
P
os
te
d
on

16
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
39
05
22
.2
84
76
01
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Julia for Geophysical Fluid Dynamics: Performance Comparisons

between CPU, GPU, and Fortran-MPI

Robert R Strauss1, Siddhartha Bishnu1, and Mark R. Petersen1

1Los Alamos National Laboratory

January 16, 2023

Abstract

Some programming languages are easy to develop at the cost of slow execution, while others are lightning fast at run time but

are much more difficult to write. Julia is a programming language that aims to be the best of both worlds—a development

and production language at the same time. To test Julia’s utility in scientific high-performance computing (HPC), we built

an unstructured-mesh shallow water model in Julia and compared it against an established Fortran-MPI ocean model, MPAS-

Ocean, as well as a Python shallow water code. Three versions of the Julia shallow water code were created, for: single-core

CPU; graphics processing unit (GPU); and Message Passing Interface (MPI) CPU clusters. Comparing identical simulations

revealed that our first version of the single-core CPU Julia model was 13 times faster than Python. Further Julia optimizations,

including static typing and removing implicit memory allocations, provided an additional 10–20x speed-up of the single-core

CPU Julia model. The GPU-accelerated Julia code is extremely fast, with a speed-up of 230-380x compared to the single-core

CPU Julia code if communication with the GPU occurs every 10 time steps. Parallelized Julia-MPI performance was identical

to Fortran-MPI MPAS-Ocean for low processor counts, and ranges from 2x faster to 2x slower for higher processor counts.

Our experience is that Julia development is fast and convenient for prototyping, but that Julia requires further investment and

expertise to be competitive with compiled codes. We provide advice on Julia code optimization for HPC systems.

1

manuscript submitted to JAMES

Julia for Geophysical Fluid Dynamics: Performance
Comparisons between CPU, GPU, and Fortran-MPI

Robert R. Strauss1, Siddhartha Bishnu2, Mark R. Petersen2

1Center for Nonlinear Studies, Los Alamos National Laboratory, NM, 87545, USA
2Computational Physics and Methods Group, Los Alamos National Laboratory, NM, 87545, USA

Key Points:

• Unstructured-mesh shallow water models were created in Julia for single-core CPU,
single-node GPU, and multi-core CPU clusters using MPI.

• Julia-MPI performance ranges from 2x faster to 2x slower than Fortran-MPI. Julia
on GPUs is significantly faster than on CPUs.

• Julia development time is quick for prototyping, but requires more time to develop
performant code; specifically, static typing is required.

Corresponding author: Mark R. Petersen, mpetersen@lanl.gov

–1–

manuscript submitted to JAMES

Abstract1

Some programming languages are easy to develop at the cost of slow execution, while others2

are lightning fast at run time but are much more difficult to write. Julia is a programming3

language that aims to be the best of both worlds—a development and production language4

at the same time. To test Julia’s utility in scientific high-performance computing (HPC),5

we built an unstructured-mesh shallow water model in Julia and compared it against an6

established Fortran-MPI ocean model, MPAS-Ocean, as well as a Python shallow water code.7

Three versions of the Julia shallow water code were created, for: single-core CPU; graphics8

processing unit (GPU); and Message Passing Interface (MPI) CPU clusters. Comparing9

identical simulations revealed that our first version of the single-core CPU Julia model was 1310

times faster than Python. Further Julia optimizations, including static typing and removing11

implicit memory allocations, provided an additional 10–20x speed-up of the single-core CPU12

Julia model. The GPU-accelerated Julia code is extremely fast, with a speed-up of 230-380x13

compared to the single-core CPU Julia code if communication with the GPU occurs every 1014

time steps. Parallelized Julia-MPI performance was identical to Fortran-MPI MPAS-Ocean15

for low processor counts, and ranges from 2x faster to 2x slower for higher processor counts.16

Our experience is that Julia development is fast and convenient for prototyping, but that17

Julia requires further investment and expertise to be competitive with compiled codes. We18

provide advice on Julia code optimization for HPC systems.19

Plain Language Summary20

Scientists who write programs for supercomputers try to satisfy two requirements: the21

code should be both fast and easy to understand. These requirements are often in conflict,22

because fast programs use special libraries that add extra lines to the code and make it less23

readable. Supercomputers also change over time—for several decades, they had thousands24

of identical CPUs (each similar to a desktop), but in the past decade they include CPUs25

accelerated by graphics processing units (GPUs). This added hardware complexity results in26

more complex software. Here we test a relatively new programming language, Julia, which27

is designed to be simpler to write, but also to be fast on advanced computer architectures.28

We find that Julia is both convenient and fast, but there is no free lunch. Our first attempt29

to develop an ocean model in Julia was relatively easy, but the code was slow—it was 7030

times slower than a long-standing ocean model written in Fortran. After several months of31

further development and experimentation, we did indeed create a Julia code that is as fast32

on supercomputers as the Fortran ocean model.33

1 Introduction34

A major concern in computer modeling is the trade-off between execution speed and35

code development time. In general, programs in scripting languages like Python and Matlab36

are faster to develop due to their simpler syntax and more relaxed typing requirements, but37

are limited by slower execution time. On the other end of the spectrum, we have compiled38

languages like C/C++ and Fortran, which have been extensively used in scientific computing39

for many decades. Programs in such languages are blessed with faster execution time, but40

are cursed with stricter and more cumbersome syntax, leading to slower development time.41

The Julia language strikes a balance between these two categories (Perkel, 2019). It is a42

compiled language with execution speed similar to C/C++ or Fortran, if carefully written43

with strict syntax (Lin & McIntosh-Smith, 2021; Gevorkyan et al., 2019). It is also equipped44

with a more convenient syntax and features, such as dynamic typing, to accelerate code45

development in prototyping. To this day, the majority of scientific computing models are46

programmed in compiled languages, which execute fast but can take months, if not years, to47

develop. In this paper, we investigate the feasability of writing Julia codes for computational48

physics simulations, since a Julia program can not only ensure high performance but also49

–2–

manuscript submitted to JAMES

less development time in the initial stages. We develop a shallow water solver in Julia and50

compare its performance to an equivalent Fortran code.51

An additional complication in choosing the best language is that layers of libraries have52

been added to C/C++ and Fortran to accommodate evolving computer architectures. For the53

past 25 years, computational physics codes have largely used the Message Passing Interface54

(MPI) to communicate between CPUs on separate nodes that do not share memory, and55

OpenMP to parallelize within a node using shared-memory threads. With the advent of56

heterogeneous nodes containing both CPUs and GPUs, scientific programmers have several57

new choices: writing kernels directly for GPUs in CUDA (Bleichrodt et al., 2012; Zhao et58

al., 2017; Xu et al., 2015); adding OpenACC pragmas for the GPUs (Jiang et al., 2019);59

or calling libraries such as Kokkos (Trott et al., 2022) that execute code optimized for60

specialized architectures on the back-end, while providing a simpler front-end interface for61

the domain scientist. All of these require additional expertise, and add to the length and62

complexity of the code base. Julia also provides an MPI library for parallelization across63

nodes in a cluster, and a CUDA library to parallelize over GPUs within a node. We have64

written shallow water codes in Julia that adopt each of these parallelization strategies.65

In recent years, shallow water solvers such as Oceananigans.jl (Ramadhan et al., 2020)66

and ShallowWaters.jl (Klöwer et al., 2022) have been developed in Julia. These codes employ67

structured rectilinear meshes to discretize their domain, and are equipped with capabilities68

for running on GPUs to achieve high performance. Here we conduct a comparison on69

unstructured-mesh models, using the Fortran code MPAS-Ocean (Ringler et al., 2013) as a70

point of reference. MPAS-Ocean employs unstructured near-hexagonal meshes with variable71

resolution capability and is parallelized with MPI for running on supercomputer clusters.72

We developed a Julia model employing the same spatial discretization of MPAS-Ocean, and73

capable of running in serial mode on a single core, or in parallel mode on a supercomputer74

cluster or a graphics card. We discuss the subtle details of our implementations, compare75

the speed-ups attained, and describe the strategies employed to enhance performance.76

2 Methods77

2.1 Equation Set & TRiSK-Based Spatial Discretization78

Our Julia model solves the shallow water equations (Cushman-Roisin & Beckers, 2011)
in vector-invariant form. This is sufficiently close to the governing equations for ocean
and atmospheric models to be used as a proxy to test performance with new codes and
architectures. The equation set is

ut + qhu⊥ = −g∇η −∇K, (1a)
ηt +∇ · (hu) = 0, (1b)

where u is the horizontal velocity vector, u⊥ = k × u, h is the layer thickness, η is the79

surface elevation or sea surface height (SSH), K = |u|2/2 is the kinetic energy, and g is the80

acceleration due to gravity. If b represents the topographic height and H the mean depth,81

then η = h + b − H. Moreover, if f denotes the Coriolis parameter, and ζ = k · ∇ × u82

the relative vorticity, then the absolute vorticity, ωa = ζ + f , and the potential vorticity,83

q = ωa/h. The term qhu⊥ is the thickness flux of the PV in the direction perpendicular84

to the velocity, rotated counterclockwise on the horizontal plane. Ringler et al. (2010)85

refer to it as the non-linear Coriolis force since it consists of the quasi-linear Coriolis force86

fu⊥ and the rotational part ζu⊥ of the non-linear advection term u · ∇u. We spatially87

discretize the prognostic equations in (1) using a mimetic finite volume method based88

on the TRiSK scheme, which was first proposed by (Thuburn et al., 2009), and then89

generalized by (Ringler et al., 2010). This method was chosen to horizontally discretize90

the primitive equations of MPAS-Ocean while invoking the hydrostatic, incompressible,91

and Boussinesq approximations on a staggered C-grid. Since this horizontal discretization92

–3–

manuscript submitted to JAMES

guarantees conservation of mass, potential vorticity, and energy, it makes MPAS-Ocean a93

suitable candidate to simulate mesoscale eddies.94

Our spatial domain is tessellated by two meshes, a regular planar hexagonal primal95

mesh and a regular triangular dual mesh. Each corner of the primal mesh cell coincides96

with a vertex of the dual mesh cell and vice versa. A line segment connecting two primal97

mesh cell centers is the perpendicular bisector of a line segment connecting two dual mesh98

cell centers and vice versa. Regarding our prognostic variables, the scalar SSH η is defined99

at the primal cell centers, and the normal velocity vector ue is defined at the primal cell100

edges. The divergence of a two-dimensional vector quantity is defined at the positions of101

η, while the two-dimensional gradient of a scalar quantity is defined at the positions of ue102

and oriented along its direction. The curl of a vector quantity is defined at the vertices of103

the primal cells. Finally, the tangential velocity u⊥e along a primal cell edge is computed104

diagnostically using a flux mapping operator from the primal to the dual mesh, which105

essentially takes a weighted average of the normal velocities on the edges of the cells sharing106

that edge. Interested readers may refer to Thuburn et al. (2009) and Ringler et al. (2010)107

for further details on the mesh specifications.108

At each edge location xe, two unit vectors ne and te are defined parallel to the line
connecting the primal mesh cells, and in the perpendicular direction rotated counterclockwise
on the horizontal plane, such that te = k × ne. The discrete equivalent of the set of
equations (1) is

(ue)t = F⊥e q̂e −
[
∇ (gη)i +Ki

]
e
, (2a)

(ηi)t = − [∇ · Fe]i , (2b)

where Fe = ĥeue and F⊥e represent the thickness fluxes per unit length in the ne and te
directions respectively. The layer thickness hi, the SSH ηi, the topographic height bi, and
the kinetic energy Ki are defined at the centers xi of the primary mesh cells, while the
velocity ue are defined at the edge points xe. The symbol (̂.)e represents an averaging of a
field from its native location to xe. The discrete momentum equation (2b) is obtained by
taking the dot product of (1b) with ne, which modifies the non-linear Coriolis term to

ne · q̂eĥeu⊥ = q̂eĥene · (k × u) = q̂eĥeu · (ne × k)

= −q̂eĥeu · te = −q̂eĥeu⊥e = −F⊥e q̂e. (3)

Given the numerical solution at time level tn = n∆t, with ∆t representing the time step
and n ∈ Z≥0, the Julia model first computes the time derivative or tendency terms of (2)
as functions of the discrete spatial and flux-mapping operators of the TRiSK scheme. Then
it advances the numerical solution to time level tn+1 using the forward-backward method

un+1 = un + ∆tF (un, hn) , (4)

hn+1 = hn + ∆tG
(
un+1, hn

)
, (5)

where F and G represent the discrete tendencies of the normal velocity and the layer109

thickness in functional form, and the subscripts representing the positions of these variables110

have been dropped for notational simplicity.111

The following sections introduce the new codes that were created for this study. Three112

versions of the Julia code were written (Strauss, 2023): the base single-core CPU version,113

an altered version for GPUs with CUDA, and a multi-node CPU implementation with114

Julia-MPI. These were compared against existing Fortran-MPI and Python versions of115

shallow-water TRiSK models. All use a standard MPAS unstructured-mesh file format that116

specifies the geometry and topology of the mesh, and includes index variables that relate117

neighboring cells, edges, and vertices. All models have an inner (fastest-moving) index for118

the vertical coordinate and were tested with 100 vertical layers to mimic performance in a119

realistic ocean model.120

–4–

manuscript submitted to JAMES

2.2 Single-Core CPU Julia Implementation121

The serial-mode implementation on a single core involves looping over every cell and122

edge of the mesh to (a) compute the tendencies, i.e. the right-hand side terms of the123

prognostic equations (2) and (b) advance their values to the next time step. The tendencies124

can be functions of the dependent and independent variables as well as spatial derivatives125

of the dependent variable. The serial version of our model is the simplest one from the126

perspective of transforming the numerical algorithms into code.127

In order to highlight differences in formulation, we provide a Julia code example for the128

single tendency term from (2) for the SSH gradient −g∇η, which is discretized as − [g∇ηi]e.129

We then add a vertical index k to mimic the performance of a multi-layer ocean model, but130

each layer is trivially redundant. In a full ocean model this term would be the pressure131

gradient, and would involve the computation of pressure as a function of depth and density.132

For the single-core CPU version, the Julia function computing the SSH gradient is133

Listing 1: Julia example for serial CPU
velocity_tendencies!(sshGradient, ssh, ...)134

135

function velocity_tendencies!(sshGradient, ssh, ...)136

for iEdge in 1:nEdges137

cell1 = cellsOnEdge[1,iEdge]138

cell2 = cellsOnEdge[2,iEdge]139

for k in 1:nVertLevels140

sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]141

* (ssh[k,cell2] - ssh[k,cell1])142

end143

end144

end145

Here cellsOnEdge is an array of index variables describing the mesh that points to146

the cells neighboring an edge, and dcEdge represents the distance between the centers of147

adjacent cells sharing the edge on which the normal velocity tendency is computed. In the148

actual code all the tendency terms are computed within this function, but here we only149

show the ssh gradient as a brief sample.150

2.3 SIMD GPU Julia Implementation151

GPUs are very powerful tools for SIMD (Same Instruction Multiple Data) computations:152

they have thousands of independent threads, which can execute the same operation at the153

same time with different input values. Since we numerically solve the same prognostic154

equation for (a) the SSH at every cell center xi, and (b) the normal velocity at every edge155

xe of the mesh, a GPU is a logical tool to employ for our computations. By placing subsets of156

cells and edges on different threads of the GPU, we can perform the tendency computations,157

and advance the prognostic variables at once in parallel rather than looping over every cell158

and edge, which would scale in wall-clock time according to the size of the mesh.159

