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Abstract

We present a Bayesian updating method on the inter-event times at different magnitude thresholds in a marked point process,

toward the probabilistic forecasting of an upcoming large event using temporal information on smaller events. Bayes’ theorem

in a marked point process that yields the one-to-one relationship between intervals at lower and upper magnitude thresholds is

presented. This theorem is extended to Bayesian updating for an uncorrelated marked point process that yields the relationship

between multiple consecutive lower intervals and one upper interval. The inverse probability density function and its approxi-

mation function are derived. For the former, the condition for having a peak is shown. The latter is easier to apply to the time

series of the ETAS model, and it consists of the kernel part, which includes the product of the conditional probabilities, and the

correction term. The maximum point of the kernel part is shown to be not significantly affected by the correction term when

applying the Bayesian updating to the ETAS model time series numerically. The occurrence time of the upcoming large event

is estimated using this maximum point, and its accuracy is evaluated considering the relative error with the actual occurrence

time. Moreover, forecasting is evaluated to be effective by the continuity of the updates with the accuracy within an acceptable

range prior to the upcoming large event. Under these conditions, the statistical analysis indicates that forecasting is relatively

effective immediately or long after the last major event in which stationarity is dominant in the time series.
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Abstract13

We present a Bayesian updating method on the inter-event times at different magnitude14

thresholds in a marked point process, toward the probabilistic forecasting of an upcom-15

ing large event using temporal information on smaller events. Bayes’ theorem in a marked16

point process that yields the one-to-one relationship between intervals at lower and up-17

per magnitude thresholds is presented. This theorem is extended to Bayesian updating18

for an uncorrelated marked point process that yields the relationship between multiple19

consecutive lower intervals and one upper interval. The inverse probability density func-20

tion and its approximation function are derived. For the former, the condition for hav-21

ing a peak is shown. The latter is easier to apply to the time series of the ETAS model,22

and it consists of the kernel part, which includes the product of the conditional prob-23

abilities, and the correction term. The maximum point of the kernel part is shown to24

be not significantly affected by the correction term when applying the Bayesian updat-25

ing to the ETAS model time series numerically. The occurrence time of the upcoming26

large event is estimated using this maximum point, and its accuracy is evaluated con-27

sidering the relative error with the actual occurrence time. Moreover, forecasting is eval-28

uated to be effective by the continuity of the updates with the accuracy within an ac-29

ceptable range prior to the upcoming large event. Under these conditions, the statisti-30

cal analysis indicates that forecasting is relatively effective immediately or long after the31

last major event in which stationarity is dominant in the time series.32

Plain Language Summary33

In order to forecast future large earthquakes, it is important to use as much infor-34

mation as possible on the seismic activity at hand. The number of small earthquakes is35

much larger than that of large earthquakes, and we propose a method to use this infor-36

mation to forecast probabilistically the timing of future large earthquakes. Theoretical37

analysis is performed on a simple time series. The theoretical results are applied to a seis-38

mic activity model, and it is shown that this method is relatively effective in forecast-39

ing the timing of future large events when stationary activity is dominant; in this model,40

either immediately after a large event or after sufficient time has passed since the last41

large event. Therefore, this method can be applied to reduce secondary disasters after42

a major earthquake and to evaluate the risk of earthquake occurrence over a long pe-43

riod of time.44

1 Introduction45

The probabilistic forecasting of the timing of future major earthquakes is impor-46

tant for seismic risk assessment. Therefore, it is necessary to effectively use the infor-47

mation on the temporal properties of seismic activity represented by a marked point pro-48

cess with the magnitude as the mark as indicated in Figure 1. A basic approach involves49

using the hazard rate based on the inter-event time distribution of earthquakes (Scholz,50

2002). The inter-event time distribution is defined as a probability density function of51

the length of the interval between adjacent points in the point process determined by52

setting a magnitude threshold for the marked point process. For the magnitude thresh-53

old M (m), we denote the inter-event times using a variable τM (τm), and the inter-event54

time distribution it follows by pM (τM ) (pm(τm)).55

The inter-event time distribution of earthquakes has been studied for not only risk56

assessment but also to understand the statistical nature of seismicity. For example, it57

has been studied with the aim to unify it with other established laws (Bak et al., 2002;58

Aizawa et al., 2013; Aizawa & Tsugawa, 2014) such as the GR law (Gutenberg & Richter,59

1944) and the Omori–Utsu law (Omori, 1894; Utsu, 1961); further, its scaling univer-60

sality (Corral, 2004) has been discussed using the ETAS model (Saichev & Sornette, 2006;61

Touati et al., 2009; Bottiglieri et al., 2010; Lippiello et al., 2012).62

–2–
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Figure 1. Schematic of a marked point process with the magnitude as a mark.

The ETAS model is a stochastic model that combines the GR and Omori–Utsu laws63

(Ogata, 1988, 1998); this model can generate a time series like that of the seismic ac-64

tivity. The ETAS model generates an inhomogeneous Poisson process with a history-dependent65

occurrence rate. Let tj and Mj (j ∈ N) represent the occurrence time and magnitude66

of the j-th event before time t; then, the occurrence rate (λ(t)) at time t is given by67

λ(t) = λ0 +
∑

j:tj<t

K10α(Mj−M0)

(t− tj + c)θ+1
. (1)

The magnitude is generated randomly and independently obeying the GR law, P (M) ∝68

10−bM . Here, M0 represents the minimum magnitude and (λ0,K, α, c, θ, b) represent the69

parameters that characterize the activity. In particular, λ0 represents the constant rate70

for background seismicity. The combination of the remaining parameters yields the branch-71

ing ratio nbr =
K

θcθ
b

b− α
(when θ > 0) (Helmstetter & Sornette, 2002) that determines72

the stationarity of the time series as well as the average number of aftershocks gener-73

ated by a mainshock (Helmstetter & Sornette, 2003).74

The ETAS model provides a standard seismicity for detecting anomalous activity75

(Ogata, 1988). This model has been extended to a spatio-temporal version (Ogata, 1998),76

and its application to the evaluation of seismic risk has been studied actively. The con-77

ditional intensity function provides the risk of an event at a given time, space, and mag-78

nitude based on the history of seismic activity, which includes small earthquakes.79

In the aforementioned probabilistic evaluation using the inter-event time distribu-80

tion, temporal information on events smaller than the magnitude threshold set on the81

marked point process is not utilized. Therefore, in this paper, we propose another ap-82

proach to probabilistically forecast major earthquakes based on the inter-event time dis-83

tribution while considering the temporal information on smaller events. This is achieved84

by utilizing a conditional probability that yields the statistical relationship between the85

inter-event times at different two magnitude thresholds (Tanaka & Aizawa, 2017).86

For two magnitude thresholds m and M(= m + ∆m,∆m > 0) set in the time
series, the conditional probability (pmM (τm|τM ), hereafter referred to as the conditional
probability density function) is defined as the probability density function of the length
of a lower interval (τm) under the condition that it is included in the upper interval of
length τM (Figure 1). Inter-event time distributions at magnitude thresholds m and M
are connected by an integral equation with this conditional probability density function
in its kernel (Tanaka & Aizawa, 2017). This integral equation is given as

Nmpm(τm) = NM

∫ ∞

τm

τM
⟨⟨τm⟩⟩τM

pmM (τm|τM )pM (τM )dτM , (2)

where Nm and NM represent the total number of intervals at magnitude thresholds m87

and M , respectively. Further, ⟨⟨τm⟩⟩τM represents the average of the conditional prob-88

ability density function, ⟨⟨τm⟩⟩τM :=
∫∞
0

τmpmM (τm|τM )dτm.89
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Thus, the conditional probability density function yields the statistical relation be-90

tween inter-event times at different magnitude thresholds. This suggests that the infor-91

mation on the lower intervals can be utilized for estimating the length of the upper in-92

terval through the conditional probability density function. Given this context, we con-93

sider the Bayes’ theorem and the Bayesian updating on the intervals at different mag-94

nitude thresholds in this paper; further, we report the results of the numerical analysis95

of the properties of the inverse probability density function (Tanaka & Umeno, 2021).96

In §2, we derive the Bayes’ theorem for intervals at different magnitude thresholds97

in the marked point process. In §3, the inverse probability density function is derived98

for the uncorrelated time series that corresponds to the background seismicity of the ETAS99

model. In §4, the Bayesian updating method is considered for the uncorrelated time se-100

ries, and the inverse probability density function and its approximation function are de-101

rived. These functions are calculated numerically and compared in §5. In §6, Bayesian102

updating is applied to the time series of the ETAS model. The approximation function103

is examined numerically, and the property of the maximum point of its kernel part is an-104

alyzed statistically considering the effectiveness for forecasting. Finally, §7 presents ad-105

ditional discussions and conclusions.106

2 Bayes’ theorem for inter-event times at different magnitude thresh-107

olds108

We consider the Bayes’ theorem between the inter-event times at different mag-109

nitude thresholds (m and M) in a marked point process, and we derive the general re-110

lationship between the conditional probability density function pmM (τm|τM ) and the in-111

verse probability density function pMm(τM |τm) (Tanaka & Umeno, 2021). Here pMm(τM |τm)112

represents the probability density function of the upper interval under the condition that113

it includes a lower interval of length τm.114

Let the total number of the pairs of the upper interval of length within [τM , τM+115

dτM ) and the lower interval of length within [τm, τm+dτm) by NmM (τM , τm) (Figure116

2). Hereafter, we express this NmM (τM , τm) as the number of the pairs of the intervals117

such that the length of the upper interval is τM and the length of the lower interval is118

τm, for simplicity, and other numbers of the intervals are expressed in the same way. NmM (τM , τm)119

can be represented in two ways:120

Time

M
a
g
n
it
u
d
e

τM

τm
(1)

τm
(3)

τm
(2)
=3=1 =1 τm

(4)
=2

=7

M

m

Figure 2. Schematic of the approach to count the number of pairs of upper and lower in-

tervals whose lengths are τM and τm, respectively. Four pairs are shown in the figure, and

NmM (7, 1) = 2, NmM (7, 2) = 1, and NmM (7, 3) = 1.

1) Derive NmM (τM , τm) by counting the cumulative total number of the upper in-
tervals of length τM that include the lower interval of length τm (Figure 3(a)). Among
the Nm lower intervals in the time series, there are Nmpm(τm)dτm intervals of length τm.
There exists only one upper interval that includes each of such lower intervals. The prob-
ability that the length of that upper interval is τM is given by pMm(τM |τm)dτM . There-
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fore
NmM (τM , τm) = Nmpm(τm)pMm(τM |τm)dτmdτM . (3)
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(a)

(b)

Figure 3. Schematic of the two approaches for calculating NmM (τM , τm). (a) The first ap-

proach involves counting the cumulative total number of the upper intervals of length τM that

include the lower interval of length τm. (b) The second approach involves counting the number of

the lower intervals of length τm included in the upper interval of length τM .

2) Derive NmM (τM , τm) by counting the total number of the lower intervals of length
τm included in the upper interval of length τM (Figure 3(b)). The number of the upper
intervals of length τM in the time series is NMpM (τM )dτM . Therefore, the number of
the lower intervals included in these upper intervals is

NMpM (τM )
τM

⟨⟨τm⟩⟩τM
dτM .

Among them, the proportion of the lower intervals whose length is τm is pmM (τm|τM )dτm.
Therefore

NmM (τM , τm) = NMpM (τM )
τM

⟨⟨τm⟩⟩τM
pmM (τm|τM )dτmdτM . (4)

From Equations (3) and (4)

Nmpm(τm)pMm(τM |τm) = NMpM (τM )
τM

⟨⟨τm⟩⟩τM
pmM (τm|τM ). (5)

By using the average intervals at each magnitude threshold

⟨τm⟩ :=
∫ ∞

0

τmpm(τm)dτm,

⟨τM ⟩ :=
∫ ∞

0

τMpM (τM )dτM ,

and NM/Nm = ⟨τm⟩/⟨τM ⟩, Equation (5) is rewritten as

pMm(τM |τm) =

(
⟨τm⟩
⟨τM ⟩

τM
⟨⟨τm⟩⟩τM

)
pmM (τm|τM )pM (τM )

pm(τm)
. (6)

Equation (6) can be considered as the Bayes’ theorem for a marked point process.
The parenthesized part is from the difference in the number of intervals for each mag-
nitude threshold (⟨τm⟩/⟨τM ⟩) and the inclusion relationship between the upper and lower

–5–
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intervals (τM/⟨⟨τm⟩⟩τM ), i.e., a lower interval is always included in only one upper in-
terval, whereas an upper interval includes τM/⟨⟨τm⟩⟩τM lower intervals on average. This
part disappears by using generalized probability density functions

zm(τm) :=
τm
⟨τm⟩

pm(τm),

zM (τM ) :=
τM
⟨τM ⟩

pM (τM ),

zmM (τm|τM ) :=
τm

⟨⟨τm⟩⟩τM
pmM (τm|τM ).

These functions satisfy the normalization condition of the probability density function.
Equations (2) and (6) are simplified as

zm(τm) =

∫ ∞

0

zmM (τm|τM )zM (τM )dτM , (7)

pMm(τM |τm) =
zmM (τm|τM )zM (τM )

zm(τm)
. (8)

These equations indicate that pMm(τM |τm) satisfies the normalization condition.121

3 Bayes’ theorem for uncorrelated time series122

In this section, we derive pMm(τM |τm) for an uncorrelated time series generated
by the ETAS model with λ(t) ≡ λ0 (Tanaka & Umeno, 2021). In this case, the mag-
nitudes and inter-event times obey the following probability density functions indepen-
dently.

P (m) ∝ 10−bm, (9)

pm(τm) =
1

⟨τm⟩
e−

τm
⟨τm⟩ . (10)

First, we derive pmM (τm|τM ), which can be expressed generally as

pmM (τm|τM ) =

∑∞
i=1 i ρmM (τm|i, τM )ΨmM (i|τM )∑∞

i=1 i ΨmM (i|τM )
, (11)

where i(∈ Z) represents the number of lower intervals included in the upper interval of123

length τM ; ΨmM (i|τM ) represents the probability mass function of such i under the con-124

dition that the length of the upper interval is τM ; and ρmM (τm|i, τM ) represents the prob-125

ability density function of the length of a lower interval given that the length of the up-126

per interval is τM and the number of the lower intervals in it is i. We can calculate the127

conditional probability density function and other related amounts when we know these128

functions.129

In the case of the uncorrelated time series, these functions can be obtained as fol-
lows. For the selected stationary Poisson process, the average number of events included
in the upper interval of length τM is (τM/⟨τm⟩ − τM/⟨τM ⟩), because no event greater
than M occurs in the interval considered, and therefore, τM/⟨τM ⟩-events larger than M
occurring in the interval of length τM on average must be excluded from the average num-
ber τM/⟨τm⟩ of events occurring in the interval of length τM . Then, the average occur-
rence rate in the upper interval of length τM is (1/⟨τm⟩−1/⟨τM ⟩). The number of events
with m < magnitude ≤ M in τM is one less than that of the lower intervals, and there-
fore, the probability of including i lower intervals is equal to the probability of includ-
ing (i− 1) events with an average occurrence rate (1/⟨τm⟩ − 1/⟨τM ⟩). Therefore

ΨmM (i|τM ) =

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩ , (12)

–6–



manuscript submitted to JGR: Solid Earth

where

A∆m :=
⟨τM ⟩
⟨τm⟩

− 1

= 10b∆m − 1.

