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Abstract

The 2015 Paris Climate Agreement and Global Methane Pledge formalized agreement for countries to report and reduce

methane emissions to mitigate near-term climate change. Emission inventories generated through surface activity measure-

ments are reported annually or bi-annually and evaluated periodically through a “Global Stocktake”. Emissions inverted from

atmospheric data support evaluation of reported inventories, but their systematic use is stifled by spatially variable biases from

prior errors combined with limited sensitivity of observations to emissions (smoothing error), as-well-as poorly characterized

information content. Here, we demonstrate a Bayesian, optimal estimation (OE) algorithm for evaluating a state-of-the-art in-

ventory (EDGAR v6.0) using satellite-based emissions from 2009 to 2018. The OE algorithm quantifies the information content

(uncertainty reduction, sectoral attribution, spatial resolution) of the satellite-based emissions and disentangles the effect of

smoothing error when comparing to an inventory. We find robust differences between satellite and EDGAR for total livestock,

rice, and coal emissions: 14 ± 9, 12 ± 8, -11 ± 6 Tg CH4/yr respectively. EDGAR and satellite agree that livestock emissions

are increasing (0.25 to 1.3 Tg CH4/ yr / yr), primarily in the Indo-Pakistan region, sub-tropical Africa, and the Brazilian arc

of deforestation; East Asia rice emissions are also increasing, highlighting the importance of agriculture on the atmospheric

methane growth rate. In contrast, low information content for the waste and fossil emission trends confounds comparison bet-

ween EDGAR and satellite; increased sampling and spatial resolution of satellite observations are therefore needed to evaluate

reported changes to emissions in these sectors.
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Abstract 

 

The 2015 Paris Climate Agreement and Global Methane Pledge formalized agreement for 

countries to report and reduce methane emissions to mitigate near-term climate change. Emission 

inventories generated through surface activity measurements are reported annually or bi-annually 

and evaluated periodically through a “Global Stocktake”.  Emissions inverted from atmospheric 

data support evaluation of reported inventories, but their systematic use is stifled by spatially 

variable biases from prior errors combined with limited sensitivity of observations to emissions 

(smoothing error), as-well-as poorly characterized information content. Here, we demonstrate a 

Bayesian, optimal estimation (OE) algorithm for evaluating a state-of-the-art inventory (EDGAR 

v6.0) using satellite-based emissions from 2009 to 2018. The OE algorithm quantifies the 

information content (uncertainty reduction, sectoral attribution, spatial resolution) of the satellite-



based emissions and disentangles the effect of smoothing error when comparing to an inventory. 

We find robust differences between satellite and EDGAR for total livestock, rice, and coal 

emissions: 14 ± 9, 12 ± 8, -11 ± 6 Tg CH4/yr respectively. EDGAR and satellite agree that 

livestock emissions are increasing (0.25 to 1.3 Tg CH4/ yr / yr), primarily in the Indo-Pakistan 

region, sub-tropical Africa, and the Brazilian arc of deforestation; East Asia rice emissions are 

also increasing, highlighting the importance of agriculture on the atmospheric methane growth 

rate. In contrast, low information content for the waste and fossil emission trends confounds 

comparison between EDGAR and satellite;  increased sampling and spatial resolution of satellite 

observations are therefore needed to evaluate reported changes to emissions in these sectors. 

 

Significance Statement 

The Bayesian inverse estimation algorithms we describe here, developed previously to quantify 

atmospheric composition from observations of Earth’s radiation, is applied one step further to 

mitigate and account for the effects of imperfect observation sensitivity when comparing 

emissions informed by satellite atmospheric methane data to a reported inventory. These same 

algorithms allow us to quantify when this comparison is informative (total uncertainty is 

reduced) and when it is not. Deployment of these methods will become increasingly critical to 

use with the ever increasing number of satellite greenhouse gas observations and their utility not 

just for understanding the global carbon cycle, but for informing policy about best approaches 

for reducing emissions to mitigate climate change. 

 

@2023 All Rights Reserved 

 

Introduction 

The Paris Agreement resulted in a framework by which countries provide an accounting of their 

emissions reduction goals (or Nationally Determined Contribution, NDC). To track progress in 

achieving NDCs, countries are required to submit transparency reports, either annually or 

biennially depending on Annex 1 or 2 classification,  to the United Nations Framework 

Convention on Climate Change (UNFCC) (e.g., Vandyck et al. 2016; Scarpelli et al. 2021, 

2022). These reported inventories are combined every five years for the  “Global Stocktake”.  

Reported inventories are generated from “bottom-up’’ approaches that relate activity data (e.g., 



number of livestock) and emission factors to emissions.  However, emissions and their 

uncertainties are poorly characterized in many parts of the globe where activity measurements 

are not rigorously made or tested across multiple sites (Janssens-Maenhout et al. 2019; Scarpelli 

et al. 2021) or because emission factors vary widely within a region (Masnadi et. al., 2018; Jing 

et al. 2020).. Even in regions with substantial reporting infrastructure, large uncertainties for 

emissions can exist across fossil fuel extraction areas due to a lack of information about emission 

rates (e.g., Alvarez et al. 2018) and also because transient emissions are a substantive component 

of overall emission rates (Cusworth et al. 2022). As a consequence of the importance of this 

issue and the need for transparency in reported emissions and their changes, the IPCC 2019 

Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories states that 

“comparison of greenhouse gas emission estimates with atmospheric measurements" is 

suggested to supporting verification of bottom-up inventories (IPCC 2019). In addition,  the 

USA National Academy of Sciences recently released a study on a “framework for evaluating 

emissions inventories and information, and include several case studies for how such a 

framework could be applied in practice to specific sector- or country-based emission 

inventories” (National Academies 2022).  
To address the USA National Academy Recommendations, we describe in this paper a 

Bayesian / optimal estimation (OE) framework for verifying reported methane inventories and 

their trends by sector (e.g. livestock, rice, coal, waste, oil, gas). As a case study we compare 

methane emissions and trends for 2009 to 2018 from the EDGAR v6.0 inventory (Crippa et al. 

2022) to emissions inverted from satellite total column atmospheric concentration data observed 

by the  JAXA Greenhouse Gas Observing Satellite, or GOSAT (Parker et al. 2011; Maasakers et 

al. 2019, Zhang et al. 2021, Cusworth et al. 2021). We use EDGAR because a gridded inventory 

is required to compare against satellite data (Methods). We note that a country’s reported 

inventory may simply be an integrated total for each sector; however these can be subsequently 

projected to a grid using prior information about emission locations (e.g. Scarpelli et al. 2020, 

2022). 

A critical component needed for verifying reported inventories with atmospheric data is 

the characterization and mitigation of spatially varying biases resulting from errors in the prior, 

combined with the limited sensitivity of the atmospheric measurements to emissions, also called 

“smoothing error” (Rodgers 2000). Smoothing error is typically the largest of the uncertainties in  



inverse problems where the role of prior assumptions is important relative to the information 

content of the data used for the inverse estimate (e.g. Figure 1, Rodgers 2000). However, 

smoothing error is computationally challenging to quantify and consequently many  global 

inverse estimates of greenhouse gas fluxes (e.g. Yin et al. 2015; Liu et al. 2020; Balsamo et al. 

2021; Peng et al. 2022) rely on using different data sets and models to empirically assess the 

combined role of data and model uncertainties, and smoothing error. However, without this 

characterization of smoothing error, it is challenging to compare bottom-up (e.g. inventory) and 

top-down (inverted from concentration data) estimates, or intercompare top-down estimates,  

because it is unclear which of the error terms is causing observed differences.   

Using the OE approach we estimate emissions by sector (Methods, Cusworth et al. 2021) 

and its information content (uncertainty reduction, smoothing error, spatial-temporal resolution 

of the sectoral emissions attribution, uncertainty attribution) from the GOSAT data. We show 

that the variable bias from smoothing error is removed in comparison between EDGAR and 

these satellite based emissions using the results of the OE approach. This characterization of the 

information content, combined with the removal of smoothing error, is demonstrably a necessary 

step for providing confidence when  testing the spatial distribution and  posited trends of sectoral 

emissions in reported inventories with those informed from inverse estimates of atmospheric 

data.  

We next summarize the optimal estimation framework, how to account for smoothing 

error between a comparison of satellite informed estimate and inventory, and characterization of 

the corresponding uncertainties.  Details of the OE framework are described in the methods. The 

results section show an information content analysis of the satellite-based estimates (by sector) 

and its comparison to EDGAR as well as the spatial distribution of these comparisons. In 

particular we focus on evaluating where the satellite data has the information to robustly test the 

trends posited by EDGAR and its spatial distribution and where it does not. These comparisons 

provide new results about agricultural emissions and trends and their spatial distribution, updated 

interpretation to many recent results involving GOSAT data, and identifies where new 

observations are needed to reduce uncertainties in the global methane budget. 

 

Summary of Optimal Estimation Framework: As described in the seminal work of Rodgers 

(2000), an estimate can be described as a function of the “true state” corresponding to the 



estimate (z), its prior zA, the effect of noise “n” of the measurement used to quantify the estimate 

dn, and any systematic errors dm such as from the data or atmospheric model used to invert 

concentrations to emissions: 

  

𝐳" = 	 𝐳! + 𝐀(𝐳 − 𝐳𝑨) + 𝛅𝒏 + 𝛅𝒎        (1) 

 

Note that we don’t perfectly know the “true state”, noise vector, or the systematic errors but it is 

useful to write the estimate in this form as it demonstrates how these terms affects the estimate, 

and makes the description simpler when comparing an independent measurement (or inventory) 

to the estimate as shown later.  The A is the “averaging kernel” matrix, a function of the prior 

(ZA) and posterior (𝐙,) error covariances and a metric for the increase in information via the 

reduction in uncertainty: 

 

𝐀 = 𝐈 −	𝐙,𝐙𝐀&'          (2) 

 

and also describes the sensitivity of the estimate to the true state: 𝐀 = 𝝏𝐳*
𝛛𝐳

 (Rodgers 2000).  

 

As the averaging kernel matrix contains the sensitivity of the estimate to all other emissions, and 

other terms estimated as part of the inversion, it also describes the limited sensitivity and spatial 

resolution of the estimate, which is why the smoothing error (the effect of the prior assumptions 

and limited sensitivity on the estimate), or 𝐳! + 𝐀(𝐳 − 𝐳𝑨))  becomes smaller as the sensitivity 

increases as shown in Figure 1. 

 

Comparing an Independent Inventory to Satellite Based Emissions Estimate: To account for 

smoothing error when comparing an inventory to the satellite estimate we first pass the inventory 

(denoted as zi with uncertainty di,  and which must be on the same gridding as the prior zA) 

through the first part of equation 1: 

 

𝐳", =	𝐳! + 𝐀(𝐳𝒊 	− 𝐳𝑨) = 𝐳! + 𝐀(𝐳	 − 𝐳𝑨 − 𝛅𝐢)	      (3) 

 



For future reference we describe this operation as “applying the observation operator”. The 

approach  follows that used to compare satellite based composition measurements to independent 

data sets such as ozone-sondes (e.g., H. Worden et al. 2007) or up-looking Fourier Transform 

Spectrometers (e.g. Wunch et al. 2016).  

 

After application of equation 3 to the inventory, a comparison of the emissions modified by the 

observation operator with the satellite based emissions (by sector) is given by: 

 

𝐳" − 𝐳", = 	𝐀(	𝛅𝒊) + 𝛅𝒏 + 𝛅𝒎         (4) 

 

The effect of the a priori  assumptions from zA,  is now removed, mitigating the effect of 

smoothing error (see methods for smoothing error calculation) on this comparison so that the 

inventory can be compared to the satellite based emissions without this large, spatially varying 

bias affecting the comparison. The error of the difference between satellite estimate and this 

adjusted inventory is then the variance of the difference: 

 

𝐸||𝐳" − 𝐳",|| = 𝐀𝐒𝐢𝐀𝐓 + 𝐒𝐧 + 𝐒𝐦        (5) 

 

Where Si, Sn, and Sm are the error covariances for the inventory, observation uncertainty, and 

systematic errors, and can be explicitly calculated or approximated (Methods) and then used to 

evaluate the difference between satellite based emissions estimate and an inventory.  Equation 5 

shows that, while the spatially varying bias from errors in the prior zA are removed with this 

comparison approach, the comparison still depends on the sensitivity of the estimate via the 

averaging kernel matrix. Smoothing error, which includes the effect of imperfect sensitivity, is 

therefore mitigated but not completely removed in this comparison. 

 

Results 

Use Case: As a demonstration of how this Bayesian / OE approach can be used to evaluate a 

reported inventory using satellite data, we compare sectoral emissions (and trends) from an OE 

based emissions estimate using total column methane data from the GOSAT satellite (Parker et 

al. 2011)  to those from EDGAR version 6.0 (Methods). The satellite emissions are in part based 



on methane fluxes derived in a previous study (Zhang et al. 2021) and then the fluxes are 

projected to emissions and trends by sector using an OE based sectoral partitioning algorithm 

(Methods, Cusworth et al. 2021). The information content of this estimate (averaging kernel, 

prior and posterior covariances, and estimate of observation and systematic errors) are all 

provided with this estimate (Methods) and used with the comparison to EDGAR.  