We wrote CUDA kernels for an Nvidia GPU using the CUDA.jl library for computing160

the tendencies and advancing the prognostic variables to the next time step. The code for161

the single-core implementation can be converted to CUDA with surprising ease by removing162

the for loop over the cells and edges, and instead performing the underlying computation163

on a single cell or edge:164

Listing 2: Julia example for GPU with CUDA
CUDA.@cuda blocks=cld(nEdges, 1024) threads=1024 maxregs=64165

velocity_tendencies_cuda!(sshGradient, ssh, ...)166

167

–5–

manuscript submitted to JAMES

function velocity_tendencies_cuda!(sshGradient, ssh, ...)168

iEdge = (CUDA.blockIdx().x - 1) * CUDA.blockDim().x169

+ CUDA.threadIdx().x170

cell1 = cellsOnEdge[1,iEdge]171

cell2 = cellsOnEdge[2,iEdge]172

for k in 1:nVertLevels173

sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]174

* (ssh[k,cell2] - ssh[k,cell1])175

end176

end177

Each cell and edge of the mesh will be designated to a different thread on the GPU.178

The computation for a single cell or edge will run on a single thread, and a CUDA method179

will be used to map the index of the thread to the index of the cell (i) or edge (e), at which180

the prognostic variable is being updated. To execute this method over all threads on the181

GPU, we use a CUDA macro to call our kernel and designate the number of threads to use,182

which should be equal to the number of cells or edges in the mesh. Note that the inner183

computation of pressureGradient is identical for the CPU and CUDA kernal codes.184

2.4 CPU/MPI Julia Implementation185

Rather than iterating through every cell or edge of the mesh, we may parallelize the186

simulation with multiple processors by assigning to each processor a portion of the mesh, a187

process called domain decomposition. However, the computations of some spatial operators188

may require information from the outermost cells of the adjacent processors. So, we need189

the neighboring processors to communicate these pieces of information with each other. To190

ensure an efficient communication, we include an extra ring or “halo” of cells around the191

boundary of the region assigned to each processor, which overlaps with the region assigned to192

adjacent processors. We do not compute the tendencies of the prognostic variables in the halo193

region of a processor. In fact, we cannot perform this operation without information in an194

additional ring of halo cells, which is not assigned to the processor under consideration. So,195

we obtain the updated values of the prognostic variables in the halo region by communication196

with adjacent processors, which contain these halo cells in their interior, and update the197

prognostic variables in them.198

A number of crucial modifications are necessary to implement this parallelization scheme.199

For instance, the simulation methods are amended so that each process (rank) only performs200

computations for the set of cells or edges assigned to it. We use the MPI communication201

channel (comm) to receive the updated values of the prognostic variables in the halo region202

of a processor from adjacent processors which advance these variables. Similarly, we send the203

updated values of the prognostic variables along the outermost region of the above-mentioned204

processor to adjacent processors, for which these variables belong in the halo regions. For205

the TRiSK-based spatial discretization and the forward-backward time-stepping method,206

the halo region consists of only one layer (one halo ring) of cells.207

Listing 3: Julia example for CPU with MPI
each process executes the following, receiving a different value208

on each rank:209

comm = MPI.COMM_WORLD210

rank = MPI.Comm_rank(comm)211

212

myCells = cells_for_rank(mesh_file, rank, partition_file)213

myEdges, myHaloEdges = edges_on_cells(myCells)214

215

velocity_tendencies!(myEdges, sshGradient, ssh, ...)216

update_halo_edges!(sshGradient, myHalodEdges, rank, comm)217

–6–

manuscript submitted to JAMES

218

function velocity_tendencies!(myEdges, sshGradient, ssh, ...)219

for iEdge in myEdges220

cell1 = cellsOnEdge[1,iEdge]221

cell2 = cellsOnEdge[2,iEdge]222

for k in 1:nVertLevels223

sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]224

* (ssh[k,cell2] - ssh[k,cell1])225

end226

end227

end228

229

function update_halo_edges!(data, edgesInMyHalo, rank, comm)230

for neighborRank in find_neighbors(rank, comm)231

MPI.Irecv!(data[edgesInMyHalo,:], neighborRank, 0, comm)232

edgesToNeighbor = find_halo_overlap(rank, neighbor, comm)233

MPI.Isend(data[edgesToNeighbor,:], neighborRank, 0, comm)234

end235

end236

Here myCells and myEdges are the lists of cells and edges in the local domain, owned237

by the rank running this code, plus its halo.238

2.5 CPU/MPI Fortran Implementation239

The baseline comparison code for this study is the Model for Prediction Across Scales240

(MPAS-Ocean) (Ringler et al., 2013; Petersen et al., 2015), which is written in Fortran241

with MPI communication commands. It is the ocean component of the Energy Exascale242

Earth System Model (E3SM) (Golaz et al., 2019; Petersen et al., 2019), the climate model243

developed by the US Department of Energy. In this study, the code is reduced from a full244

ocean model solving the primitive equations to simply solving for velocity and thickness (1).245

Thus the majority of the code is disabled, including the tracer equation, vertical advection246

and diffusion, the equation of state, and all parameterizations. In order to match the Julia247

simulations, we employ a forward-backward time-stepping scheme, exchange one-cell-wide248

halos after each time step, compute 100 layers in the vertical array dimension, and use the249

identical Cartesian hexagon-mesh domains (Petersen et al., 2022).250

MPAS-Ocean is an excellent comparison case for Julia because it is a well-developed251

code base that uses Fortran and MPI, which have been standard for computational physics252

codes since the late 1990s. The highest resolution simulations in past studies used over253

three million horizontal mesh cells and 80 vertical layers, scale well to tens of thousands254

of processors (Ringler et al., 2013) and have been used for detailed climate simulations255

(Caldwell et al., 2019). MPAS-Ocean includes OpenMP for within-node memory access,256

and is currently adding OpenACC for GPU computations, but these were not used for this257

comparison to Julia-MPI on a CPU cluster.258

2.6 CPU Python Implementation259

In addition to MPAS-Ocean, we compare the performance of the Julia shallow water260

code against an object-oriented Python code Bishnu (2022). The Python code solves the261

rotating shallow water system of equations using two types of spatial discretizations: the262

TRiSK-based mimetic finite volume method used in MPAS-Ocean, and a discontinuous263

Galerkin Spectral Element Method (DGSEM). The code offers a number of standard predictor-corrector264

and multistep time-stepping methods, including those analyzed for ocean modeling in Shchepetkin265

and McWilliams (2005).266

–7–

https://e3sm.org/
https://e3sm.org/
https://e3sm.org/

manuscript submitted to JAMES

The Julia shallow water code was first written by translating this Python code into267

Julia syntax. While the Julia code was expanded for parallelization and performance, the268

Python code was further developed to serve as a platform for conducting a verification suite269

of shallow water test cases for the barotropic solver of ocean models. Each of these test270

cases in the Python code verifies the implementation of a subset of terms in the prognostic271

momentum and continuity equations, e.g. the linear pressure gradient term, the linear272

constant or variable-coefficient Coriolis and bathymetry terms, and the non-linear advection273

terms. Bishnu et al. (2022) and Bishnu (2021) provide detailed discussions on these test cases274

along with specifics of the numerical implementation, the time evolution of the numerical275

error for both spatial discretizations and a subset of the time-stepping methods, and results276

of convergence studies with refinement in both space and time, only in space, and only in277

time. Out of all of these test cases, only the linear coastal Kelvin wave and inertia-gravity278

wave test cases were implemented in the Julia code for the current study.279

While not used in this study, a number of libraries exist to accelerate Python for various280

architectures. These include Numba and PyCuda for GPUs, mpi4py for CPU clusters,281

and Cython for single-CPU acceleration. Numba (Lam et al., 2015) is an open-sourced282

Anaconda-sponsored NumPy-aware optimizing compiler, which translates Python functions283

to fast machine code at runtime using the remarkable industry-standard LLVM compiler284

library. PyCUDA (Klöckner et al., 2012), written in C++ (the base layer) and Python,285

provides access to Nvidia’s CUDA parallel computation API from Python. Mpi4py (Dalcín286

et al., 2005, 2008), provides Python bindings for the Message Passing Interface (MPI)287

standard. As an alternative, one can ‘cythonize’ an existing Python code by providing static288

type declarations and class attributes, that can then be translated to C++/C code and to289

C-Extensions for Python. Cython is an optimising static compiler for both the Python290

programming language and the extended Cython programming language. It is designed291

to offer C-like performance with code mostly written in Python with additional C-inspired292

syntax. The rotating shallow water Python code Bishnu (2022) is currently undergoing293

cythonization. Cythonized codes can further be accelerated on GPUs using Nvidia’s HPC294

C++ compiler, and the C++ Standard Parallelism (stdpar) for GPUs (Srinath, 2020).295

However, the extent of additional modifications and enhancements required to bring GPU-accelerated296

C++ algorithms to the Python ecosystem may not always be a reasonable investment of297

time. As we will see in later sections, a serial Julia code, which already achieves the298

performance of a fast compiled language, does not require extensive modifications to be299

parallelized on GPUs or multiple cores, and is therefore more convenient than python for300

high-performance scientific computing applications.301

3 Results302

3.1 Model Verification303

Each serial and parallel implementation of the shallow water model described in the304

previous section was verified for accuracy with convergence tests against exact solutions.305

We obtained the expected second-order convergence of the various TRiSK-based spatial306

operators on a uniform planar hexagonal MPAS-Ocean mesh. The operators included307

the gradient, the divergence, the curl, and the flux-mapping operator used to interpolate308

the tangential velocities from the normal velocities (Figure 1). The formulation of these309

operators is shown in Figure 3 of Ringler et al. (2010). Once the operator tests were310

complete, the linearized shallow water equations were verified against exact solutions for the311

coastal Kelvin wave and inertia-gravity wave cases, as described in Bishnu et al. (2022) and312

Bishnu (2021). With refinement in both space and time, we observe the expected first-order313

convergence of the numerical solution (Figure 1), spatially discretized with the second-order314

TRiSK scheme, and advanced with the first-order forward-backward time-stepping method315

(Bishnu, 2021).316

–8–

manuscript submitted to JAMES

101 102

Number of cells in zonal direction

10 7

10 6

10 5

L2 e
rro

r n
or

m
 o

f c
ur

l o
pe

ra
to

r

Convergence of Curl Operator
Interpolated to Cell Centers

L2 error norm
Best fit line, slope=-2.01

101 102

Number of cells in zonal direction

10 12

10 11

L2 e
rro

r n
or

m
 o

f d
iv

er
ge

nc
e

op
er

at
or

Convergence of Divergence Operator
at Cell Centers

L2 error norm
Best fit line, slope=-1.95

101 102

Number of cells in zonal direction

10 9

10 8

10 7

L2 e
rro

r n
or

m
 o

f g
ra

di
en

t o
pe

ra
to

r

Convergence of Gradient Operator
Normal to Edge

L2 error norm
Best fit line, slope=-1.98

101 102

Number of cells in zonal direction

10 3

10 2

L2 e
rro

r n
or

m
 o

f t
an

ge
nt

ia
l v

el
oc

ity

Convergence of Tangential Velocity
along Edges

L2 error norm
Best fit line, slope=-1.96

0 2000 4000 6000 8000
Distance in zonal direction (km)

0

2000

4000

6000

8000

Di
st

an
ce

 in
 m

er
id

io
na

l d
ire

ct
io

n
(k

m
)

Inertia Gravity Wave: SSH (m) after
11 Hours 13 Minutes 26 Seconds

1.0

0.5

0.0

0.5

1.0

1026 × 101 2 × 102 3 × 102

Number of cells in zonal direction

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

L2 e
rro

r n
or

m
 o

f S
SH

Convergence of Inertia Gravity Wave
Refinement in Space and Time

L2 error norm
Best fit line, slope=-0.95

Figure 1: The first two rows show convergence plots of the TRiSK-based spatial
operators for the newly-developed Julia code. Tests were run with both CPU and GPU
implementations, and identical results were obtained. The slope of −2 indicates the expected
second-order convergence. The third row shows a snapshot of the inertia-gravity wave test
case, and the convergence plot of the numerical solution with refinement in both space and
time.