The second transformation in the above equation does not strictly hold for a time se-130

ries with a finite number of events because the number of the events is different from that131

of the intervals by 1. However, we consider that the statistical properties are for infinite132

samples, and in a time series containing an infinite number of events, the two are equiv-133

alent and the equality holds.134

The other function ρmM (τm|i, τM ) is obtained as follows. For i = 1

ρmM (τm|1, τM ) = δ(τM − τm), (13)

where δ(x) represents the Dirac’s delta function. For i ≥ 2 (Webb, 1974)

ρmM (τm|i, τM ) =
(i− 1)

τM

(
1− τm

τM

)i−2

θ(τM − τm), (14)

where θ(x) represents the unit step function that returns 1 for x > 0 and 0 for x ≤135

0.136

From Equations (12)–(14), pmM (τm|τM ) is derived as (Appendix A)

pmM (τm|τM ) =
e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) + A∆m

⟨τM ⟩ e
−A∆m

τm
⟨τM ⟩

{
A∆m

τM−τm
⟨τM ⟩ + 2

}
θ(τM − τm)(

A∆m
τM
⟨τM ⟩ + 1

) .

(15)
This conditional probability composed of Equations (12)–(14) certainly has exponential137

distributions as the solution of Equation (2) (Appendix A).138

Second, we derive pMm(τM |τm). From Equations (10) and (15), pMm(τM |τm) is
obtained as (Appendix A)

pMm(τM |τm) =
e−

τM−τm
⟨τm⟩ δ(τM − τm) + A∆m

⟨τM ⟩ e
− τM−τm

⟨τM ⟩
{
A∆m

τM−τm
⟨τM ⟩ + 2

}
θ(τM − τm)

(A∆m + 1)
2 .

(16)
We emphasize that pMm(τM |τm) has a peak at

τmax
M = τm + ⟨τM ⟩

(
1− 2

A∆m

)
, (17)

when the next condition is satisfied (Appendix A).

∆m >
log10 3

b
. (18)

4 Bayesian updating for uncorrelated time series139

The Bayes’ theorem shows a one-to-one relationship between an upper and a lower140

interval. In this section, we extend it to the relationship between an upper interval and141

multiple consecutive lower intervals by considering Bayesian updating for the uncorre-142

lated time series (Tanaka & Umeno, 2021). We derive the inverse probability density func-143

tion pMm(τM |τ (1)m , · · · , τ (n)m ), as well as its approximation function, for the upper inter-144

val under the condition that it includes the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }.145

–7–
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4.1 Inverse probability density function146

As in §2, we derive the inverse probability density function by expressing the to-147

tal number of combinations of the upper interval of length τM and the consecutive lower148

intervals of lengths {τ (1)m , · · · , τ (n)m } included in it denoted by NmM (τM , τ
(1)
m , · · · , τ (n)m )149

in two ways.150

First, we derive NmM (τM , τ
(1)
m , · · · , τ (n)m ) by counting the cumulative total num-

ber of the upper intervals of length τM that include the consecutive lower intervals of
lengths {τ (1)m , · · · , τ (n)m } (Figure 4(a)). We begin with the case n = 2. The intervals in
the uncorrelated time series emerge independently, and therefore, the total number of
the two consecutive lower intervals of lengths τ

(1)
m and τ

(2)
m is

Nmpm(τ (1)m )pm(τ (2)m )dτ2m.

Among them, some pairs do not belong to the same upper interval (the case of (3) in
Figure 4(a)). In that case, the magnitude of the event sandwiched between the two lower
intervals is larger than M . In the uncorrelated time series, the proportion that the con-
secutive lower intervals belong to the same upper interval equals to the probability that
the magnitude of the event sandwitched between the two lower intervals is smaller than
M . It is given by the GR law as

1− P (M)

P (m)
= 1− 10−b∆m

= 1− ⟨τm⟩
⟨τM ⟩

.

Therefore

NmM (τM , τ (1)m , τ (2)m ) = Nm

(
1− ⟨τm⟩

⟨τM ⟩

)
pm(τ (1)m )pm(τ (2)m )pMm(τM |τ (1)m , τ (2)m )dτ2mdτM . (19)

Equation (19) is generalized for n(≥ 2) consecutive lower intervals.

NmM (τM , τ (1)m , · · · , τ (n)m )

= Nm

(
1− ⟨τm⟩

⟨τM ⟩

)n−1
(

n∏
i=1

pm(τ (i)m )

)
pMm(τM |τ (1)m , · · · , τ (n)m )dτnmdτM . (20)

Second, we derive NmM (τM , τ
(1)
m , · · · , τ (n)m ) by counting the total number of the con-

secutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } included in the upper interval of length
τM (Figure 4(b)). To this end, we start with the case n = 2 again (Figure 4(b)). When
the upper interval of length τM includes i(≥ 2) lower intervals, the first interval of the
two consecutive lower intervals is selected from (i−1) intervals except for the rightmost

one. The probability that this first interval has length τ
(1)
m is ρmM (τ

(1)
m |i, τM )dτm. The

second lower interval is fixed at adjacent to the first one. This second interval is one of
the (i−1) intervals that divide the remaining length τM−τ

(1)
m , and therefore, the prob-

ability that the second interval has length τ
(2)
m is ρmM (τ

(2)
m |i−1, τM−τ

(1)
m )dτm. Thus,

considering all i(≥ 2)

NmM (τM , τ (1)m , τ (2)m )

= NMpM (τM )dτM

∞∑
i=2

(i− 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )ρmM (τ (2)m |i− 1, τM − τ (1)m )dτ2m.

(21)

–8–
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Figure 4. Schematic of the two approaches to calculate NmM (τM , τ
(1)
m , τ

(2)
m ). (a) The first

approach involves counting the cumulative total number of the upper intervals of length τM that

include the consecutive lower intervals of lengths {τ (1)
m , τ

(2)
m }. (b) The second approach involves

counting the number of the consecutive lower intervals of lengths {τ (1)
m , τ

(2)
m } included in the up-

per interval of length τM .

Equation (21) is generalized for the case n(≥ 2) lower intervals as

NmM (τM , τ (1)m , · · · , τ (n)m ) = NMpM (τM )dτM

×
∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτnm.

(22)

From Equations (20) and (22), pMm(τM |τ (1)m , · · · , τ (n)m ) is derived as

pMm(τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

pM (τM )∏n
i=1 pm(τ

(i)
m )

×
∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
.

(23)

Furthermore, the explicit form of the inverse probability density function is derived by
substituting Equations (10) and (12)–(14) into Equation (23) as (Appendix B)

pMm(τM |τ (1)m , · · · , τ (n)m ) =

(
⟨τm⟩
⟨τM ⟩

)2
[
e−

τM−
∑n

i=1 τ
(i)
m

⟨τm⟩ δ

(
τM −

n∑
i=1

τ (i)m

)

+
A∆m

⟨τM ⟩
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

{
A∆m

⟨τM ⟩

(
τM −

n∑
i=1

τ (i)m

)
+ 2

}
θ

(
τM −

n∑
i=1

τ (i)m

)]
. (24)
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Equation (24) includes the case n = 1 (Equation (16)). In addition, Equation (24)151

is identical to Equation (16) when τm is replaced with T :=
∑n

i=1 τ
(i)
m ; this implies that152

the occurrence pattern of small events does not affect that of upper intervals. This seems153

natural for the uncorrelated time series.154

The same property as Equations (17) and (18) holds for pMm(τM |τ (1)m , · · · , τ (n)m );
it has a peak at

τmax
M = T + ⟨τM ⟩

⟨τM ⟩
⟨τm⟩ − 3

⟨τM ⟩
⟨τm⟩ − 1

(> T ),

under the condition

∆m >
log10 3

b
. (25)

In the above mentioned Bayesian updating, the position of the consecutive lower155

intervals in an upper interval is not restricted. However, update can be started only from156

the lower interval immediately after the event with the magnitude above M . In such a157

method, the inverse probability density function is different from Equation (24) (Appendix158

C). At a glance, this updating method seems suitable under the situation wherein the159

information on the lower intervals observed one after another is imported sequentially;160

however, seismic catalogs are known to be incomplete immediately after a large earth-161

quake. In that case, the lower intervals should be considered not from the leftmost one162

but from somewhere else. Therefore, in the present paper, we limit ourselves to exam-163

ine the property of the inverse probability density function of the unrestricted updat-164

ing method that is more appropriate for application to earthquake catalogs.165

4.2 Approximation function of inverse probability density function166

Equation (23) indicates that new information on the lower intervals cannot be added167

by the product of the conditional probabilities as is usual in Bayesian updating. In this168

sub-section, we derive its approximation function with a convenient form applicable to169

the time series with correlations between events.170

To this end, we use the approximate derivation of NmM (τM , τ
(1)
m , · · · , τ (n)m ) described

below instead of the second approach for deriving Equation (22). In the following, the
upper and the lower consecutive intervals are assumed to satisfy

τM ≥
n∑

i=1

τ (i)m . (26)

First, consider the case n = 2. There are NMpM (τM )dτM upper intervals of length
τM in the time series. These upper intervals are as shown in Figure 5(a), and we use them
to generate a new time series by connecting them in the order of appearance as in Fig-
ure 5(b). Let the number of the consecutive lower intervals of lengths {τ (1)m , τ

(2)
m } in this

new time series be denoted by N ′
mM (τ

(1)
m , τ

(2)
m |τM ). The total number of the lower in-

tervals in this new time series is given as

NMpM (τM )
τM

⟨⟨τm⟩⟩ τM
dτM .

Therefore, based on the assumption that τ
(1)
m and τ

(2)
m emerge independently, N ′

mM (τ
(1)
m , τ

(2)
m |τM )

is approximately calculated as

N ′
mM (τ (1)m , τ (2)m |τM ) ≈ NMpM (τM )

τM
⟨⟨τm⟩⟩ τM

pmM (τ (1)m |τM )pmM (τ (2)m |τM )dτ2mdτM . (27)

N ′
mM (τ

(1)
m , τ

(2)
m |τM ) is not equivalent to NmM (τM , τ

(1)
m , τ

(2)
m ) because N ′

mM (τ
(1)
m , τ

(2)
m |τM )171

includes cases where the two consecutive lower intervals do not belong to the same up-172

–10–
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Figure 5. Schematic of another approach to count the total number of consecutive lower in-

tervals of lengths τ
(1)
m and τ

(2)
m included in the upper interval of length τM . (a) First, pick up all

upper intervals of length τM from the time series. (b) Second, generate new time series by con-

necting these upper intervals in the order of appearance. Third, N ′
mM (τ

(1)
m , τ

(2)
m |τM ) is calculated

by counting the total number of the consecutive lower intervals of lengths {τ (1)
m , τ

(2)
m } in this new

time series. In this counting process, an approximate calculation using the product of the condi-

tional probability is conducted. Finally, NmM (τM , τ
(1)
m , τ

(2)
m ) is obtained by excluding such pairs

where the two consecutive lower intervals are not included in the same upper interval (the cases

indicated with ∗) from N ′
mM (τ

(1)
m , τ

(2)
m |τM ).

per interval (the case indicated by ∗ in Figure 5(b)). Therefore, it is necessary to count173

such cases in the time series, and subtract them from N ′
mM (τ

(1)
m , τ

(2)
m |τM ).174

These cases to exclude occur when an upper interval of length τM whose rightmost
lower interval has length τ

(1)
m is adjacent to the left of another upper interval whose left-

most lower interval has length τ
(2)
m . The probability density that the length of the right-

most or leftmost lower interval of the upper interval of length τM is τm is, because the
position of the rightmost or leftmost interval is confirmed among the i-lower intervals,
calculated as

PR(τm|τM ) = PL(τm|τM )

=

∞∑
i=1

ΨmM (i|τM )ρmM (τm|i, τM ). (28)

Here, the probability density for the rightmost lower interval is denoted by PR(τm|τM ),
and the leftmost by PL(τm|τM ). Equation (28) can be explicitly written using Equations
(12)–(14) as (Appendix D)

PR(τm|τM ) = PL(τm|τM )

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) +

A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩ θ(τM − τm). (29)

By using PL(τm|τM ) and PR(τm|τM ), the number of cases to exclude can be expressed
for a sufficiently large NM (because NMpM (τM )dτM in Equation (30) is precisely NMpM (τM )dτM−
1) as

NMpM (τM )PR(τ (1)m |τM )PL(τ (2)m |τM )dτ2mdτM . (30)

–11–
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Therefore, NmM (τM , τ
(1)
m , τ

(2)
m ) is approximately derived as

NmM (τM , τ (1)m , τ (2)m ) ≈ NMpM (τM )

×

(
τM

⟨⟨τm⟩⟩ τM
pmM (τ (1)m |τM )pmM (τ (2)m |τM )− PR(τ (1)m |τM )PL(τ (2)m |τM )

)
dτ2mdτM . (31)

Next, we consider the case n(≥ 3). Equation (27) is generalized as

N ′
mM (τ (1)m , · · · , τ (n)m |τM ) ≈ NMpM (τM )

τM
⟨⟨τm⟩⟩ τM

(
n∏

i=1

pmM (τ (i)m |τM )

)
dτnmdτM . (32)

From this N ′
mM (τ

(1)
m , · · · , τ (n)m |τM ), the cases wherein the consecutive lower intervals of

lengths {τ (1)m , · · · , τ (n)m } are not included in the same upper interval need to be excluded.
Considering the condition of Equation (26), a sequence of consecutive lower intervals is
divided by only one boundary event with a magnitude above M (Figure 6). Let the prob-
ability that the rightmost or leftmost lower intervals of the upper interval of length τM
is {τ (1)m , · · · , τ (l)m } (l ≥ 2) be P (τ

(1)
m , · · · , τ (l)m |τM ). Then, as the position of the right-

most or leftmost lower intervals is confirmed among the i(≥ l) lower intervals, P (τ
(1)
m , · · · , τ (l)m |τM )

is

P (τ (1)m , · · · , τ (l)m |τM )

=

∞∑
i=l

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (33)

By substituting Equations (12)–(14) into Equation (33) (Appendix E)

P (τ (1)m , · · · , τ (l)m |τM ) =

l∏
i=1

Pi(τ
(i)
m |τM ), where Pi(τ

(i)
m |τM ) :=

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩ . (34)

There are (n − 1) possible choices for the boundary position of the consecutive lower
intervals (Figure 6(a)), each with an equal probability

∏n
i=1 Pi. The number of consec-

utive upper intervals in the new time series is almost NMpM (τM )dτM , and therefore, the
number of cases to be excluded is

NMpM (τM )(n− 1)

(
n∏

i=1

Pi(τ
(i)
m |τM )

)
dτnmdτM .