We use EDGAR 6.0 as it is a gridded inventory that is different from the priors used in 

the satellite based estimate (Methods) and is therefore relatively straightforward to demonstrate 

how the information content of the satellite based emissions estimates can test the emissions and 

trends posited by EDGAR 6.0. However, the approaches described here can also be used to 

evaluate any inventory and its trends that might be reported and requires evaluation, e.g.,  as part 

of the Global Stocktake, and then gridded so that it can be compared to the satellite estimates 

(e.g. Scarpelli et al. 2020, 2022).  We next describe comparisons between the satellite based 

estimates and EDGAR when integrated over the whole globe, the information content of this 

comparison, and then how this information is spatially distributed by sector. 

 

Comparison of Integrated Sectoral Emissions and Trends between EDGAR and Satellite: The 

total global emissions from EDGAR 6.0, the effect of the observation operator (Equation 3) on 

EDGAR, and the sectoral emissions estimates based on GOSAT data, as well as the prior used 

for the GOSAT based sectoral emissions estimates are shown in Figure 2a. Trends for each 

sector are shown in Figure 2b. The uncertainties for each of these integrated quantities account 

for the cross-terms between elements of the state vector (Methods). As discussed further in 

Methods, the state vector includes emissions and their trends by sector, as well as wetland fluxes 

for each month, and the methane chemical sink (OH).  After applying the gridded observation 

operator to EDGAR as described in Methods, the emissions and trends by sector are integrated 

for the whole globe and shown in Figures 2a and 2b. 

The conclusions about the integrated emissions are essentially the same as those inferred 

from the integrated fluxes that they are based upon and described in a previous manuscript 

(Zhang et al. 2021). However, there are some differences about the trends between these 

previously published results and those shown in Figure 2; notably the rice, waste, and the oil and 

gas (O&G) trends are smaller, likely because the priors for the sectoral attribution of the 

emissions are different. In addition,  a “relative weighting” approach is used in this previous 



study to scale integrated methane fluxes in each grid to emissions, and this approach does not 

account for the prior distribution and posterior errors of the emissions that are used in our OE 

based sectoral attribution approach (Methods). 

 

Information Content Analysis: How Applying the Observation operator to EDGAR Informs 

Interpretation of the Satellite / EDGAR Comparison: Applying the observation operator to an 

independent inventory accounts for the smoothing error, and when compared to the satellite-

based estimate, removes the spatially variable bias due to errors in the choice of prior (Equation 

4). As shown by Equation 5, the EDGAR inventory (modified with observation operator) and 

satellite based estimates therefore agree  if the orange line overlaps (1-sigma) with the GOSAT  

(red) estimate. However, agreement does not necessarily mean accurate because the satellite-

based estimate and modified EDGAR can agree if the sensitivity is zero such that both simply 

represent the choice of prior.  

 Smoothing error includes not just the error in the prior for the quantity of interest (e.g. 

livestock emissions) but also its dependency of other elements of the state vector that affect this 

estimate. Figure 2c shows the averaging kernel matrix for the integrated quantities shown in 

Figures 2a and 2b. The row of the averaging kernel matrix  describes the sensitivity of the 

diagonal to the true distribution of the other elements of the state vector (recall that 𝐀 = 𝝏𝐳*
𝛛𝐳

) . The 

column shows how perturbing that diagonal element of the state vector affects all other state 

vector elements (Rodgers 2000; Bowman 2007).  Figure 2c also includes the state vector 

elements representing wetlands and the chemical sink (WL and OH) that are jointly estimated 

(Zhang et al. 2021) with the anthropogenic emissions. For example, the total livestock emissions 

depend substantively on the total waste and rice emissions and the chemical sink, or as shown in 

Equation 1 the difference between the “true value” of these quantities and their priors (or error in 

the priors). While the total livestock emissions estimate also depends on the trends in livestock, 

waste, O&G, and fires and geological emissions (LT, WT, OGT, and FGT), in practice these 

cross-terms should not contribute much to the livestock emissions estimate because their values 

are much smaller as seen by comparing Figure 2b with 2a. Applying the observation operator to 

the inventory removes the effect of these cross-terms on the comparison with the satellite 

estimate as shown in Equation 4.  

 



Information Content Analysis: Description of DOFS: Contained in Figure 2a and 2b is a  

parameter called “DOFS” or degrees of freedom for signal which describes the number of 

independent pieces of information for an estimate (Rodgers 2000). DOFS is calculated from the 

trace of the sub-matrix of the averaging kernel corresponding to each sector. A value of 0 means 

no sensitivity to the underlying emissions whereas increasing DOFS means increasing 

sensitivity. Although each sector generally has a DOFS larger than one, these DOFS are 

distributed over many geographical regions (see supplemental Figures). Nonetheless, this is a 

useful metric for assessing how much information is available for an observing system for each 

sector, especially if the DOFS are very small, indicating little sensitivity of the estimate to the 

true distribution. For example, ss discussed previously, the modified inventory and satellite-

based estimate can agree if the sensitivity (i.e. DOFS) is zero such that both simply reflect the 

prior.  

The DOFS in Figure 2a and 2b are not for the global total emissions (and trends) but 

instead reflects the information in their spatial distribution as it is based on the gridded averaging 

kernel matrix.  For example, we expect the observing system described here (based on GOSAT 

data) to provide the most information about the spatial distribution of the livestock sector and the 

least for the coal sector based on the DOFS metric. For comparison,  the diagonal value for the 

averaging kernel shown in Figure 2c is the DOFS for the integrated totals shown in Figures 2a 

and 2b. Comparison of the DOFS in Figure 2a with the diagonal value in Figure 2c shows how 

cross-correlations between elements of the state vector affect the information in the estimate. For 

example, once the livestock emissions for the whole globe are integrated to a single value 

representative of the whole globe, it actually has a lower DOFS (diagonal of averaging kernel in 

Figure 2c) than that for the coal or the O&G sectors because there is stronger dependency of the 

integrated livestock emissions estimate on other elements of the state vector. We use the DOFS 

metric, along with the calculated uncertainties to support interpretation of the estimates (and 

comparison to EDGAR) for the spatial distribution of emissions and trends in the next sections.  

 

Livestock Emissions and Changes: As shown in  Figure 2a, the largest amount of 

information (DOFS) from this observing system for an emissions sector, is for the spatial 

distribution of the livestock emissions. Based on the comparison between the modified EDGAR 

and satellite estimate (orange and red lines respectively), we conclude that EDGAR livestock 



emissions are 15 ± 9 Tg CH4/yr too small. Most of this discrepancy is due to underestimates of 

livestock emissions in East Africa and Brazil, along the arc of deforestation as shown by 

comparing the spatial distribution of the satellite-based estimates to EDGAR (Supplemental 

Figure 1).  

Figure 2b shows that the trend in EDGAR 6.0  integrated livestock emissions, both before 

and after applying the observation operator, is consistent (within calculated uncertainties) with 

the satellite estimates. Figure 3 also demonstrates that the spatial distribution of this trend is 

broadly consistent between the EDGAR and satellite estimates, with both showing increases in 

emissions in Brazil, West and East sub-tropical Africa, and the Indo-Pakistan region.  However, 

within these regions there can be substantial differences between the EDGAR and satellite-based 

trend estimates. Figure 3c shows one approach for using the information content from the OE 

based characterization for interpreting this comparison. This figure shows the ratio of the 

(absolute magnitude) difference from Figures 3a and 3b to the calculated uncertainty (Equation 

5). Furthermore, only differences where DOFS  that are larger than 0.05 (Supplemental Figure 2) 

are shown to ensure the corresponding observation has some sensitivity to the underlying trends 

(recall that 𝐀 = 𝝏𝐳*
𝛛𝐳

, Rodgers 2000). A value of one in Figure 2c means the difference between 

EDGAR and satellite is within 1-s uncertainty.  

Using this information content analysis, these comparisons provide increased confidence 

that observed increases in livestock emissions are larger than expected (greater than 1-s 

uncertainty) along the Brazilian arc of deforestation where there is substantial conversion of 

forest to pasture (e.g. Morton et al. 2006; Xu et al. 2021) and subsequent use for livestock during 

this time period. Furthermore, we have confidence that livestock emissions are increasing in sub-

tropical West and East Africa as both EDGAR and satellite agree and there is sufficient 

information that the agreement is not a reflection of the prior or other elements of the state 

vector. On the other hand, both positive and negative trends  of livestock emissions are observed 

in the Indo-Pakistan region, which is somewhat different than  EDGAR which shows only 

positive trends.  These livestock changes, combined with slightly decreasing wetland emissions 

in India (Zhang et al. 2021), are consistent with a previous study showing nearly constant total 

emissions from India (Ganesan et al. 2017) over this same time period, although a subsequent 



paper has shown decreases in emissions in this region using the same data (Wang et al. 2021) 

that is inconsistent with these results. 

Because the EDGAR estimate for the livestock emission trend, after the observation 

operator is applied, agrees well with the satellite estimate, the original EDGAR value (~1 Tg 

CH4 /yr/yr) is entirely plausible. Therefore, our final estimate for the change in livestock 

emissions is the low end of the satellite value to the high-end of the original EDGAR value (0.25 

to 1.3 Tg CH4/yr/yr). 

Systematic errors in the data (e.g. errors related to albedo) or model (e.g. model transport 

and chemistry) could also potentially affect the trend in the satellite result if these vary from year 

to year; for example albedo can vary with different snow/surface water conditions or model 

transport can vary with, for example, El Nino. However, as these effects are included in the 

satellite and emission estimate it is more likely that these types of errors impart some year-to-

year variability as opposed to longer-term temporal increases or decreases such that we do not 

expect these systematic errors to affect our conclusions about trends. 

Oil and Gas Sector Emissions and Changes: As a contrast to the livestock sector, where 

there is significant information content in the comparison, we next discuss the information 

content of this GOSAT based observing system for evaluating the distribution of emissions and 

trends of the O&G sector. Note that we combine oil and gas together as they can be challenging 

to distinguish because of spatial overlap and frequent commonality in upstream practices (e.g. 

Alvarez et al, 2018, Scarpelli et al., 2022). Figure 2a shows the substantial role of the prior 

uncertainties and limited sensitivity of the satellite observations on the O&G emissions estimate. 

For example, the EDGAR 6.0 inventory sets total O&G emissions at around ~70 Tg CH4/yr. 

After applying the observation operator to EDGAR, this value shifts downwards to ~48 Tg 

CH4/yr and is consistent (within uncertainty) with the satellite observation (orange line) and its 

prior (black line). Because EDGAR modified by the observation operator agrees with the 

satellite estimate, we conclude that the satellite observations cannot falsify the higher global total 

posited by EDGAR (blue).  On the other hand, as seen in the supplemental figures (Figures S3 

and S4), this observing system can resolve total gas emissions over high emitting areas such as 

the Permian Basin in Texas (Zhang et al. 2020; Cusworth et al. 2021) and the Turkmenistan 

facilities (Varon et al. 2019), suggesting that most of this discrepancy is due to limited sensitivity 



of the observing system in lower emitting regions that in aggregate can make up a large portion 

of the O&G emissions. 

Figure 4 demonstrates that this observing system has less information about trends in 

O&G emissions. EDGAR expects large changes in these emissions across the N. Hemisphere 

(Figure 4a). However, these changes in EDGAR are near zero for most of the globe after 

applying the observation operator because the information content is small (DOFS = 2.5 for the 

spatial distribution for the whole globe), such that the observation operator places the EDGAR 

trends near the (zero) prior. As this result is consistent with the satellite data, except in regions 

surrounding Turkmenistan,  all that can be said from this comparison is that this observation 

system cannot robustly verify posited trends in O&G emissions.  These results demonstrate the 

importance of combining sensitivity analysis (e.g. DOFS) with the uncertainty calculation to 

determine if an atmospheric concentration informed estimate can robustly test or verify reported 

emissions and their trends. 

 Rice, Waste, and  Coal Comparisons: We next summarize what we believe are the more 

interesting findings with respect to the comparisons between EDGAR and satellite for the rice, 

waste, and coal sectors, and their trends.  The supplemental contains the spatial distribution (at 

4x5 lon/lat gridding) for the EDGAR emissions and trends for each sector, EDGAR after the 

observing operator is applied, the satellite based estimate, the DOFS, and the equivalent of 

Figure 3c for each of the emissions and corresponding trend. We refer the reader to these 

Supplemental figures for the subsequent discussion. 

Rice: The spatial distribution for rice emissions is consistent (within the calculated 

uncertainty) between satellite and EDGAR (with observation operator applied) for almost all grid 

cells and within 1.5 s uncertainty (12 ± 8 Tg CH4/yr) for the global total. The diagonal of the 

averaging kernel matrix (Figure 2c) indicates substantial sensitivity (~0.9 DOFS) for the 

integrated total emissions with only partial sensitivity to waste and livestock, confirming a robust 

estimate for total rice emissions. However,  there are substantial differences between EDGAR 

and satellite for the rice trends. For example, EDGAR posits small increases in emissions from 

rice farming in Africa, Indonesia, India and East Asia, but a decline in South-East Asia 

(Supplemental Figure S6). However, after applying the observation operator to EDGAR, the 

small decline in rice emissions in SE Asia becomes a slight positive increase; this adjusted 

EDGAR is still ~2.5 smaller (relative to the uncertainty) of the satellite data, indicating that an 



increase in rice emissions in this region is likely. On the other hand, while the observed 

emissions from rice in China are larger than EDGAR (after adjusting with the observation 

operator), the difference is within the uncertainty; hence we conclude that rice emissions in 

China are likely increasing. Combined with the results on livestock emissions, these comparisons 

highlight both the importance of agriculture in affecting the growth rate of atmospheric methane 

and also the need for accounting for smoothing error when interpreting differences between top-

down and bottom-up estimates. 