–9–

manuscript submitted to JAMES

3.2 Acceleration of Julia with GPU Hardware317

The Julia serial CPU version of the shallow water model was compared against the Julia318

CUDA library GPU version and the reference Python CPU code (Table 1 and Figure 2).319

Tests were conducted on the Darwin cluster at Los Alamos National Laboratory, using a320

single node equipped with Intel Cascade Lake CPUs (Gold 6248 with a clock rate of 2.5321

GHz and 27.5M Cache) and the Nvidia Quadro RTX 8000 “Turing” GPU architecture (4608322

CUDA cores, 16.3 TFLOPS peak single precision performance, 48 GB GPU memory, and323

GPU memory bandwidth of 672 GB/s). All performance tests described in this and the324

following sections used the coastal Kelvin wave test case on a planar hexagon mesh with325

the linear shallow water equations and 100 vertical layers. Samples are averaged over ten326

trials. All codes use double-precision (8 byte) real numbers, and performance tests do not327

include the time for initialization, input/output, or generating plots.328

In our first version of the Julia single-core CPU code, we did not take any special steps329

for code optimization, and it was already 13 times faster than Python. Julia and Python330

both have dynamic typing, but Julia has the ability to go much faster since it also supports331

concrete typing. Julia is compiled, but hides it cleverly by compiling on the fly based on332

what datatypes are provided at run time. It supports a hierarchical abstract typing system,333

allowing for semi-specified types, such as “Any”, which all types extend and is the default if334

no type is specified (thus acting like python), or “AbstractArray”, which can be occupied at335

run time with any Array-like data.336

After the initial Julia development, further effort was put into optimization, which led337

to a 10–20 times speed-up for the CPU-serial code. The changes included optimizing for338

memory management by tracking down and reducing unnecessary allocations that contributed339

significantly to the run time, as well as making all types and subtypes concrete rather than340

abstract, to minimize on-the-fly compilation. These improvements are explained in more341

detail in section 4.342

We found the CUDA GPU implementation to be significantly faster than the single-core343

implementation. Because the memory transfer between the CPU and GPU takes many344

orders of magnitude longer than the actual on-GPU computations, we split them out in345

Table 1 and Figure 2. The memory transfers require between 0.015s and 0.68s and scale346

with the array size, while the GPU computations alone are extraordinarily fast, at 0.00027s347

for the 512x512 resolution case, and do not scale with resolution. This shows the power of348

GPUs, where computations alone can run over 40,000 times faster on the GPU than the349

CPU, but this speed-up is substantially diminished by the memory transfer time. Still,350

codes that are designed with a small memory footprint and limited memory transfer can351

greatly benefit from GPU computations. Strategically reducing array precision to 4-byte352

or even 2-byte reals for certain variables allows higher-resolution domains to fit on GPUs353

(Ye et al., 2022; Klöwer et al., 2022). In addition, single-precision floating point numbers354

(CUDA Float32 data type) calculations may execute significantly faster than Float64355

(Introduction to CUDA, 2022). We did not leverage Float32 in this work, but it shows356

that GPU simulations could run even faster than the results shown here.357

Summing the GPU memory transfer and compute for the 10 timestep performance test,358

the GPUs were 229 to 386 times faster than the single CPU (Table 2). This compares to359

published studies of ocean models that show a speed-up from CPU to GPU ranging from360

5–50 (Bleichrodt et al., 2012; Zhao et al., 2017; Xu et al., 2014), and a speed-up of up361

to 1556x for a GPU/CUDA Based Parallel Weather and Research Forecast Model (WRF)362

(Mielikainen et al., 2012). Note that our speed-up factor could be increased substantially by363

transferring data from the GPU to CPU less frequently. For a low-resolution ocean model364

with 30-minute time steps, the speed-ups in Table 2 correspond to collecting data every365

10 time-steps, which is 5 hours of model time. One could instead collect data for analysis366

every 100 time-steps (∼2 days), and that would result in a GPU speed-up of 2290 to 3860,367

because the compute time is negligible compared to the memory transfer. On the other368

–10–

manuscript submitted to JAMES

hand, if model communication is required frequently for surface data forcing or coupling369

with atmospheric and sea ice components, the speed-up is drastically reduced. For example,370

if memory must be transferred between the CPU and GPU every time step, the speed-ups371

range from 23—39. The point is that GPU performance is wholly dependant on the GPU372

communication frequency.373

128x128 256x256 512x512

Python, CPU 3.08E+03 1.31E+04 4.96E+04
Julia, CPU-serial (unoptimized) 2.25E+02 8.64E+02 3.86E+03
Julia, CPU-serial (optimized) 1.12E+01 7.43E+01 3.33E+02
Julia, GPU, total 4.90E−02 2.03E−01 8.64E−01

transfer to GPU 2.98E−02 1.16E−01 4.58E−01
compute on GPU 2.51E−04 2.67E−04 2.67E−04
transfer back to CPU 1.53E−02 9.54E−02 6.84E−01

Table 1: Wall clock duration (seconds) of performing ten timesteps with 100 layers on an
Intel Cascade Lake CPU or an NVidia Turing GPU.

128x128 256x256 512x512

Python, CPU 274 177 149
Julia, CPU-serial (unoptimized) 20 12 12
Julia, CPU-serial (optimized) 1 1 1
Julia, GPU 229 366 386

Table 2: Speed-up (bold) or slow-down (non-bold) factor compared to the optimized
CPU-serial Julia version at the same resolution. GPU speed-ups are based on transferring
arrays between GPU and CPU every ten time steps.

GPU threads are grouped into threadblocks (or just “blocks”) for efficiency. While374

calling the kernel function, we must specify the number of blocks and number of threads375

per block (the “block size”), as shown in listing 2. Within the kernel, we obtain the index of376

the block and thread, multiply the block index by the block size, and add the thread index377

to compute a global index. There is a maximum possible block size, but we can choose any378

smaller value to execute the kernel with. The block size does have an effect on how quickly379

the kernel runs, so we benchmarked the evaluation time of the same kernel run with different380

block sizes, as shown in Figure 3. Smaller block sizes run faster on the GPUs by 15%. This381

is interesting to note, but GPU compute time is so small compared to the memory transfer382

time that thread tuning has little impact on the overall simulation time.383

3.3 Julia-MPI versus Fortran-MPI384

Julia and Fortran codes were compared on multi-node CPU clusters, where both used385

MPI for communication between processors. Comparisons were made with domains of 128,386

256, and 512-squared grid cells solving the shallow water equations. All timing tests were387

conducted for 10 time steps and repeated 12 times on each processor count, spanning 2388

to 2048 processors by powers of two. The vertical dimension included 100 layers to mimic389

ocean model arrays and provide sufficient computational work on each processor. Separate390

timers report on computational work versus MPI communication within the time-stepping391

routine. The i/o, initialization, and finalization time is excluded.392

–11–

manuscript submitted to JAMES

104 105

Number of horizontal cells

10 3

10 1

101

103

105
W

al
l c

lo
ck

 ti
m

e
(s

)

Python, CPU: s=1.00
Julia, CPU-serial unoptimized: s=1.02
Julia, CPU-serial optimized: s=1.23
Julia, CPU to GPU transfer: s=0.99
Julia, GPU to CPU transfer: s=1.37
Julia, compute on GPU: s=0.02

Figure 2: Timing data from Table 1, comparing ten timesteps of the Kelvin Wave test case
on an Intel Cascade Lake CPU or an NVidia Turing GPU. The log-log slope, shown as s in
the legend, is 1.0 for perfect scaling.

0 200 400 600 800 1000
Number of threads per block

0

10

20

30

40

50

W
al

l c
lo

ck
 c

om
pu

ta
tio

n
tim

e
(m

s) Simulation Speed and Occupancy

Figure 3: The same kernel was executed with the same data but different block sizes and
the average execution time over 1000 runs was recorded. Fewer threads per block results in
faster execution times on the GPUs.

–12–

manuscript submitted to JAMES

Simulations were conducted on Cori-Haswell at the National Energy Research Scientific393

Computing Center (NERSC). Cori-Haswell consists of 2,388 nodes in 14 cabinets, using Intel394

Xeon Processor E5-2698 v3 with a clock rate of 2.3 GHz. Each processor has 32 physical395

threads per node and two hyper-threads per core, with 128 GB of memory per node. The396

interconnect is a Cray Aries with Dragonfly topology and > 45 TB/s global peak bisection397

bandwidth. The Julia-MPI and Fortran-MPI tests were both run with up to 32 ranks per398

node.399

The scaling plots in Figure 4 show that the Julia-MPI and Fortran-MPI models have400

identical performance at two cores; Julia-MPI is faster by up to a factor of two for mid-range401

core counts; and Fortran-MPI is 2x faster than Julia-MPI at higher ranges, depending402

on the resolution. For both languages, computation scales well with processor count,403

while communication does not, and communication progressively requires a much larger404

fraction of time at higher processor counts (Figure 5). Once computations are optimized,405

communication, which is fixed by the interconnect speed, will remain a bottleneck regardless406

of the language. At the lowest resolution of 128x128, there is insufficient work beginning at407

512 processors (which corresponds to 32 grid-cells per processor), and timing is dominated408

by communication, resulting in poor scaling above 512 processors. Communication times in409

Julia are much more variable than in Fortran across samples and processor counts, as shown410

in the right column of Figure 4. When measuring computation time without communication411

(Figure 4, right column), Julia-MPI scales nearly perfectly, while Fortran-MPI computational412

time drops off from perfect scaling at 8 and 16 cores. This produces the Julia times that are413

2x faster for the total times for mid-range processor counts of 16 and higher. Overall, Julia414

performance on CPU clusters is extremely competitive with Fortran. Once the high-level415

codes have been optimized, the “winner” between Julia and Fortan will likely depend on the416

details of the MPI libraries and hardware.417

4 Optimization Tips for Julia Developers418

Julia serves the dual purpose of a prototyping language as well as a production language.419

Not only can we construct quick-to-write but slow-performing code (although still significantly420

faster than other development languages, as we saw with comparison to python) to demonstrate421

an idea, we can also spend a bit more time to carefully construct an optimized code to achieve422

performance on par with Fortran. Julia’s ability to act as a prototyping language can be423

attributed to one of its key features: dynamic typing. Just like Python, variables may be424

initialized without defining their types. However, Julia is also endowed with a static typing425

feature, even though it is optional. If the variable types are statically defined in a concrete426

fashion, performance is greatly improved. Julia activates its dynamic typing feature with an427

“Any” type which could be any type at run time. So, Julia must compile parts of the code on428

the fly (Eval of Julia code, 2016). A method involving an “Any” type is compiled at run time429

for whatever type is actually provided during execution (called just-in-time compiling). The430

implication is that without static typing, performance will greatly suffer from compilation431

during run time. Additionally, with concrete types, the Julia compiler may optimize the432

code much further than if it is compiled for an unknown type.433

When first creating the MPAS shallow water core in Julia, we did not specify the array434

types, and let Julia assign them the “Any” type:435

struct MPAS_Ocean436

layerThickness437

normalVelocity438

...439

end440

However, by concretely defining these variables to be floating point arrays, we gain a441

substantial performance boost:442

–13–

manuscript submitted to JAMES

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.01

0.10

1.00

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)
128x128 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.01

0.10

1.00

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

128x128 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

256x256 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

256x256 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

512x512 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

512x512 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

Figure 4: Wall clock time versus the number of processors to simulate 10 steps of the coastal
Kelvin wave test with 100 layers. Left column shows total time without i/o; right column
splits MPI communication and computation. Vertical lines display the standard deviation
of communication times.

–14–

manuscript submitted to JAMES

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.5

1.0
Pr

op
or

tio
n

of
 ti

m
e

Julia: Proportion of Simulation Time
Spent on Computation and Communication

Computation
Communication

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.5

1.0

Pr
op

or
tio

n
of

 ti
m

e

Fortran: Proportion of Simulation Time
Spent on Computation and Communication

Computation
Communication

Figure 5: Comparison of the proportion of time spent in computation (blue) versus
communication (red) in Julia-MPI (top) and Fortran-MPI (bottom) on the 128x128
hexagonal mesh. The relative time spent in communication increases dramatically at high
processor counts.

struct MPAS_Ocean443

layerThickness::Array{Float64}444

normalVelocity::Array{Float64}445

end446

When parallelizing for the graphics card, a different array type is used that is suited for447

GPUs. We tried defining an abstract array type that encompasses both the CPU and GPU448

data types, so that CUDA.CuArrays and regular Arrays could be used interchangeably,449

allowing the model to be run on the GPU or CPU at will. We also used an abstract type450

specification on the contents of these arrays F <: Float, meaning any type extending the451

abstract floating point type can be used at runtime.452

struct MPAS_Ocean453

layerThickness::AbstractArray{F <: Float}454

normalVelocity::AbstractArray{F <: Float}455

end456

This approach seems like it should be performant, since the types are defined before457

run time. However, abstract types, like an Any type, slow down execution since at run458

time they may actually be a different type that extends the abstract type (CUDA.CuArray459

or Array), meaning the compiler is doing just-in-time compiling. Similarly, specifying460

an inexact element type (F <: Float) rather than a concrete type (Float64) is very461

inefficient.462

Instead, two separate structures should be defined concretely when running on GPUs463

versus CPUs:464

struct MPAS_Ocean_CUDA465

–15–

manuscript submitted to JAMES

layerThickness::CUDA.CuArray{Float64,2}466

normalVelocity::CUDA.CuArray{Float64,2}467

end468

469

struct MPAS_Ocean470

layerThickness::Array{Float64,2}471

normalVelocity::Array{Float64,2}472

end473

Now the array types are concrete, element types are concrete (Float64), and the474

number of dimensions is specified (Float64,2). This code no longer has the advantageous475

feature of being able to switch between running on the CPU and GPU on the fly. However,476

the execution speed is massively improved. We found that making this change from abstract477

to concrete array types sped up computation by a factor of 34x.478

The key in optimizing Julia code, we found, was reducing allocations. Memory allocation479

significantly slows down execution. And it is not always obvious what seemingly innocent480

actions may allocate memory. For example, simply reading a pair of values from an array481

with two columns:482

cell1Index, cell2Index = cellsOnEdge[:,iEdge]483

can allocate significant memory. In one test, this one line (executed repeatedly throughout484

the simulation) allocated 408 KiB. This is because the line is really creating a tuple, not485

directly reading each column into the two scalar variables. If we separate this into two lines486

to enforce only using scalars and not allocating tuples or arrays:487

cell1Index = cellsOnEdge[1,iEdge]488

cell2Index = cellsOnEdge[2,iEdge]489

then this cuts allocations to zero—making this line almost instantaneous, and dropping the490

time spent on the whole tendency calculation from 198 µs to 99 µs. That means this line491

alone was responsible for about 50% of the computation time, when it could be rewritten492

to take no time at all.493

There are likely many inconspicuous lines like this lurking in one’s Julia code, slowing494

it down substantially. Additionally, even one overlooked field which is not concretely typed495

may significantly slow execution. Luckily, Julia is equipped with a tool to quickly locate496

such memory-hoarding lines. This tool is called @code_warntype. Prefixing a function497

call with it will print out a color-coded list breaking each line down to individual memory498

operations:499

@code_warntype calculate_normal_velocity_tendency!(mpas)500

It helpfully highlights inexact types and memory allocations with red, pointing a user right501

to the lines and fields that need to be optimized. This feature alone makes Julia very502

powerful for high-performance applications, significantly speeding up development time to503

optimize a model’s performance.504

Another very helpful tool when optimizing Julia code is --track-allocations, a505

command line option that can be added to any Julia execution as follows:506

$ julia --track-allocations=user ./anyJuliascript.jl507

A new file is created at ./anyJuliascript.jl.XXX.mem (where XXX is some unique508

number). This file contains each line of the script prefixed by the number of memory509

allocations created by that line, giving a line-by-line breakdown of where allocations occur.510

–16–

manuscript submitted to JAMES

5 Conclusion511

As new programming languages and libraries become available, it is important for512

model developers to learn new techniques and evaluate them against their current methods.513

This is particularly true as computing architectures continue to evolve, and long-standing514

languages such as C++ and Fortran require additional libraries to remain competitive on515

new supercomputers.516

In this work, we created three implementations of a shallow water model in Julia in517

order to compare ease of development and performance to standard Fortran and Python518

implementations. The three Julia codes were designed for single-CPU, GPU-enhanced single519

CPU, and parallelized multi-core CPU architectures. Julia-MPI speeds were identical to520