Then

NmM (τM , τ (1)m , · · · , τ (n)m )

≈ NMpM (τM )

{
τM

⟨⟨τm⟩⟩ τM

n∏
i=1

pmM (τ (i)m |τM )− (n− 1)

n∏
i=1

Pi(τ
(i)
m |τM )

}
dτnmdτM . (35)

Therefore, from Equations (20) and (35), the approximation function (papproxMm (τM |τ (1)m , · · · , τ (n)m ))
of the inverse probability density function is derived as

papproxMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

τM
⟨⟨τm⟩⟩ τM

(
n∏

i=1

pmM (τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM )

− ⟨τm⟩
⟨τM ⟩

(n− 1)(
1− ⟨τm⟩

⟨τM ⟩

)n−1

(
n∏

i=1

Pi(τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ). (36)
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Figure 6. Schematic of the patterns of the consecutive lower intervals of lengths

{τ (1)
m , · · · , τ (n)

m } excluded from N ′
mM (τ

(1)
m , · · · , τ (n)

m |τM ). (a) There are (n − 1) ways to divide

the sequence of lower intervals by the event with a magnitude greater than M at the boundary of

the upper intervals of length τM . (b) The sequence can not be divided by more than one bound-

ary according to condition (26).

Equation (36) is composed of two parts: the first term of the r.h.s. involves the prod-
uct of the conditional probability density functions, and we refer to this part as the ker-
nel part of the approximation function (pkernelMm (τM |τ (1)m , · · · , τ (n)m )) hereafter.

pkernelMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

τM
⟨⟨τm⟩⟩ τM

(
n∏

i=1

pmM (τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ).

(37)
The second term of the r.h.s. is referred to as the correction term, and we denote the
part other than (n− 1) by pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) as

correction term = (n− 1)pcorrectMm (τM |τ (1)m , · · · , τ (n)m ), (38)

where pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

(
n∏

i=1

Pi(τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ).

Equation (36) can be explicitly written as (Appendix F)

papproxMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)(
A∆m

τM
⟨τM ⟩

+ 1

)
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

×
n∏

i=1

{
1−

(
τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)}
− ⟨τm⟩

⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)
(n− 1)e

− τM−
∑n

i=1 τ
(i)
m

⟨τM ⟩ . (39)

The kernel part is explicitly expressed as

pkernelMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)(
A∆m

τM
⟨τM ⟩

+ 1

)
× e

− τM−
∑n

i=1 τ
(i)
m

⟨τM ⟩

n∏
i=1

{
1−

(
τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)}
. (40)
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Note that functions (36)–(40) do not satisfy the normalization condition. Further-175

more, in some cases, papproxMm (τM |τ (1)m , · · · , τ (n)m ) in Equations (36) and (39) may take neg-176

ative values when the correction term is larger than the kernel part. The relationship177

between the inverse probability density function and its approximation function is dis-178

cussed in Appendix G.179

5 Examination of Bayesian updating method in uncorrelated time se-180

ries181

In this section, we compute the inverse probability density function given by Equa-182

tion (24) and the (part of) approximation function (Equations (36)–(40)) for the numer-183

ically generated uncorrelated time series, and we compare their properties (Tanaka &184

Umeno, 2021). We examine the numerical method of the Bayesian updating by chang-185

ing some conditions to see its utility.186

5.1 Time series generation and Bayesian updating methods187

The uncorrelated time series can be numerically generated by setting λ(t) ≡ λ0188

in Equation (1). In fact, it is numerically generated as the renewal process in which mag-189

nitudes and time intervals are generated randomly obeying Equations (9) and (10), re-190

spectively. We set the parameter values to be b = 1 and λ0 = 0.0007. The magnitude191

thresholds are set to (M,m) = (5.0, 3.0). The b-value condition of Equation (25) is sat-192

isfied for these settings. The occurrence time of each event is recorded to 20 decimal places.193

For such time series, Bayesian updating is applied as explained below.194

Bayesian updating is executed for each lower interval in the order of appearance195

starting from the one immediately after the event with a magnitude above M by sub-196

stituting their lengths {τ (1)m , τ
(2)
m , · · · , τ (n)m } into Equations (24), (39), and (40). The sum-197

mation of the lower intervals at the n-th update
∑n

i=1 τ
(i)
m is equivalent to the elapsed198

time T from the previous event with a magnitude above M . Further, the updating is per-199

formed until the event immediately before the next large event with a magnitude above200

M (i.e., the rightmost lower interval in an upper interval is not used). Therefore, we con-201

sider only cases where at least one event is (or two lower intervals are) included in an202

upper interval.203

In addition, we use the following numerical method based on Equations (36) and204

(37). First, we generate N time series each contains 105 events as sample data. From205

these sample data, numerically obtain the statistics required for the calculating Equa-206

tions (36) and (37), i.e., pm(τm), pM (τM ), pmM (τm|τM ) and Pi(τm|τM ), and the aver-207

age number of lower intervals included in the upper interval of length τM , τM/⟨⟨τm⟩⟩τM .208

Although the last one is a quantity related to the conditional probability, we calculate209

it separately. Moreover, we calculate only P1(τm|τM ) and use it instead of Pi(τm|τM )210

for i ≥ 2.211

These statistics are obtained as a vector or a matrix on discretized intervals as

τm,j := 10(j+0.5)∆τm ,

τM,k := 10(k+0.5)∆τM , (41)

where j, k ∈ Z, such that

pm = [pm,j ]j=jmin,··· ,jmax
,

pM = [pM,k]k=kmin,··· ,kmax
,

pmM =
[
[pmM,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax

,

P1 =
[
[P1,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax

.

(42)
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In Equation (42), jmin, jmax, kmin, and kmax represent the smallest and largest bin num-212

bers of each distribution. For the statistics obtained as a matrix, the range of j depends213

on k, and this is indicated as j
(k)
min and j

(k)
max. The ranges of j and k are different for dis-214

tribution; however, the same symbol is used in Equation (42). In this paper, we fix ∆τm =215

0.1, and in this section, we examine the cases N = 103, 105 and ∆τM = 0.1, 0.025. In216

the case N = 105, they are fully used only for pmM (τm|τM ) and P1(τm|τM ), and only217

103 of them are used for pm(τm), pM (τM ), and τM/⟨⟨τm⟩⟩τM .218

To use these amounts in numerical Bayesian updating, we perform the following219

interpolations between the data points and extrapolations outside the data range. We220

describe these procedures using the example of the case N = 103 and ∆τM = 0.1.221

First, for the inter-event time distributions (pm and pM ), we interpolate between222

the data points of each distribution (between τm,j and τM,k, respectively) using cubic223

spline functions. Outside the data range (i.e., τm < τm,jmin
, τm > τm,jmax

and τM <224

τM,kmin
, τM > τM,kmax

), we extrapolate the fitting curve for the edge 10 points (Fig-225

ure S1). The distributions are defined for all continuous τm values and for all τM,k us-226

ing this process.227

Second, for the bivariate distributions (pmM and P1), we perform the same inter-228

polations and extrapolations for τm,j (Figures S2 and S3). Meanwhile, for τM,k, the do-229

main is extended using the average of the functions at {τM,kmin
, · · · , τM,kmin+le−1} as the230

substitute for τM,k with k < kmin, whereas using the functions at {τM,kmax−le+1, · · · , τM,kmax}231

as the substitute for τM,k with k > kmax. We set le = 5 for ∆τM = 0.1 and le = 20232

for ∆τM = 0.025.233

Finally, for τM,k/⟨⟨τm⟩⟩τM,k
, the interpolation and extrapolation procedures are con-234

ducted in the same way as pM , although the extrapolation functions are different (Fig-235

ure S4).236

Thus, the discrete variable τm,j becomes continuous as τm and the distribution func-237

tions are defined for all τm larger than 0. This makes it possible to return a value for238

any input of the length of a lower interval when performing Bayesian updating. Further,239

the distribution functions are defined for any k in Equation (41). We set the range of240

k to be −120 ≤ k ≤ 70 for ∆τM = 0.1, and −480 ≤ k ≤ 280 for ∆τM = 0.025. Al-241

though this yields the maximum range of the Bayesian updating, the updating at the242

n-th step is performed within the range max{τ (1)m , · · · , τ (n)m } < τM . The properties of243

the inverse probability density function and the (part of) approximation function are ex-244

amined within this range.245

The kernel parts of the approximation functions are computed by calculating Equa-
tion (37) in a step-by-step manner as

ln pkernelMm (τM,k|τ (1)m ) = ln

(
⟨τm⟩
⟨τM ⟩

τM,k

⟨⟨τm⟩⟩ τM,k

)
+ ln pmM (τ (1)m |τM,k)− ln pm(τ (1)m ) + ln pM,k,

ln pkernelMm (τM,k|τ (1)m , τ (2)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ ln pmM (τ (2)m |τM,k)− ln pm(τ (2)m ) + ln pkernelMm (τM,k|τ (1)m ),

ln pkernelMm (τM,k|τ (1)m , τ (2)m , τ (3)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ ln pmM (τ (3)m |τM,k)− ln pm(τ (3)m ) + ln pkernelMm (τM,k|τ (1)m , τ (2)m ),

... (43)

–15–



manuscript submitted to JGR: Solid Earth

The correction terms of the approximation functions are calculated by first update as

ln pcorrectMm (τM,k|τ (1)m ) = ln

(
⟨τm⟩
⟨τM ⟩

)
+ lnP1(τ

(1)
m |τM,k)− ln pm(τ (1)m ) + ln pM,k,

ln pcorrectMm (τM,k|τ (1)m , τ (2)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ lnP1(τ

(2)
m |τM,k)− ln pm(τ (2)m ) + ln pcorrectMm (τM,k|τ (1)m ),

ln pcorrectMm (τM,k|τ (1)m , τ (2)m , τ (3)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ lnP1(τ

(3)
m |τM,k)− ln pm(τ (3)m ) + ln pcorrectMm (τM,k|τ (1)m , τ (2)m ),

... (44)

and then, we add ln(n− 1) for each ln pcorrectMm (τM |τ (1)m , · · · , τ (n)m ).246

The approximation functions are obtained by adding together the kernel part and247

the correction term calculated by these separate updates. The approximation functions248

are calculated only for such k’s that psup > ln pkernelMm , ln pcorrectMm > pinf . Here, psup(=249

600) and pinf(= −600) yield the upper and lower limits of pkernelMm and pcorrectMm to ensure250

that these are within the range of the computer capacity. In addition, such k’s for which251

the correction term is so large that Equation (36) becomes negative are excluded.252

Figure S5 shows an example of Bayesian updating for the uncorrelated time series.253

The inverse probability density function given by Equation (24) has a characteristic peak254

that is not observed in pM (τM ). The correction term makes the kernel part obtained from255

Equation (40) closer to the inverse probability density function. Moreover, the numer-256

ical calculations based on Equations (36) and (37) with N = 103 and ∆τM = 0.1 ap-257

pear to be consistent with these results.258

In the next subsection, we compare these functions statistically to examine numer-259

ical Bayesian updating method.260

5.2 Examination of numerical Bayesian updating method261

In this subsection, we compare the probability density functions and the (part of)262

approximation functions statistically. The Bayesian updating method described in the263

previous subsection is applied to 100 test data time series, each containing 105 events264

prepared separately from the sample data.265

5.2.1 Comparison by distance266

We define the distance for two square-integrable functions f(·) and g(·) as

D(f ||g) :=
∫ ∞

T

|f(τM )− g(τM )|2 dτM . (45)

The range of the integral is set to (T,∞) to exclude the Dirac’s delta function at τM =

T in the inverse probability density function. For f = pMm(τM |τ (1)m , · · · , τ (n)m ) and g =
pM (τM ), the distance can be analytically derived (Appendix H), whereas when f(·) or
g(·) is the (part of) approximation function, the distance is calculated numerically as

D(f ||g) ≃
∑

k;τM,k>T
psup>ln f,ln g>pinf

|f(τM,k)− g(τM,k)|2 (ln 10)τM,k∆τM . (46)

D(f ||g) is calculated for each update throughout the 100 test data time series. If267

no k’s satisfy psup > ln f, ln g > pinf , it is not included in the following calculation.268

The average distance ⟨D(f ||g)⟩ is calculated by averaging these distances for each elapsed269

time T ∈ [100.1l, 100.1(l+1)) with l ∈ Z from the previous event larger than M .270
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Figure 7(a) shows the average distance for the cases f = pMm(τM |τ (1)m , · · · , τ (n)m ),271

papproxMm (τM |τ (1)m , · · · , τ (n)m ), pkernelMm (τM |τ (1)m , · · · , τ (n)m ), and g = pM (τM ). In addition to272

the analytical calculation in Equation (45) for D(pMm||pM ), the results of the numer-273

ical integration of Equation (46) are presented; the calculations using Equations (39) and274

(40) are indicated by D′(·||·). The results of the calculation using Equations (36) and275

(37) with the numerical method in §5.1 with N = 103 and ∆τM = 0.1 are presented276

by D′′(·||·). The results for N = 105 with ∆τM = 0.1 and ∆τM = 0.025 are shown in277

Figure S6.278

First, one can see that ⟨D′(pMm||pM )⟩ is almost consistent with ⟨D′(papproxMm ||pM )⟩,279

which indicates that papproxMm (τM |τ (1)m , · · · , τ (n)m ) derived in the previous section certainly280

approximates the inverse probability density function, regardless of the elapsed time (or281

regardless of the number of updates, because the occurrence rate is constant). However,282

these separate from D(pMm||pM ) at around T ∼ 105 and at a large T . As such sepa-283

rations disappear when ∆τM = 0.025 (Figure S6(c,d)), this is attributed to the coarse-284

ness of the numerical integration.285

Second, ⟨D′(pkernelMm ||pM )⟩ is nearly consistent with ⟨D′′(pkernelMm ||pM )⟩. This suggests286

that the numerical updating method in Equation (43) certainly calculates the kernel part.287

