

application of changing standards. There are multiple examples of software developed by

members of the community in the first two categories, which are in direct contrast with the

many more examples of code from the second pair of categories. In some cases, code created

can and should be for single-use applications, as opposed to incorporation into a software

package, as long as the code is documented and developed for reproducibility and for others to

build upon (Gil et al. 2016). However, projects are often not given the proper support to

produce higher quality software, resulting in many years of effort spent on code that could

have a larger impact on the community. Typically, the problem reduces to open source

software development not being funded or contributing to metrics which enable career

progression (e.g. tenure review). As a result, the field becomes overwhelmed with packages of

limited scope and stability, further compounding the issues of open science related to software.

Definition of a RSE:

We define Research Software Engineers (RSEs) as individuals that are trained as scientists,

typically with a PhD in a science field, or an individual trained as a software engineer, whose

primary product is software that advances science (as opposed to papers that describe

advances in science). The US Research Software Engineer Association (US-RSE) defines RSEs as

“those who regularly use expertise in programming to advance research.” This definition

broadly encompasses scientists who program, software engineers who work on research

software, and everyone in-between1. This is distinct from a Software Engineer (SE), whose

training is in computer science or a related field and whose primary product is not focused in a

science field. Although their responsibilities may overlap in some cases, their typical primary

tasks are distinct. A RSE’s primary responsibility is to develop code for scientific applications,

such as modeling code or data pipeline software, possibly also applying GPU or containerization

techniques. In contrast, a SE’s primary responsibility is to design and maintain complex

software systems, such as a network of containerized modeling codes in an automated

continuous integration continuous deployment (CI/CD) pipeline or a rotating data storage

1 https://us-rse.org/about/what-is-an-rse/

https://us-rse.org/about/what-is-an-rse/

4

system located on the cloud. These classifications should not be confused with hardware

engineers, who focus on developing and maintaining computational hardware systems.

A Path Forward:

While there have been PhD scientists who specialize in code development for decades, there is

now more and more fundable work that requires effective computing skills. This growing

demand is reflected in other sectors as well. Simply put, there is more to the tactful execution

of a software project than there ever has been before, which requires the skills of an RSE. We

therefore advocate for a new, more recognized career track in space weather and

Heliophysics for Research Software Engineers.

RSEs have the challenge of developing code using the application of best practices in software

development while still addressing the science goals of the project in a timely fashion.

Balancing these requirements well requires training that is similarly balanced. Considering the

varying backgrounds of typical RSEs, we envision two typical training pathways for RSEs: one to

transition a scientist to an RSE and another to transition a SE to an RSE. Exposing scientists to

the topics described below while still a student is one additional method to increase RSE talent

inflow. This could be accomplished either through existing short courses and summer schools or

by allowing a course from those described to be counted as a math or computer science

elective.

The first scenario would begin with a science degree, preferably a PhD, in a chosen science field

of interest. Afterwards, the scientist may spend some time in research before beginning the

transition or may immediately decide to transition. Once a scientist decides to acquire

advanced software skills, they should take a series of classes. The non-science background

needed for a RSE to become successful include modern coding practices, parallelization

techniques, GPU and CPU acceleration, CI/CD pipelines, open-sourcing code, writing tutorials

and documentation, software marketing, and the basics of containerization. This series of

classes should include basic applications of each topic in science software development and

should result in a graduate level or professional certification or master’s degree in scientific

software design. We advocate for a degree of this structure to be created at various

institutions, preferably offered online for additional flexibility, and beyond the tools and

resources currently available2. Combined with the science background, this certification/degree

provides the complete skill set necessary for an RSE to successfully develop software that is

applicable to a large range of science cases, usable and understandable by the community, and

maintainable through an open-source CI/CD pipeline such as GitHub.

2 https://merely-useful.tech/py-rse/, https://urssi.us/winterschool/

https://merely-useful.tech/py-rse/
https://urssi.us/winterschool/

5

Portions of this proposed degree program already exist at various institutions with more in

development, such as a selection of courses led by Fernando Perez at UC Berkeley3, the

materials in preparation by the NASA TOPS effort4, and a variety of courses in the computer

science and software engineering degree programs at multiple institutions. We recommend

that such a degree program be based upon these and similar options, and note that it will take

time to develop. In the meantime, a graduate or professional certificate program could be

developed based on test implementations of the concepts in institution-based training courses.

The certificate program could be offered online through existing avenues such as MIT and the

University of Colorado.

Alternatively, a RSE may begin as a SE and show interest in acquiring a deeper understanding of

a given science topic. That person’s transition to a RSE position would require either a master’s

or PhD degree, in the chosen science field. Typical graduate level projects would include the

application of their software training to solve a problem in science, similar to those tackled in

the scientific software design program described above. Regardless of the pathway chosen, the

additional training for an SE or scientist to transition to become a RSE should be allowed to

occur while in the position with the permission of the hiring entity.