Fortran-MPI at low core counts, 2x faster for mid-range, and 2x slower at higher core521

counts. Julia-MPI exhibited better scaling than Fortran-MPI for computation-only times,522

and more variability for communication times.523

The most surprising result of this study was the speed of computations on the GPUs—a524

speed-up of 40,000 to over 100,000 times compared to the CPU. Of course, this comes with525

the caveat that memory transfer between CPU and GPU can take thousands of times longer526

than the computation, up to 0.5s at our highest resolution. So the key is to transfer memory527

to and from the GPU as little as possible, which is a well-known practice. If one can fit the528

full resolution of a computational physics domain within the memory of a single graphics529

card and sample results rarely, GPUs offer extraordinary speed-ups. For climate models, a530

single low-resolution component may well fit into GPU memory if the developers are careful531

with their memory footprint. The difficulty is that including ocean, atmosphere, land, and532

sea ice components requires the use of multiple nodes, and inter-node communication will533

keep the model slow, regardless of the GPU speed. Higher-resolution domains will need534

many nodes for each component and present the same problem.535

The shallow water equations are simple enough for rapid development and verification,536

yet contain the salient features of any ocean model: intensive computation of the tendency537

terms, a time-stepping routine, and for the parallel version, interleaved halo communication538

of the partition boundary. Indeed, this layout, and the lessons learned here, apply to almost539

all computational physics codes.540

This work specifically tests unstructured horizontal meshes, as opposed to structured541

quadralateral grids. Unstructured meshes refer to a neighbor’s index using additional pointer542

arrays, so require an extra memory access for horizontal stencils. In structured grids, the543

physical neighbors are also neighbors in array space (i+ 1, j + 1, etc), which leads to more544

contiguous memory access patterns that are easier for compilers to optimize. Our results545

show that unstructured meshes do not present any significant challenge in either Fortran546

or Julia. The use of a structured vertical index in the inner-most position and testing with547

100 layers provides sufficient contiguous memory access for cache locality.548

In the end, we were impressed by our experience with Julia. It did fulfill the promise of549

fast and convenient prototyping, with the ability to eventually run at high speeds on multiple550

high performance architectures—after some effort and lessons learned by the developers.551

The Julia libraries for MPI and CUDA were powerful and convenient. E3SM does not have552

plans to develop model components with Julia, but this study provides a useful comparison553

to our C++ and Fortran codes as we move towards heterogeneous, exascale computers.554

Open Research555

Three code repositories were used for the performance comparisons in this study. These556

are publicly available on both GitHub and Zenodo:557

1. Julia Shallow Water code for serial CPU, CUDA-GPU, and MPI-parallelized CPU558

–17–

manuscript submitted to JAMES

GitHub: https://github.com/robertstrauss/MPAS_Ocean_Julia559

Zenodo: https://doi.org/10.5281/zenodo.7493065560

2. Python Rotating Shallow Water Verification Suite561

GitHub: https://github.com/siddharthabishnu/Rotating_Shallow562

_Water_Verification_Suite.git. This study used the specific563

code version https://github.com/siddharthabishnu/Rotating564

_Shallow_Water_Verification_Suite/tree/v1.0.1565

Zenodo: https://doi.org/10.5281/zenodo.7425628566

3. Fortran-MPI MPAS Shallow Water code with Coastal Kelvin wave initial condition567

(Petersen et al., 2022)568

GitHub: https://github.com/MPAS-Dev/MPAS-Model. This study used569

the specific code version https://github.com/mark-petersen/570

MPAS-Model/releases/tag/SW_julia_comparison_V1.0.571

Zenodo: https://doi.org/10.5281/zenodo.7439134572

The planar hexagonal MPAS-Ocean meshes used in this study for the numerical simulations573

and convergence tests of the coastal Kelvin wave and the inertia-gravity wave can be obtained574

from the Zenodo release of the Python Rotating Shallow Water Verification Suite Meshes575

at https://doi.org/10.5281/zenodo.7419817.576

Acknowledgments577

578

RRS gratefully acknowledges the support of the U.S. Department of Energy (DOE)579

through the Los Alamos National Laboratory (LANL) LDRD Program and the Center580

for Nonlinear Studies for this work. SB was supported by Scientific Discovery through581

Advanced Computing (SciDAC) projects LEAP (Launching an Exascale ACME Prototype)582

and CANGA (Coupling Approaches for Next Generation Architectures) under the DOE583

Office of Science, Office of Biological and Environmental Research (BER). MRP was supported584

by the Energy Exascale Earth System Model (E3SM) project, also funded by the DOE BER.585

This research used computational resources provided by: the Darwin testbed at LANL,586

which is funded by the Computational Systems and Software Environments subprogram of587

LANL’s Advanced Simulation and Computing program (NNSA/DOE); the LANL Institutional588

Computing Program, which is supported by the DOE National Nuclear Security Administration589

under Contract No. 89233218CNA000001; and the National Energy Research Scientific590

Computing Center, a DOE Office of Science User Facility supported by the Office of Science591

of the DOE under Contract No. DE-AC02-05CH11231.592

References593

Bishnu, S. (2021). Time-Stepping Methods for Partial Differential Equations and Ocean594

Models (Doctoral dissertation, Florida State University). doi: 10.5281/zenodo595

.7439539596

Bishnu, S. (2022, December). Rotating shallow water verification suite. Zenodo.597

Retrieved from https://doi.org/10.5281/zenodo.7425628 doi: 10.5281/598

zenodo.7425628599

Bishnu, S., Petersen, M., Quaife, B., & Schoonover, J. (2022, dec). Verification suite of test600

cases for the barotropic solver of ocean models. Authorea. Retrieved from https://601

doi.org/10.22541/essoar.167100170.03833124/v1 doi: 10.22541/essoar602

.167100170.03833124/v1603

Bleichrodt, F., Bisseling, R. H., & Dijkstra, H. A. (2012, January). Accelerating604

a barotropic ocean model using a GPU. Ocean Modelling , 41 , 16–21.605

–18–

https://github.com/robertstrauss/MPAS_Ocean_Julia
https://doi.org/10.5281/zenodo.7493065
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://doi.org/10.5281/zenodo.7425628
https://github.com/MPAS-Dev/MPAS-Model
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7419817
https://doi.org/10.5281/zenodo.7425628
https://doi.org/10.22541/essoar.167100170.03833124/v1
https://doi.org/10.22541/essoar.167100170.03833124/v1
https://doi.org/10.22541/essoar.167100170.03833124/v1

manuscript submitted to JAMES

Retrieved 2022-11-29, from https://www.sciencedirect.com/science/606

article/pii/S1463500311001661 doi: 10.1016/j.ocemod.2011.10.001607

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., Lin, W., . . .608

Zhou, T. (2019). The DOE E3SM coupled model version 1: Description and results at609

high resolution. Journal of Advances in Modeling Earth Systems, 11 (12), 4095–4146.610

doi: 10.1029/2019MS001870611

Cushman-Roisin, B., & Beckers, J.-M. (2011). Introduction to geophysical fluid dynamics:612

physical and numerical aspects. Academic press.613

Dalcín, L., Paz, R., & Storti, M. (2005). Mpi for python. Journal of Parallel and Distributed614

Computing , 65 (9), 1108–1115.615

Dalcín, L., Paz, R., Storti, M., & D’Elía, J. (2008). Mpi for python: Performance616

improvements and mpi-2 extensions. Journal of Parallel and Distributed Computing ,617

68 (5), 655–662.618

Eval of Julia code. (2016). Retrieved 2022-10-10, from https://docs.julialang.org/619

en/v1/devdocs/eval/#620

Gevorkyan, M. N., Demidova, A. V., Korolkova, A. V., & Kulyabov, D. S. (2019, April).621

Statistically significant performance testing of Julia scientific programming language.622

Journal of Physics: Conference Series, 1205 , 012017. Retrieved from https://623

iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017 doi:624

10.1088/1742-6596/1205/1/012017625

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., . . .626

Zhu, Q. (2019). The DOE E3SM Coupled Model Version 1: Overview and Evaluation627

at Standard Resolution. Journal of Advances in Modeling Earth Systems, 11 (7),628

2089–2129. doi: 10.1029/2018MS001603629

Introduction to CUDA. (2022). Retrieved 2022-12-13, from https://cuda.juliagpu630

.org/stable/tutorials/introduction/#A-simple-example-on-the631

-CPU632

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., . . . Zhang, L. (2019). Porting633

LASG/ IAP Climate System Ocean Model to Gpus Using OpenAcc. IEEE Access,634

7 , 154490–154501. (Conference Name: IEEE Access) doi: 10.1109/ACCESS.2019635

.2932443636

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., & Fasih, A. (2012). PyCUDA637

and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation.638

Parallel Computing , 38 (3), 157–174. doi: 10.1016/j.parco.2011.09.001639

Klöwer, M., Hatfield, S., Croci, M., Düben, P. D., & Palmer, T. N. (2022). Fluid640

simulations accelerated with 16 bits: Approaching 4x speedup on a64fx by squeezing641

shallowwaters.jl into float16. Journal of Advances in Modeling Earth Systems, 14 (2),642

e2021MS002684. Retrieved from https://agupubs.onlinelibrary.wiley643

.com/doi/abs/10.1029/2021MS002684 (e2021MS002684 2021MS002684) doi:644

https://doi.org/10.1029/2021MS002684645

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based python jit compiler.646

In Proceedings of the second workshop on the llvm compiler infrastructure in hpc (pp.647

1–6).648

Lin, W.-C., & McIntosh-Smith, S. (2021, November). Comparing Julia to Performance649

Portable Parallel Programming Models for HPC. In 2021 International Workshop on650

Performance Modeling, Benchmarking and Simulation of High Performance Computer651

Systems (PMBS) (pp. 94–105). St. Louis, MO, USA: IEEE. Retrieved from https://652

ieeexplore.ieee.org/document/9652798/ doi: 10.1109/PMBS54543.2021653

.00016654

Mielikainen, J., Huang, B., Huang, H.-L. A., & Goldberg, M. D. (2012, August). Improved655

GPU/CUDA Based Parallel Weather and Research Forecast (WRF) Single Moment656

5-Class (WSM5) Cloud Microphysics. IEEE Journal of Selected Topics in Applied657

Earth Observations and Remote Sensing , 5 (4), 1256–1265. (Conference Name: IEEE658

Journal of Selected Topics in Applied Earth Observations and Remote Sensing) doi:659

10.1109/JSTARS.2012.2188780660

–19–

https://www.sciencedirect.com/science/article/pii/S1463500311001661
https://www.sciencedirect.com/science/article/pii/S1463500311001661
https://www.sciencedirect.com/science/article/pii/S1463500311001661
https://docs.julialang.org/en/v1/devdocs/eval/#
https://docs.julialang.org/en/v1/devdocs/eval/#
https://docs.julialang.org/en/v1/devdocs/eval/#
https://iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002684
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002684
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002684
https://ieeexplore.ieee.org/document/9652798/
https://ieeexplore.ieee.org/document/9652798/
https://ieeexplore.ieee.org/document/9652798/

manuscript submitted to JAMES

Perkel, J. M. (2019, August). Julia: come for the syntax, stay for the speed. Nature,661

572 (7767), 141–142. Retrieved from http://www.nature.com/articles/662

d41586-019-02310-3 doi: 10.1038/d41586-019-02310-3663

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., . . .664

Woodring, J. L. (2019). An Evaluation of the Ocean and Sea Ice Climate of E3SM665

Using MPAS and Interannual CORE-II Forcing. Journal of Advances in Modeling666

Earth Systems, 11 (5), 1438–1458. doi: 10.1029/2018MS001373667

Petersen, M. R., Bishnu, S., & Strauss, R. R. (2022, December). Mpas-ocean shallow668

water performance test case. Zenodo. Retrieved from https://doi.org/10.5281/669

zenodo.7439134 doi: 10.5281/zenodo.7439134670

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., & Maltrud, M. E.671

(2015, February). Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate672

method in the MPAS-Ocean model. Ocean Modelling , 86 , 93–113. doi: 10.1016/673

j.ocemod.2014.12.004674

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., . . .675

Marshall, J. (2020). Oceananigans.jl: Fast and friendly geophysical fluid dynamics676

on gpus. Journal of Open Source Software, 5 (53), 2018. Retrieved from https://677

doi.org/10.21105/joss.02018 doi: 10.21105/joss.02018678

Ringler, T. D., Petersen, M. R., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M.679

(2013). A multi-resolution approach to global ocean modeling. Ocean Modelling , 69 ,680

211–232.681

Ringler, T. D., Thuburn, J., Klemp, J. B., & Skamarock, W. C. (2010). A unified approach682

to energy conservation and potential vorticity dynamics for arbitrarily-structured683

C-grids. Journal of Computational Physics, 229 (9), 3065–3090.684

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system685

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model.686

Ocean modelling , 9 (4), 347–404.687

Srinath, A. (2020, Nov). Accelerating python on gpus with nvc++ and cython. Retrieved688

from https://developer.nvidia.com/blog/accelerating-python-on689

-gpus-with-nvc-and-cython/690

Strauss, R. R. (2023, January). Julia Layered Shallow Water Model on Various Hardwares.691

Retrieved from https://doi.org/10.5281/zenodo.7493065 doi: 10.5281/692

zenodo.7493065693

Thuburn, J., Ringler, T. D., Skamarock, W. C., & Klemp, J. B. (2009). Numerical694

representation of geostrophic modes on arbitrarily structured C-grids. Journal of695

Computational Physics, 228 (22), 8321–8335.696

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., . . .697

Wilke, J. (2022). Kokkos 3: Programming model extensions for the exascale era.698

IEEE Transactions on Parallel and Distributed Systems, 33 (4), 805-817. doi: 10.1109/699

TPDS.2021.3097283700

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., & Yang, G. (2015,701

September). POM.gpu-v1.0: a GPU-based Princeton Ocean Model. Geoscientific702

Model Development , 8 (9), 2815–2827. Retrieved 2022-11-29, from https://gmd703

.copernicus.org/articles/8/2815/2015/ (Publisher: Copernicus GmbH)704

doi: 10.5194/gmd-8-2815-2015705

Xu, S., Huang, X., Zhang, Y., Hu, Y., & Yang, G. (2014, June). A customized706

GPU acceleration of the princeton ocean model. In 2014 IEEE 25th International707

Conference on Application-Specific Systems, Architectures and Processors (pp.708

192–193). (ISSN: 2160-052X) doi: 10.1109/ASAP.2014.6868661709

Ye, Y., Song, Z., Zhou, S., Liu, Y., Shu, Q., Wang, B., . . . Wang, L. (2022, July).710

swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway711

supercomputer. Geoscientific Model Development , 15 (14), 5739–5756. Retrieved712

2022-11-30, from https://gmd.copernicus.org/articles/15/5739/2022/713

(Publisher: Copernicus GmbH) doi: 10.5194/gmd-15-5739-2022714

–20–

http://www.nature.com/articles/d41586-019-02310-3
http://www.nature.com/articles/d41586-019-02310-3
http://www.nature.com/articles/d41586-019-02310-3
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.21105/joss.02018
https://doi.org/10.21105/joss.02018
https://doi.org/10.21105/joss.02018
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://doi.org/10.5281/zenodo.7493065
https://gmd.copernicus.org/articles/8/2815/2015/
https://gmd.copernicus.org/articles/8/2815/2015/
https://gmd.copernicus.org/articles/8/2815/2015/
https://gmd.copernicus.org/articles/15/5739/2022/

manuscript submitted to JAMES

Zhao, X.-d., Liang, S.-x., Sun, Z.-c., Zhao, X.-z., Sun, J.-w., & Liu, Z.-b. (2017,715

August). A GPU accelerated finite volume coastal ocean model. Journal of716

Hydrodynamics, Ser. B , 29 (4), 679–690. Retrieved 2022-11-29, from https://www717

.sciencedirect.com/science/article/pii/S1001605816607801 doi:718

10.1016/S1001-6058(16)60780-1719

–21–

https://www.sciencedirect.com/science/article/pii/S1001605816607801
https://www.sciencedirect.com/science/article/pii/S1001605816607801
https://www.sciencedirect.com/science/article/pii/S1001605816607801

manuscript submitted to JAMES

Julia for Geophysical Fluid Dynamics: Performance
Comparisons between CPU, GPU, and Fortran-MPI

Robert R. Strauss1, Siddhartha Bishnu2, Mark R. Petersen2

1Center for Nonlinear Studies, Los Alamos National Laboratory, NM, 87545, USA
2Computational Physics and Methods Group, Los Alamos National Laboratory, NM, 87545, USA

Key Points:

• Unstructured-mesh shallow water models were created in Julia for single-core CPU,
single-node GPU, and multi-core CPU clusters using MPI.