Coal: As with rice emissions, the spatial distribution and the integrated emissions for coal 

are mostly in agreement between EDGAR (with observation operator applied) and observed. 

Significant sensitivity to total coal emissions (Figure 2c) and minimal dependency on cross-

terms in the state vector supports the robustness of this result. However, as shown in the 

supplemental figures (Supplemental Figure S8), a negative trend in the EDGAR N. China coal 

emissions is replaced with a slight positive trend once the observation operator is applied, likely 

because of the role of the waste trend on the trends for coal as shown by the averaging kernel 

matrix in Figure 2c. These large differences between the original EDGAR values and the 

EDGAR with observation operator, highlight how correlations in the observing system can alter 

the interpretation, or add additional context to a conclusion. For example, previous results also 

based on GOSAT data indicate a large increase in coal emissions in N. China, despite stated 

decreasing inventories (Miller et al. 2019; Sheng et al. 2021), consistent with the results shown 

here. However, the characterization provided by the optimal estimation approach suggest that at 

least part of this observed increase result from spatial correlations in the inversion as 

demonstrated by Figure 2c (Zhang et al. 2022). Consequently, a more robust conclusion is that 

the posited EDGAR decline in coal is too steep but a slight decrease in coal emissions cannot be 

falsified.   

 Waste: These comparisons also demonstrate that waste emissions and their trends 

(Supplemental Figures 9 and 10) are not well tested with this observing system as the 

information content is low (DOFS ~0.4 for total emissions as seen in Figure 2c). The row of the 

averaging kernel matrix also shows strong dependency of waste emissions on emissions from 

livestock, rice, and coal. These results indicate that the waste estimate strongly depend on the 

choice of prior and explains why these results, in which the prior depends on both wastewater 

and landfills, are different from those in Worden et al. (2022) where the prior only depends on 



landfills; essentially the integrated estimate for waste is primarily dependent on the prior because 

the diagonal of the averaging kernel matrix is less than 0.5  Similarly, trends in waste emissions 

are not well resolved  because of low information content. Higher resolution estimates are 

therefore needed to resolve this sector’s emissions and trends from other sectors (e.g. 

Maasakkers et al. 2022).  

 

Summary and Future Directions 

 

The Global Methane Pledge and recent Conference of Parties stresses the increasing need 

for evaluating a countries reported methane emissions and changes with atmospheric 

observations to support methane emission reduction efforts, for the purpose of mitigating near 

term climate change. In turn, the recent USA National Academy report emphasizes the need for a 

framework and corresponding use-cases that includes atmospheric measurements for providing 

robust information about GHG emissions and their changes (National Academy 2022).  There 

are also nascent efforts to develop these information systems, that are based on satellite 

atmospheric concentration data such, as the European Copernicus project (COCO2 2022), as 

well as substantive discussion on this subject across the science communities in previous and 

current conferences (e.g. WMO 2023) . As demonstrated by the use case in this manuscript, 

optimal estimation provides a framework and characterization approach for robustly comparing 

satellite emissions to an independent inventory. The benefits of OE include  1) evaluation of the 

information content of the satellite top-down estimates which in turn allows us to determine 

where the comparison has information and where it does not, 2) improved confidence in 

comparisons between the satellite and inventory emissions as one of the largest uncertainties in 

the comparisons, smoothing error, is accounted for in the comparison and mitigated, 3) 

additional context in interpreting the spatial and temporal distribution of emissions via evaluation 

of the averaging kernel and posterior covariances, 4) a theoretical framework for attributing 

different sources of uncertainty, and 5) identifying where additional measurements are needed to 

resolve emissions and their changes. 

For our use case,  we compare emissions and trends from 2009 to 2019 from an 

observation system based on the satellite GOSAT data, the GEOS-Chem model, and choice of 

constraints (Zhang et al. 2021), with emissions and trends from the EDGAR v6.0 methane 



inventory.  We find that this observing system has the most information about the spatial 

distribution of livestock emissions and trends such that we are confident that EDGAR livestock 

emissions are underestimated but that posited increases in livestock emissions by EDGAR are 

consistent with satellite observed increases (0.25 to 1.3 Tg CH4/ yr / yr), primarily in the Indo-

Pakistan region, Africa, as well as the Brazilian arc of deforestation where there has been 

substantial conversion of forest for agricultural use in the last two decades (Xu et al. 2021). 

A smaller contribution from rice emissions in China and SE Asian also likely contributes to 

increasing methane; combined these results highlight the importance of food production on the 

global methane budget (e.g. Crippa et al. 2021) and its growth rate. 

Because we calculate the information content of these estimates we can determine where 

the comparisons are meaningful (total uncertainties are reduced) and where they are not. For 

example, large regional changes in O&G emissions posited by the EDGAR inventory cannot be 

tested with this satellite data set because of low information content of the observing system for 

this sector. An observing system will therefore need increased spatial-temporal resolution to 

evaluate a countries reported fossil emissions (e.g. Scarepelli et al. 2022) and their Nationally 

Determined Contribution to the UNFCCC. 

 The information content (sensitivity and uncertainties) and corresponding spatial-

temporal resolution of an observing system is largely driven by observation density and prior 

error covariance. The TROPOMI satellite instrument is now providing ~100x higher observation 

density than the GOSAT instrument used in this work, although there are still some artifact 

issues affecting its use in global inversions (Qu et al., 2021; Barré et al., 2021). As these artifact 

issues get resolved (Lorente et al., 2021) and new instruments are launched (Jacob et al., 2022), 

we can expect the information content on methane fluxes from satellite observations to increase 

considerably. Multiple observations have found that high emitters at small scales (10s of meters) 

can make outsized contributions to regional (100’s of km) methane fluxes (e.g. Frankenberg et 

al. 2016; Varon et al. 2019, 2022; Cusworth et al. 2022; Maasakkers et al. 2022). Combining 

observations that map methane enhancements at sub-kilometer scale (e.g. GHGSat, Carbon 

Mapper, Sentinel-2, EMIT) over intensely emitting facilities, with the global mapping available 

from other satellite instruments will therefore be critical for enabling climate action. The OE 

framework described here also provides the underlying theory for a greenhouse gas information 



system that can integrate these data sets with their vastly different spatial scales and use them to 

test and update reported inventories in a fully Bayesian manner. 

 

Methods  

 

Background on Satellite Based Emissions by Sector:  The sectoral emissions and trends 

inverted from the satellite data are derived in a two step process. The first step is described in 

previously published results and comprises a global inversion using total atmospheric column 

methane data from the Japanese GOSAT (Greenhouse gases Observing SATellite) instrument 

(Parker et al. 2011) and the GEOS-Chem model (Zhang et al. 2021). The state vector for this 

inversion include 1) integrated anthropogenic methane fluxes between 2010 and 2018 at a 

gridding of 4x5degrees (latitude/longitude), 2) the corresponding linear trend for these years, 3) 

wetland methane emissions for specified regions for each month between 2010 and 2018), and 4) 

the yearly methane sink. We refer the reader to the paper by Zhang et al. (2021) for a full 

description and evaluation of this inversion.  The second step is a linear estimate of emissions by 

sector (and their trends) based on an optimal estimation sectoral emissions attribution approach 

(Methods, Cusworth et al. 2021; Worden et al. 2022) that projects the integrated anthropogenic 

fluxes and trends to emissions by sector and trends at the same 4x5 gridding. The emissions state 

vector includes livestock, waste (landfills and wastewater), rice, coal, O&G, and fires and 

geological. The state vector also includes the trends for these emissions as well as the wetlands 

and OH state vector from the flux inversion in the first step. This OE based projection from 

integrated anthropogenic fluxes to emissions by sector accounts for the prior distribution and 

uncertainties in the emissions, and includes the effects of the jointly estimated wetland fluxes 

and methane sink. Furthermore, because the  posterior covariance is generated from this step 

(Methods, subsequent section), we can calculate an averaging kernel matrix which is then used to 

create the “observation operator” for the emissions and trends by sector as shown by Equation 2 

in the main text. 

 

EDGAR Inventory and Uncertainties: We use the v6.0 EDGAR inventory (Crippa et al. 2020). 

The inventory is first projected to the 4x5 degrees (lat/lon) gridding used with the satellite based 

emissions estimates.  Critical towards comparing a gridded inventory with inversely estimated 



emissions is a realistic a priori   error covariance that describes their uncertainties and any 

correlations between adjacent emissions. Because EDGAR does not provide an error covariance 

for its emissions, we use the prior covariances that were previously generated for use by the 

satellite based emissions estimate by sector (Worden et al. 2022, Methods) as a convenience to 

simplify the demonstration of the information content calculations.  

 

Optimal Estimation Description: The OE framework, used for comparing the satellite based 

sectoral emissions and trend to an independent methane inventory, follows the approach in 

Rodgers seminal work “Inverse methods for atmospheric sounding: theory and practice” 

(Rodgers 2000), and used extensively in remote sensing of methane and other atmospheric trace 

gases (e.g. Worden et al. 2004; Bet al.et al. 2et al.arker et al. 2011). Here we provide a more in-

depth derivation of the basic OE equations than discussed previously in the main text summary. 

 The estimate for each Imission type and its trends can be written as a function of the true 

state for these parameters (z), its prior zA, the noise “n” of the measurement used to quantify the 

fluxes, and any systematic errors dm: 

  

𝐳" = 	 𝐳! + 𝐀(𝐳 − 𝐳𝑨) + 𝐆𝐧 + 𝛅𝒎        (1) 

 

Note that this is the same as Equation 1 in the main text except that we replace dN with Gn. The 

posterior error covariance for this estimate, or Hessian, 𝐙, is the weighted sum of the prior 

uncertainties or covariance ZA, and the information from the observations (𝐊2𝐒𝐧&'𝐊): 

 

𝐙, = 4𝐌2(𝐊2𝐒𝐧&'𝐊)𝐌 +	𝐙!&'6
&'

        (2) 

 

The “Jacobian” K in Equation 2 describes the sensitivity of the integrated methane flux (or 

trend) to the observed methane concentrations in each state vector element (e.g. the state vector 

denoted in Figure 2c but on the spatio-temporal grid described in the main text). The gain matrix 

G is a matrix containing partial derivatives that relate parameters in the observation state vector 

(or “n” using the nomenclature in Equation 2) to parameters in the estimate state vector (or “z” 

using the nomenclature in Equation 2) and is defined for this problem as 𝐆 = 𝐙,(𝐌𝐊)2𝐒𝐧&' 



(Bowman et al. 2007). The mapping matrix M describes the mapping relationship between the 

integrated flux (x) at each grid cell to the sectoral emissions that make up the flux in that grid 

(𝐱 = 	𝐌𝐳, see subsequent Methods section on sectoral attribution).  The information about the 

fluxes from the observations described by the Jacobians K in Equation 2 is mapped to each 

sector (e.g. coal, waste, gas via the mapping matrix, and then weighted further by the prior error 

covariance of that sector (ZA) as discussed in the next section.  We note that the Jacobians in 

Equation 2 can be further mapped to the Jacobians in the optimal estimate step used to relate 

observed satellite spectral radiances to methane concentrations (Parker et al. 2011), so that the 

Hessian matrix shown in Equation 2 preserves the information from the original satellite 

observations.  

 

Quantifying Uncertainties:  The Hessian matrix, or posterior error covariance in Equation 2, can 

also be written as the sum of the smoothing and observation error (Rodgers 2000, Worden et al. 

2004; Bowman et al. 2007): 

 

𝐙, = (𝐈 − 𝐀)𝐙𝐀(𝐈 − 𝐀)𝐓 + 𝐆𝐒𝐧𝐆𝐓       (3) 

 

ZA describes the prior error covariance for the elements in the state vector (see subsequent 

methods section). The first term on the right is the characterization of the smoothing error and 

the second term is the measurement error, or the effect of observation noise on the estimate. 

The uncertainties we report for an estimate are derived from the posterior covariances. 

For example, if we report an individual element of the covariance (e.g. total error for a sectoral 

emission for a certain grid point as shown in the supplemental), then the uncertainty is simply the 

corresponding square root of the diagonal from the covariance. If on the other hand we report an 

integrated quantity (e.g. sum of all livestock emissions), then the corresponding uncertainty must 

be projected from the total error covariance (Worden et al. 2022) on the 4x5 grid to the 

integrated quantity. For example, the total uncertainties for the satellite based uncertainties 

shown in Figures 2a and 2b are derived by first quantifying the posterior error covariance for the 

integrated quantities of the state vector described by the row in  Figure 2c: 

 



𝐙,𝒊 = [
𝐡𝐋
…
𝐡𝐎𝐇

]𝐙,𝒕𝒐𝒕	[
𝐡𝐋
…
𝐡𝐎𝐇

]𝐓        (4) 

 

Where the rows of the matrix [
𝐡𝐋
…
𝐡𝐎𝐇

] is composed of vectors the size of the row of	𝐙,𝒕𝒐𝒕 and that 

have a value of 1 corresponding to the indices of the sector and 0 elsewhere. The error 

covariance 𝐙,𝒕𝒐𝒕is the sum of the Hessian plus our estimate of the model error covariance.  The 

indices for h are the same indices shown in Figure 2c that correspond to each (integrated) 

elements of the state vector: L, W, R, …, WL, OH. The uncertainty for each integrated sector “i” 

is then the square root of the diagonal value of the covariance 𝐙,𝒊 corresponding to the sector. To 

calculate the averaging kernel matrix shown in Figure 2c, we apply the same operation to the 

Hessian 𝐙, and to ZA and then recalculated the averaging kernel matrix using Equation 2 from the 

main text.  