Regardless of training, RSEs will not remain in the space weather and Heliophysics fields unless

their work is recognized as a significant contribution to research. The components of this issue

are intertwined, but each is connected to recognition for software development. At the most

basic level, quality contributions to software development need to be perceived in a manner

similar to a science publication. Guidance should be given to institutions to weigh software

publications and contributions on equal standing with more traditional science publications. In

addition to the typical software functionality checks, this review process could also include

feedback from the team the RSE is a part of, and various qualities of the software developed

(e.g. capability, science outcome and impact, and documentation quality). Additionally,

software citation standards in traditional publications need to be adopted by the community to

further recognize usage of software (Niemeyer et al. 2021).

Software packages and libraries need to be subject to a peer-review process – such as already

implemented for the Journal of Open Source Software (JOSS) and being discussed by the

Python in Heliophysics Community5 – to improve the reproducibility and usability of open-

source tools that can be used by the wider community. Such reviews should include best

3 https://bids.berkeley.edu/people/fernando-p%C3%A9rez, https://o365coloradoedu-
my.sharepoint.com/:v:/g/personal/juba8233_colorado_edu/EWMbbJ8ywkVPtygLYDZaAcYBFD2uZusUuc
NDRGidtIeY1Q?e=z840iZ
4 https://github.com/nasa/Transform-to-Open-Science
5 https://heliopython.org/

https://bids.berkeley.edu/people/fernando-p%C3%A9rez
https://o365coloradoedu-my.sharepoint.com/:v:/g/personal/juba8233_colorado_edu/EWMbbJ8ywkVPtygLYDZaAcYBFD2uZusUucNDRGidtIeY1Q?e=z840iZ
https://o365coloradoedu-my.sharepoint.com/:v:/g/personal/juba8233_colorado_edu/EWMbbJ8ywkVPtygLYDZaAcYBFD2uZusUucNDRGidtIeY1Q?e=z840iZ
https://o365coloradoedu-my.sharepoint.com/:v:/g/personal/juba8233_colorado_edu/EWMbbJ8ywkVPtygLYDZaAcYBFD2uZusUucNDRGidtIeY1Q?e=z840iZ
https://github.com/nasa/Transform-to-Open-Science
https://heliopython.org/

6

software practices, such as code documentation, CI/CD deployment, multi-platform support.

Single-use codes should typically accompany scientific papers with sufficient documentation

and best practices applied - but may not be readily deployable on other platforms. However,

this clean and well documented code should be sufficient to reproduce results with other

coding languages. When possible, these codes should be built on top of community packages

and libraries to minimize the parts that are single use.

The peer-review issue becomes more complex when the contribution does not result in a

publication, such as maintenance for software packages, contributions to larger packages or

modeling codes, or infrastructure advancements. One way to more properly attribute credit for

these scenarios is to provide an avenue for peer-reviewed short publications on these and

similar advances, such as provided in JOSS when applicable. Another approach is to simply

review the contributions of RSEs in a way similar to that of an SE, such as via software releases6.

Other methods include incorporating software usage metrics and a code review process

separate from publication avenues. A combination of these approaches will likely be the best

solution. Correcting the current bias in performance reviews will significantly affect the careers

of RSEs and SEs by pushing the culture towards equality and thus increasing our talent

retention and enabling more scientific innovation.

A recent executable paper demonstrates the efficiency possible when scientists, RSEs and SEs

work together. Polson et al. (2022) created a science workflow combining multiple python

packages in an online containerized environment for scientists to implement in a complex

model-data comparison effort in magnetospheric physics. Without the RSEs and SEs on the

team, the scientist would have required a much longer time investment to be able to

accomplish the same work. By including the RSEs and SEs on the team, the science goal was

achieved with much less effort overall. This collaboration is a primary motivation for funding

agencies to include RSEs (and SEs) pay in budgets and proposals. Similar collaborations

between RSEs, SEs and scientists will be absolutely necessary to properly address the more

complex publication requirements of truly open science.

Recommendations:

This white paper has presented a multi-pronged approach for training and retaining talent in

research software engineering. This approach is built upon the following facets:

- Develop and implement recognition standards for RSEs appropriate to their

contributions as described.

6 https://www.usgs.gov/products/software/software-management

https://www.usgs.gov/products/software/software-management

7

- Connect potential RSEs with programs in software engineering and science to more

effectively train scientists who are interested in software development, and to train

software engineers that are interested in science. These training programs should result

in transferable skills that advance science.

- Develop graduate level certificate and masters programs for scientists to become

educated in the basics of best software engineering and development practices.