• Julia-MPI performance ranges from 2x faster to 2x slower than Fortran-MPI. Julia
on GPUs is significantly faster than on CPUs.

• Julia development time is quick for prototyping, but requires more time to develop
performant code; specifically, static typing is required.

Corresponding author: Mark R. Petersen, mpetersen@lanl.gov

–1–

manuscript submitted to JAMES

Abstract1

Some programming languages are easy to develop at the cost of slow execution, while others2

are lightning fast at run time but are much more difficult to write. Julia is a programming3

language that aims to be the best of both worlds—a development and production language4

at the same time. To test Julia’s utility in scientific high-performance computing (HPC),5

we built an unstructured-mesh shallow water model in Julia and compared it against an6

established Fortran-MPI ocean model, MPAS-Ocean, as well as a Python shallow water code.7

Three versions of the Julia shallow water code were created, for: single-core CPU; graphics8

processing unit (GPU); and Message Passing Interface (MPI) CPU clusters. Comparing9

identical simulations revealed that our first version of the single-core CPU Julia model was 1310

times faster than Python. Further Julia optimizations, including static typing and removing11

implicit memory allocations, provided an additional 10–20x speed-up of the single-core CPU12

Julia model. The GPU-accelerated Julia code is extremely fast, with a speed-up of 230-380x13

compared to the single-core CPU Julia code if communication with the GPU occurs every 1014

time steps. Parallelized Julia-MPI performance was identical to Fortran-MPI MPAS-Ocean15

for low processor counts, and ranges from 2x faster to 2x slower for higher processor counts.16

Our experience is that Julia development is fast and convenient for prototyping, but that17

Julia requires further investment and expertise to be competitive with compiled codes. We18

provide advice on Julia code optimization for HPC systems.19

Plain Language Summary20

Scientists who write programs for supercomputers try to satisfy two requirements: the21

code should be both fast and easy to understand. These requirements are often in conflict,22

because fast programs use special libraries that add extra lines to the code and make it less23

readable. Supercomputers also change over time—for several decades, they had thousands24

of identical CPUs (each similar to a desktop), but in the past decade they include CPUs25

accelerated by graphics processing units (GPUs). This added hardware complexity results in26

more complex software. Here we test a relatively new programming language, Julia, which27

is designed to be simpler to write, but also to be fast on advanced computer architectures.28

We find that Julia is both convenient and fast, but there is no free lunch. Our first attempt29

to develop an ocean model in Julia was relatively easy, but the code was slow—it was 7030

times slower than a long-standing ocean model written in Fortran. After several months of31

further development and experimentation, we did indeed create a Julia code that is as fast32

on supercomputers as the Fortran ocean model.33

1 Introduction34

A major concern in computer modeling is the trade-off between execution speed and35

code development time. In general, programs in scripting languages like Python and Matlab36

are faster to develop due to their simpler syntax and more relaxed typing requirements, but37

are limited by slower execution time. On the other end of the spectrum, we have compiled38

languages like C/C++ and Fortran, which have been extensively used in scientific computing39

for many decades. Programs in such languages are blessed with faster execution time, but40

are cursed with stricter and more cumbersome syntax, leading to slower development time.41

The Julia language strikes a balance between these two categories (Perkel, 2019). It is a42

compiled language with execution speed similar to C/C++ or Fortran, if carefully written43

with strict syntax (Lin & McIntosh-Smith, 2021; Gevorkyan et al., 2019). It is also equipped44

with a more convenient syntax and features, such as dynamic typing, to accelerate code45

development in prototyping. To this day, the majority of scientific computing models are46

programmed in compiled languages, which execute fast but can take months, if not years, to47

develop. In this paper, we investigate the feasability of writing Julia codes for computational48

physics simulations, since a Julia program can not only ensure high performance but also49

–2–

manuscript submitted to JAMES

less development time in the initial stages. We develop a shallow water solver in Julia and50

compare its performance to an equivalent Fortran code.51

An additional complication in choosing the best language is that layers of libraries have52

been added to C/C++ and Fortran to accommodate evolving computer architectures. For the53

past 25 years, computational physics codes have largely used the Message Passing Interface54

(MPI) to communicate between CPUs on separate nodes that do not share memory, and55

OpenMP to parallelize within a node using shared-memory threads. With the advent of56

heterogeneous nodes containing both CPUs and GPUs, scientific programmers have several57

new choices: writing kernels directly for GPUs in CUDA (Bleichrodt et al., 2012; Zhao et58

al., 2017; Xu et al., 2015); adding OpenACC pragmas for the GPUs (Jiang et al., 2019);59

or calling libraries such as Kokkos (Trott et al., 2022) that execute code optimized for60

specialized architectures on the back-end, while providing a simpler front-end interface for61

the domain scientist. All of these require additional expertise, and add to the length and62

complexity of the code base. Julia also provides an MPI library for parallelization across63

nodes in a cluster, and a CUDA library to parallelize over GPUs within a node. We have64

written shallow water codes in Julia that adopt each of these parallelization strategies.65

In recent years, shallow water solvers such as Oceananigans.jl (Ramadhan et al., 2020)66

and ShallowWaters.jl (Klöwer et al., 2022) have been developed in Julia. These codes employ67

structured rectilinear meshes to discretize their domain, and are equipped with capabilities68

for running on GPUs to achieve high performance. Here we conduct a comparison on69

unstructured-mesh models, using the Fortran code MPAS-Ocean (Ringler et al., 2013) as a70

point of reference. MPAS-Ocean employs unstructured near-hexagonal meshes with variable71

resolution capability and is parallelized with MPI for running on supercomputer clusters.72

We developed a Julia model employing the same spatial discretization of MPAS-Ocean, and73

capable of running in serial mode on a single core, or in parallel mode on a supercomputer74

cluster or a graphics card. We discuss the subtle details of our implementations, compare75

the speed-ups attained, and describe the strategies employed to enhance performance.76

2 Methods77

2.1 Equation Set & TRiSK-Based Spatial Discretization78

Our Julia model solves the shallow water equations (Cushman-Roisin & Beckers, 2011)
in vector-invariant form. This is sufficiently close to the governing equations for ocean
and atmospheric models to be used as a proxy to test performance with new codes and
architectures. The equation set is

ut + qhu⊥ = −g∇η −∇K, (1a)
ηt +∇ · (hu) = 0, (1b)

where u is the horizontal velocity vector, u⊥ = k × u, h is the layer thickness, η is the79

surface elevation or sea surface height (SSH), K = |u|2/2 is the kinetic energy, and g is the80

acceleration due to gravity. If b represents the topographic height and H the mean depth,81

then η = h + b − H. Moreover, if f denotes the Coriolis parameter, and ζ = k · ∇ × u82

the relative vorticity, then the absolute vorticity, ωa = ζ + f , and the potential vorticity,83

q = ωa/h. The term qhu⊥ is the thickness flux of the PV in the direction perpendicular84

to the velocity, rotated counterclockwise on the horizontal plane. Ringler et al. (2010)85

refer to it as the non-linear Coriolis force since it consists of the quasi-linear Coriolis force86

fu⊥ and the rotational part ζu⊥ of the non-linear advection term u · ∇u. We spatially87

discretize the prognostic equations in (1) using a mimetic finite volume method based88

on the TRiSK scheme, which was first proposed by (Thuburn et al., 2009), and then89

generalized by (Ringler et al., 2010). This method was chosen to horizontally discretize90

the primitive equations of MPAS-Ocean while invoking the hydrostatic, incompressible,91

and Boussinesq approximations on a staggered C-grid. Since this horizontal discretization92

–3–

manuscript submitted to JAMES

guarantees conservation of mass, potential vorticity, and energy, it makes MPAS-Ocean a93

suitable candidate to simulate mesoscale eddies.94

Our spatial domain is tessellated by two meshes, a regular planar hexagonal primal95

mesh and a regular triangular dual mesh. Each corner of the primal mesh cell coincides96

with a vertex of the dual mesh cell and vice versa. A line segment connecting two primal97

mesh cell centers is the perpendicular bisector of a line segment connecting two dual mesh98

cell centers and vice versa. Regarding our prognostic variables, the scalar SSH η is defined99

at the primal cell centers, and the normal velocity vector ue is defined at the primal cell100

edges. The divergence of a two-dimensional vector quantity is defined at the positions of101

η, while the two-dimensional gradient of a scalar quantity is defined at the positions of ue102

and oriented along its direction. The curl of a vector quantity is defined at the vertices of103

the primal cells. Finally, the tangential velocity u⊥e along a primal cell edge is computed104

diagnostically using a flux mapping operator from the primal to the dual mesh, which105

essentially takes a weighted average of the normal velocities on the edges of the cells sharing106

that edge. Interested readers may refer to Thuburn et al. (2009) and Ringler et al. (2010)107

for further details on the mesh specifications.108

At each edge location xe, two unit vectors ne and te are defined parallel to the line
connecting the primal mesh cells, and in the perpendicular direction rotated counterclockwise
on the horizontal plane, such that te = k × ne. The discrete equivalent of the set of
equations (1) is

(ue)t = F⊥e q̂e −
[
∇ (gη)i +Ki

]
e
, (2a)

(ηi)t = − [∇ · Fe]i , (2b)

where Fe = ĥeue and F⊥e represent the thickness fluxes per unit length in the ne and te
directions respectively. The layer thickness hi, the SSH ηi, the topographic height bi, and
the kinetic energy Ki are defined at the centers xi of the primary mesh cells, while the
velocity ue are defined at the edge points xe. The symbol (̂.)e represents an averaging of a
field from its native location to xe. The discrete momentum equation (2b) is obtained by
taking the dot product of (1b) with ne, which modifies the non-linear Coriolis term to

ne · q̂eĥeu⊥ = q̂eĥene · (k × u) = q̂eĥeu · (ne × k)

= −q̂eĥeu · te = −q̂eĥeu⊥e = −F⊥e q̂e. (3)

Given the numerical solution at time level tn = n∆t, with ∆t representing the time step
and n ∈ Z≥0, the Julia model first computes the time derivative or tendency terms of (2)
as functions of the discrete spatial and flux-mapping operators of the TRiSK scheme. Then
it advances the numerical solution to time level tn+1 using the forward-backward method

un+1 = un + ∆tF (un, hn) , (4)

hn+1 = hn + ∆tG
(
un+1, hn

)
, (5)

where F and G represent the discrete tendencies of the normal velocity and the layer109

thickness in functional form, and the subscripts representing the positions of these variables110

have been dropped for notational simplicity.111

The following sections introduce the new codes that were created for this study. Three112

versions of the Julia code were written (Strauss, 2023): the base single-core CPU version,113

an altered version for GPUs with CUDA, and a multi-node CPU implementation with114

Julia-MPI. These were compared against existing Fortran-MPI and Python versions of115

shallow-water TRiSK models. All use a standard MPAS unstructured-mesh file format that116

specifies the geometry and topology of the mesh, and includes index variables that relate117

neighboring cells, edges, and vertices. All models have an inner (fastest-moving) index for118

the vertical coordinate and were tested with 100 vertical layers to mimic performance in a119

realistic ocean model.120

–4–

manuscript submitted to JAMES

2.2 Single-Core CPU Julia Implementation121

The serial-mode implementation on a single core involves looping over every cell and122

edge of the mesh to (a) compute the tendencies, i.e. the right-hand side terms of the123

prognostic equations (2) and (b) advance their values to the next time step. The tendencies124

can be functions of the dependent and independent variables as well as spatial derivatives125

of the dependent variable. The serial version of our model is the simplest one from the126

perspective of transforming the numerical algorithms into code.127

In order to highlight differences in formulation, we provide a Julia code example for the128

single tendency term from (2) for the SSH gradient −g∇η, which is discretized as − [g∇ηi]e.129

We then add a vertical index k to mimic the performance of a multi-layer ocean model, but130

each layer is trivially redundant. In a full ocean model this term would be the pressure131

gradient, and would involve the computation of pressure as a function of depth and density.132

For the single-core CPU version, the Julia function computing the SSH gradient is133

Listing 1: Julia example for serial CPU
velocity_tendencies!(sshGradient, ssh, ...)134

135

function velocity_tendencies!(sshGradient, ssh, ...)136

for iEdge in 1:nEdges137

cell1 = cellsOnEdge[1,iEdge]138

cell2 = cellsOnEdge[2,iEdge]139

for k in 1:nVertLevels140

sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]141

* (ssh[k,cell2] - ssh[k,cell1])142

end143

end144

end145

Here cellsOnEdge is an array of index variables describing the mesh that points to146

the cells neighboring an edge, and dcEdge represents the distance between the centers of147

adjacent cells sharing the edge on which the normal velocity tendency is computed. In the148

actual code all the tendency terms are computed within this function, but here we only149

show the ssh gradient as a brief sample.150

2.3 SIMD GPU Julia Implementation151

GPUs are very powerful tools for SIMD (Same Instruction Multiple Data) computations:152

they have thousands of independent threads, which can execute the same operation at the153

same time with different input values. Since we numerically solve the same prognostic154

equation for (a) the SSH at every cell center xi, and (b) the normal velocity at every edge155

xe of the mesh, a GPU is a logical tool to employ for our computations. By placing subsets of156

cells and edges on different threads of the GPU, we can perform the tendency computations,157

and advance the prognostic variables at once in parallel rather than looping over every cell158

and edge, which would scale in wall-clock time according to the size of the mesh.159