 

Sectoral attribution: The derivation for how emissions by sector are quantified from an 

integrated flux is described in Cusworth et al. (2021). The basic equations describe a linear 

mapping relationship between integrated anthropogenic emissions “x” and the emissions by 

sector “z” within a grid that compose this flux. The linear mapping we use is a simple 

summation of emissions within each grid: 

 

𝐱 = 	𝐌𝐳.							           (5) 

 

The solution for projecting fluxes back to emissions takes the form: 

 

𝐳" = 	 𝐳! + 𝐙,𝐌2𝐒,&'=	4𝐈 −	𝐒,𝐒!&'6(𝐱! −𝐌𝐳!) +	(𝐱" − 𝐱!)>				    (6) 

 

where the (𝐳") is the posterior emissions vector with error covariance (𝐙,) and I is the identity 

matrix. Here SA and  𝐒, are the prior and posterior error covariances covariance for the fluxes 

corresponding to the state vector x as described in Zhang et al. (2021). 



Equation 6 is similar to the “prior” swapping approach used extensively for remote 

sensing (e.g. Rodgers and Connor 2003) in which one (e.g. xA) prior can be swapped with 

another (e.g. MzA) if the Averaging kernel matrix is provided (4𝐈 −	𝐒,𝐒!&'6 except that after the 

priors are swapped (the effect of the brackets in the above equation) it is then projected from 

“flux space” to “emissions space” (the effect of 𝐙,𝐌2𝐒,&'). 

 

As shown previously, the posterior error covariance matrix 𝐙, is calculated explicitly 

given 𝐌, 𝐒!, 𝐒,, and prior emissions error covariance matrix 𝐙!: 

 

𝐙, = 	 4𝐌24𝐒,&' −	𝐒!&'6𝐌 +	𝐙!&'6
&' =	 4𝐌2(𝐊2𝐒𝐧&'𝐊)𝐌 +	𝐙!&'6

&'
							   (7) 

 

Note that in our previous work (Worden et al. 2022), the covariances had to be split into regions 

because the size of the state vector resulted in a matrix (Equation 7) that was too large to invert. 

We found, using simulations with smaller matrices, that this approach  results in emissions 

estimates that are within uncertainty using the more accurate but much larger Hessian matrix, but 

changed the structure of the averaging kernel matrix, reducing the robustness of the comparison 

between the inventory and satellite based emissions suspect. For this reason, we now perform the 

matrix inversion using a state vector representative of the whole globe and not sub-regions. 

 

Sources of Uncertainty When Comparing Satellite Based Emissions Estimate and Trend to 

Inventory: As discussed in the main text, the different sources of error when comparing the 

satellite based emissions to an independent inventory are described by the variance of the 

difference between the satellite estimate and inventory modified by the observation operator:  

 

𝐸||𝐳" − 𝐳",|| = 𝐀𝐒𝐢𝐀𝐓 + 𝐒𝐧 + 𝐒𝐦        (8) 

 

Where Si is the covariance for the inventory uncertainties di, Sn is the observation error projected 

to emissions, and Sm is the model error.  Note that the observation error, Sn, either is directly 

calculated using a chain of partial derivatives that relates noise to concentration data to fluxes to 



emissions, or it can be calculated by subtracting the “smoothing” or resolution error from the 

Hessian Z (Rodgers 2000): 

 

𝐒𝐧 = 𝐙, − (𝐈 − 𝐀)𝐙𝐀(𝐈 − 𝐀)𝐓         (9) 

 

We quantify the final term in Equation 8 (model error) using the “residual error” 

approach discussed in Zhang et al. (2021) which compares the difference of single observations 

and model values relative to yearly means of the observations minus the model. This yields a 

total observational error variance from which the contribution from the observing instrument can 

be subtracted to yield the model transport error variance.  Application to satellite methane 

column observations indicates model transport error standard deviations of typically 5-10 ppb 

(Lu et al., 2021).  However, for the purpose of this study we conservatively assume the model 

error is the same as the observation error Sn, which is based on concentration errors that are ~14 

ppb. 

If only a partial inventory is provided, such as a countries reported emission inventory, 

then the errors still need to account for the spatially varying sensitivity of the estimate as 

described by the averaging kernel. In this case there is a “cross-state” term (Worden et al. 2004; 

H. Worden et al. 2007), in which the emissions and its prior uncertainties in one region affect the 

estimated emissions in another. Equation 5 then becomes: 

 

𝐸||𝐳" − 𝐳",|| = 𝐀𝐢𝐒𝐢𝐀𝐢𝐓 + 𝐀𝐢𝐣𝐒𝐣𝐣𝐀𝐢𝐣𝐓 + 𝐒𝐧𝐢𝐢 + 𝐒𝐦𝐢𝐢       (10) 

 

Here the indices “ii” represents the submatrix of A and the covariances S corresponding to the 

reported countries emissions (for example), and the index “j” represents the emissions for all 

other parts of the inventory. 

 

Description of Priors and Prior Covariances: Sectoral attribution for emissions based on 

atmospheric concentration data requires use of a priori  emissions and prior covariances. For the 

optimal estimation approach described here, this means a realistic representation of zA (priors) 

and ZA (prior covariances). The priors and prior covariances and how they are used for the 

sectoral emissions are described in Worden et al. (2022) and the reader is directed to this paper 



(Section 2.3 Generation of Prior Emissions, Covariances, and Uncertainties) for details.   In 

summary, the a priori  emissions are based on a combination of emissions inventories. Livestock 

emissions are based on the results of a 2013 NASA Carbon Monitoring System study (Wolf et 

al. 2017).  Rice, landfill, solid waste, and waste water emissions are based on EDGAR 5.0 

(Janssens-Maenhout et al. 2019) although the landfill and waste water emissions are combined as 

they are spatially correlated. Fossil emissions are based on reported emissions to the UNFCCC 

as part of the global stock-take (Scarpelli et al. 2020, 2022). Wetland emissions are based on an 

ensemble of wetland, semi-empirical process models (Bloom et al. 2017). Fires are based on 

emissions from the Global Fire Emissions Database version 4 (Giglio et al. 2014) and combined 

with natural seeps that are based on a 2019 inventory (Etiope et al. 2019). The covariances for 

OH are taken from Zhang et al. (2021). 

Constructing a realistic a priori  covariance is challenging as the matrix must be 

invertible (Equation 3) while realistically describing the prior uncertainties and their correlations. 

This challenge is amplified because the  uncertainties and how they might be correlated are 

generally not well known (Janssens Maenhout et al. 2019). Our approach for constructing these 

covariances is described in our previous work (Worden et al. 2022) and is to first sub-divide the 

globe into eight regions which are primarily associated as an “Annex 1” or “Annex 2”.  Our 

primary constraint in calculating a prior covariance is that projecting it from its original gridding 

(in this previous work it is at 1x1 degree) down to a single value representative of the region, the 

total uncertainty should be 15% for a region primarily composed of Annex 1 countries while the 

value is 30% for regionsl  primarily associated as “Annex 2” (Janssens Maenhout et al. 2019). 

Mechanistically this means that if we project, for example, the covariance for coal emissions for 

an Annex 1 region down to a single number than it will have an uncertainty very close to 15%. 

To achieve these result, the uncertainty at any grid cell must be quite large (~80% at 1 degree 

resolution) with substantial correlation with nearby emissions (~0.8 correlation with emissions 

within 400 km).  These numbers are not unrealistic based on regional studies of uncertainties in 

California and Texas (Maasakkers et al. 2016) such that we adopt this general approach 

throughout the globe. Note that it is straightforward to use alternative priors and prior 

covariances if a researcher can provide them and has good rationale for their internal covariance 

structure.  



The priors and prior covariances are initially calculated on a 1x1 degree grid box. For the 

study in this manuscript the gridding is 4x5 degrees (latitude/longitude). Consequently, we 

project the covariances at 1x1 to 4x5 (lat/lon) through simple interpolation.  Our approach for 

quantifying the prior and covariance for the trends is to 1) set the prior for the trend to be zero at 

every grid box and 2) to set the covariance for the trend equal to 5% of the corresponding 

variance for the emissions at every grid, i.e., the covariance for the trend is simply the covariance 

for the emissions multiplied by 0.052. The prior covariances for each region are then mapped to 

the whole globe at 4x5 degrees. However, only elements of the globe that have non-zero 

emissions are used to keep the state vector small such that the matrix described by Equation 3 is 

robustly invertible (i.e. 𝐙,𝐙,&' = 𝐈). Mechanistically, this means using only those emissions that 

are larger than 1% of the largest emission value on the globe. With this threshold we reduce the 

size of the emissions part of the state vector by ~50% but retain ~98% of the total emissions such 

that the revised total is within 8 Tg CH4/yr of the ~350 Tg CH4/yr total. We then redistribute this 

small remaining residual to the retained grid boxes so that the total emissions on this smaller 

subset is the same as the original. 
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Data Availability and Sharing 

The sectoral attribution of emissions from fluxes depends on fluxes at the following data 

repository: https://zenodo.org/record/4052518#.Y6Oe0uzMKbg. 

 

The priors and a priori  covariances used to project fluxes to emissions by sector are stored here: 

https://cmsflux.jpl.nasa.gov/get-data/publication-data-sets/    (see paper by Worden, Cusworth, 

Qu et al. 2021 that is stored on this website. 
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Figure 1: Smoothing error is typically the largest component of the error budget for 
emissions inverted from satellite data where the uncertainties in the prior are important 
relative to the information content of the data. Black symbols show the fraction of 
smoothing error relative to the total error for methane emissions (by sector) based on 
nine years of JAXA data on a 4x5 (lon/lat) grid. Red symbols show the fraction of 
smoothing error when the sectoral based emissions are integrated to a single number on 
each grid. As the sensitivity increases, the smoothing error becomes smaller. The total 
error budget includes smoothing error, error due to noise, and estimate of systematic 
errors (Methods). 
 

Figure 1: Smoothing error is typically the largest component of the error budget for mean anthropogenic methane emissions 
based on nine years of JAXA GOSAT total column methane data and estimated on a 4x5 (lat/lon)_grid by sector (black symbols). 
Integrating the emissions to a single flux (red symbols) for each grid cell reduces the sectoral attribution but decreases the 
smoothing error.  Similarly, coarsening the grid to larger values(not shown) will decrease the resolution but also decrease 
smoothing error. As the sensitivity increases, the smoothing error becomes smaller. The total error budget includes smoothing
error, error due to noise, and estimate of systematic errors (Methods).



  

 
 
Fig. 2: (A / Left) EDGAR emissions after modification by observation operator are 
consistent with satellite for the Waste and Oil&Gas sectors, and inconsistent for all other 
sectors. (B / Middle) EDGAR inventories and satellite data agree that Livestock emissions 
are increasing but this observing system cannot falsify posited changes in other emissions. 
The DOFS (trace of Averaging Kernel Matrix) is a metric of sensitivity for the observing 
system and describes the number of independent pieces of information that can spatially be 
estimated for each sector. (C / Right). The row of this averaging kernel matrix for these 
integrated quantities describes the sensitivity of the estimate to the true distribution.   
 

Figure 2: (A / Left) EDGAR emissions after modification by observation operator are consistent with satellite for the Waste and Oil&Gas
sectors, and inconsistent for all other sectors. (B / Middle) EDGAR inventories and satellite data agree that Livestock emissions are 
increasing but this observing system cannot falsify posited changes in other emissions. The DOFS (trace of Averaging Kernel Matrix) is a 
metric of sensitivity for the observing system and describes the number of independent pieces of information that can spatially be 
estimated for each sector. (C / Right). The row of this averaging kernel matrix for these integrated quantities describes the sensitivity of 
the estimate to the true distribution.  
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Fig. 3: (Left) The 2009-2018 trend in Livestock emissions from EDGAR, after projection through 
the observation operator. (Middle) Estimated change in Livestock emissions based on GOSAT 
satellite data. The prior for the satellite based emissions estimate is set to zero. (Right) The 
(absolute magnitude) difference between the satellite estimate (middle) minus the Livestock 
estimate (left), normalized by the error for grids where DOFS are larger than 0.05.  These 
comparisons demonstrate that livestock emissions are likely increasing in sub-tropical Africa, 
Brazil along the arc-of-deforestation, and the Indo-Pakistan region. 

Figure 3: (Left) The 2009-2018 trend in Livestock emissions from EDGAR and (middle) after projection through the 
observation operator. (right) Estimated change in Livestock emissions based on GOSAT satellite data. The prior for the 
satellite based emissions estimate is set to zero. The EDGAR emissions trend estimate and satellite data both show the 
largest increases in the India/Pakistan region, Africa, and Brazil. However, the satellite data indicate the largest increases in 
Brazilian Livestock emissions are along the arc of deforestation where significant conversion of forest to pasture occurs.



 

 
 
 
 
Fig. 4: (Left) Large trends across the globe are posited for 2009 to 2018 by EDGAR. 
(Right) The satellite observations suggest little changes in oil and gas except a possible 
decrease in Russia and Turkmenistan emissions in sharp contrast to EDGAR. (Middle) 
Observed lack of trends could simply be due to lack of sensitivity as projecting EDGAR 
through the observation operator removes most of the posited changes. 
 