However, ⟨D′′(papproxMm ||pM )⟩ gradually separates from ⟨D′(papproxMm ||pM )⟩ at a large T . This288

separation is more clearly illustrated in Figure 7(b), which shows the average distances289

between f = papproxMm , pkernelMm and g = pMm calculated by Equation (46). This separa-290

tion can be attributed to the calculation of the correction term in Equation (44), in par-291

ticular to the fluctuation in the numerically obtained P1 (Appendix I).292

5.2.2 Comparison by maximum peak time293

In the previous subsection, the approximation function calculated by the numer-294

ical Bayesian updating method is suggested to be separate from the inverse probability295

density function. However, we show that such a separation does not have a considerable296

effect around the maximum peak. To this end, we further compare the maximum points297

(hereafter, maximum peak time) of the inverse probability density function in Equation298

(23) and its approximation function in Equation (36) with the numerical updating method,299

each denoted by τ̂max
M and τmax,approx

M . Both functions are descretized as Equation (41);300

the corresponding k in Equation (41) is denoted by k̂max and kmax,approx, respectively.301

k̂max and kmax,approx are numerically searched for each update. These are deter-302

mined as such k that the function takes the maximum value within the range for which303

the above mentioned numerical results are obtained, while excluding its edges. Thus, if304

k̂max or kmax,approx is located at such edges, it is not considered the peak and is set to305

k = 80 when ∆τM = 0.1 and k = 320 when ∆τM = 0.025. Further, when the numeri-306

cal results of the approximation function are not obtained for any k (when the correc-307

tion term exceeds the kernel part for all k), kmax,approx is set to be 80 or 320.308

Figure 8 shows the joint probability mass function (p.m.f.) of (k̂max, kmax,approx)309

for N = 103 and ∆τM = 0.1. Those for N = 105 are presented in Figure S7. Here,310

the population is all the pairs of (k̂max, kmax,approx) obtained for each update through-311

out the test data. The maximum peak search is conducted in the two ranges; (a) τM >312

max{τ (1)m , · · · , τ (n)m }, and (b) τM > T . In the former case, the p.m.f. is bimodal; the313

higher peak exists around k̂max = kmax,approx, and the other lower peak around k̂max >314

kmax,approx. The second peak disappears in the latter case, and the first peak is intrin-315

sic, i.e., the positions of the maximum peak are close between the inverse probability den-316

sity function and its approximation function. The situation is the same for other cases317

(Figure S7). These results indicate that it is the off-peak region of the approximation318

function that contributes to the separation of the average distances.319
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Figure 7. Average distances for each elapsed time (T ) from the previous large event with a

magnitude above M . (a) Distances between the inter-event time distribution and other function.

D(pMm||pM ) (Equation (H2) in Appendix H) is shown by the red curve, and the symbols are nu-

merical results for Equation (46). (b) Distances between the inverse probability density function

and other function numerically calculated by Equation (46).

The results obtained in this section indicate that the numerical method using 1100320

time series (1000 for sample data and 100 for test data) is sufficient to calculate the ker-321

nel part as well as the maximum peak time of the approximation function that is im-322

portant in the inference, and to examine their statistical property. Further, these results323

indicate that Bayesian updating can be applied with the numerical method even if the324

explicit functional forms of the inter-event time distribution and the conditional prob-325

ability density function and so on are unclear, such as the time series of the ETAS model.326

6 Bayesian updating for the time series of the ETAS model327

In this section, Bayesian updating is applied to the time series of the ETAS model328

(Tanaka & Umeno, 2021). In this case, due to the correlations among events, it is dif-329

ficult to derive the inverse probability density function and its approximation function330

analytically. Therefore, we compute the approximation function (Equation (36)) and its331

kernel part (Equation (37)) using the numerical Bayesian updating method. The max-332

imum peak time of the kernel part is used as the estimate for the occurrence time of the333

next large event, and the effectiveness of forecasting based on that estimate is evaluated334

statistically.335

6.1 Time series generation and Bayesian updating methods336

We apply the numerical Bayesian updating method in §5.1 to the time series gen-337

erated by Equation (1) with the parameter values b = 1, α = 0.8, θ = 0.2 (p = 1.2),338

c = 0.01, M0 = 3, λ0 = 0.0007, and K = 0.0125. The magnitude thresholds are339
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Figure 8. Joint probability mass function for (k̂max, kmax,approx). Numerical search of the

maximum peak is conducted for (a) τM > max{τ (1)
m , · · · , τ (n)

m } and (b) τM > T . The horizontal

line at kmax,approx = 80 and the vertical line at k̂max = 80 correspond to the cases when the peak

is not detected by the peak search.
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Figure 9. Omori–Utsu law for the parameter values in the text with a different mainshock

magnitude Mm. The number of aftershocks per unit day against the elapsed time (T ) from the

mainshock obeys λ(T ) = K10α(Mm−M0)/(T + c)θ+1. The background rate (λ0 = 0.0007) is also

shown.

(M,m) = (5.0, 3.0). Although the entire time series is stationary because the branch-340

ing ratio (nbr ≈ 0.785) is less than 1, it is locally non-stationary obeying the Omori–Utsu341

law after a large event, as shown in Figure 9. The activity can be categorized into three342

regimes with respect to the elapsed time (T ) from the mainshock, as summarized in Ta-343

ble 1.344

We prepare 1100 time series, with each containing 105 events. First, random num-345

bers generated from five different seed values are used to generate 240 time series for each346

seed. Among them, those contain events with magnitude above 10 are excluded. This347

is because the aftershock sequence excited by such an unrealistic large event do not fit348

within a single time series, and then, the non-stationarity affects the statistics of the sam-349

ple data. We use 1100 of the remaining time series. N = 1000 are used as the sample350

data to obtain statistics with ∆τM = 0.1; the interpolation and extrapolation proce-351

dures are conducted with le = 5 in the same way as explained in §5.1 (Figures S8–S12).352

Bayesian updating (Equations (43) and (44)) is applied to the remaining 100 time se-353
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Table 1. Three Regimes in the time series of the ETAS model

Category Regime Property

( I ) T ≲ c(= 0.01) Stationary, high occurrence rate
(II) c ≲ T ≲ γ(≈ 103) Non-stationary, relaxation process
(III) γ ≲ T Stationary, low occurrence rate (≲ λ0)

ries. The maximum range of k is −120 ≤ k ≤ 70, and the n-th update from the oc-354

currence time of the event above M is conduced in the range max{τ (1)m , · · · , τ (n)m } < τM .355

The numerical update is conducted when the lower interval is above 0 (for the occur-356

rence times recorded to 20 decimal places); otherwise, the update is skipped.357

The following normalizations are performed in the calculations of the Bayesian up-
dating. The result of the calculation in Equation (43) can be very large. In order to com-
pute the approximation functions together with Equation (44), it is necessary to use the
function value of pkernelMm as it is, though it can exceed psup. Therefore, to avoid such en-
largement, we normalize the result of Equation (43) for each update by subtracting the
following numerical integration from Equation (43).

ln

 ∑
k;τM,k>T

psup>ln pkernel
Mm >pinf

pkernelMm (τM,k|τ (1)m , · · · , τ (n)m )(ln 10)τM,k∆τM

 . (47)

Further, it is necessary to subtract Equation (47) from the correction term in Equation358

(44) at the same time (thereby the entire approximation function is multiplied by a con-359

stant). Thus, for each update of Equations (43) and (44), the numerical integration (47)360

is computed and subtracted from both.361

6.2 Comparison of the approximation function and its kernel part362

It is difficult to obtain Pi(τm|τM ) for the ETAS model, and therefore, we exam-363

ine the contribution from the correction term to the approximation function as follows.364

Instead of Pi(τm|τM ), we calculate the probability density functions PL(τm|τM ) and PR(τm|τM )365

(Figures S10 and S11). According to the Omori–Utsu law, we consider that these two366

are the end-members of Pi(τm|τM ). Then, the approximation functions are calculated367

numerically by replacing all Pi(τm|τM )’s in Equation (44) by either PL(τm|τM ) or PR(τm|τM ).368

We denote the maximum peak times of these approximation functions by τmax,L
M and τmax,R

M ,369

and their corresponding k’s in Equation (41) by kmax,L and kmax,R, respectively. Sim-370

ilarly, they are denoted by τmax
M and kmax for the kernel part, hereafter. The numerical371

search of kmax,L, kmax,R, and kmax is conducted in the same way as indicated in §5.2 in372

the range τM > max{τ (1)m , · · · , τ (n)m }.373

Figure 10 shows the joint p.m.f. of (kmax, kmax,L) and (kmax, kmax,R), which is cal-374

culated in the same way as indicated in §5.2. The maximum peak time of the kernel part375

is not significantly affected by the correction term, and then, it can be used to infer that376

of the inverse probability density function. However, its confidence interval or average377

cannot be used because the correction term is not taken into account. In the following,378

we use the maximum peak time of the kernel part (τmax
M ) as the estimator of the occur-379

rence time of the next large event with a magnitude above M , and we discuss the effec-380

tiveness of the forecasting based on the estimates.381
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Figure 10. Joint probability mass functions for (a)
(
kmax, kmax,L

)
and (b)

(
kmax, kmax,R

)
.

The horizontal lines at kmax,L = 80 and kmax,R = 80 and the vertical line kmax = 80 are the cases

where the peak is not detected.

6.3 Estimation of the occurrence time of the next large event and ef-382

fectiveness of forecasting383

We denote the estimate at the n-th update by τmax,n
M (= 10(k

max,n+0.5)∆τM ), and
the actual elapsed time of the next large event from the previous one by τ∗M . We eval-
uate the accuracy of the estimation at the n-th update using the relative error (δn), which
is given as

δn :=
τ∗M − τmax,n

M

τ∗M
, (48)

Equation (48) considers that the error |τ∗M−τmax,n
M | gets larger as τ∗M becomes longer.384

The relative error makes it possible to evaluate the accuracy in a manner that is com-385

parable regardless of τ∗M .386

The accuracy at the n-th update is judged by whether δn is within the threshold
(δth)

−δth ≤ δn ≤ δth. (49)

When Equation (49) is satisfied, the estimation at the n-th update is judged to be plau-
sible for the given threshold value δth in the present paper. This is equivalent for the ac-
tual occurrence time to be within the range

τmax,n
M

(1 + δth)
≤ τ∗M ≤

τmax,n
M

(1− δth)
. (50)

Based on the above accuracy at each update, we further evaluate whether a series387

of estimations yields effective forecasting. Here, effective forecasting implies that τmax
M388

takes a nearly constant value around τ∗M continuously from well before the occurrence389

time of the next large event. This can be quantitatively expressed as follows: Let n≤th390

be the number of consecutive updates immediately before the next large event, in which391

Equation (49) is satisfied. Further, we denote the last update as the nfin-th update. When392

the sequence of updates with a sufficiently long n≤th exists in the range of n ∈ (nfin−393

n≤th, nfin], we consider the forecasting to be effective. We judge the stability of τmax,n
M394

by Equation (49), and therefore, δth should not be too large. In the present paper, we395

set δth = 0.5 and 0.25.396
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To observe the relationship between the effectiveness of forecasting and the station-
arity of the time series, we examine the occurrence rate (Rn), variation of its log (∆ log10 Rn),
and variation of log-estimate (∆kmax

n ) defined below.

Rn := 10/ (tn+9 − tn) , (51)

∆ log10 Rn := log10 Rn+10 − log10 Rn, (52)

∆kmax
n := kmax,n+10 − kmax,n, (53)

where tn represents the occurrence time of the n-th update.397

Figures S11–S13 show examples of Bayesian updating for each regime in Table 1.398

Although these are only examples and not all updating proceeds in this way, these ex-399

amples suggest that the stability of the estimate is related to the stationarity of the time400

series.401

6.4 Statistical analysis of the effectiveness of forecasting402

We show the results of the statistical analysis on the effectiveness of forecasting.403

Only the cases of nfin ≥ 30 are used in the analysis to ensure that the temporal infor-404

mation of lower intervals is fully reflected in the estimate. Figure 11(a) shows the total405

number of upper intervals (N) obtained from the test data for each τ∗M ∈ [100.5l, 100.5(l+1))406

with l ∈ Z. Further, N30 represents the total number of upper intervals such that nfin ≥407

30, which is shown with the ratio to N . The updates included in these N30 upper inter-408

vals are analyzed.409

Figures 11(b–d) show the results of the statistical analysis with δth = 0.5. Fig-410

ure 11(b) shows the probability (Pfin) of n≤th > 0 (or |δnfin
| ≤ δth) for each τ∗M . The411

average of Pfin for the overall τ∗M is about 0.52, and the Pfin for each τ∗M is about the same,412

except for τ∗M > ⟨τM ⟩ in which Pfin takes a higher probability around 0.67. Of such n≤th >413

0 cases, the proportion (P≥30) of those with relatively long n≤th ≥ 30 is also shown in414