We wrote CUDA kernels for an Nvidia GPU using the CUDA.jl library for computing160

the tendencies and advancing the prognostic variables to the next time step. The code for161

the single-core implementation can be converted to CUDA with surprising ease by removing162

the for loop over the cells and edges, and instead performing the underlying computation163

on a single cell or edge:164

Listing 2: Julia example for GPU with CUDA
CUDA.@cuda blocks=cld(nEdges, 1024) threads=1024 maxregs=64165

velocity_tendencies_cuda!(sshGradient, ssh, ...)166

167

–5–

manuscript submitted to JAMES

function velocity_tendencies_cuda!(sshGradient, ssh, ...)168

iEdge = (CUDA.blockIdx().x - 1) * CUDA.blockDim().x169

+ CUDA.threadIdx().x170

cell1 = cellsOnEdge[1,iEdge]171

cell2 = cellsOnEdge[2,iEdge]172

for k in 1:nVertLevels173

sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]174

* (ssh[k,cell2] - ssh[k,cell1])175

end176

end177

Each cell and edge of the mesh will be designated to a different thread on the GPU.178

The computation for a single cell or edge will run on a single thread, and a CUDA method179

will be used to map the index of the thread to the index of the cell (i) or edge (e), at which180

the prognostic variable is being updated. To execute this method over all threads on the181

GPU, we use a CUDA macro to call our kernel and designate the number of threads to use,182

which should be equal to the number of cells or edges in the mesh. Note that the inner183

computation of pressureGradient is identical for the CPU and CUDA kernal codes.184

2.4 CPU/MPI Julia Implementation185

Rather than iterating through every cell or edge of the mesh, we may parallelize the186

simulation with multiple processors by assigning to each processor a portion of the mesh, a187

process called domain decomposition. However, the computations of some spatial operators188

may require information from the outermost cells of the adjacent processors. So, we need189

the neighboring processors to communicate these pieces of information with each other. To190

ensure an efficient communication, we include an extra ring or “halo” of cells around the191

boundary of the region assigned to each processor, which overlaps with the region assigned to192

adjacent processors. We do not compute the tendencies of the prognostic variables in the halo193

region of a processor. In fact, we cannot perform this operation without information in an194

additional ring of halo cells, which is not assigned to the processor under consideration. So,195

we obtain the updated values of the prognostic variables in the halo region by communication196

with adjacent processors, which contain these halo cells in their interior, and update the197

prognostic variables in them.198

A number of crucial modifications are necessary to implement this parallelization scheme.199

For instance, the simulation methods are amended so that each process (rank) only performs200

computations for the set of cells or edges assigned to it. We use the MPI communication201

channel (comm) to receive the updated values of the prognostic variables in the halo region202

of a processor from adjacent processors which advance these variables. Similarly, we send the203

updated values of the prognostic variables along the outermost region of the above-mentioned204

processor to adjacent processors, for which these variables belong in the halo regions. For205

the TRiSK-based spatial discretization and the forward-backward time-stepping method,206

the halo region consists of only one layer (one halo ring) of cells.207

Listing 3: Julia example for CPU with MPI
each process executes the following, receiving a different value208

on each rank:209

comm = MPI.COMM_WORLD210

rank = MPI.Comm_rank(comm)211

212

myCells = cells_for_rank(mesh_file, rank, partition_file)213

myEdges, myHaloEdges = edges_on_cells(myCells)214

215

velocity_tendencies!(myEdges, sshGradient, ssh, ...)216

update_halo_edges!(sshGradient, myHalodEdges, rank, comm)217

–6–

manuscript submitted to JAMES

218

function velocity_tendencies!(myEdges, sshGradient, ssh, ...)219

for iEdge in myEdges220

cell1 = cellsOnEdge[1,iEdge]221

cell2 = cellsOnEdge[2,iEdge]222

for k in 1:nVertLevels223

sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]224

* (ssh[k,cell2] - ssh[k,cell1])225

end226

end227

end228

229

function update_halo_edges!(data, edgesInMyHalo, rank, comm)230

for neighborRank in find_neighbors(rank, comm)231

MPI.Irecv!(data[edgesInMyHalo,:], neighborRank, 0, comm)232

edgesToNeighbor = find_halo_overlap(rank, neighbor, comm)233

MPI.Isend(data[edgesToNeighbor,:], neighborRank, 0, comm)234

end235

end236

Here myCells and myEdges are the lists of cells and edges in the local domain, owned237

by the rank running this code, plus its halo.238

2.5 CPU/MPI Fortran Implementation239

The baseline comparison code for this study is the Model for Prediction Across Scales240

(MPAS-Ocean) (Ringler et al., 2013; Petersen et al., 2015), which is written in Fortran241

with MPI communication commands. It is the ocean component of the Energy Exascale242

Earth System Model (E3SM) (Golaz et al., 2019; Petersen et al., 2019), the climate model243

developed by the US Department of Energy. In this study, the code is reduced from a full244

ocean model solving the primitive equations to simply solving for velocity and thickness (1).245

Thus the majority of the code is disabled, including the tracer equation, vertical advection246

and diffusion, the equation of state, and all parameterizations. In order to match the Julia247

simulations, we employ a forward-backward time-stepping scheme, exchange one-cell-wide248

halos after each time step, compute 100 layers in the vertical array dimension, and use the249

identical Cartesian hexagon-mesh domains (Petersen et al., 2022).250

MPAS-Ocean is an excellent comparison case for Julia because it is a well-developed251

code base that uses Fortran and MPI, which have been standard for computational physics252

codes since the late 1990s. The highest resolution simulations in past studies used over253

three million horizontal mesh cells and 80 vertical layers, scale well to tens of thousands254

of processors (Ringler et al., 2013) and have been used for detailed climate simulations255

(Caldwell et al., 2019). MPAS-Ocean includes OpenMP for within-node memory access,256

and is currently adding OpenACC for GPU computations, but these were not used for this257

comparison to Julia-MPI on a CPU cluster.258

2.6 CPU Python Implementation259

In addition to MPAS-Ocean, we compare the performance of the Julia shallow water260

code against an object-oriented Python code Bishnu (2022). The Python code solves the261

rotating shallow water system of equations using two types of spatial discretizations: the262

TRiSK-based mimetic finite volume method used in MPAS-Ocean, and a discontinuous263

Galerkin Spectral Element Method (DGSEM). The code offers a number of standard predictor-corrector264

and multistep time-stepping methods, including those analyzed for ocean modeling in Shchepetkin265

and McWilliams (2005).266

–7–

https://e3sm.org/
https://e3sm.org/
https://e3sm.org/

manuscript submitted to JAMES

The Julia shallow water code was first written by translating this Python code into267

Julia syntax. While the Julia code was expanded for parallelization and performance, the268

Python code was further developed to serve as a platform for conducting a verification suite269

of shallow water test cases for the barotropic solver of ocean models. Each of these test270

cases in the Python code verifies the implementation of a subset of terms in the prognostic271

momentum and continuity equations, e.g. the linear pressure gradient term, the linear272

constant or variable-coefficient Coriolis and bathymetry terms, and the non-linear advection273

terms. Bishnu et al. (2022) and Bishnu (2021) provide detailed discussions on these test cases274

along with specifics of the numerical implementation, the time evolution of the numerical275

error for both spatial discretizations and a subset of the time-stepping methods, and results276

of convergence studies with refinement in both space and time, only in space, and only in277

time. Out of all of these test cases, only the linear coastal Kelvin wave and inertia-gravity278

wave test cases were implemented in the Julia code for the current study.279

While not used in this study, a number of libraries exist to accelerate Python for various280

architectures. These include Numba and PyCuda for GPUs, mpi4py for CPU clusters,281

and Cython for single-CPU acceleration. Numba (Lam et al., 2015) is an open-sourced282

Anaconda-sponsored NumPy-aware optimizing compiler, which translates Python functions283

to fast machine code at runtime using the remarkable industry-standard LLVM compiler284

library. PyCUDA (Klöckner et al., 2012), written in C++ (the base layer) and Python,285

provides access to Nvidia’s CUDA parallel computation API from Python. Mpi4py (Dalcín286

et al., 2005, 2008), provides Python bindings for the Message Passing Interface (MPI)287

standard. As an alternative, one can ‘cythonize’ an existing Python code by providing static288

type declarations and class attributes, that can then be translated to C++/C code and to289

C-Extensions for Python. Cython is an optimising static compiler for both the Python290

programming language and the extended Cython programming language. It is designed291

to offer C-like performance with code mostly written in Python with additional C-inspired292

syntax. The rotating shallow water Python code Bishnu (2022) is currently undergoing293

cythonization. Cythonized codes can further be accelerated on GPUs using Nvidia’s HPC294

C++ compiler, and the C++ Standard Parallelism (stdpar) for GPUs (Srinath, 2020).295

However, the extent of additional modifications and enhancements required to bring GPU-accelerated296

C++ algorithms to the Python ecosystem may not always be a reasonable investment of297

time. As we will see in later sections, a serial Julia code, which already achieves the298

performance of a fast compiled language, does not require extensive modifications to be299

parallelized on GPUs or multiple cores, and is therefore more convenient than python for300

high-performance scientific computing applications.301

3 Results302

3.1 Model Verification303

Each serial and parallel implementation of the shallow water model described in the304

previous section was verified for accuracy with convergence tests against exact solutions.305

We obtained the expected second-order convergence of the various TRiSK-based spatial306

operators on a uniform planar hexagonal MPAS-Ocean mesh. The operators included307

the gradient, the divergence, the curl, and the flux-mapping operator used to interpolate308

the tangential velocities from the normal velocities (Figure 1). The formulation of these309

operators is shown in Figure 3 of Ringler et al. (2010). Once the operator tests were310

complete, the linearized shallow water equations were verified against exact solutions for the311

coastal Kelvin wave and inertia-gravity wave cases, as described in Bishnu et al. (2022) and312

Bishnu (2021). With refinement in both space and time, we observe the expected first-order313

convergence of the numerical solution (Figure 1), spatially discretized with the second-order314

TRiSK scheme, and advanced with the first-order forward-backward time-stepping method315

(Bishnu, 2021).316

–8–

manuscript submitted to JAMES

101 102

Number of cells in zonal direction

10 7

10 6

10 5

L2 e
rro

r n
or

m
 o

f c
ur

l o
pe

ra
to

r

Convergence of Curl Operator
Interpolated to Cell Centers

L2 error norm
Best fit line, slope=-2.01

101 102

Number of cells in zonal direction

10 12

10 11

L2 e
rro

r n
or

m
 o

f d
iv

er
ge

nc
e

op
er

at
or

Convergence of Divergence Operator
at Cell Centers

L2 error norm
Best fit line, slope=-1.95

101 102

Number of cells in zonal direction

10 9

10 8

10 7

L2 e
rro

r n
or

m
 o

f g
ra

di
en

t o
pe

ra
to

r

Convergence of Gradient Operator
Normal to Edge

L2 error norm
Best fit line, slope=-1.98

101 102

Number of cells in zonal direction

10 3

10 2

L2 e
rro

r n
or

m
 o

f t
an

ge
nt

ia
l v

el
oc

ity

Convergence of Tangential Velocity
along Edges

L2 error norm
Best fit line, slope=-1.96

0 2000 4000 6000 8000
Distance in zonal direction (km)

0

2000

4000

6000

8000

Di
st

an
ce

 in
 m

er
id

io
na

l d
ire

ct
io

n
(k

m
)

Inertia Gravity Wave: SSH (m) after
11 Hours 13 Minutes 26 Seconds

1.0

0.5

0.0

0.5

1.0

1026 × 101 2 × 102 3 × 102

Number of cells in zonal direction

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

L2 e
rro

r n
or

m
 o

f S
SH

Convergence of Inertia Gravity Wave
Refinement in Space and Time

L2 error norm
Best fit line, slope=-0.95

Figure 1: The first two rows show convergence plots of the TRiSK-based spatial
operators for the newly-developed Julia code. Tests were run with both CPU and GPU
implementations, and identical results were obtained. The slope of −2 indicates the expected
second-order convergence. The third row shows a snapshot of the inertia-gravity wave test
case, and the convergence plot of the numerical solution with refinement in both space and
time.

–9–

manuscript submitted to JAMES

3.2 Acceleration of Julia with GPU Hardware317

The Julia serial CPU version of the shallow water model was compared against the Julia318

CUDA library GPU version and the reference Python CPU code (Table 1 and Figure 2).319

Tests were conducted on the Darwin cluster at Los Alamos National Laboratory, using a320

single node equipped with Intel Cascade Lake CPUs (Gold 6248 with a clock rate of 2.5321

GHz and 27.5M Cache) and the Nvidia Quadro RTX 8000 “Turing” GPU architecture (4608322

CUDA cores, 16.3 TFLOPS peak single precision performance, 48 GB GPU memory, and323

GPU memory bandwidth of 672 GB/s). All performance tests described in this and the324

following sections used the coastal Kelvin wave test case on a planar hexagon mesh with325

the linear shallow water equations and 100 vertical layers. Samples are averaged over ten326

trials. All codes use double-precision (8 byte) real numbers, and performance tests do not327

include the time for initialization, input/output, or generating plots.328

In our first version of the Julia single-core CPU code, we did not take any special steps329

for code optimization, and it was already 13 times faster than Python. Julia and Python330

both have dynamic typing, but Julia has the ability to go much faster since it also supports331

concrete typing. Julia is compiled, but hides it cleverly by compiling on the fly based on332

what datatypes are provided at run time. It supports a hierarchical abstract typing system,333

allowing for semi-specified types, such as “Any”, which all types extend and is the default if334

no type is specified (thus acting like python), or “AbstractArray”, which can be occupied at335

run time with any Array-like data.336

After the initial Julia development, further effort was put into optimization, which led337

to a 10–20 times speed-up for the CPU-serial code. The changes included optimizing for338

memory management by tracking down and reducing unnecessary allocations that contributed339

significantly to the run time, as well as making all types and subtypes concrete rather than340

abstract, to minimize on-the-fly compilation. These improvements are explained in more341

detail in section 4.342

We found the CUDA GPU implementation to be significantly faster than the single-core343

implementation. Because the memory transfer between the CPU and GPU takes many344

orders of magnitude longer than the actual on-GPU computations, we split them out in345

Table 1 and Figure 2. The memory transfers require between 0.015s and 0.68s and scale346

with the array size, while the GPU computations alone are extraordinarily fast, at 0.00027s347

for the 512x512 resolution case, and do not scale with resolution. This shows the power of348

GPUs, where computations alone can run over 40,000 times faster on the GPU than the349

CPU, but this speed-up is substantially diminished by the memory transfer time. Still,350

codes that are designed with a small memory footprint and limited memory transfer can351

greatly benefit from GPU computations. Strategically reducing array precision to 4-byte352

or even 2-byte reals for certain variables allows higher-resolution domains to fit on GPUs353

(Ye et al., 2022; Klöwer et al., 2022). In addition, single-precision floating point numbers354

(CUDA Float32 data type) calculations may execute significantly faster than Float64355

(Introduction to CUDA, 2022). We did not leverage Float32 in this work, but it shows356

that GPU simulations could run even faster than the results shown here.357

Summing the GPU memory transfer and compute for the 10 timestep performance test,358

the GPUs were 229 to 386 times faster than the single CPU (Table 2). This compares to359

published studies of ocean models that show a speed-up from CPU to GPU ranging from360

5–50 (Bleichrodt et al., 2012; Zhao et al., 2017; Xu et al., 2014), and a speed-up of up361

to 1556x for a GPU/CUDA Based Parallel Weather and Research Forecast Model (WRF)362

(Mielikainen et al., 2012). Note that our speed-up factor could be increased substantially by363

transferring data from the GPU to CPU less frequently. For a low-resolution ocean model364

with 30-minute time steps, the speed-ups in Table 2 correspond to collecting data every365

10 time-steps, which is 5 hours of model time. One could instead collect data for analysis366

every 100 time-steps (∼2 days), and that would result in a GPU speed-up of 2290 to 3860,367

because the compute time is negligible compared to the memory transfer. On the other368

–10–

manuscript submitted to JAMES

hand, if model communication is required frequently for surface data forcing or coupling369

with atmospheric and sea ice components, the speed-up is drastically reduced. For example,370

if memory must be transferred between the CPU and GPU every time step, the speed-ups371

range from 23—39. The point is that GPU performance is wholly dependant on the GPU372

communication frequency.373

128x128 256x256 512x512

Python, CPU 3.08E+03 1.31E+04 4.96E+04
Julia, CPU-serial (unoptimized) 2.25E+02 8.64E+02 3.86E+03
Julia, CPU-serial (optimized) 1.12E+01 7.43E+01 3.33E+02
Julia, GPU, total 4.90E−02 2.03E−01 8.64E−01

transfer to GPU 2.98E−02 1.16E−01 4.58E−01
compute on GPU 2.51E−04 2.67E−04 2.67E−04
transfer back to CPU 1.53E−02 9.54E−02 6.84E−01

Table 1: Wall clock duration (seconds) of performing ten timesteps with 100 layers on an
Intel Cascade Lake CPU or an NVidia Turing GPU.