Figure 4: (Left) Large trends across the globe are posited for 2009 to 2018 by EDGAR. (Right) The satellite 
observations suggest little changes in oil and gas except possibly a decrease in Russia and Turkmenistan in sharp 
contrast to EDGAR. (Middle) Observed lack of changes could simply be due to lack of sensitivity as projecting 
EDGAR through the observation operator removes most of the posited changes.
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Abstract 

 

The 2015 Paris Climate Agreement and Global Methane Pledge formalized agreement for 

countries to report and reduce methane emissions to mitigate near-term climate change. Emission 

inventories generated through surface activity measurements are reported annually or bi-annually 

and evaluated periodically through a “Global Stocktake”.  Emissions inverted from atmospheric 

data support evaluation of reported inventories, but their systematic use is stifled by spatially 

variable biases from prior errors combined with limited sensitivity of observations to emissions 

(smoothing error), as-well-as poorly characterized information content. Here, we demonstrate a 

Bayesian, optimal estimation (OE) algorithm for evaluating a state-of-the-art inventory (EDGAR 

v6.0) using satellite-based emissions from 2009 to 2018. The OE algorithm quantifies the 

information content (uncertainty reduction, sectoral attribution, spatial resolution) of the satellite-



based emissions and disentangles the effect of smoothing error when comparing to an inventory. 

We find robust differences between satellite and EDGAR for total livestock, rice, and coal 

emissions: 14 ± 9, 12 ± 8, -11 ± 6 Tg CH4/yr respectively. EDGAR and satellite agree that 

livestock emissions are increasing (0.25 to 1.3 Tg CH4/ yr / yr), primarily in the Indo-Pakistan 

region, sub-tropical Africa, and the Brazilian arc of deforestation; East Asia rice emissions are 

also increasing, highlighting the importance of agriculture on the atmospheric methane growth 

rate. In contrast, low information content for the waste and fossil emission trends confounds 

comparison between EDGAR and satellite;  increased sampling and spatial resolution of satellite 

observations are therefore needed to evaluate reported changes to emissions in these sectors. 

 

Significance Statement 

The Bayesian inverse estimation algorithms we describe here, developed previously to quantify 

atmospheric composition from observations of Earth’s radiation, is applied one step further to 

mitigate and account for the effects of imperfect observation sensitivity when comparing 

emissions informed by satellite atmospheric methane data to a reported inventory. These same 

algorithms allow us to quantify when this comparison is informative (total uncertainty is 

reduced) and when it is not. Deployment of these methods will become increasingly critical to 

use with the ever increasing number of satellite greenhouse gas observations and their utility not 

just for understanding the global carbon cycle, but for informing policy about best approaches 

for reducing emissions to mitigate climate change. 

 

@2023 All Rights Reserved 

 

Introduction 

The Paris Agreement resulted in a framework by which countries provide an accounting of their 

emissions reduction goals (or Nationally Determined Contribution, NDC). To track progress in 

achieving NDCs, countries are required to submit transparency reports, either annually or 

biennially depending on Annex 1 or 2 classification,  to the United Nations Framework 

Convention on Climate Change (UNFCC) (e.g., Vandyck et al. 2016; Scarpelli et al. 2021, 

2022). These reported inventories are combined every five years for the  “Global Stocktake”.  

Reported inventories are generated from “bottom-up’’ approaches that relate activity data (e.g., 



number of livestock) and emission factors to emissions.  However, emissions and their 

uncertainties are poorly characterized in many parts of the globe where activity measurements 

are not rigorously made or tested across multiple sites (Janssens-Maenhout et al. 2019; Scarpelli 

et al. 2021) or because emission factors vary widely within a region (Masnadi et. al., 2018; Jing 

et al. 2020).. Even in regions with substantial reporting infrastructure, large uncertainties for 

emissions can exist across fossil fuel extraction areas due to a lack of information about emission 

rates (e.g., Alvarez et al. 2018) and also because transient emissions are a substantive component 

of overall emission rates (Cusworth et al. 2022). As a consequence of the importance of this 

issue and the need for transparency in reported emissions and their changes, the IPCC 2019 

Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories states that 

“comparison of greenhouse gas emission estimates with atmospheric measurements" is 

suggested to supporting verification of bottom-up inventories (IPCC 2019). In addition,  the 

USA National Academy of Sciences recently released a study on a “framework for evaluating 

emissions inventories and information, and include several case studies for how such a 

framework could be applied in practice to specific sector- or country-based emission 

inventories” (National Academies 2022).  
To address the USA National Academy Recommendations, we describe in this paper a 

Bayesian / optimal estimation (OE) framework for verifying reported methane inventories and 

their trends by sector (e.g. livestock, rice, coal, waste, oil, gas). As a case study we compare 

methane emissions and trends for 2009 to 2018 from the EDGAR v6.0 inventory (Crippa et al. 

2022) to emissions inverted from satellite total column atmospheric concentration data observed 

by the  JAXA Greenhouse Gas Observing Satellite, or GOSAT (Parker et al. 2011; Maasakers et 

al. 2019, Zhang et al. 2021, Cusworth et al. 2021). We use EDGAR because a gridded inventory 

is required to compare against satellite data (Methods). We note that a country’s reported 

inventory may simply be an integrated total for each sector; however these can be subsequently 

projected to a grid using prior information about emission locations (e.g. Scarpelli et al. 2020, 

2022). 

A critical component needed for verifying reported inventories with atmospheric data is 

the characterization and mitigation of spatially varying biases resulting from errors in the prior, 

combined with the limited sensitivity of the atmospheric measurements to emissions, also called 

“smoothing error” (Rodgers 2000). Smoothing error is typically the largest of the uncertainties in  



inverse problems where the role of prior assumptions is important relative to the information 

content of the data used for the inverse estimate (e.g. Figure 1, Rodgers 2000). However, 

smoothing error is computationally challenging to quantify and consequently many  global 

inverse estimates of greenhouse gas fluxes (e.g. Yin et al. 2015; Liu et al. 2020; Balsamo et al. 

2021; Peng et al. 2022) rely on using different data sets and models to empirically assess the 

combined role of data and model uncertainties, and smoothing error. However, without this 

characterization of smoothing error, it is challenging to compare bottom-up (e.g. inventory) and 

top-down (inverted from concentration data) estimates, or intercompare top-down estimates,  

because it is unclear which of the error terms is causing observed differences.   

Using the OE approach we estimate emissions by sector (Methods, Cusworth et al. 2021) 

and its information content (uncertainty reduction, smoothing error, spatial-temporal resolution 

of the sectoral emissions attribution, uncertainty attribution) from the GOSAT data. We show 

that the variable bias from smoothing error is removed in comparison between EDGAR and 

these satellite based emissions using the results of the OE approach. This characterization of the 

information content, combined with the removal of smoothing error, is demonstrably a necessary 

step for providing confidence when  testing the spatial distribution and  posited trends of sectoral 

emissions in reported inventories with those informed from inverse estimates of atmospheric 

data.  

We next summarize the optimal estimation framework, how to account for smoothing 

error between a comparison of satellite informed estimate and inventory, and characterization of 

the corresponding uncertainties.  Details of the OE framework are described in the methods. The 

results section show an information content analysis of the satellite-based estimates (by sector) 

and its comparison to EDGAR as well as the spatial distribution of these comparisons. In 

particular we focus on evaluating where the satellite data has the information to robustly test the 

trends posited by EDGAR and its spatial distribution and where it does not. These comparisons 

provide new results about agricultural emissions and trends and their spatial distribution, updated 

interpretation to many recent results involving GOSAT data, and identifies where new 

observations are needed to reduce uncertainties in the global methane budget. 

 

Summary of Optimal Estimation Framework: As described in the seminal work of Rodgers 

(2000), an estimate can be described as a function of the “true state” corresponding to the 



estimate (z), its prior zA, the effect of noise “n” of the measurement used to quantify the estimate 

dn, and any systematic errors dm such as from the data or atmospheric model used to invert 

concentrations to emissions: 

  

𝐳" = 	 𝐳! + 𝐀(𝐳 − 𝐳𝑨) + 𝛅𝒏 + 𝛅𝒎        (1) 

 

Note that we don’t perfectly know the “true state”, noise vector, or the systematic errors but it is 

useful to write the estimate in this form as it demonstrates how these terms affects the estimate, 

and makes the description simpler when comparing an independent measurement (or inventory) 

to the estimate as shown later.  The A is the “averaging kernel” matrix, a function of the prior 

(ZA) and posterior (𝐙,) error covariances and a metric for the increase in information via the 

reduction in uncertainty: 

 

𝐀 = 𝐈 −	𝐙,𝐙𝐀&'          (2) 

 

and also describes the sensitivity of the estimate to the true state: 𝐀 = 𝝏𝐳*
𝛛𝐳

 (Rodgers 2000).  

 

As the averaging kernel matrix contains the sensitivity of the estimate to all other emissions, and 

other terms estimated as part of the inversion, it also describes the limited sensitivity and spatial 

resolution of the estimate, which is why the smoothing error (the effect of the prior assumptions 

and limited sensitivity on the estimate), or 𝐳! + 𝐀(𝐳 − 𝐳𝑨))  becomes smaller as the sensitivity 

increases as shown in Figure 1. 

 

Comparing an Independent Inventory to Satellite Based Emissions Estimate: To account for 

smoothing error when comparing an inventory to the satellite estimate we first pass the inventory 

(denoted as zi with uncertainty di,  and which must be on the same gridding as the prior zA) 

through the first part of equation 1: 

 

𝐳", =	𝐳! + 𝐀(𝐳𝒊 	− 𝐳𝑨) = 𝐳! + 𝐀(𝐳	 − 𝐳𝑨 − 𝛅𝐢)	      (3) 

 



For future reference we describe this operation as “applying the observation operator”. The 

approach  follows that used to compare satellite based composition measurements to independent 

data sets such as ozone-sondes (e.g., H. Worden et al. 2007) or up-looking Fourier Transform 

Spectrometers (e.g. Wunch et al. 2016).  

 

After application of equation 3 to the inventory, a comparison of the emissions modified by the 

observation operator with the satellite based emissions (by sector) is given by: 

 

𝐳" − 𝐳", = 	𝐀(	𝛅𝒊) + 𝛅𝒏 + 𝛅𝒎         (4) 

 

The effect of the a priori  assumptions from zA,  is now removed, mitigating the effect of 

smoothing error (see methods for smoothing error calculation) on this comparison so that the 

inventory can be compared to the satellite based emissions without this large, spatially varying 

bias affecting the comparison. The error of the difference between satellite estimate and this 

adjusted inventory is then the variance of the difference: 

 

𝐸||𝐳" − 𝐳",|| = 𝐀𝐒𝐢𝐀𝐓 + 𝐒𝐧 + 𝐒𝐦        (5) 

 

Where Si, Sn, and Sm are the error covariances for the inventory, observation uncertainty, and 

systematic errors, and can be explicitly calculated or approximated (Methods) and then used to 

evaluate the difference between satellite based emissions estimate and an inventory.  Equation 5 

shows that, while the spatially varying bias from errors in the prior zA are removed with this 

comparison approach, the comparison still depends on the sensitivity of the estimate via the 

averaging kernel matrix. Smoothing error, which includes the effect of imperfect sensitivity, is 

therefore mitigated but not completely removed in this comparison. 

 

Results 

Use Case: As a demonstration of how this Bayesian / OE approach can be used to evaluate a 

reported inventory using satellite data, we compare sectoral emissions (and trends) from an OE 

based emissions estimate using total column methane data from the GOSAT satellite (Parker et 

al. 2011)  to those from EDGAR version 6.0 (Methods). The satellite emissions are in part based 



on methane fluxes derived in a previous study (Zhang et al. 2021) and then the fluxes are 

projected to emissions and trends by sector using an OE based sectoral partitioning algorithm 

(Methods, Cusworth et al. 2021). The information content of this estimate (averaging kernel, 

prior and posterior covariances, and estimate of observation and systematic errors) are all 

provided with this estimate (Methods) and used with the comparison to EDGAR.  

We use EDGAR 6.0 as it is a gridded inventory that is different from the priors used in 

the satellite based estimate (Methods) and is therefore relatively straightforward to demonstrate 

how the information content of the satellite based emissions estimates can test the emissions and 

trends posited by EDGAR 6.0. However, the approaches described here can also be used to 

evaluate any inventory and its trends that might be reported and requires evaluation, e.g.,  as part 

of the Global Stocktake, and then gridded so that it can be compared to the satellite estimates 

(e.g. Scarpelli et al. 2020, 2022).  We next describe comparisons between the satellite based 

estimates and EDGAR when integrated over the whole globe, the information content of this 

comparison, and then how this information is spatially distributed by sector. 

 

Comparison of Integrated Sectoral Emissions and Trends between EDGAR and Satellite: The 

total global emissions from EDGAR 6.0, the effect of the observation operator (Equation 3) on 

EDGAR, and the sectoral emissions estimates based on GOSAT data, as well as the prior used 

for the GOSAT based sectoral emissions estimates are shown in Figure 2a. Trends for each 

sector are shown in Figure 2b. The uncertainties for each of these integrated quantities account 

for the cross-terms between elements of the state vector (Methods). As discussed further in 

Methods, the state vector includes emissions and their trends by sector, as well as wetland fluxes 

for each month, and the methane chemical sink (OH).  After applying the gridded observation 

operator to EDGAR as described in Methods, the emissions and trends by sector are integrated 

for the whole globe and shown in Figures 2a and 2b. 