Figure 11(b) (the probability distribution of n≤th is shown in Figure S16(a)). Thus the415

regions of high P≥30 are overlapped with regimes ( I ) and (III), though the former is shifted416

toward larger τ∗M . On the other hand, P≥30 is lower in regime (II); it gradually decreases417

as τ∗M gets larger. This is consistent with the average of n≤th (⟨n≤th⟩, this average is taken418

for n≤th > 0), but also with the average of its proportion to nfin (⟨n≤th/nfin⟩) as shown419

in Figure 11(c). This implies that, as the fraction of non-stationary times in [0, τ∗M ) in-420

creases in regime (II), the domination rate of n≤th in the total nfin-updates decreases grad-421

ually. These properties are preserved for δth = 0.25 (Figure S17).422

Figure 12 shows the joint probability density-mass functions of ∆ log10 R and ∆kmax
423

calculated numerically for each τ∗M . The case kmax = 80 is excluded from the popula-424

tion. If τ∗M is in the regions of high P≥30, the distribution is almost symmetrically con-425

centrated near the origin. This implies that, when the time series is dominated by sta-426

tionarity (∆ log10 R ≈ 0), the estimated value is stable (∆kmax ≈ 0). On the other427

hand, if τ∗M is in regime (II), the probability density function gradually has a region in428

the second quadrant as τ∗M gets larger. This region indicates the existence of a non-stationary429

time series in which the estimate has an increasing trend (∆kmax > 0).430

These results present the following conclusions. First, the probability that the rel-431

ative error is within the threshold at the last update (|δnfin
| ≤ δth) is almost indepen-432

dent of the actual occurrence time (τ∗M ). This suggests that the length of the upper in-433

terval can be estimated by the inverse probability density function reflecting the tem-434

poral pattern of lower intervals, at the last update when the information of the lower in-435

tervals can be utilized fully. Second, the stationarity of the time series is related to the436

stability of the estimate; if the time series is non-stationary, it causes the estimate τmax
M437

to shift. Third, the domination rate of stationarity in the time series determines the ef-438

fectiveness of forecasting. Immediately or long after the large event, the stationary time439
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series is dominant. Therefore, based on the second point mentioned above, the estimate440

becomes stable, which leads to an effective forecasting with a relatively long n≤th. How-441

ever, these regions are not identical to regimes ( I ) and (III). This is attributed to lag un-442

til the ratio of the non-stationary region in the time series becomes dominant. On the443

other hand, in regime (II), the non-stationarity becomes gradually dominant, which leads444

to the shifting of τmax
M and shortening of n≤th.445

Finally, we discuss the effectiveness of forecasting in terms of the duration time (τ≤th)446

during the n≤th updates. Figure 11(d) shows the average of the duration time (⟨τ≤th⟩)447

and the average of its ratio to the actual occurrence time (⟨τ≤th/τ
∗
M ⟩) for each τ∗M (the448

probability distribution of τ≤th is shown in Figure S16(b)). Unlike ⟨n≤th⟩ in Figure 11(c),449

⟨τ≤th⟩ increases linearly as τ∗M gets larger, and it is sufficiently long in regime (III). On450

the other hand, τ≤th is very short in regime ( I ); however, the ratio ⟨τ≤th/τ
∗
M ⟩ is high451

(nearly 0.7). Therefore, from the perspective of the time interval, the forecasting is also452

considered to be effective immediately or long after the large event.453

7 Discussion and Conclusions454

The Bayes’ theorem and Bayesian updating on the inter-event times at different455

magnitude thresholds in a marked point process are considered. The analytical results456

for the uncorrelated time series are used to apply Bayesian updating to the time series457

of the ETAS model for examining its utility toward forecasting a large event using the458

temporal pattern of the smaller events.459

First, the Bayes’ theorem is considered for the general marked point process. The460

Bayes’ theorem provides the relationship between the conditional and inverse probabil-461

ity density functions for the lengths of one upper interval and one lower interval. The462

inverse probability density function is represented by the generalized forms of the prob-463

ability density functions of the inter-event times and the conditional probability density464

function. This inverse probability density function is derived for the uncorrelated time465

series analytically, and the condition to have a peak is also found.466

The Bayes’ theorem is extended to Bayesian updating that yields the inverse prob-467

ability density function between the lengths of multiple consecutive lower intervals and468

the upper interval that includes them. Although the inverse probability density func-469

tion is different for the updating manner, we consider the updating without the restric-470

tion on the position of the lower intervals. For the uncorrelated time series, the inverse471

probability density function and its approximation function are derived, and the latter472

approximation is shown to be reasonable using the distances.473

Bayesian updating is applied to the time series of the ETAS model. We numeri-474

cally analyze the approximation function and its kernel part. We use the maximum point475

of the kernel part as the estimate of the occurrence time of the next large event because476

the maximum peaks of these two functions are shown to not be different drastically. The477

accuracy of the estimation at each update is evaluated by the relative error with the ac-478

tual occurrence time of the next large event; the effectiveness of the forecasting through-479

out the series of updates is judged by the continuity of the plausible estimations prior480

to the large event.481

Statistical analysis indicates that the accuracy of the estimation at the last update482

does not drastically depend on the occurrence time of the next large event. This sug-483

gests that the inverse probability density function can estimate the occurrence time of484

the next large event in response to the temporal pattern of minor events. However, the485

continuity of plausible estimation depends on the occurrence time of the next large event.486

This is because the dominance rate of the non-stationary time series in which the esti-487

mate becomes unstable varies with the elapsed time from the previous large event obey-488

ing the Omori–Utsu law. The stationarity is dominant either immediately after or long489
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Figure 11. (a) (Blue) Number of upper intervals N , (Cyan) number of upper intervals that
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M in the test data.

(b–d) Statistical results with δth = 0.5 for each τ∗
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Figure 12. Joint probability density-mass functions of ∆ log10 R and ∆kmax for each τ∗
M .

after the previous major event. Therefore, the forecasting by the Bayesian updating method490

can be effective for secondary disaster prevention in the former case, and for long-term491

risk assessment in the latter case.492

The approximation function derived for the uncorrelated time series is applied in493

the Bayesian updating for the time series of the ETAS model. This allows us to perform494

the update in the convenient form of the product of the conditional probabilities. How-495

ever, this implicitly assumes that there is no correlation between events and lower in-496

tervals; such an assumption can be reasonable for the stationary part of the time series,497

although it is not reasonable for non-stationary part. This probably is one of the rea-498

sons why forecasting is ineffective in the non-stationary regime.499

Further, only the kernel part of the approximation function is used when estimat-500

ing the occurrence time of the next large event for the time series of the ETAS model.501

The correction term needs to be investigated in detail to use the entire approximation502

function to perform point estimation by average, interval estimation, or probabilistic risk503

assessment using hazard rate. Comparison with the probabilistic evaluation using the504

inter-event time distribution becomes possible after clarifying the correction term.505

Although the statistical property of Bayesian updating is examined for only one506

set of ETAS parameters, it is considered to be different for activities generated by other507

parameter values. For example, for the time series with the high background rate (λ0)508

that corresponds to taking up a large spatial area, forecasting is considered to be less509

effective because in such time series, different mainshock-aftershocks sequences overlap510

(Touati et al., 2009) and the correlations between the upper and lower intervals are weak-511

ened. Further, if the background rate is low, forecasting is considered to be improved512

because a single mainshock-aftershocks sequence is exposed (Touati et al., 2009) and the513

correlation is easily reflected in the conditional probability. Forecasting is also consid-514

ered to be improved for the time series with a large branching ratio (nbr). If the branch-515

ing ratio is large, the number of aftershocks generated by an event increases (Helmstetter516
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& Sornette, 2003), which increases the number of updates in the Bayesian updating; this517

is advantageous for forecasting.518

In this study, only one lower threshold magnitude (m) is set for a given upper thresh-519

old (M). One approach for performing Bayesian updating using more temporal infor-520

mation of the lower intervals is to set multiple lower thresholds (m1 < m2 < · · · (<521

M)). When setting such lower thresholds, it is better to refer to the condition of ∆m >522

log10 3/b so that the inverse probability density function has a peak. This condition in-523

dicates that there is a trade-off between the b-value and ∆m, and then, the range of lower524

thresholds that can be set varies with the b-value. However, the condition ∆m > log10 3/b525

is for the uncorrelated time series; finding the corresponding condition for the time se-526

ries of the ETAS model is a future work. Considering such an extension is important for527

applying the Bayesian updating method to the real seismic catalogs in which the num-528

ber of earthquakes is limited.529

To utilize as much temporal information on small events as possible using the method530

described above is important for applying the Bayesian updating method to real seis-531

mic catalogs with a limited number of data. Another idea to apply the Bayesian updat-532

ing method to seismic catalogs while compensating for the shortage of data is to use the533

ETAS model in combination. The ETAS model can be used to generate a sufficient amount534

of synthetic data with the parameter set determined for the past seismic activity. From535

such synthetic data, statistical amounts necessary in the numerical Bayesian updating536

method is obtained precisely. Moreover, it is necessary to develop further ingenuity by537

studying the properties of the conditional and inverse probability density functions through538

the analysis of seismic catalogs. With these auxiliaries, the application of the Bayesian539

updating method to real seismic activity is expected to proceed while solving the lim-540

itation of seismic data.541

Appendix A Derivation of the conditional and inverse probability den-542

sity functions for the uncorrelated time series543

First, we derive the conditional probability density function (Equation (15)) by sub-
stituting Equations (12)–(14) into Equation (11). The denominator of Equation (11) is

∞∑
i=1

iΨmM (i|τM ) = A∆m
τM
⟨τM ⟩

+ 1,

and the numerator is
∞∑
i=1

iρmM (τm|i, τM )ΨmM (i|τM ) = e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+ e
−A∆m

τm
⟨τM ⟩

A∆m

⟨τM ⟩

∞∑
i=0

(i+ 2)

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)}i

i!
e
−A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
θ(τM − τm)

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) + e

−A∆m
τm

⟨τM ⟩
A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
+ 2

}
θ(τM − τm).

Equation (15) is obtained by rearranging the above equations.544

We confirm that Equation (2) with this conditional probability in its kernel has the
exponential distribution (Equation (10)) as the solution. By dividing both sides of Equa-
tion (2) by Nm and rewriting it using NM/Nm = ⟨τm⟩/⟨τM ⟩ as well as Equation (15)

pm(τm) =
⟨τm⟩
⟨τM ⟩

∫ ∞

τm

[
e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+
A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩

{
A∆m

τM − τm
⟨τM ⟩

+ 2

}
θ(τM − τm)

]
pM (τM ), (A1)
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where the following general relation is used.

τM
⟨⟨τm⟩⟩τM

=

∞∑
i=1

iΨmM (i|τM ).

We show that the r.h.s. of Equation (A1) is equivalent to the l.h.s., pm(τm) = e−
τm

⟨τm⟩ /⟨τm⟩.
Substitute pM (τM ) = e

− τM
⟨τM ⟩ /⟨τM ⟩ into the r.h.s. of Equation (A1) and note that A∆m+

1 = ⟨τM ⟩/⟨τm⟩; the integral involving the delta function (R1) is

R1 =
⟨τm⟩
⟨τM ⟩2

e−
τm

⟨τm⟩ , (A2)

and the integral involving the step function (R2) is

R2 =
⟨τm⟩
⟨τM ⟩3

A∆me
−A∆m

τm
⟨τM ⟩

∫ ∞

τm

{
A∆m

τM − τm
⟨τM ⟩

+ 2

}
e
− τM

⟨τM ⟩ dτM

=
⟨τm⟩
⟨τM ⟩2

A∆m(A∆m + 2)e−
τm

⟨τm⟩ . (A3)

Therefore, the r.h.s. of Equation (A1) is shown to be equivalent to the l.h.s. of Equa-
tion (A1) as follows:

R1 +R2 =
⟨τm⟩
⟨τM ⟩2

(1 +A∆m)
2
e−

τm
⟨τm⟩

=
1

⟨τm⟩
e−

τm
⟨τm⟩ . (A4)

Second, we derive the inverse probability density function (Equation (16)). From
Equation (15), the generalized probability density functions for the uncorrelated time
series are derived as

zm(τm) =
τm

⟨τm⟩2
e−

τm
⟨τm⟩ ,

zM (τM ) =
τM

⟨τM ⟩2
e
− τM

⟨τM ⟩ ,

zmM (τm|τM ) =
τm
τM

e
−A∆m

τm
⟨τM ⟩

[
δ(τM − τm) +

A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
+ 2

}
θ(τM − τm)

]
.

Equation (16) is obtained by substituting the above equations in Equation (8).545

Derivative of Equation (16) by τM is

∂

∂τM
pMm(τM (> τm)|τm) = − ⟨τm⟩2

⟨τM ⟩5
A2

∆me
τm−τM
⟨τM ⟩

[
τM −

{
τm + ⟨τM ⟩

(
1− 2

A∆m

)}]
.

Therefore, the inverse probability density function has a peak at

τmax
M = τm + ⟨τM ⟩

(
1− 2

A∆m

)
,

under the condition of τmax
M > τm, which is equivalent to

∆m >
log10 3

b
.
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Appendix B Derivation of Equation (24) from Equation (23)546

The summation part in the r.h.s. of Equation (23) is

∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= ΨmM (n|τM )ρmM (τ (1)m |n, τM )

n∏
j=2

ρmM

(
τ (j)m |n− j + 1, τM −

j−1∑
k=1

τ (k)m

)

+

∞∑
i=n+1

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
.

The first term on the r.h.s. of the above equation is transformed by substituting Equa-
tions (12)–(14) as[

A∆m
τM
⟨τM ⟩

]n−1

(n− 1)!
e
−A∆m

τM
⟨τM ⟩

(n− 1)

τM

(
τM − τ

(1)
m

τM

)n−2
(n− 2)

τM − τ
(1)
m

(
τM − τ

(1)
m − τ

(2)
m

τM − τ
(1)
m

)n−3

· · ·
δ(τM −

∑n
i=1 τ

(i)
m )

τM −
∑n−2

i=1 τ
(i)
m

=

(
A∆m

⟨τM ⟩

)n−1

e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

n∑
i=1

τ (i)m

)
. (B1)

The second term except the step function is also transformed as

∞∑
i=n+1

(i− n+ 1)

[
A∆m

τM
⟨τM ⟩

]i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

(i− 1)

τM

(
τM − τ

(1)
m

τM

)i−2

×
n∏

j=2

(i− j)

τM −
∑j−1

k=1 τ
(k)
m

(
τM −

∑j
k=1 τ

(k)
m

τM −
∑j−1

k=1 τ
(k)
m

)i−j−1

=

∞∑
i=n+1

(i− n+ 1)

(i− n− 1)!

(
A∆m

⟨τM ⟩

)i−1

e
−A∆m

τM
⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)i−n−1

=

∞∑
i=0

i+ 2

i!

(
A∆m

⟨τM ⟩

)i+n

e
−A∆m

τM
⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)i

=

(
A∆m

⟨τM ⟩

)n

e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩

∞∑
i=0

i+ 2

i!

{
A∆m

⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)}i

e
−A∆m

τM−
∑n

k=1 τ
(k)
m

⟨τM ⟩

=

(
A∆m

⟨τM ⟩

)n

e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩

(
A∆m

τM −
∑n

i=1 τ
(i)
m

⟨τM ⟩
+ 2

)
. (B2)

Finally, Equation (24) is obtained by substituting Equations (B1) and (B2) in Equa-
tion (23), with the denominator of the r.h.s. of Equation (23)

n∏
i=1

pm(τ (i)m ) =
1

⟨τm⟩n
e−

∑n
i=1 τ

(i)
m

⟨τm⟩ .