128x128 256x256 512x512

Python, CPU 274 177 149
Julia, CPU-serial (unoptimized) 20 12 12
Julia, CPU-serial (optimized) 1 1 1
Julia, GPU 229 366 386

Table 2: Speed-up (bold) or slow-down (non-bold) factor compared to the optimized
CPU-serial Julia version at the same resolution. GPU speed-ups are based on transferring
arrays between GPU and CPU every ten time steps.

GPU threads are grouped into threadblocks (or just “blocks”) for efficiency. While374

calling the kernel function, we must specify the number of blocks and number of threads375

per block (the “block size”), as shown in listing 2. Within the kernel, we obtain the index of376

the block and thread, multiply the block index by the block size, and add the thread index377

to compute a global index. There is a maximum possible block size, but we can choose any378

smaller value to execute the kernel with. The block size does have an effect on how quickly379

the kernel runs, so we benchmarked the evaluation time of the same kernel run with different380

block sizes, as shown in Figure 3. Smaller block sizes run faster on the GPUs by 15%. This381

is interesting to note, but GPU compute time is so small compared to the memory transfer382

time that thread tuning has little impact on the overall simulation time.383

3.3 Julia-MPI versus Fortran-MPI384

Julia and Fortran codes were compared on multi-node CPU clusters, where both used385

MPI for communication between processors. Comparisons were made with domains of 128,386

256, and 512-squared grid cells solving the shallow water equations. All timing tests were387

conducted for 10 time steps and repeated 12 times on each processor count, spanning 2388

to 2048 processors by powers of two. The vertical dimension included 100 layers to mimic389

ocean model arrays and provide sufficient computational work on each processor. Separate390

timers report on computational work versus MPI communication within the time-stepping391

routine. The i/o, initialization, and finalization time is excluded.392

–11–

manuscript submitted to JAMES

104 105

Number of horizontal cells

10 3

10 1

101

103

105
W

al
l c

lo
ck

 ti
m

e
(s

)

Python, CPU: s=1.00
Julia, CPU-serial unoptimized: s=1.02
Julia, CPU-serial optimized: s=1.23
Julia, CPU to GPU transfer: s=0.99
Julia, GPU to CPU transfer: s=1.37
Julia, compute on GPU: s=0.02

Figure 2: Timing data from Table 1, comparing ten timesteps of the Kelvin Wave test case
on an Intel Cascade Lake CPU or an NVidia Turing GPU. The log-log slope, shown as s in
the legend, is 1.0 for perfect scaling.

0 200 400 600 800 1000
Number of threads per block

0

10

20

30

40

50

W
al

l c
lo

ck
 c

om
pu

ta
tio

n
tim

e
(m

s) Simulation Speed and Occupancy

Figure 3: The same kernel was executed with the same data but different block sizes and
the average execution time over 1000 runs was recorded. Fewer threads per block results in
faster execution times on the GPUs.

–12–

manuscript submitted to JAMES

Simulations were conducted on Cori-Haswell at the National Energy Research Scientific393

Computing Center (NERSC). Cori-Haswell consists of 2,388 nodes in 14 cabinets, using Intel394

Xeon Processor E5-2698 v3 with a clock rate of 2.3 GHz. Each processor has 32 physical395

threads per node and two hyper-threads per core, with 128 GB of memory per node. The396

interconnect is a Cray Aries with Dragonfly topology and > 45 TB/s global peak bisection397

bandwidth. The Julia-MPI and Fortran-MPI tests were both run with up to 32 ranks per398

node.399

The scaling plots in Figure 4 show that the Julia-MPI and Fortran-MPI models have400

identical performance at two cores; Julia-MPI is faster by up to a factor of two for mid-range401

core counts; and Fortran-MPI is 2x faster than Julia-MPI at higher ranges, depending402

on the resolution. For both languages, computation scales well with processor count,403

while communication does not, and communication progressively requires a much larger404

fraction of time at higher processor counts (Figure 5). Once computations are optimized,405

communication, which is fixed by the interconnect speed, will remain a bottleneck regardless406

of the language. At the lowest resolution of 128x128, there is insufficient work beginning at407

512 processors (which corresponds to 32 grid-cells per processor), and timing is dominated408

by communication, resulting in poor scaling above 512 processors. Communication times in409

Julia are much more variable than in Fortran across samples and processor counts, as shown410

in the right column of Figure 4. When measuring computation time without communication411

(Figure 4, right column), Julia-MPI scales nearly perfectly, while Fortran-MPI computational412

time drops off from perfect scaling at 8 and 16 cores. This produces the Julia times that are413

2x faster for the total times for mid-range processor counts of 16 and higher. Overall, Julia414

performance on CPU clusters is extremely competitive with Fortran. Once the high-level415

codes have been optimized, the “winner” between Julia and Fortan will likely depend on the416

details of the MPI libraries and hardware.417

4 Optimization Tips for Julia Developers418

Julia serves the dual purpose of a prototyping language as well as a production language.419

Not only can we construct quick-to-write but slow-performing code (although still significantly420

faster than other development languages, as we saw with comparison to python) to demonstrate421

an idea, we can also spend a bit more time to carefully construct an optimized code to achieve422

performance on par with Fortran. Julia’s ability to act as a prototyping language can be423

attributed to one of its key features: dynamic typing. Just like Python, variables may be424

initialized without defining their types. However, Julia is also endowed with a static typing425

feature, even though it is optional. If the variable types are statically defined in a concrete426

fashion, performance is greatly improved. Julia activates its dynamic typing feature with an427

“Any” type which could be any type at run time. So, Julia must compile parts of the code on428

the fly (Eval of Julia code, 2016). A method involving an “Any” type is compiled at run time429

for whatever type is actually provided during execution (called just-in-time compiling). The430

implication is that without static typing, performance will greatly suffer from compilation431

during run time. Additionally, with concrete types, the Julia compiler may optimize the432

code much further than if it is compiled for an unknown type.433

When first creating the MPAS shallow water core in Julia, we did not specify the array434

types, and let Julia assign them the “Any” type:435

struct MPAS_Ocean436

layerThickness437

normalVelocity438

...439

end440

However, by concretely defining these variables to be floating point arrays, we gain a441

substantial performance boost:442

–13–

manuscript submitted to JAMES

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.01

0.10

1.00

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)
128x128 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.01

0.10

1.00

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

128x128 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

256x256 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

256x256 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

512x512 Hexagonal Mesh

Julia
Fortran
Perfect scaling

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.1

1.0

10.0

W
al

l c
lo

ck
 ti

m
e

el
ap

se
d

du
rin

g
co

m
pu

ta
tio

n
(s

)

512x512 Hexagonal Mesh

Perfect scaling
Julia communication
Fortran communication
Julia computation
Fortran computation

Figure 4: Wall clock time versus the number of processors to simulate 10 steps of the coastal
Kelvin wave test with 100 layers. Left column shows total time without i/o; right column
splits MPI communication and computation. Vertical lines display the standard deviation
of communication times.

–14–

manuscript submitted to JAMES

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.5

1.0
Pr

op
or

tio
n

of
 ti

m
e

Julia: Proportion of Simulation Time
Spent on Computation and Communication

Computation
Communication

2 4 8 16 32 64 128 256 512 1024 2048
Number of processors

0.0

0.5

1.0

Pr
op

or
tio

n
of

 ti
m

e

Fortran: Proportion of Simulation Time
Spent on Computation and Communication

Computation
Communication

Figure 5: Comparison of the proportion of time spent in computation (blue) versus
communication (red) in Julia-MPI (top) and Fortran-MPI (bottom) on the 128x128
hexagonal mesh. The relative time spent in communication increases dramatically at high
processor counts.

struct MPAS_Ocean443

layerThickness::Array{Float64}444

normalVelocity::Array{Float64}445

end446

When parallelizing for the graphics card, a different array type is used that is suited for447

GPUs. We tried defining an abstract array type that encompasses both the CPU and GPU448

data types, so that CUDA.CuArrays and regular Arrays could be used interchangeably,449

allowing the model to be run on the GPU or CPU at will. We also used an abstract type450

specification on the contents of these arrays F <: Float, meaning any type extending the451

abstract floating point type can be used at runtime.452

struct MPAS_Ocean453

layerThickness::AbstractArray{F <: Float}454

normalVelocity::AbstractArray{F <: Float}455

end456

This approach seems like it should be performant, since the types are defined before457

run time. However, abstract types, like an Any type, slow down execution since at run458

time they may actually be a different type that extends the abstract type (CUDA.CuArray459

or Array), meaning the compiler is doing just-in-time compiling. Similarly, specifying460

an inexact element type (F <: Float) rather than a concrete type (Float64) is very461

inefficient.462

Instead, two separate structures should be defined concretely when running on GPUs463

versus CPUs:464

struct MPAS_Ocean_CUDA465

–15–

manuscript submitted to JAMES

layerThickness::CUDA.CuArray{Float64,2}466

normalVelocity::CUDA.CuArray{Float64,2}467

end468

469

struct MPAS_Ocean470

layerThickness::Array{Float64,2}471

normalVelocity::Array{Float64,2}472

end473

Now the array types are concrete, element types are concrete (Float64), and the474

number of dimensions is specified (Float64,2). This code no longer has the advantageous475

feature of being able to switch between running on the CPU and GPU on the fly. However,476

the execution speed is massively improved. We found that making this change from abstract477

to concrete array types sped up computation by a factor of 34x.478

The key in optimizing Julia code, we found, was reducing allocations. Memory allocation479

significantly slows down execution. And it is not always obvious what seemingly innocent480

actions may allocate memory. For example, simply reading a pair of values from an array481

with two columns:482

cell1Index, cell2Index = cellsOnEdge[:,iEdge]483

can allocate significant memory. In one test, this one line (executed repeatedly throughout484

the simulation) allocated 408 KiB. This is because the line is really creating a tuple, not485

directly reading each column into the two scalar variables. If we separate this into two lines486

to enforce only using scalars and not allocating tuples or arrays:487

cell1Index = cellsOnEdge[1,iEdge]488

cell2Index = cellsOnEdge[2,iEdge]489

then this cuts allocations to zero—making this line almost instantaneous, and dropping the490

time spent on the whole tendency calculation from 198 µs to 99 µs. That means this line491

alone was responsible for about 50% of the computation time, when it could be rewritten492

to take no time at all.493

There are likely many inconspicuous lines like this lurking in one’s Julia code, slowing494

it down substantially. Additionally, even one overlooked field which is not concretely typed495

may significantly slow execution. Luckily, Julia is equipped with a tool to quickly locate496

such memory-hoarding lines. This tool is called @code_warntype. Prefixing a function497

call with it will print out a color-coded list breaking each line down to individual memory498

operations:499

@code_warntype calculate_normal_velocity_tendency!(mpas)500

It helpfully highlights inexact types and memory allocations with red, pointing a user right501

to the lines and fields that need to be optimized. This feature alone makes Julia very502

powerful for high-performance applications, significantly speeding up development time to503

optimize a model’s performance.504

Another very helpful tool when optimizing Julia code is --track-allocations, a505

command line option that can be added to any Julia execution as follows:506

$ julia --track-allocations=user ./anyJuliascript.jl507

A new file is created at ./anyJuliascript.jl.XXX.mem (where XXX is some unique508

number). This file contains each line of the script prefixed by the number of memory509

allocations created by that line, giving a line-by-line breakdown of where allocations occur.510

–16–

manuscript submitted to JAMES

5 Conclusion511

As new programming languages and libraries become available, it is important for512

model developers to learn new techniques and evaluate them against their current methods.513

This is particularly true as computing architectures continue to evolve, and long-standing514

languages such as C++ and Fortran require additional libraries to remain competitive on515

new supercomputers.516

In this work, we created three implementations of a shallow water model in Julia in517

order to compare ease of development and performance to standard Fortran and Python518

implementations. The three Julia codes were designed for single-CPU, GPU-enhanced single519

CPU, and parallelized multi-core CPU architectures. Julia-MPI speeds were identical to520

Fortran-MPI at low core counts, 2x faster for mid-range, and 2x slower at higher core521

counts. Julia-MPI exhibited better scaling than Fortran-MPI for computation-only times,522

and more variability for communication times.523

The most surprising result of this study was the speed of computations on the GPUs—a524

speed-up of 40,000 to over 100,000 times compared to the CPU. Of course, this comes with525

the caveat that memory transfer between CPU and GPU can take thousands of times longer526

than the computation, up to 0.5s at our highest resolution. So the key is to transfer memory527

to and from the GPU as little as possible, which is a well-known practice. If one can fit the528

full resolution of a computational physics domain within the memory of a single graphics529

card and sample results rarely, GPUs offer extraordinary speed-ups. For climate models, a530

single low-resolution component may well fit into GPU memory if the developers are careful531

with their memory footprint. The difficulty is that including ocean, atmosphere, land, and532

sea ice components requires the use of multiple nodes, and inter-node communication will533

keep the model slow, regardless of the GPU speed. Higher-resolution domains will need534

many nodes for each component and present the same problem.535

The shallow water equations are simple enough for rapid development and verification,536

yet contain the salient features of any ocean model: intensive computation of the tendency537

terms, a time-stepping routine, and for the parallel version, interleaved halo communication538

of the partition boundary. Indeed, this layout, and the lessons learned here, apply to almost539

all computational physics codes.540

This work specifically tests unstructured horizontal meshes, as opposed to structured541

quadralateral grids. Unstructured meshes refer to a neighbor’s index using additional pointer542

arrays, so require an extra memory access for horizontal stencils. In structured grids, the543

physical neighbors are also neighbors in array space (i+ 1, j + 1, etc), which leads to more544

contiguous memory access patterns that are easier for compilers to optimize. Our results545

show that unstructured meshes do not present any significant challenge in either Fortran546

or Julia. The use of a structured vertical index in the inner-most position and testing with547