The conclusions about the integrated emissions are essentially the same as those inferred 

from the integrated fluxes that they are based upon and described in a previous manuscript 

(Zhang et al. 2021). However, there are some differences about the trends between these 

previously published results and those shown in Figure 2; notably the rice, waste, and the oil and 

gas (O&G) trends are smaller, likely because the priors for the sectoral attribution of the 

emissions are different. In addition,  a “relative weighting” approach is used in this previous 



study to scale integrated methane fluxes in each grid to emissions, and this approach does not 

account for the prior distribution and posterior errors of the emissions that are used in our OE 

based sectoral attribution approach (Methods). 

 

Information Content Analysis: How Applying the Observation operator to EDGAR Informs 

Interpretation of the Satellite / EDGAR Comparison: Applying the observation operator to an 

independent inventory accounts for the smoothing error, and when compared to the satellite-

based estimate, removes the spatially variable bias due to errors in the choice of prior (Equation 

4). As shown by Equation 5, the EDGAR inventory (modified with observation operator) and 

satellite based estimates therefore agree  if the orange line overlaps (1-sigma) with the GOSAT  

(red) estimate. However, agreement does not necessarily mean accurate because the satellite-

based estimate and modified EDGAR can agree if the sensitivity is zero such that both simply 

represent the choice of prior.  

 Smoothing error includes not just the error in the prior for the quantity of interest (e.g. 

livestock emissions) but also its dependency of other elements of the state vector that affect this 

estimate. Figure 2c shows the averaging kernel matrix for the integrated quantities shown in 

Figures 2a and 2b. The row of the averaging kernel matrix  describes the sensitivity of the 

diagonal to the true distribution of the other elements of the state vector (recall that 𝐀 = 𝝏𝐳*
𝛛𝐳

) . The 

column shows how perturbing that diagonal element of the state vector affects all other state 

vector elements (Rodgers 2000; Bowman 2007).  Figure 2c also includes the state vector 

elements representing wetlands and the chemical sink (WL and OH) that are jointly estimated 

(Zhang et al. 2021) with the anthropogenic emissions. For example, the total livestock emissions 

depend substantively on the total waste and rice emissions and the chemical sink, or as shown in 

Equation 1 the difference between the “true value” of these quantities and their priors (or error in 

the priors). While the total livestock emissions estimate also depends on the trends in livestock, 

waste, O&G, and fires and geological emissions (LT, WT, OGT, and FGT), in practice these 

cross-terms should not contribute much to the livestock emissions estimate because their values 

are much smaller as seen by comparing Figure 2b with 2a. Applying the observation operator to 

the inventory removes the effect of these cross-terms on the comparison with the satellite 

estimate as shown in Equation 4.  

 



Information Content Analysis: Description of DOFS: Contained in Figure 2a and 2b is a  

parameter called “DOFS” or degrees of freedom for signal which describes the number of 

independent pieces of information for an estimate (Rodgers 2000). DOFS is calculated from the 

trace of the sub-matrix of the averaging kernel corresponding to each sector. A value of 0 means 

no sensitivity to the underlying emissions whereas increasing DOFS means increasing 

sensitivity. Although each sector generally has a DOFS larger than one, these DOFS are 

distributed over many geographical regions (see supplemental Figures). Nonetheless, this is a 

useful metric for assessing how much information is available for an observing system for each 

sector, especially if the DOFS are very small, indicating little sensitivity of the estimate to the 

true distribution. For example, ss discussed previously, the modified inventory and satellite-

based estimate can agree if the sensitivity (i.e. DOFS) is zero such that both simply reflect the 

prior.  

The DOFS in Figure 2a and 2b are not for the global total emissions (and trends) but 

instead reflects the information in their spatial distribution as it is based on the gridded averaging 

kernel matrix.  For example, we expect the observing system described here (based on GOSAT 

data) to provide the most information about the spatial distribution of the livestock sector and the 

least for the coal sector based on the DOFS metric. For comparison,  the diagonal value for the 

averaging kernel shown in Figure 2c is the DOFS for the integrated totals shown in Figures 2a 

and 2b. Comparison of the DOFS in Figure 2a with the diagonal value in Figure 2c shows how 

cross-correlations between elements of the state vector affect the information in the estimate. For 

example, once the livestock emissions for the whole globe are integrated to a single value 

representative of the whole globe, it actually has a lower DOFS (diagonal of averaging kernel in 

Figure 2c) than that for the coal or the O&G sectors because there is stronger dependency of the 

integrated livestock emissions estimate on other elements of the state vector. We use the DOFS 

metric, along with the calculated uncertainties to support interpretation of the estimates (and 

comparison to EDGAR) for the spatial distribution of emissions and trends in the next sections.  

 

Livestock Emissions and Changes: As shown in  Figure 2a, the largest amount of 

information (DOFS) from this observing system for an emissions sector, is for the spatial 

distribution of the livestock emissions. Based on the comparison between the modified EDGAR 

and satellite estimate (orange and red lines respectively), we conclude that EDGAR livestock 



emissions are 15 ± 9 Tg CH4/yr too small. Most of this discrepancy is due to underestimates of 

livestock emissions in East Africa and Brazil, along the arc of deforestation as shown by 

comparing the spatial distribution of the satellite-based estimates to EDGAR (Supplemental 

Figure 1).  

Figure 2b shows that the trend in EDGAR 6.0  integrated livestock emissions, both before 

and after applying the observation operator, is consistent (within calculated uncertainties) with 

the satellite estimates. Figure 3 also demonstrates that the spatial distribution of this trend is 

broadly consistent between the EDGAR and satellite estimates, with both showing increases in 

emissions in Brazil, West and East sub-tropical Africa, and the Indo-Pakistan region.  However, 

within these regions there can be substantial differences between the EDGAR and satellite-based 

trend estimates. Figure 3c shows one approach for using the information content from the OE 

based characterization for interpreting this comparison. This figure shows the ratio of the 

(absolute magnitude) difference from Figures 3a and 3b to the calculated uncertainty (Equation 

5). Furthermore, only differences where DOFS  that are larger than 0.05 (Supplemental Figure 2) 

are shown to ensure the corresponding observation has some sensitivity to the underlying trends 

(recall that 𝐀 = 𝝏𝐳*
𝛛𝐳

, Rodgers 2000). A value of one in Figure 2c means the difference between 

EDGAR and satellite is within 1-s uncertainty.  

Using this information content analysis, these comparisons provide increased confidence 

that observed increases in livestock emissions are larger than expected (greater than 1-s 

uncertainty) along the Brazilian arc of deforestation where there is substantial conversion of 

forest to pasture (e.g. Morton et al. 2006; Xu et al. 2021) and subsequent use for livestock during 

this time period. Furthermore, we have confidence that livestock emissions are increasing in sub-

tropical West and East Africa as both EDGAR and satellite agree and there is sufficient 

information that the agreement is not a reflection of the prior or other elements of the state 

vector. On the other hand, both positive and negative trends  of livestock emissions are observed 

in the Indo-Pakistan region, which is somewhat different than  EDGAR which shows only 

positive trends.  These livestock changes, combined with slightly decreasing wetland emissions 

in India (Zhang et al. 2021), are consistent with a previous study showing nearly constant total 

emissions from India (Ganesan et al. 2017) over this same time period, although a subsequent 



paper has shown decreases in emissions in this region using the same data (Wang et al. 2021) 

that is inconsistent with these results. 

Because the EDGAR estimate for the livestock emission trend, after the observation 

operator is applied, agrees well with the satellite estimate, the original EDGAR value (~1 Tg 

CH4 /yr/yr) is entirely plausible. Therefore, our final estimate for the change in livestock 

emissions is the low end of the satellite value to the high-end of the original EDGAR value (0.25 

to 1.3 Tg CH4/yr/yr). 

Systematic errors in the data (e.g. errors related to albedo) or model (e.g. model transport 

and chemistry) could also potentially affect the trend in the satellite result if these vary from year 

to year; for example albedo can vary with different snow/surface water conditions or model 

transport can vary with, for example, El Nino. However, as these effects are included in the 

satellite and emission estimate it is more likely that these types of errors impart some year-to-

year variability as opposed to longer-term temporal increases or decreases such that we do not 

expect these systematic errors to affect our conclusions about trends. 

Oil and Gas Sector Emissions and Changes: As a contrast to the livestock sector, where 

there is significant information content in the comparison, we next discuss the information 

content of this GOSAT based observing system for evaluating the distribution of emissions and 

trends of the O&G sector. Note that we combine oil and gas together as they can be challenging 

to distinguish because of spatial overlap and frequent commonality in upstream practices (e.g. 

Alvarez et al, 2018, Scarpelli et al., 2022). Figure 2a shows the substantial role of the prior 

uncertainties and limited sensitivity of the satellite observations on the O&G emissions estimate. 

For example, the EDGAR 6.0 inventory sets total O&G emissions at around ~70 Tg CH4/yr. 

After applying the observation operator to EDGAR, this value shifts downwards to ~48 Tg 

CH4/yr and is consistent (within uncertainty) with the satellite observation (orange line) and its 

prior (black line). Because EDGAR modified by the observation operator agrees with the 

satellite estimate, we conclude that the satellite observations cannot falsify the higher global total 

posited by EDGAR (blue).  On the other hand, as seen in the supplemental figures (Figures S3 

and S4), this observing system can resolve total gas emissions over high emitting areas such as 

the Permian Basin in Texas (Zhang et al. 2020; Cusworth et al. 2021) and the Turkmenistan 

facilities (Varon et al. 2019), suggesting that most of this discrepancy is due to limited sensitivity 



of the observing system in lower emitting regions that in aggregate can make up a large portion 

of the O&G emissions. 

Figure 4 demonstrates that this observing system has less information about trends in 

O&G emissions. EDGAR expects large changes in these emissions across the N. Hemisphere 

(Figure 4a). However, these changes in EDGAR are near zero for most of the globe after 

applying the observation operator because the information content is small (DOFS = 2.5 for the 

spatial distribution for the whole globe), such that the observation operator places the EDGAR 

trends near the (zero) prior. As this result is consistent with the satellite data, except in regions 

surrounding Turkmenistan,  all that can be said from this comparison is that this observation 

system cannot robustly verify posited trends in O&G emissions.  These results demonstrate the 

importance of combining sensitivity analysis (e.g. DOFS) with the uncertainty calculation to 

determine if an atmospheric concentration informed estimate can robustly test or verify reported 

emissions and their trends. 

 Rice, Waste, and  Coal Comparisons: We next summarize what we believe are the more 

interesting findings with respect to the comparisons between EDGAR and satellite for the rice, 

waste, and coal sectors, and their trends.  The supplemental contains the spatial distribution (at 

4x5 lon/lat gridding) for the EDGAR emissions and trends for each sector, EDGAR after the 

observing operator is applied, the satellite based estimate, the DOFS, and the equivalent of 

Figure 3c for each of the emissions and corresponding trend. We refer the reader to these 

Supplemental figures for the subsequent discussion. 

Rice: The spatial distribution for rice emissions is consistent (within the calculated 

uncertainty) between satellite and EDGAR (with observation operator applied) for almost all grid 

cells and within 1.5 s uncertainty (12 ± 8 Tg CH4/yr) for the global total. The diagonal of the 

averaging kernel matrix (Figure 2c) indicates substantial sensitivity (~0.9 DOFS) for the 

integrated total emissions with only partial sensitivity to waste and livestock, confirming a robust 

estimate for total rice emissions. However,  there are substantial differences between EDGAR 

and satellite for the rice trends. For example, EDGAR posits small increases in emissions from 

rice farming in Africa, Indonesia, India and East Asia, but a decline in South-East Asia 

(Supplemental Figure S6). However, after applying the observation operator to EDGAR, the 

small decline in rice emissions in SE Asia becomes a slight positive increase; this adjusted 

EDGAR is still ~2.5 smaller (relative to the uncertainty) of the satellite data, indicating that an 



increase in rice emissions in this region is likely. On the other hand, while the observed 

emissions from rice in China are larger than EDGAR (after adjusting with the observation 

operator), the difference is within the uncertainty; hence we conclude that rice emissions in 

China are likely increasing. Combined with the results on livestock emissions, these comparisons 

highlight both the importance of agriculture in affecting the growth rate of atmospheric methane 

and also the need for accounting for smoothing error when interpreting differences between top-

down and bottom-up estimates. 

Coal: As with rice emissions, the spatial distribution and the integrated emissions for coal 

are mostly in agreement between EDGAR (with observation operator applied) and observed. 

Significant sensitivity to total coal emissions (Figure 2c) and minimal dependency on cross-

terms in the state vector supports the robustness of this result. However, as shown in the 

supplemental figures (Supplemental Figure S8), a negative trend in the EDGAR N. China coal 

emissions is replaced with a slight positive trend once the observation operator is applied, likely 

because of the role of the waste trend on the trends for coal as shown by the averaging kernel 

matrix in Figure 2c. These large differences between the original EDGAR values and the 

EDGAR with observation operator, highlight how correlations in the observing system can alter 

the interpretation, or add additional context to a conclusion. For example, previous results also 

based on GOSAT data indicate a large increase in coal emissions in N. China, despite stated 

decreasing inventories (Miller et al. 2019; Sheng et al. 2021), consistent with the results shown 

here. However, the characterization provided by the optimal estimation approach suggest that at 

least part of this observed increase result from spatial correlations in the inversion as 

demonstrated by Figure 2c (Zhang et al. 2022). Consequently, a more robust conclusion is that 

the posited EDGAR decline in coal is too steep but a slight decrease in coal emissions cannot be 

falsified.   