Appendix C Another Bayesian updating method547

In this appendix, we consider another method of Bayesian updating from the one548

introduced in §4; this method considers the consecutive lower intervals in the order of549

the appearance from the last event with magnitude greater than M . We derive the in-550

verse probability density function for this updating method in the uncorrelated time se-551

ries.552
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Let N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) be the total number of such upper intervals of length553

τM that include the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } start from the554

leftmost one in the upper interval. Further, we denote the inverse probability density func-555

tion for this updating by p∗Mm(τM |τ (1)m , · · · , τ (n)m ). We derive it by representing N∗
mM (τM , τ

(1)
m , · · · , τ (n)m )556

in two ways as follows:557

First, we derive N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) by counting the total number of the up-

per intervals of length τM that include the leftmost consecutive lower intervals of lengths
{τ (1)m , · · · , τ (n)m }. The position of the first interval in the sequence of the consecutive lower
intervals is fixed at the leftmost one in an upper interval, and therefore, the number of
the sequence {τ (1)m , · · · , τ (n)m } in the time series is

NM

n∏
i=1

pm(τ (i)m )dτnm.

Among them, the number of sequences that belong to the same upper interval is

NM

(
1− ⟨τm⟩

⟨τM ⟩

)n−1 n∏
i=1

pm(τ (i)m )dτnm.

Therefore, the first representation is obtained as

N∗
mM (τM , τ (1)m , · · · , τ (n)m )

= NM

(
1− ⟨τm⟩

⟨τM ⟩

)n−1
{

n∏
i=1

pm(τ (i)m )

}
p∗Mm(τM |τ (1)m , · · · , τ (n)m )dτMdτnm.

This equation is rewritten using Equation (10) in the explicit form as

N∗
mM (τM , τ (1)m , · · · , τ (n)m )

= NM

(
1− ⟨τm⟩

⟨τM ⟩

)n−1
1

⟨τm⟩n
e−

∑n
i=1 τ

(i)
m

⟨τm⟩ p∗Mm(τM |τ (1)m , · · · , τ (n)m )dτMdτnm. (C1)

Second, we derive N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) by counting the total number of con-

secutive lower intervals that start from the leftmost one in the upper intervals of length
τM . There is only one way for the sequence of consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }
to be involved in each of the NMpM (τM )dτM upper intervals of length τM . The prob-
ability of the occurrence of that sequence in the upper interval is, when i(≥ n)-lower
intervals are included in it

ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτnm.

Therefore, the second representation is obtained as

N∗
mM (τM , τ (1)m , · · · , τ (n)m )

= NMpM (τM )

∞∑
i=n

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτMdτnm.

This equation is rewritten in the explicit form using Equations (12)–(14) in the same way
as in Appendix B.

N∗
mM (τM , τ (1)m , · · · , τ (n)m ) = NM

1

⟨τM ⟩
e
− τM

⟨τM ⟩ dτMdτnm

(
A∆m

⟨τM ⟩

)n−1

×

{
e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

n∑
i=1

τ (i)m

)
+

(
A∆m

⟨τM ⟩

)
e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩ θ

(
τM −

n∑
i=1

τ (i)m

)}
. (C2)
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Finally, p∗Mm(τM |τ (1)m , · · · , τ (n)m ) is derived from Equations (C1) and (C2) as

p∗Mm(τM |τ (1)m , · · · , τ (n)m )

=
⟨τm⟩
⟨τM ⟩

{
A∆m

⟨τM ⟩
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩ θ

(
τM −

n∑
i=1

τ (i)m

)
+ e−

τM−
∑n

i=1 τ
(i)
m

⟨τm⟩ δ

(
τM −

n∑
i=1

τ (i)m

)}
.

(C3)

This is different from Equation (24), which reflects the difference whether the position558

of lower intervals is specified.559

Appendix D Derivation of Equation (29)560

First, we substitute Equations (12)–(14) into Equation (28)

PR(τm|τM ) = PL(τm|τM )

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+
∞∑
i=2

(i− 1)

τM

(
1− τm

τM

)i−2

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩ θ(τM − τm).

In the above equation, the summation part of the term including the step function can
be transformed as

∞∑
i=2

(i− 1)

τM

(
1− τm

τM

)i−2

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

=
A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩

∞∑
i=0

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)}i

i!
e
−A∆m

τM
⟨τM ⟩

(
1− τm

τM

)

=
A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩ .

Finally, Equation (29) is obtained by rearranging the above equations.561

Appendix E Derivation of Equation (34)562

In this appendix, P (τ
(1)
m , · · · , τ (l)m |τM ) is derived for the uncorrelated time series.

First, we divide the summation in Equation (33) into two parts:

P (τ (1)m , · · · , τ (l)m |τM ) =

∞∑
i=l

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= ΨmM (l|τM )ρmM (τ (1)m |l, τM )

l∏
j=2

ρmM

(
τ (j)m |l − j + 1, τM −

j−1∑
k=1

τ (j)m

)

+

∞∑
i=l+1

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
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This equation is further rewritten by substituting Equations (12)–(14) in the same way
as in Appendix B. The second term on the r.h.s. except for the step function is

∞∑
i=l+1

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

i− 1

τM

(
τM − τ

(1)
m

τM

)i−2

×
l∏

j=2

(i− j)

τM −
∑j−1

k=1 τ
(k)
m

(
τM −

∑j
k=1 τ

(k)
m

τM −
∑j−1

k=1 τ
(k)
m

)i−j−1

=

∞∑
i=l+1

1

(i− l − 1)!

(
A∆m

⟨τM ⟩

)i−1

e
−A∆m

τM
⟨τM ⟩

(
τM −

l∑
k=1

τ (k)m

)i−l−1

=

∞∑
i=0

1

i!

(
A∆m

⟨τM ⟩

)i+l

e
−A∆m

τM
⟨τM ⟩

(
τM −

l∑
k=1

τ (k)m

)i

=

(
A∆m

⟨τM ⟩

)l

e
−A∆m

∑l
i=1 τ

(i)
m

⟨τM ⟩

∞∑
i=0

{
A∆m

⟨τM ⟩

(
τM −

∑l
k=1 τ

(k)
m

)}i

i!
e
−A∆m

⟨τM ⟩ (τM−
∑l

k=1 τ(k)
m )

=

l∏
i=1

Pi(τ
(i)
m |τM ),

where Pi(τ
(i)
m |τM ) :=

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩ .563

Therefore

P (τ (1)m , · · · , τ (l)m |τM ) =

(
A∆m

⟨τM ⟩

)l−1

e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

l∑
i=1

τ (i)m

)
+

l∏
i=1

Pi(τ
(i)
m |τM )θ

(
τM −

l∑
i=1

τ (i)m

)
.

Finally, because τM ≩
∑l

i=1 τ
(i)
m holds for l < n by the condition of Equation (26)

P (τ (1)m , · · · , τ (l)m |τM ) =

l∏
i=1

Pi(τ
(i)
m |τM ).

Appendix F Derivation of Equation (39)564

In this appendix, the approximation function of the inverse probability density func-
tion for the uncorrelated time series (Equation (39)) is derived. By substituting Equa-
tions (10), (15), and (34) into Equation (36)

pMm(τM |τ (1)m , · · · , τ (n)m )

=
⟨τm⟩
⟨τM ⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
(
A∆m

⟨τm⟩
⟨τM ⟩

)n−1

 n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩ A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τ(i)

m

τM

)
+ 2
}

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
 1

⟨τM ⟩
e
− τM

⟨τM ⟩

− ⟨τm⟩
⟨τM ⟩

(n− 1)(
A∆m

⟨τm⟩
⟨τM ⟩

)n−1

 n∏
i=1

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

 1

⟨τM ⟩
e
− τM

⟨τM ⟩ , (F1)

where the following relation is used.

τM
⟨⟨τm⟩⟩τM

=

∞∑
i=1

iΨmM (i|τM )

= A∆m
τM
⟨τM ⟩

+ 1.
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The two products ([· · · ]’s) in Equation (F1) are respectively transformed as

n∏
i=1

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩+
τ
(i)
m

⟨τm⟩

=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n n∏
i=1

e
τ
(i)
m

⟨τM ⟩ . (F2)

n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩ A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τ(i)

m

τM

)
+ 2
}

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n
(

n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩+
τ
(i)
m

⟨τm⟩

)
n∏

i=1

A∆m
τM
⟨τM ⟩ + 1−

(
A∆m

τ(i)
m

⟨τM ⟩ − 1
)

A∆m
τM
⟨τM ⟩ + 1


=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n
(

n∏
i=1

e
τ
(i)
m

⟨τM ⟩

){
n∏

i=1

(
1−

τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)}
. (F3)

Finally, Equation (39) is derived by substituting Equations (F2) and (F3) into Equation565

(F1).566

Appendix G Relation between the inverse probability density func-567

tion and its approximation function in the uncorrelated568

time series569

In this appendix, we discuss the relation between the inverse probability density570

function (Equation (23)) and Equation (36), i.e., the approximations made on Equation571

(23) that correspond to the assumptions made in §4.2 to derive Equation (36).572

The summation in Equation (23) can be decomposed into

∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= −(n− 1)

∞∑
i=n

ΨmM (i|τM )ρmM (τ (1)m |i, τM )
n∏

j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

+

∞∑
i=n

iΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (G1)

The first term on the r.h.s. of Equation (G1) is equivalent to −(n−1)
∏n

i=1 Pi (Ap-573

pendix E), and then, this term formally coincides with the correction term in Equation574

(36). Therefore, the second term corresponds to the kernel part (Equation (37)).575

n-consecutive lower intervals must be included in only one upper interval. Under576

this condition, three constraints are imposed on the lower intervals, which appear on the577

l.h.s. of Equation (G1) as follows: (1) The number of lower intervals included in the up-578

per interval must be larger than or equal to n. Then, the summation is taken in the range579

of i ≥ n. (2) The way to choose the n-consecutive intervals from the i-lower intervals580

in an upper interval is only (i− n+ 1). If the first lower interval (or the leftmost one581

in the sequence of the consecutive lower intervals) is in either remaining (n−1) ways,582

the sequence overflows from the upper interval. (3) The probability of the length of the583

j-th interval in the consecutive lower intervals depends on the way other (k-th, 1 ≤ k <584
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j) lower intervals appear, i.e., it is dependent on the remained time τM−
∑j−1

k=1 τ
(k)
m and585

number of pieces of lower intervals (i− j + 1), ρmM

(
τ
(j)
m |i− j + 1, τM −

∑j−1
k=1 τ

(k)
m

)
.586

These constraints are relaxed in the derivation in §4.2. In the view in §4.2, the up-
per intervals of length τM are collected and the new time series is generated as shown
in Figure 5. For this new time series, the only constraint imposed on the lower intervals
is that they are included in the upper interval of length τM ; each interval is assumed to
occur independently. Therefore, the three constraints are changed in the following man-
ner: (1) The new time series is generated by gathering all upper intervals of length τM ,
regardless of the number of lower intervals included in it. In addition, the restriction on
the range of the summation (i ≥ n) does not make much sense because the consecu-
tive lower intervals are not assumed to be within only one upper interval, i.e., it is ex-
panded to i ≥ 1. (2) The number of ways to choose the n-consecutive intervals from
i-lower intervals is unchanged; this exceeds the above mentioned upper limit (i− n+
1) although such cases are subtracted by the first term on the r.h.s. of Equation (G1),
i.e., the correction term in Equation (36). (3) The constraints imposed on the condition
in ρmM are removed; because the probability of the length of j-th interval is only not
affected by other lower intervals, the temporal part of ρmM is replaced by τM (Equation
(G2)). In addition, the constraint on the number of division can be eliminated by tak-
ing the average (Equation (G3)).

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
≈ ρmM

(
τ (j)m |i− j + 1, τM

)
(G2)

≈
∑∞

i=1 iΨmM (i|τM )ρmM (τ
(j)
m |i, τM )∑∞

i=1 iΨmM (i|τM )
(G3)

= pmM (τ (j)m |τM ).

Thus, ρmM ’s are simply replaced by the conditional probability density functions.587

In this way, the approximate view in §4.2 implies the following replacement in the
exact inverse probability density function.

∞∑
i=n

iΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

n∑
k=1

τ (k)m

)

≈
∞∑
i=1

iΨmM (i|τM )

n∏
j=1

pmM (τ (j)m |τM )

=
τM

⟨⟨τm⟩⟩τM

n∏
j=1

pmM (τ (j)m |τM ).

Appendix H Distance between the inverse probability density func-588

tion and the inter-event time distribution589

In this Appendix, we derive the distance between the inverse probability density
function (Equation (24)) and the inter-event time distribution (pM (τM ))

D(pMm||pM ) :=

∫ ∞

T

|pθ(τM , T )− pM (τM )|2 dτM , (H1)

where

pθ(τM , T ) =
⟨τm⟩
⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)
e
− τM−T

⟨τM ⟩

(
A∆m

τM − T

⟨τM ⟩
+ 2

)
,

pM (τM ) =
1

⟨τM ⟩
e
− τM

⟨τM ⟩ .
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By substituting these functions in Equation (H1), the distance is derived as

D(pMm||pM ) =
⟨τM ⟩C2

1

4
+

C1C2(T )

2
+

C2(T )
2

2⟨τM ⟩
, (H2)

where

C1 =
1

⟨τM ⟩

(
1− ⟨τm⟩

⟨τM ⟩

)2

,

C2(T ) = 2
⟨τm⟩
⟨τM ⟩

(
1− ⟨τm⟩

⟨τM ⟩

)
− e

− T
⟨τM ⟩ .