100 layers provides sufficient contiguous memory access for cache locality.548

In the end, we were impressed by our experience with Julia. It did fulfill the promise of549

fast and convenient prototyping, with the ability to eventually run at high speeds on multiple550

high performance architectures—after some effort and lessons learned by the developers.551

The Julia libraries for MPI and CUDA were powerful and convenient. E3SM does not have552

plans to develop model components with Julia, but this study provides a useful comparison553

to our C++ and Fortran codes as we move towards heterogeneous, exascale computers.554

Open Research555

Three code repositories were used for the performance comparisons in this study. These556

are publicly available on both GitHub and Zenodo:557

1. Julia Shallow Water code for serial CPU, CUDA-GPU, and MPI-parallelized CPU558

–17–

manuscript submitted to JAMES

GitHub: https://github.com/robertstrauss/MPAS_Ocean_Julia559

Zenodo: https://doi.org/10.5281/zenodo.7493065560

2. Python Rotating Shallow Water Verification Suite561

GitHub: https://github.com/siddharthabishnu/Rotating_Shallow562

_Water_Verification_Suite.git. This study used the specific563

code version https://github.com/siddharthabishnu/Rotating564

_Shallow_Water_Verification_Suite/tree/v1.0.1565

Zenodo: https://doi.org/10.5281/zenodo.7425628566

3. Fortran-MPI MPAS Shallow Water code with Coastal Kelvin wave initial condition567

(Petersen et al., 2022)568

GitHub: https://github.com/MPAS-Dev/MPAS-Model. This study used569

the specific code version https://github.com/mark-petersen/570

MPAS-Model/releases/tag/SW_julia_comparison_V1.0.571

Zenodo: https://doi.org/10.5281/zenodo.7439134572

The planar hexagonal MPAS-Ocean meshes used in this study for the numerical simulations573

and convergence tests of the coastal Kelvin wave and the inertia-gravity wave can be obtained574

from the Zenodo release of the Python Rotating Shallow Water Verification Suite Meshes575

at https://doi.org/10.5281/zenodo.7419817.576

Acknowledgments577

578

RRS gratefully acknowledges the support of the U.S. Department of Energy (DOE)579

through the Los Alamos National Laboratory (LANL) LDRD Program and the Center580

for Nonlinear Studies for this work. SB was supported by Scientific Discovery through581

Advanced Computing (SciDAC) projects LEAP (Launching an Exascale ACME Prototype)582

and CANGA (Coupling Approaches for Next Generation Architectures) under the DOE583

Office of Science, Office of Biological and Environmental Research (BER). MRP was supported584

by the Energy Exascale Earth System Model (E3SM) project, also funded by the DOE BER.585

This research used computational resources provided by: the Darwin testbed at LANL,586

which is funded by the Computational Systems and Software Environments subprogram of587

LANL’s Advanced Simulation and Computing program (NNSA/DOE); the LANL Institutional588

Computing Program, which is supported by the DOE National Nuclear Security Administration589

under Contract No. 89233218CNA000001; and the National Energy Research Scientific590

Computing Center, a DOE Office of Science User Facility supported by the Office of Science591

of the DOE under Contract No. DE-AC02-05CH11231.592

References593

Bishnu, S. (2021). Time-Stepping Methods for Partial Differential Equations and Ocean594

Models (Doctoral dissertation, Florida State University). doi: 10.5281/zenodo595

.7439539596

Bishnu, S. (2022, December). Rotating shallow water verification suite. Zenodo.597

Retrieved from https://doi.org/10.5281/zenodo.7425628 doi: 10.5281/598

zenodo.7425628599

Bishnu, S., Petersen, M., Quaife, B., & Schoonover, J. (2022, dec). Verification suite of test600

cases for the barotropic solver of ocean models. Authorea. Retrieved from https://601

doi.org/10.22541/essoar.167100170.03833124/v1 doi: 10.22541/essoar602

.167100170.03833124/v1603

Bleichrodt, F., Bisseling, R. H., & Dijkstra, H. A. (2012, January). Accelerating604

a barotropic ocean model using a GPU. Ocean Modelling , 41 , 16–21.605

–18–

https://github.com/robertstrauss/MPAS_Ocean_Julia
https://doi.org/10.5281/zenodo.7493065
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://doi.org/10.5281/zenodo.7425628
https://github.com/MPAS-Dev/MPAS-Model
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7419817
https://doi.org/10.5281/zenodo.7425628
https://doi.org/10.22541/essoar.167100170.03833124/v1
https://doi.org/10.22541/essoar.167100170.03833124/v1
https://doi.org/10.22541/essoar.167100170.03833124/v1

manuscript submitted to JAMES

Retrieved 2022-11-29, from https://www.sciencedirect.com/science/606

article/pii/S1463500311001661 doi: 10.1016/j.ocemod.2011.10.001607

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., Lin, W., . . .608

Zhou, T. (2019). The DOE E3SM coupled model version 1: Description and results at609

high resolution. Journal of Advances in Modeling Earth Systems, 11 (12), 4095–4146.610

doi: 10.1029/2019MS001870611

Cushman-Roisin, B., & Beckers, J.-M. (2011). Introduction to geophysical fluid dynamics:612

physical and numerical aspects. Academic press.613

Dalcín, L., Paz, R., & Storti, M. (2005). Mpi for python. Journal of Parallel and Distributed614

Computing , 65 (9), 1108–1115.615

Dalcín, L., Paz, R., Storti, M., & D’Elía, J. (2008). Mpi for python: Performance616

improvements and mpi-2 extensions. Journal of Parallel and Distributed Computing ,617

68 (5), 655–662.618

Eval of Julia code. (2016). Retrieved 2022-10-10, from https://docs.julialang.org/619

en/v1/devdocs/eval/#620

Gevorkyan, M. N., Demidova, A. V., Korolkova, A. V., & Kulyabov, D. S. (2019, April).621

Statistically significant performance testing of Julia scientific programming language.622

Journal of Physics: Conference Series, 1205 , 012017. Retrieved from https://623

iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017 doi:624

10.1088/1742-6596/1205/1/012017625

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., . . .626

Zhu, Q. (2019). The DOE E3SM Coupled Model Version 1: Overview and Evaluation627

at Standard Resolution. Journal of Advances in Modeling Earth Systems, 11 (7),628

2089–2129. doi: 10.1029/2018MS001603629

Introduction to CUDA. (2022). Retrieved 2022-12-13, from https://cuda.juliagpu630

.org/stable/tutorials/introduction/#A-simple-example-on-the631

-CPU632

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., . . . Zhang, L. (2019). Porting633

LASG/ IAP Climate System Ocean Model to Gpus Using OpenAcc. IEEE Access,634

7 , 154490–154501. (Conference Name: IEEE Access) doi: 10.1109/ACCESS.2019635

.2932443636

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., & Fasih, A. (2012). PyCUDA637

and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation.638

Parallel Computing , 38 (3), 157–174. doi: 10.1016/j.parco.2011.09.001639

Klöwer, M., Hatfield, S., Croci, M., Düben, P. D., & Palmer, T. N. (2022). Fluid640

simulations accelerated with 16 bits: Approaching 4x speedup on a64fx by squeezing641

shallowwaters.jl into float16. Journal of Advances in Modeling Earth Systems, 14 (2),642

e2021MS002684. Retrieved from https://agupubs.onlinelibrary.wiley643

.com/doi/abs/10.1029/2021MS002684 (e2021MS002684 2021MS002684) doi:644

https://doi.org/10.1029/2021MS002684645

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based python jit compiler.646

In Proceedings of the second workshop on the llvm compiler infrastructure in hpc (pp.647

1–6).648

Lin, W.-C., & McIntosh-Smith, S. (2021, November). Comparing Julia to Performance649

Portable Parallel Programming Models for HPC. In 2021 International Workshop on650

Performance Modeling, Benchmarking and Simulation of High Performance Computer651

Systems (PMBS) (pp. 94–105). St. Louis, MO, USA: IEEE. Retrieved from https://652

ieeexplore.ieee.org/document/9652798/ doi: 10.1109/PMBS54543.2021653

.00016654

Mielikainen, J., Huang, B., Huang, H.-L. A., & Goldberg, M. D. (2012, August). Improved655

GPU/CUDA Based Parallel Weather and Research Forecast (WRF) Single Moment656

5-Class (WSM5) Cloud Microphysics. IEEE Journal of Selected Topics in Applied657

Earth Observations and Remote Sensing , 5 (4), 1256–1265. (Conference Name: IEEE658

Journal of Selected Topics in Applied Earth Observations and Remote Sensing) doi:659

10.1109/JSTARS.2012.2188780660

–19–

https://www.sciencedirect.com/science/article/pii/S1463500311001661
https://www.sciencedirect.com/science/article/pii/S1463500311001661
https://www.sciencedirect.com/science/article/pii/S1463500311001661
https://docs.julialang.org/en/v1/devdocs/eval/#
https://docs.julialang.org/en/v1/devdocs/eval/#
https://docs.julialang.org/en/v1/devdocs/eval/#
https://iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1205/1/012017
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002684
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002684
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002684
https://ieeexplore.ieee.org/document/9652798/
https://ieeexplore.ieee.org/document/9652798/
https://ieeexplore.ieee.org/document/9652798/

manuscript submitted to JAMES

Perkel, J. M. (2019, August). Julia: come for the syntax, stay for the speed. Nature,661

572 (7767), 141–142. Retrieved from http://www.nature.com/articles/662

d41586-019-02310-3 doi: 10.1038/d41586-019-02310-3663

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., . . .664

Woodring, J. L. (2019). An Evaluation of the Ocean and Sea Ice Climate of E3SM665

Using MPAS and Interannual CORE-II Forcing. Journal of Advances in Modeling666

Earth Systems, 11 (5), 1438–1458. doi: 10.1029/2018MS001373667

Petersen, M. R., Bishnu, S., & Strauss, R. R. (2022, December). Mpas-ocean shallow668

water performance test case. Zenodo. Retrieved from https://doi.org/10.5281/669

zenodo.7439134 doi: 10.5281/zenodo.7439134670

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., & Maltrud, M. E.671

(2015, February). Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate672

method in the MPAS-Ocean model. Ocean Modelling , 86 , 93–113. doi: 10.1016/673

j.ocemod.2014.12.004674

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., . . .675

Marshall, J. (2020). Oceananigans.jl: Fast and friendly geophysical fluid dynamics676

on gpus. Journal of Open Source Software, 5 (53), 2018. Retrieved from https://677

doi.org/10.21105/joss.02018 doi: 10.21105/joss.02018678

Ringler, T. D., Petersen, M. R., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M.679

(2013). A multi-resolution approach to global ocean modeling. Ocean Modelling , 69 ,680

211–232.681

Ringler, T. D., Thuburn, J., Klemp, J. B., & Skamarock, W. C. (2010). A unified approach682

to energy conservation and potential vorticity dynamics for arbitrarily-structured683

C-grids. Journal of Computational Physics, 229 (9), 3065–3090.684

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system685

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model.686

Ocean modelling , 9 (4), 347–404.687

Srinath, A. (2020, Nov). Accelerating python on gpus with nvc++ and cython. Retrieved688

from https://developer.nvidia.com/blog/accelerating-python-on689

-gpus-with-nvc-and-cython/690

Strauss, R. R. (2023, January). Julia Layered Shallow Water Model on Various Hardwares.691

Retrieved from https://doi.org/10.5281/zenodo.7493065 doi: 10.5281/692

zenodo.7493065693

Thuburn, J., Ringler, T. D., Skamarock, W. C., & Klemp, J. B. (2009). Numerical694

representation of geostrophic modes on arbitrarily structured C-grids. Journal of695

Computational Physics, 228 (22), 8321–8335.696

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., . . .697

Wilke, J. (2022). Kokkos 3: Programming model extensions for the exascale era.698

IEEE Transactions on Parallel and Distributed Systems, 33 (4), 805-817. doi: 10.1109/699

TPDS.2021.3097283700

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., & Yang, G. (2015,701

September). POM.gpu-v1.0: a GPU-based Princeton Ocean Model. Geoscientific702

Model Development , 8 (9), 2815–2827. Retrieved 2022-11-29, from https://gmd703

.copernicus.org/articles/8/2815/2015/ (Publisher: Copernicus GmbH)704

doi: 10.5194/gmd-8-2815-2015705

Xu, S., Huang, X., Zhang, Y., Hu, Y., & Yang, G. (2014, June). A customized706

GPU acceleration of the princeton ocean model. In 2014 IEEE 25th International707

Conference on Application-Specific Systems, Architectures and Processors (pp.708

192–193). (ISSN: 2160-052X) doi: 10.1109/ASAP.2014.6868661709

Ye, Y., Song, Z., Zhou, S., Liu, Y., Shu, Q., Wang, B., . . . Wang, L. (2022, July).710

swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway711

supercomputer. Geoscientific Model Development , 15 (14), 5739–5756. Retrieved712

2022-11-30, from https://gmd.copernicus.org/articles/15/5739/2022/713

(Publisher: Copernicus GmbH) doi: 10.5194/gmd-15-5739-2022714

–20–

http://www.nature.com/articles/d41586-019-02310-3
http://www.nature.com/articles/d41586-019-02310-3
http://www.nature.com/articles/d41586-019-02310-3
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.21105/joss.02018
https://doi.org/10.21105/joss.02018
https://doi.org/10.21105/joss.02018
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://doi.org/10.5281/zenodo.7493065
https://gmd.copernicus.org/articles/8/2815/2015/
https://gmd.copernicus.org/articles/8/2815/2015/
https://gmd.copernicus.org/articles/8/2815/2015/
https://gmd.copernicus.org/articles/15/5739/2022/

manuscript submitted to JAMES

Zhao, X.-d., Liang, S.-x., Sun, Z.-c., Zhao, X.-z., Sun, J.-w., & Liu, Z.-b. (2017,715

August). A GPU accelerated finite volume coastal ocean model. Journal of716

Hydrodynamics, Ser. B , 29 (4), 679–690. Retrieved 2022-11-29, from https://www717

.sciencedirect.com/science/article/pii/S1001605816607801 doi:718

10.1016/S1001-6058(16)60780-1719

–21–

https://www.sciencedirect.com/science/article/pii/S1001605816607801
https://www.sciencedirect.com/science/article/pii/S1001605816607801
https://www.sciencedirect.com/science/article/pii/S1001605816607801