 Waste: These comparisons also demonstrate that waste emissions and their trends 

(Supplemental Figures 9 and 10) are not well tested with this observing system as the 

information content is low (DOFS ~0.4 for total emissions as seen in Figure 2c). The row of the 

averaging kernel matrix also shows strong dependency of waste emissions on emissions from 

livestock, rice, and coal. These results indicate that the waste estimate strongly depend on the 

choice of prior and explains why these results, in which the prior depends on both wastewater 

and landfills, are different from those in Worden et al. (2022) where the prior only depends on 



landfills; essentially the integrated estimate for waste is primarily dependent on the prior because 

the diagonal of the averaging kernel matrix is less than 0.5  Similarly, trends in waste emissions 

are not well resolved  because of low information content. Higher resolution estimates are 

therefore needed to resolve this sector’s emissions and trends from other sectors (e.g. 

Maasakkers et al. 2022).  

 

Summary and Future Directions 

 

The Global Methane Pledge and recent Conference of Parties stresses the increasing need 

for evaluating a countries reported methane emissions and changes with atmospheric 

observations to support methane emission reduction efforts, for the purpose of mitigating near 

term climate change. In turn, the recent USA National Academy report emphasizes the need for a 

framework and corresponding use-cases that includes atmospheric measurements for providing 

robust information about GHG emissions and their changes (National Academy 2022).  There 

are also nascent efforts to develop these information systems, that are based on satellite 

atmospheric concentration data such, as the European Copernicus project (COCO2 2022), as 

well as substantive discussion on this subject across the science communities in previous and 

current conferences (e.g. WMO 2023) . As demonstrated by the use case in this manuscript, 

optimal estimation provides a framework and characterization approach for robustly comparing 

satellite emissions to an independent inventory. The benefits of OE include  1) evaluation of the 

information content of the satellite top-down estimates which in turn allows us to determine 

where the comparison has information and where it does not, 2) improved confidence in 

comparisons between the satellite and inventory emissions as one of the largest uncertainties in 

the comparisons, smoothing error, is accounted for in the comparison and mitigated, 3) 

additional context in interpreting the spatial and temporal distribution of emissions via evaluation 

of the averaging kernel and posterior covariances, 4) a theoretical framework for attributing 

different sources of uncertainty, and 5) identifying where additional measurements are needed to 

resolve emissions and their changes. 

For our use case,  we compare emissions and trends from 2009 to 2019 from an 

observation system based on the satellite GOSAT data, the GEOS-Chem model, and choice of 

constraints (Zhang et al. 2021), with emissions and trends from the EDGAR v6.0 methane 



inventory.  We find that this observing system has the most information about the spatial 

distribution of livestock emissions and trends such that we are confident that EDGAR livestock 

emissions are underestimated but that posited increases in livestock emissions by EDGAR are 

consistent with satellite observed increases (0.25 to 1.3 Tg CH4/ yr / yr), primarily in the Indo-

Pakistan region, Africa, as well as the Brazilian arc of deforestation where there has been 

substantial conversion of forest for agricultural use in the last two decades (Xu et al. 2021). 

A smaller contribution from rice emissions in China and SE Asian also likely contributes to 

increasing methane; combined these results highlight the importance of food production on the 

global methane budget (e.g. Crippa et al. 2021) and its growth rate. 

Because we calculate the information content of these estimates we can determine where 

the comparisons are meaningful (total uncertainties are reduced) and where they are not. For 

example, large regional changes in O&G emissions posited by the EDGAR inventory cannot be 

tested with this satellite data set because of low information content of the observing system for 

this sector. An observing system will therefore need increased spatial-temporal resolution to 

evaluate a countries reported fossil emissions (e.g. Scarepelli et al. 2022) and their Nationally 

Determined Contribution to the UNFCCC. 

 The information content (sensitivity and uncertainties) and corresponding spatial-

temporal resolution of an observing system is largely driven by observation density and prior 

error covariance. The TROPOMI satellite instrument is now providing ~100x higher observation 

density than the GOSAT instrument used in this work, although there are still some artifact 

issues affecting its use in global inversions (Qu et al., 2021; Barré et al., 2021). As these artifact 

issues get resolved (Lorente et al., 2021) and new instruments are launched (Jacob et al., 2022), 

we can expect the information content on methane fluxes from satellite observations to increase 

considerably. Multiple observations have found that high emitters at small scales (10s of meters) 

can make outsized contributions to regional (100’s of km) methane fluxes (e.g. Frankenberg et 

al. 2016; Varon et al. 2019, 2022; Cusworth et al. 2022; Maasakkers et al. 2022). Combining 

observations that map methane enhancements at sub-kilometer scale (e.g. GHGSat, Carbon 

Mapper, Sentinel-2, EMIT) over intensely emitting facilities, with the global mapping available 

from other satellite instruments will therefore be critical for enabling climate action. The OE 

framework described here also provides the underlying theory for a greenhouse gas information 



system that can integrate these data sets with their vastly different spatial scales and use them to 

test and update reported inventories in a fully Bayesian manner. 

 

Methods  

 

Background on Satellite Based Emissions by Sector:  The sectoral emissions and trends 

inverted from the satellite data are derived in a two step process. The first step is described in 

previously published results and comprises a global inversion using total atmospheric column 

methane data from the Japanese GOSAT (Greenhouse gases Observing SATellite) instrument 

(Parker et al. 2011) and the GEOS-Chem model (Zhang et al. 2021). The state vector for this 

inversion include 1) integrated anthropogenic methane fluxes between 2010 and 2018 at a 

gridding of 4x5degrees (latitude/longitude), 2) the corresponding linear trend for these years, 3) 

wetland methane emissions for specified regions for each month between 2010 and 2018), and 4) 

the yearly methane sink. We refer the reader to the paper by Zhang et al. (2021) for a full 

description and evaluation of this inversion.  The second step is a linear estimate of emissions by 

sector (and their trends) based on an optimal estimation sectoral emissions attribution approach 

(Methods, Cusworth et al. 2021; Worden et al. 2022) that projects the integrated anthropogenic 

fluxes and trends to emissions by sector and trends at the same 4x5 gridding. The emissions state 

vector includes livestock, waste (landfills and wastewater), rice, coal, O&G, and fires and 

geological. The state vector also includes the trends for these emissions as well as the wetlands 

and OH state vector from the flux inversion in the first step. This OE based projection from 

integrated anthropogenic fluxes to emissions by sector accounts for the prior distribution and 

uncertainties in the emissions, and includes the effects of the jointly estimated wetland fluxes 

and methane sink. Furthermore, because the  posterior covariance is generated from this step 

(Methods, subsequent section), we can calculate an averaging kernel matrix which is then used to 

create the “observation operator” for the emissions and trends by sector as shown by Equation 2 

in the main text. 

 

EDGAR Inventory and Uncertainties: We use the v6.0 EDGAR inventory (Crippa et al. 2020). 

The inventory is first projected to the 4x5 degrees (lat/lon) gridding used with the satellite based 

emissions estimates.  Critical towards comparing a gridded inventory with inversely estimated 



emissions is a realistic a priori   error covariance that describes their uncertainties and any 

correlations between adjacent emissions. Because EDGAR does not provide an error covariance 

for its emissions, we use the prior covariances that were previously generated for use by the 

satellite based emissions estimate by sector (Worden et al. 2022, Methods) as a convenience to 

simplify the demonstration of the information content calculations.  

 

Optimal Estimation Description: The OE framework, used for comparing the satellite based 

sectoral emissions and trend to an independent methane inventory, follows the approach in 

Rodgers seminal work “Inverse methods for atmospheric sounding: theory and practice” 

(Rodgers 2000), and used extensively in remote sensing of methane and other atmospheric trace 

gases (e.g. Worden et al. 2004; Bet al.et al. 2et al.arker et al. 2011). Here we provide a more in-

depth derivation of the basic OE equations than discussed previously in the main text summary. 

 The estimate for each Imission type and its trends can be written as a function of the true 

state for these parameters (z), its prior zA, the noise “n” of the measurement used to quantify the 

fluxes, and any systematic errors dm: 

  

𝐳" = 	 𝐳! + 𝐀(𝐳 − 𝐳𝑨) + 𝐆𝐧 + 𝛅𝒎        (1) 

 

Note that this is the same as Equation 1 in the main text except that we replace dN with Gn. The 

posterior error covariance for this estimate, or Hessian, 𝐙, is the weighted sum of the prior 

uncertainties or covariance ZA, and the information from the observations (𝐊2𝐒𝐧&'𝐊): 

 

𝐙, = 4𝐌2(𝐊2𝐒𝐧&'𝐊)𝐌 +	𝐙!&'6
&'

        (2) 

 

The “Jacobian” K in Equation 2 describes the sensitivity of the integrated methane flux (or 

trend) to the observed methane concentrations in each state vector element (e.g. the state vector 

denoted in Figure 2c but on the spatio-temporal grid described in the main text). The gain matrix 

G is a matrix containing partial derivatives that relate parameters in the observation state vector 

(or “n” using the nomenclature in Equation 2) to parameters in the estimate state vector (or “z” 

using the nomenclature in Equation 2) and is defined for this problem as 𝐆 = 𝐙,(𝐌𝐊)2𝐒𝐧&' 



(Bowman et al. 2007). The mapping matrix M describes the mapping relationship between the 

integrated flux (x) at each grid cell to the sectoral emissions that make up the flux in that grid 

(𝐱 = 	𝐌𝐳, see subsequent Methods section on sectoral attribution).  The information about the 

fluxes from the observations described by the Jacobians K in Equation 2 is mapped to each 

sector (e.g. coal, waste, gas via the mapping matrix, and then weighted further by the prior error 

covariance of that sector (ZA) as discussed in the next section.  We note that the Jacobians in 

Equation 2 can be further mapped to the Jacobians in the optimal estimate step used to relate 

observed satellite spectral radiances to methane concentrations (Parker et al. 2011), so that the 

Hessian matrix shown in Equation 2 preserves the information from the original satellite 

observations.  

 

Quantifying Uncertainties:  The Hessian matrix, or posterior error covariance in Equation 2, can 

also be written as the sum of the smoothing and observation error (Rodgers 2000, Worden et al. 

2004; Bowman et al. 2007): 

 

𝐙, = (𝐈 − 𝐀)𝐙𝐀(𝐈 − 𝐀)𝐓 + 𝐆𝐒𝐧𝐆𝐓       (3) 

 

ZA describes the prior error covariance for the elements in the state vector (see subsequent 

methods section). The first term on the right is the characterization of the smoothing error and 

the second term is the measurement error, or the effect of observation noise on the estimate. 

The uncertainties we report for an estimate are derived from the posterior covariances. 

For example, if we report an individual element of the covariance (e.g. total error for a sectoral 

emission for a certain grid point as shown in the supplemental), then the uncertainty is simply the 

corresponding square root of the diagonal from the covariance. If on the other hand we report an 

integrated quantity (e.g. sum of all livestock emissions), then the corresponding uncertainty must 

be projected from the total error covariance (Worden et al. 2022) on the 4x5 grid to the 

integrated quantity. For example, the total uncertainties for the satellite based uncertainties 

shown in Figures 2a and 2b are derived by first quantifying the posterior error covariance for the 

integrated quantities of the state vector described by the row in  Figure 2c: 

 



𝐙,𝒊 = [
𝐡𝐋
…
𝐡𝐎𝐇

]𝐙,𝒕𝒐𝒕	[
𝐡𝐋
…
𝐡𝐎𝐇

]𝐓        (4) 

 

Where the rows of the matrix [
𝐡𝐋
…
𝐡𝐎𝐇

] is composed of vectors the size of the row of	𝐙,𝒕𝒐𝒕 and that 

have a value of 1 corresponding to the indices of the sector and 0 elsewhere. The error 

covariance 𝐙,𝒕𝒐𝒕is the sum of the Hessian plus our estimate of the model error covariance.  The 

indices for h are the same indices shown in Figure 2c that correspond to each (integrated) 

elements of the state vector: L, W, R, …, WL, OH. The uncertainty for each integrated sector “i” 

is then the square root of the diagonal value of the covariance 𝐙,𝒊 corresponding to the sector. To 

calculate the averaging kernel matrix shown in Figure 2c, we apply the same operation to the 

Hessian 𝐙, and to ZA and then recalculated the averaging kernel matrix using Equation 2 from the 

main text.  

 

Sectoral attribution: The derivation for how emissions by sector are quantified from an 

integrated flux is described in Cusworth et al. (2021). The basic equations describe a linear 

mapping relationship between integrated anthropogenic emissions “x” and the emissions by 

sector “z” within a grid that compose this flux. The linear mapping we use is a simple 

summation of emissions within each grid: 

 

𝐱 = 	𝐌𝐳.							           (5) 

 

The solution for projecting fluxes back to emissions takes the form: 

 

𝐳" = 	 𝐳! + 𝐙,𝐌2𝐒,&'=	4𝐈 −	𝐒,𝐒!&'6(𝐱! −𝐌𝐳!) +	(𝐱" − 𝐱!)>				    (6) 

 

where the (𝐳") is the posterior emissions vector with error covariance (𝐙,) and I is the identity 

matrix. Here SA and  𝐒, are the prior and posterior error covariances covariance for the fluxes 

corresponding to the state vector x as described in Zhang et al. (2021). 



Equation 6 is similar to the “prior” swapping approach used extensively for remote 

sensing (e.g. Rodgers and Connor 2003) in which one (e.g. xA) prior can be swapped with 

another (e.g. MzA) if the Averaging kernel matrix is provided (4𝐈 −	𝐒,𝐒!&'6 except that after the 

priors are swapped (the effect of the brackets in the above equation) it is then projected from 

“flux space” to “emissions space” (the effect of 𝐙,𝐌2𝐒,&'). 