Appendix I On the cause of the separation of ⟨D′(papprox
Mm ||pM)⟩ and590

⟨D′′(papprox
Mm ||pM)⟩ at large T591

In this appendix, we examine the cause of the separation between ⟨D′(papproxMm ||pM )⟩592

and ⟨D′′(papproxMm ||pM )⟩ at long-elapsed time T . Let us compare Figure 7 to Figures S6(a)593

and (c) for N = 105. The separation is suppressed compared to that shown in Figure594

7, which indicates that the fluctuations in the spline functions of P1 caused by a rela-595

tively small number of samples in the calculation of P1 are suppressed by increasing the596

sample data. This leads to the reduction of errors in the calculations (44), and to the597

improvement of the calculation of distance in Equation (46).598

In addition, we tested numerical updating with N = 105 by excluding some larger
columns of the matrix P1, i.e., by using the following matrix P ′

1 with an integer lc

P ′
1 =

[
[P1,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax−lc

. (I1)

For this P ′
1, the interpolation and extrapolation procedures are conducted in the same599

way as in §5.1, and the numerical updating is executed.600

Figures S6(b) and (d) show the results of the distance for such updating with (b)601

∆τM = 0.1 and lc = 5, and (d) ∆τM = 0.025 and lc = 20. Compared to the results602

obtained using P1 in Figures S6(a) and (c), the separation is suppressed further. Com-603

bined with the results for the kernel part, these results suggest the following; the num-604

ber of samples to calculate P1 is so small compared to that of the conditional probabil-605

ity (the number of sample is only one for an upper interval for P1 whereas all the lower606

intervals included in an upper interval are used as a sample to calculate the conditional607

probability), in particular for a large k, that its fluctuation becomes too large to com-608

pute the correction term precisely.609
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Abstract13

We present a Bayesian updating method on the inter-event times at different magnitude14

thresholds in a marked point process, toward the probabilistic forecasting of an upcom-15

ing large event using temporal information on smaller events. Bayes’ theorem in a marked16

point process that yields the one-to-one relationship between intervals at lower and up-17

per magnitude thresholds is presented. This theorem is extended to Bayesian updating18

for an uncorrelated marked point process that yields the relationship between multiple19

consecutive lower intervals and one upper interval. The inverse probability density func-20

tion and its approximation function are derived. For the former, the condition for hav-21

ing a peak is shown. The latter is easier to apply to the time series of the ETAS model,22

and it consists of the kernel part, which includes the product of the conditional prob-23

abilities, and the correction term. The maximum point of the kernel part is shown to24

be not significantly affected by the correction term when applying the Bayesian updat-25

ing to the ETAS model time series numerically. The occurrence time of the upcoming26

large event is estimated using this maximum point, and its accuracy is evaluated con-27

sidering the relative error with the actual occurrence time. Moreover, forecasting is eval-28

uated to be effective by the continuity of the updates with the accuracy within an ac-29

ceptable range prior to the upcoming large event. Under these conditions, the statisti-30

cal analysis indicates that forecasting is relatively effective immediately or long after the31

last major event in which stationarity is dominant in the time series.32

Plain Language Summary33

In order to forecast future large earthquakes, it is important to use as much infor-34

mation as possible on the seismic activity at hand. The number of small earthquakes is35

much larger than that of large earthquakes, and we propose a method to use this infor-36

mation to forecast probabilistically the timing of future large earthquakes. Theoretical37

analysis is performed on a simple time series. The theoretical results are applied to a seis-38

mic activity model, and it is shown that this method is relatively effective in forecast-39

ing the timing of future large events when stationary activity is dominant; in this model,40

either immediately after a large event or after sufficient time has passed since the last41

large event. Therefore, this method can be applied to reduce secondary disasters after42

a major earthquake and to evaluate the risk of earthquake occurrence over a long pe-43

riod of time.44

1 Introduction45

The probabilistic forecasting of the timing of future major earthquakes is impor-46

tant for seismic risk assessment. Therefore, it is necessary to effectively use the infor-47

mation on the temporal properties of seismic activity represented by a marked point pro-48

cess with the magnitude as the mark as indicated in Figure 1. A basic approach involves49

using the hazard rate based on the inter-event time distribution of earthquakes (Scholz,50

2002). The inter-event time distribution is defined as a probability density function of51

the length of the interval between adjacent points in the point process determined by52

setting a magnitude threshold for the marked point process. For the magnitude thresh-53

old M (m), we denote the inter-event times using a variable τM (τm), and the inter-event54

time distribution it follows by pM (τM ) (pm(τm)).55

The inter-event time distribution of earthquakes has been studied for not only risk56

assessment but also to understand the statistical nature of seismicity. For example, it57

has been studied with the aim to unify it with other established laws (Bak et al., 2002;58

Aizawa et al., 2013; Aizawa & Tsugawa, 2014) such as the GR law (Gutenberg & Richter,59

1944) and the Omori–Utsu law (Omori, 1894; Utsu, 1961); further, its scaling univer-60

sality (Corral, 2004) has been discussed using the ETAS model (Saichev & Sornette, 2006;61

Touati et al., 2009; Bottiglieri et al., 2010; Lippiello et al., 2012).62
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Figure 1. Schematic of a marked point process with the magnitude as a mark.

The ETAS model is a stochastic model that combines the GR and Omori–Utsu laws63

(Ogata, 1988, 1998); this model can generate a time series like that of the seismic ac-64

tivity. The ETAS model generates an inhomogeneous Poisson process with a history-dependent65

occurrence rate. Let tj and Mj (j ∈ N) represent the occurrence time and magnitude66

of the j-th event before time t; then, the occurrence rate (λ(t)) at time t is given by67

λ(t) = λ0 +
∑

j:tj<t

K10α(Mj−M0)

(t− tj + c)θ+1
. (1)

The magnitude is generated randomly and independently obeying the GR law, P (M) ∝68

10−bM . Here, M0 represents the minimum magnitude and (λ0,K, α, c, θ, b) represent the69

parameters that characterize the activity. In particular, λ0 represents the constant rate70

for background seismicity. The combination of the remaining parameters yields the branch-71

ing ratio nbr =
K

θcθ
b

b− α
(when θ > 0) (Helmstetter & Sornette, 2002) that determines72

the stationarity of the time series as well as the average number of aftershocks gener-73

ated by a mainshock (Helmstetter & Sornette, 2003).74

The ETAS model provides a standard seismicity for detecting anomalous activity75

(Ogata, 1988). This model has been extended to a spatio-temporal version (Ogata, 1998),76

and its application to the evaluation of seismic risk has been studied actively. The con-77

ditional intensity function provides the risk of an event at a given time, space, and mag-78

nitude based on the history of seismic activity, which includes small earthquakes.79

In the aforementioned probabilistic evaluation using the inter-event time distribu-80

tion, temporal information on events smaller than the magnitude threshold set on the81

marked point process is not utilized. Therefore, in this paper, we propose another ap-82

proach to probabilistically forecast major earthquakes based on the inter-event time dis-83

tribution while considering the temporal information on smaller events. This is achieved84

by utilizing a conditional probability that yields the statistical relationship between the85

inter-event times at different two magnitude thresholds (Tanaka & Aizawa, 2017).86

For two magnitude thresholds m and M(= m + ∆m,∆m > 0) set in the time
series, the conditional probability (pmM (τm|τM ), hereafter referred to as the conditional
probability density function) is defined as the probability density function of the length
of a lower interval (τm) under the condition that it is included in the upper interval of
length τM (Figure 1). Inter-event time distributions at magnitude thresholds m and M
are connected by an integral equation with this conditional probability density function
in its kernel (Tanaka & Aizawa, 2017). This integral equation is given as

Nmpm(τm) = NM

∫ ∞

τm

τM
⟨⟨τm⟩⟩τM

pmM (τm|τM )pM (τM )dτM , (2)

where Nm and NM represent the total number of intervals at magnitude thresholds m87

and M , respectively. Further, ⟨⟨τm⟩⟩τM represents the average of the conditional prob-88

ability density function, ⟨⟨τm⟩⟩τM :=
∫∞
0

τmpmM (τm|τM )dτm.89
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Thus, the conditional probability density function yields the statistical relation be-90

tween inter-event times at different magnitude thresholds. This suggests that the infor-91

mation on the lower intervals can be utilized for estimating the length of the upper in-92

terval through the conditional probability density function. Given this context, we con-93

sider the Bayes’ theorem and the Bayesian updating on the intervals at different mag-94

nitude thresholds in this paper; further, we report the results of the numerical analysis95

of the properties of the inverse probability density function (Tanaka & Umeno, 2021).96

In §2, we derive the Bayes’ theorem for intervals at different magnitude thresholds97

in the marked point process. In §3, the inverse probability density function is derived98

for the uncorrelated time series that corresponds to the background seismicity of the ETAS99

model. In §4, the Bayesian updating method is considered for the uncorrelated time se-100

ries, and the inverse probability density function and its approximation function are de-101

rived. These functions are calculated numerically and compared in §5. In §6, Bayesian102

updating is applied to the time series of the ETAS model. The approximation function103

is examined numerically, and the property of the maximum point of its kernel part is an-104

alyzed statistically considering the effectiveness for forecasting. Finally, §7 presents ad-105

ditional discussions and conclusions.106

2 Bayes’ theorem for inter-event times at different magnitude thresh-107

olds108

We consider the Bayes’ theorem between the inter-event times at different mag-109

nitude thresholds (m and M) in a marked point process, and we derive the general re-110

lationship between the conditional probability density function pmM (τm|τM ) and the in-111

verse probability density function pMm(τM |τm) (Tanaka & Umeno, 2021). Here pMm(τM |τm)112

represents the probability density function of the upper interval under the condition that113

it includes a lower interval of length τm.114

Let the total number of the pairs of the upper interval of length within [τM , τM+115

dτM ) and the lower interval of length within [τm, τm+dτm) by NmM (τM , τm) (Figure116

2). Hereafter, we express this NmM (τM , τm) as the number of the pairs of the intervals117

such that the length of the upper interval is τM and the length of the lower interval is118

τm, for simplicity, and other numbers of the intervals are expressed in the same way. NmM (τM , τm)119

can be represented in two ways:120

Time

M
a
g
n
it
u
d
e

τM

τm
(1)

τm
(3)

τm
(2)
=3=1 =1 τm

(4)
=2

=7

M

m

Figure 2. Schematic of the approach to count the number of pairs of upper and lower in-

tervals whose lengths are τM and τm, respectively. Four pairs are shown in the figure, and

NmM (7, 1) = 2, NmM (7, 2) = 1, and NmM (7, 3) = 1.

1) Derive NmM (τM , τm) by counting the cumulative total number of the upper in-
tervals of length τM that include the lower interval of length τm (Figure 3(a)). Among
the Nm lower intervals in the time series, there are Nmpm(τm)dτm intervals of length τm.
There exists only one upper interval that includes each of such lower intervals. The prob-
ability that the length of that upper interval is τM is given by pMm(τM |τm)dτM . There-
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fore
NmM (τM , τm) = Nmpm(τm)pMm(τM |τm)dτmdτM . (3)
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τM τM

(a)

(b)

Figure 3. Schematic of the two approaches for calculating NmM (τM , τm). (a) The first ap-

proach involves counting the cumulative total number of the upper intervals of length τM that

include the lower interval of length τm. (b) The second approach involves counting the number of

the lower intervals of length τm included in the upper interval of length τM .

2) Derive NmM (τM , τm) by counting the total number of the lower intervals of length
τm included in the upper interval of length τM (Figure 3(b)). The number of the upper
intervals of length τM in the time series is NMpM (τM )dτM . Therefore, the number of
the lower intervals included in these upper intervals is

NMpM (τM )
τM

⟨⟨τm⟩⟩τM
dτM .

Among them, the proportion of the lower intervals whose length is τm is pmM (τm|τM )dτm.
Therefore

NmM (τM , τm) = NMpM (τM )
τM

⟨⟨τm⟩⟩τM
pmM (τm|τM )dτmdτM . (4)

From Equations (3) and (4)

Nmpm(τm)pMm(τM |τm) = NMpM (τM )
τM

⟨⟨τm⟩⟩τM
pmM (τm|τM ). (5)

By using the average intervals at each magnitude threshold

⟨τm⟩ :=
∫ ∞

0

τmpm(τm)dτm,

⟨τM ⟩ :=
∫ ∞

0

τMpM (τM )dτM ,

and NM/Nm = ⟨τm⟩/⟨τM ⟩, Equation (5) is rewritten as

pMm(τM |τm) =

(
⟨τm⟩
⟨τM ⟩

τM
⟨⟨τm⟩⟩τM

)
pmM (τm|τM )pM (τM )

pm(τm)
. (6)

Equation (6) can be considered as the Bayes’ theorem for a marked point process.
The parenthesized part is from the difference in the number of intervals for each mag-
nitude threshold (⟨τm⟩/⟨τM ⟩) and the inclusion relationship between the upper and lower
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intervals (τM/⟨⟨τm⟩⟩τM ), i.e., a lower interval is always included in only one upper in-
terval, whereas an upper interval includes τM/⟨⟨τm⟩⟩τM lower intervals on average. This
part disappears by using generalized probability density functions

zm(τm) :=
τm
⟨τm⟩

pm(τm),

zM (τM ) :=
τM
⟨τM ⟩

pM (τM ),

zmM (τm|τM ) :=
τm

⟨⟨τm⟩⟩τM
pmM (τm|τM ).

These functions satisfy the normalization condition of the probability density function.
Equations (2) and (6) are simplified as

zm(τm) =

∫ ∞

0

zmM (τm|τM )zM (τM )dτM , (7)

pMm(τM |τm) =
zmM (τm|τM )zM (τM )

zm(τm)
. (8)

These equations indicate that pMm(τM |τm) satisfies the normalization condition.121

3 Bayes’ theorem for uncorrelated time series122

In this section, we derive pMm(τM |τm) for an uncorrelated time series generated
by the ETAS model with λ(t) ≡ λ0 (Tanaka & Umeno, 2021). In this case, the mag-
nitudes and inter-event times obey the following probability density functions indepen-
dently.

P (m) ∝ 10−bm, (9)

pm(τm) =
1

⟨τm⟩
e−

τm
⟨τm⟩ . (10)

First, we derive pmM (τm|τM ), which can be expressed generally as

pmM (τm|τM ) =

∑∞
i=1 i ρmM (τm|i, τM )ΨmM (i|τM )∑∞

i=1 i ΨmM (i|τM )
, (11)

where i(∈ Z) represents the number of lower intervals included in the upper interval of123

length τM ; ΨmM (i|τM ) represents the probability mass function of such i under the con-124

dition that the length of the upper interval is τM ; and ρmM (τm|i, τM ) represents the prob-125

ability density function of the length of a lower interval given that the length of the up-126

per interval is τM and the number of the lower intervals in it is i. We can calculate the127

conditional probability density function and other related amounts when we know these128

functions.129

In the case of the uncorrelated time series, these functions can be obtained as fol-
lows. For the selected stationary Poisson process, the average number of events included
in the upper interval of length τM is (τM/⟨τm⟩ − τM/⟨τM ⟩), because no event greater
than M occurs in the interval considered, and therefore, τM/⟨τM ⟩-events larger than M
occurring in the interval of length τM on average must be excluded from the average num-
ber τM/⟨τm⟩ of events occurring in the interval of length τM . Then, the average occur-
rence rate in the upper interval of length τM is (1/⟨τm⟩−1/⟨τM ⟩). The number of events
with m < magnitude ≤ M in τM is one less than that of the lower intervals, and there-
fore, the probability of including i lower intervals is equal to the probability of includ-
ing (i− 1) events with an average occurrence rate (1/⟨τm⟩ − 1/⟨τM ⟩). Therefore

ΨmM (i|τM ) =

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩ , (12)
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where

A∆m :=
⟨τM ⟩
⟨τm⟩

− 1

= 10b∆m − 1.