- Offer additional funding opportunities to transition codes developed with public funds

to be made open-sourced and be transitioned for public use using software engineering

best practices. This requirement should be implemented in a method compliant with

the National Academy of Sciences recommendation: “Any open source software policy

that NASA Science Mission Directorate develops should not impose an undue burden on

researchers; therefore, any policy should be as simple as possible and any mandates

should be fully funded." (NAS 2018)

- Educate scientists on what RSEs can do, and demonstrate how those capabilities

accelerate research progress.

- Supply the additional funds needed for individual proposals, missions, and data archives

to offer salaries and benefits appropriate for the important contributions provided by

RSEs.

We must take action to provide the proper training, attribute the proper credit, and reduce the

flow of RSE talent from Heliophysics. Unless the problems outlined here are addressed

promptly, our field will continue its unsustainable downward spiral in efficiency, costing the

community large portions of our time and resources. We cannot afford to allow this troubling

trend to continue. We must act now.

The example set by the executable paper referenced above is a promising one, and can be

modeled by other science teams. The combined efforts of scientists, RSEs and SEs with a united

purpose, such as demonstrated in the creation of the executable paper, are a powerful factory

of science advances aligned with the goals of FAIR and open science (Wilkinson et al. 2016). The

field of Heliophysics is ready and waiting for the application of modern technology to our

science. We need to remove the barriers preventing these powerful collaborations from

occurring with greater frequency, and prepare for the exciting results to come from these

teams. The sooner our field is made more equal for RSEs, the sooner our field can advance.

References:

8

Angelopoulos, V., P. Cruce, A. Drozdov, E. W. Grimes, N. Hatzigeorgiu et al. (2019). The Space

Physics Environment Data Analysis System (SPEDAS). Space Sci. Rev., 215, 1, 9.

https://www.doi.org/10.1007/s11214-018-0576-4.

Burrell, A. G., A. Halford, J. Klenzing, R. A. Stoneback, S. K. Morley, et al. (2018). Snakes on a

spaceship—An overview of Python in heliophysics. Journal of Geophysical Research: Space

Physics, 123, 10,384–10,402. https://doi.org/10.1029/2018JA025877.

Gil, Y., C. H. David, I. Demir, B. T. Essawy, R. W. Fulweiler, et al. (2016). Toward the Geoscience

Paper of the Future: Best practices for documenting and sharing research from data to software

to provenance, Earth and Space Science, 3, 388–415, https://doi.org/10.1002/2015EA000136.

National Academies of Sciences, Engineering, and Medicine. 2018. An Open Source Software

Policy for NASA Space Science. Washington, DC: The National Academies Press.

https://doi.org/10.17226/25217.

Niemeyer, K. E., A. M. Smith, and D. S. Katz (2021). The Challenge and Promise of Software

Citation for Credit, Identification, Discovery, and Reuse. Journal of Data and Information

Quality, 7, 4, https://doi.org/10.1145/2968452.

Polson, S., R. Ringuette, L. Rastaetter, E. Grimes, J. Niehof, N. A. Murphy, and Y. Zheng (2022).

Making an Executable Paper with the Python in Heliophysics Community to Foster Open

Science and Improve Reproducibility. Submitted to Frontiers in Astronomy and Space Sciences.

https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-

c4a9c4e8e54d/project/PyHC-Paper-EBuWRj_QSXikjqTz5wigrA/%2FPyHC%20Tech%20Paper-

rewrite.ipynb

Science gateway: Overview. Van Allen Probes Science Gateway Available at:

https://rbspgway.jhuapl.edu/. (Accessed: 29th July 2022)

Wilkinson, M., M. Dumontier, I. Aalbersberg, G. Appleton, M. Axton, et al. (2016). The FAIR

Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018.

https://doi.org/10.1038/sdata.2016.18.

What is an RSE? US-RSE (2022). Accessed at https://us-rse.org/about/what-is-an-rse/.

https://www.doi.org/10.1007/s11214-018-0576-4
https://doi.org/10.1029/2018JA025877
https://doi.org/10.1002/2015EA000136
https://doi.org/10.17226/25217
https://doi.org/10.1145/2968452
https://doi.org/10.1145/2968452
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-EBuWRj_QSXikjqTz5wigrA/%2FPyHC%20Tech%20Paper-rewrite.ipynb
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-EBuWRj_QSXikjqTz5wigrA/%2FPyHC%20Tech%20Paper-rewrite.ipynb
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-EBuWRj_QSXikjqTz5wigrA/%2FPyHC%20Tech%20Paper-rewrite.ipynb
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-EBuWRj_QSXikjqTz5wigrA/%2FPyHC%20Tech%20Paper-rewrite.ipynb
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-EBuWRj_QSXikjqTz5wigrA/%2FPyHC%20Tech%20Paper-rewrite.ipynb
https://rbspgway.jhuapl.edu/
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://us-rse.org/about/what-is-an-rse/