 

As shown previously, the posterior error covariance matrix 𝐙, is calculated explicitly 

given 𝐌, 𝐒!, 𝐒,, and prior emissions error covariance matrix 𝐙!: 

 

𝐙, = 	 4𝐌24𝐒,&' −	𝐒!&'6𝐌 +	𝐙!&'6
&' =	 4𝐌2(𝐊2𝐒𝐧&'𝐊)𝐌 +	𝐙!&'6

&'
							   (7) 

 

Note that in our previous work (Worden et al. 2022), the covariances had to be split into regions 

because the size of the state vector resulted in a matrix (Equation 7) that was too large to invert. 

We found, using simulations with smaller matrices, that this approach  results in emissions 

estimates that are within uncertainty using the more accurate but much larger Hessian matrix, but 

changed the structure of the averaging kernel matrix, reducing the robustness of the comparison 

between the inventory and satellite based emissions suspect. For this reason, we now perform the 

matrix inversion using a state vector representative of the whole globe and not sub-regions. 

 

Sources of Uncertainty When Comparing Satellite Based Emissions Estimate and Trend to 

Inventory: As discussed in the main text, the different sources of error when comparing the 

satellite based emissions to an independent inventory are described by the variance of the 

difference between the satellite estimate and inventory modified by the observation operator:  

 

𝐸||𝐳" − 𝐳",|| = 𝐀𝐒𝐢𝐀𝐓 + 𝐒𝐧 + 𝐒𝐦        (8) 

 

Where Si is the covariance for the inventory uncertainties di, Sn is the observation error projected 

to emissions, and Sm is the model error.  Note that the observation error, Sn, either is directly 

calculated using a chain of partial derivatives that relates noise to concentration data to fluxes to 



emissions, or it can be calculated by subtracting the “smoothing” or resolution error from the 

Hessian Z (Rodgers 2000): 

 

𝐒𝐧 = 𝐙, − (𝐈 − 𝐀)𝐙𝐀(𝐈 − 𝐀)𝐓         (9) 

 

We quantify the final term in Equation 8 (model error) using the “residual error” 

approach discussed in Zhang et al. (2021) which compares the difference of single observations 

and model values relative to yearly means of the observations minus the model. This yields a 

total observational error variance from which the contribution from the observing instrument can 

be subtracted to yield the model transport error variance.  Application to satellite methane 

column observations indicates model transport error standard deviations of typically 5-10 ppb 

(Lu et al., 2021).  However, for the purpose of this study we conservatively assume the model 

error is the same as the observation error Sn, which is based on concentration errors that are ~14 

ppb. 

If only a partial inventory is provided, such as a countries reported emission inventory, 

then the errors still need to account for the spatially varying sensitivity of the estimate as 

described by the averaging kernel. In this case there is a “cross-state” term (Worden et al. 2004; 

H. Worden et al. 2007), in which the emissions and its prior uncertainties in one region affect the 

estimated emissions in another. Equation 5 then becomes: 

 

𝐸||𝐳" − 𝐳",|| = 𝐀𝐢𝐒𝐢𝐀𝐢𝐓 + 𝐀𝐢𝐣𝐒𝐣𝐣𝐀𝐢𝐣𝐓 + 𝐒𝐧𝐢𝐢 + 𝐒𝐦𝐢𝐢       (10) 

 

Here the indices “ii” represents the submatrix of A and the covariances S corresponding to the 

reported countries emissions (for example), and the index “j” represents the emissions for all 

other parts of the inventory. 

 

Description of Priors and Prior Covariances: Sectoral attribution for emissions based on 

atmospheric concentration data requires use of a priori  emissions and prior covariances. For the 

optimal estimation approach described here, this means a realistic representation of zA (priors) 

and ZA (prior covariances). The priors and prior covariances and how they are used for the 

sectoral emissions are described in Worden et al. (2022) and the reader is directed to this paper 



(Section 2.3 Generation of Prior Emissions, Covariances, and Uncertainties) for details.   In 

summary, the a priori  emissions are based on a combination of emissions inventories. Livestock 

emissions are based on the results of a 2013 NASA Carbon Monitoring System study (Wolf et 

al. 2017).  Rice, landfill, solid waste, and waste water emissions are based on EDGAR 5.0 

(Janssens-Maenhout et al. 2019) although the landfill and waste water emissions are combined as 

they are spatially correlated. Fossil emissions are based on reported emissions to the UNFCCC 

as part of the global stock-take (Scarpelli et al. 2020, 2022). Wetland emissions are based on an 

ensemble of wetland, semi-empirical process models (Bloom et al. 2017). Fires are based on 

emissions from the Global Fire Emissions Database version 4 (Giglio et al. 2014) and combined 

with natural seeps that are based on a 2019 inventory (Etiope et al. 2019). The covariances for 

OH are taken from Zhang et al. (2021). 

Constructing a realistic a priori  covariance is challenging as the matrix must be 

invertible (Equation 3) while realistically describing the prior uncertainties and their correlations. 

This challenge is amplified because the  uncertainties and how they might be correlated are 

generally not well known (Janssens Maenhout et al. 2019). Our approach for constructing these 

covariances is described in our previous work (Worden et al. 2022) and is to first sub-divide the 

globe into eight regions which are primarily associated as an “Annex 1” or “Annex 2”.  Our 

primary constraint in calculating a prior covariance is that projecting it from its original gridding 

(in this previous work it is at 1x1 degree) down to a single value representative of the region, the 

total uncertainty should be 15% for a region primarily composed of Annex 1 countries while the 

value is 30% for regionsl  primarily associated as “Annex 2” (Janssens Maenhout et al. 2019). 

Mechanistically this means that if we project, for example, the covariance for coal emissions for 

an Annex 1 region down to a single number than it will have an uncertainty very close to 15%. 

To achieve these result, the uncertainty at any grid cell must be quite large (~80% at 1 degree 

resolution) with substantial correlation with nearby emissions (~0.8 correlation with emissions 

within 400 km).  These numbers are not unrealistic based on regional studies of uncertainties in 

California and Texas (Maasakkers et al. 2016) such that we adopt this general approach 

throughout the globe. Note that it is straightforward to use alternative priors and prior 

covariances if a researcher can provide them and has good rationale for their internal covariance 

structure.  



The priors and prior covariances are initially calculated on a 1x1 degree grid box. For the 

study in this manuscript the gridding is 4x5 degrees (latitude/longitude). Consequently, we 

project the covariances at 1x1 to 4x5 (lat/lon) through simple interpolation.  Our approach for 

quantifying the prior and covariance for the trends is to 1) set the prior for the trend to be zero at 

every grid box and 2) to set the covariance for the trend equal to 5% of the corresponding 

variance for the emissions at every grid, i.e., the covariance for the trend is simply the covariance 

for the emissions multiplied by 0.052. The prior covariances for each region are then mapped to 

the whole globe at 4x5 degrees. However, only elements of the globe that have non-zero 

emissions are used to keep the state vector small such that the matrix described by Equation 3 is 

robustly invertible (i.e. 𝐙,𝐙,&' = 𝐈). Mechanistically, this means using only those emissions that 

are larger than 1% of the largest emission value on the globe. With this threshold we reduce the 

size of the emissions part of the state vector by ~50% but retain ~98% of the total emissions such 

that the revised total is within 8 Tg CH4/yr of the ~350 Tg CH4/yr total. We then redistribute this 

small remaining residual to the retained grid boxes so that the total emissions on this smaller 

subset is the same as the original. 
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The sectoral attribution of emissions from fluxes depends on fluxes at the following data 
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https://cmsflux.jpl.nasa.gov/get-data/publication-data-sets/    (see paper by Worden, Cusworth, 

Qu et al. 2021 that is stored on this website. 
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Figure 1: Smoothing error is typically the largest component of the error budget for 
emissions inverted from satellite data where the uncertainties in the prior are important 
relative to the information content of the data. Black symbols show the fraction of 
smoothing error relative to the total error for methane emissions (by sector) based on 
nine years of JAXA data on a 4x5 (lon/lat) grid. Red symbols show the fraction of 
smoothing error when the sectoral based emissions are integrated to a single number on 
each grid. As the sensitivity increases, the smoothing error becomes smaller. The total 
error budget includes smoothing error, error due to noise, and estimate of systematic 
errors (Methods). 
 

Figure 1: Smoothing error is typically the largest component of the error budget for mean anthropogenic methane emissions 
based on nine years of JAXA GOSAT total column methane data and estimated on a 4x5 (lat/lon)_grid by sector (black symbols). 
Integrating the emissions to a single flux (red symbols) for each grid cell reduces the sectoral attribution but decreases the 
smoothing error.  Similarly, coarsening the grid to larger values(not shown) will decrease the resolution but also decrease 
smoothing error. As the sensitivity increases, the smoothing error becomes smaller. The total error budget includes smoothing
error, error due to noise, and estimate of systematic errors (Methods).



  

 
 
Fig. 2: (A / Left) EDGAR emissions after modification by observation operator are 
consistent with satellite for the Waste and Oil&Gas sectors, and inconsistent for all other 
sectors. (B / Middle) EDGAR inventories and satellite data agree that Livestock emissions 
are increasing but this observing system cannot falsify posited changes in other emissions. 
The DOFS (trace of Averaging Kernel Matrix) is a metric of sensitivity for the observing 
system and describes the number of independent pieces of information that can spatially be 
estimated for each sector. (C / Right). The row of this averaging kernel matrix for these 
integrated quantities describes the sensitivity of the estimate to the true distribution.   
 

Figure 2: (A / Left) EDGAR emissions after modification by observation operator are consistent with satellite for the Waste and Oil&Gas
sectors, and inconsistent for all other sectors. (B / Middle) EDGAR inventories and satellite data agree that Livestock emissions are 
increasing but this observing system cannot falsify posited changes in other emissions. The DOFS (trace of Averaging Kernel Matrix) is a 
metric of sensitivity for the observing system and describes the number of independent pieces of information that can spatially be 
estimated for each sector. (C / Right). The row of this averaging kernel matrix for these integrated quantities describes the sensitivity of 
the estimate to the true distribution.  
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Fig. 3: (Left) The 2009-2018 trend in Livestock emissions from EDGAR, after projection through 
the observation operator. (Middle) Estimated change in Livestock emissions based on GOSAT 
satellite data. The prior for the satellite based emissions estimate is set to zero. (Right) The 
(absolute magnitude) difference between the satellite estimate (middle) minus the Livestock 
estimate (left), normalized by the error for grids where DOFS are larger than 0.05.  These 
comparisons demonstrate that livestock emissions are likely increasing in sub-tropical Africa, 
Brazil along the arc-of-deforestation, and the Indo-Pakistan region. 

Figure 3: (Left) The 2009-2018 trend in Livestock emissions from EDGAR and (middle) after projection through the 
observation operator. (right) Estimated change in Livestock emissions based on GOSAT satellite data. The prior for the 
satellite based emissions estimate is set to zero. The EDGAR emissions trend estimate and satellite data both show the 
largest increases in the India/Pakistan region, Africa, and Brazil. However, the satellite data indicate the largest increases in 
Brazilian Livestock emissions are along the arc of deforestation where significant conversion of forest to pasture occurs.



 

 
 
 
 
Fig. 4: (Left) Large trends across the globe are posited for 2009 to 2018 by EDGAR. 
(Right) The satellite observations suggest little changes in oil and gas except a possible 
decrease in Russia and Turkmenistan emissions in sharp contrast to EDGAR. (Middle) 
Observed lack of trends could simply be due to lack of sensitivity as projecting EDGAR 
through the observation operator removes most of the posited changes. 
 

Figure 4: (Left) Large trends across the globe are posited for 2009 to 2018 by EDGAR. (Right) The satellite 
observations suggest little changes in oil and gas except possibly a decrease in Russia and Turkmenistan in sharp 
contrast to EDGAR. (Middle) Observed lack of changes could simply be due to lack of sensitivity as projecting 
EDGAR through the observation operator removes most of the posited changes.



Fig. S1: (top left) EDGAR Livestock emissions after applying 
observation operator. (top middle) Satellite based livestock 
emissions. (top right) Spatial distribution of degrees-of-
freedom for signal (DOFS). (bottom left) EDGAR livestock 
emissions. (bottom middle) difference between satellite and 
EDGAR (upper-middle minus upper left). (bottom-right) 
same as bottom middle but normalized by uncertainty of 
difference and only for regions where DOFS > 0.2 (upper 
right0



Fig. S2:  Same as Figure S1 but for livestock emission trends 
and DOFS criteria for bottom-right figure changed to 0.05



Fig. S3:  Same as Figure S1 but for Oil and Gas (O&G) 
emissions.



Fig. S4:  Same as Figure S1 but for O&G trends and DOFS 
criteria for bottom-right figure changed to 0.05



Fig. S5:  Same as Figure S1 but for Rice emissions



Fig. S6:  Same as Figure S1 but for rice emission trends and 
DOFS criteria for bottom-right figure changed to 0.05



Fig. S7:  Same as Figure S1 but for waste emissions



Fig. S8:  Same as Figure S1 but for waste emission trends 
and DOFS criteria for bottom-right figure changed to 0.05



Fig. S9:  Same as Figure S1 but for coal emissions



Fig. S10:  Same as Figure S1 but for coal emission trends and 
DOFS criteria for bottom-right figure changed to 0.05