The second transformation in the above equation does not strictly hold for a time se-130

ries with a finite number of events because the number of the events is different from that131

of the intervals by 1. However, we consider that the statistical properties are for infinite132

samples, and in a time series containing an infinite number of events, the two are equiv-133

alent and the equality holds.134

The other function ρmM (τm|i, τM ) is obtained as follows. For i = 1

ρmM (τm|1, τM ) = δ(τM − τm), (13)

where δ(x) represents the Dirac’s delta function. For i ≥ 2 (Webb, 1974)

ρmM (τm|i, τM ) =
(i− 1)

τM

(
1− τm

τM

)i−2

θ(τM − τm), (14)

where θ(x) represents the unit step function that returns 1 for x > 0 and 0 for x ≤135

0.136

From Equations (12)–(14), pmM (τm|τM ) is derived as (Appendix A)

pmM (τm|τM ) =
e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) + A∆m

⟨τM ⟩ e
−A∆m

τm
⟨τM ⟩

{
A∆m

τM−τm
⟨τM ⟩ + 2

}
θ(τM − τm)(

A∆m
τM
⟨τM ⟩ + 1

) .

(15)
This conditional probability composed of Equations (12)–(14) certainly has exponential137

distributions as the solution of Equation (2) (Appendix A).138

Second, we derive pMm(τM |τm). From Equations (10) and (15), pMm(τM |τm) is
obtained as (Appendix A)

pMm(τM |τm) =
e−

τM−τm
⟨τm⟩ δ(τM − τm) + A∆m

⟨τM ⟩ e
− τM−τm

⟨τM ⟩
{
A∆m

τM−τm
⟨τM ⟩ + 2

}
θ(τM − τm)

(A∆m + 1)
2 .

(16)
We emphasize that pMm(τM |τm) has a peak at

τmax
M = τm + ⟨τM ⟩

(
1− 2

A∆m

)
, (17)

when the next condition is satisfied (Appendix A).

∆m >
log10 3

b
. (18)

4 Bayesian updating for uncorrelated time series139

The Bayes’ theorem shows a one-to-one relationship between an upper and a lower140

interval. In this section, we extend it to the relationship between an upper interval and141

multiple consecutive lower intervals by considering Bayesian updating for the uncorre-142

lated time series (Tanaka & Umeno, 2021). We derive the inverse probability density func-143

tion pMm(τM |τ (1)m , · · · , τ (n)m ), as well as its approximation function, for the upper inter-144

val under the condition that it includes the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }.145
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4.1 Inverse probability density function146

As in §2, we derive the inverse probability density function by expressing the to-147

tal number of combinations of the upper interval of length τM and the consecutive lower148

intervals of lengths {τ (1)m , · · · , τ (n)m } included in it denoted by NmM (τM , τ
(1)
m , · · · , τ (n)m )149

in two ways.150

First, we derive NmM (τM , τ
(1)
m , · · · , τ (n)m ) by counting the cumulative total num-

ber of the upper intervals of length τM that include the consecutive lower intervals of
lengths {τ (1)m , · · · , τ (n)m } (Figure 4(a)). We begin with the case n = 2. The intervals in
the uncorrelated time series emerge independently, and therefore, the total number of
the two consecutive lower intervals of lengths τ

(1)
m and τ

(2)
m is

Nmpm(τ (1)m )pm(τ (2)m )dτ2m.

Among them, some pairs do not belong to the same upper interval (the case of (3) in
Figure 4(a)). In that case, the magnitude of the event sandwiched between the two lower
intervals is larger than M . In the uncorrelated time series, the proportion that the con-
secutive lower intervals belong to the same upper interval equals to the probability that
the magnitude of the event sandwitched between the two lower intervals is smaller than
M . It is given by the GR law as

1− P (M)

P (m)
= 1− 10−b∆m

= 1− ⟨τm⟩
⟨τM ⟩

.

Therefore

NmM (τM , τ (1)m , τ (2)m ) = Nm

(
1− ⟨τm⟩

⟨τM ⟩

)
pm(τ (1)m )pm(τ (2)m )pMm(τM |τ (1)m , τ (2)m )dτ2mdτM . (19)

Equation (19) is generalized for n(≥ 2) consecutive lower intervals.

NmM (τM , τ (1)m , · · · , τ (n)m )

= Nm

(
1− ⟨τm⟩

⟨τM ⟩

)n−1
(

n∏
i=1

pm(τ (i)m )

)
pMm(τM |τ (1)m , · · · , τ (n)m )dτnmdτM . (20)

Second, we derive NmM (τM , τ
(1)
m , · · · , τ (n)m ) by counting the total number of the con-

secutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } included in the upper interval of length
τM (Figure 4(b)). To this end, we start with the case n = 2 again (Figure 4(b)). When
the upper interval of length τM includes i(≥ 2) lower intervals, the first interval of the
two consecutive lower intervals is selected from (i−1) intervals except for the rightmost

one. The probability that this first interval has length τ
(1)
m is ρmM (τ

(1)
m |i, τM )dτm. The

second lower interval is fixed at adjacent to the first one. This second interval is one of
the (i−1) intervals that divide the remaining length τM−τ

(1)
m , and therefore, the prob-

ability that the second interval has length τ
(2)
m is ρmM (τ

(2)
m |i−1, τM−τ

(1)
m )dτm. Thus,

considering all i(≥ 2)

NmM (τM , τ (1)m , τ (2)m )

= NMpM (τM )dτM

∞∑
i=2

(i− 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )ρmM (τ (2)m |i− 1, τM − τ (1)m )dτ2m.

(21)

–8–



manuscript submitted to JGR: Solid Earth

M
a
g
n
it
u
d
e τM

M

i

m

M

m

M

m

...

...

...

...

...

...

...

...τ
(1)
m τ

(2)
m τ

(1)
m τ

(2)
m τ

(1)
m τ

(2)
m

(1) (2) (3)(a)

M
a
g
n
it
u
d
e

τM ...

Time

Time

τ
(1)
m

τ
(2)
m

lower intervals

M
a
g
n
it
u
d
e ......

...

candidates for i-1 �mM(�(1)
m |i,�M)

�mM(�(2)
m |i-1,�M-�(1)

m )
�(1)
m

lower intervalsi-1

(b)

...

...

�M-�(1)
m

...

...

Figure 4. Schematic of the two approaches to calculate NmM (τM , τ
(1)
m , τ

(2)
m ). (a) The first

approach involves counting the cumulative total number of the upper intervals of length τM that

include the consecutive lower intervals of lengths {τ (1)
m , τ

(2)
m }. (b) The second approach involves

counting the number of the consecutive lower intervals of lengths {τ (1)
m , τ

(2)
m } included in the up-

per interval of length τM .

Equation (21) is generalized for the case n(≥ 2) lower intervals as

NmM (τM , τ (1)m , · · · , τ (n)m ) = NMpM (τM )dτM

×
∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτnm.

(22)

From Equations (20) and (22), pMm(τM |τ (1)m , · · · , τ (n)m ) is derived as

pMm(τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

pM (τM )∏n
i=1 pm(τ

(i)
m )

×
∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
.

(23)

Furthermore, the explicit form of the inverse probability density function is derived by
substituting Equations (10) and (12)–(14) into Equation (23) as (Appendix B)

pMm(τM |τ (1)m , · · · , τ (n)m ) =

(
⟨τm⟩
⟨τM ⟩

)2
[
e−

τM−
∑n

i=1 τ
(i)
m

⟨τm⟩ δ

(
τM −

n∑
i=1

τ (i)m

)

+
A∆m

⟨τM ⟩
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

{
A∆m

⟨τM ⟩

(
τM −

n∑
i=1

τ (i)m

)
+ 2

}
θ

(
τM −

n∑
i=1

τ (i)m

)]
. (24)
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Equation (24) includes the case n = 1 (Equation (16)). In addition, Equation (24)151

is identical to Equation (16) when τm is replaced with T :=
∑n

i=1 τ
(i)
m ; this implies that152

the occurrence pattern of small events does not affect that of upper intervals. This seems153

natural for the uncorrelated time series.154

The same property as Equations (17) and (18) holds for pMm(τM |τ (1)m , · · · , τ (n)m );
it has a peak at

τmax
M = T + ⟨τM ⟩

⟨τM ⟩
⟨τm⟩ − 3

⟨τM ⟩
⟨τm⟩ − 1

(> T ),

under the condition

∆m >
log10 3

b
. (25)

In the above mentioned Bayesian updating, the position of the consecutive lower155

intervals in an upper interval is not restricted. However, update can be started only from156

the lower interval immediately after the event with the magnitude above M . In such a157

method, the inverse probability density function is different from Equation (24) (Appendix158

C). At a glance, this updating method seems suitable under the situation wherein the159

information on the lower intervals observed one after another is imported sequentially;160

however, seismic catalogs are known to be incomplete immediately after a large earth-161

quake. In that case, the lower intervals should be considered not from the leftmost one162

but from somewhere else. Therefore, in the present paper, we limit ourselves to exam-163

ine the property of the inverse probability density function of the unrestricted updat-164

ing method that is more appropriate for application to earthquake catalogs.165

4.2 Approximation function of inverse probability density function166

Equation (23) indicates that new information on the lower intervals cannot be added167

by the product of the conditional probabilities as is usual in Bayesian updating. In this168

sub-section, we derive its approximation function with a convenient form applicable to169

the time series with correlations between events.170

To this end, we use the approximate derivation of NmM (τM , τ
(1)
m , · · · , τ (n)m ) described

below instead of the second approach for deriving Equation (22). In the following, the
upper and the lower consecutive intervals are assumed to satisfy

τM ≥
n∑

i=1

τ (i)m . (26)

First, consider the case n = 2. There are NMpM (τM )dτM upper intervals of length
τM in the time series. These upper intervals are as shown in Figure 5(a), and we use them
to generate a new time series by connecting them in the order of appearance as in Fig-
ure 5(b). Let the number of the consecutive lower intervals of lengths {τ (1)m , τ

(2)
m } in this

new time series be denoted by N ′
mM (τ

(1)
m , τ

(2)
m |τM ). The total number of the lower in-

tervals in this new time series is given as

NMpM (τM )
τM

⟨⟨τm⟩⟩ τM
dτM .

Therefore, based on the assumption that τ
(1)
m and τ

(2)
m emerge independently, N ′

mM (τ
(1)
m , τ

(2)
m |τM )

is approximately calculated as

N ′
mM (τ (1)m , τ (2)m |τM ) ≈ NMpM (τM )

τM
⟨⟨τm⟩⟩ τM

pmM (τ (1)m |τM )pmM (τ (2)m |τM )dτ2mdτM . (27)

N ′
mM (τ

(1)
m , τ

(2)
m |τM ) is not equivalent to NmM (τM , τ

(1)
m , τ

(2)
m ) because N ′

mM (τ
(1)
m , τ

(2)
m |τM )171

includes cases where the two consecutive lower intervals do not belong to the same up-172

–10–
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Figure 5. Schematic of another approach to count the total number of consecutive lower in-

tervals of lengths τ
(1)
m and τ

(2)
m included in the upper interval of length τM . (a) First, pick up all

upper intervals of length τM from the time series. (b) Second, generate new time series by con-

necting these upper intervals in the order of appearance. Third, N ′
mM (τ

(1)
m , τ

(2)
m |τM ) is calculated

by counting the total number of the consecutive lower intervals of lengths {τ (1)
m , τ

(2)
m } in this new

time series. In this counting process, an approximate calculation using the product of the condi-

tional probability is conducted. Finally, NmM (τM , τ
(1)
m , τ

(2)
m ) is obtained by excluding such pairs

where the two consecutive lower intervals are not included in the same upper interval (the cases

indicated with ∗) from N ′
mM (τ

(1)
m , τ

(2)
m |τM ).

per interval (the case indicated by ∗ in Figure 5(b)). Therefore, it is necessary to count173

such cases in the time series, and subtract them from N ′
mM (τ

(1)
m , τ

(2)
m |τM ).174

These cases to exclude occur when an upper interval of length τM whose rightmost
lower interval has length τ

(1)
m is adjacent to the left of another upper interval whose left-

most lower interval has length τ
(2)
m . The probability density that the length of the right-

most or leftmost lower interval of the upper interval of length τM is τm is, because the
position of the rightmost or leftmost interval is confirmed among the i-lower intervals,
calculated as

PR(τm|τM ) = PL(τm|τM )

=

∞∑
i=1

ΨmM (i|τM )ρmM (τm|i, τM ). (28)

Here, the probability density for the rightmost lower interval is denoted by PR(τm|τM ),
and the leftmost by PL(τm|τM ). Equation (28) can be explicitly written using Equations
(12)–(14) as (Appendix D)

PR(τm|τM ) = PL(τm|τM )

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) +

A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩ θ(τM − τm). (29)

By using PL(τm|τM ) and PR(τm|τM ), the number of cases to exclude can be expressed
for a sufficiently large NM (because NMpM (τM )dτM in Equation (30) is precisely NMpM (τM )dτM−
1) as

NMpM (τM )PR(τ (1)m |τM )PL(τ (2)m |τM )dτ2mdτM . (30)

–11–
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Therefore, NmM (τM , τ
(1)
m , τ

(2)
m ) is approximately derived as

NmM (τM , τ (1)m , τ (2)m ) ≈ NMpM (τM )

×

(
τM

⟨⟨τm⟩⟩ τM
pmM (τ (1)m |τM )pmM (τ (2)m |τM )− PR(τ (1)m |τM )PL(τ (2)m |τM )

)
dτ2mdτM . (31)

Next, we consider the case n(≥ 3). Equation (27) is generalized as

N ′
mM (τ (1)m , · · · , τ (n)m |τM ) ≈ NMpM (τM )

τM
⟨⟨τm⟩⟩ τM

(
n∏

i=1

pmM (τ (i)m |τM )

)
dτnmdτM . (32)

From this N ′
mM (τ

(1)
m , · · · , τ (n)m |τM ), the cases wherein the consecutive lower intervals of

lengths {τ (1)m , · · · , τ (n)m } are not included in the same upper interval need to be excluded.
Considering the condition of Equation (26), a sequence of consecutive lower intervals is
divided by only one boundary event with a magnitude above M (Figure 6). Let the prob-
ability that the rightmost or leftmost lower intervals of the upper interval of length τM
is {τ (1)m , · · · , τ (l)m } (l ≥ 2) be P (τ

(1)
m , · · · , τ (l)m |τM ). Then, as the position of the right-

most or leftmost lower intervals is confirmed among the i(≥ l) lower intervals, P (τ
(1)
m , · · · , τ (l)m |τM )

is

P (τ (1)m , · · · , τ (l)m |τM )

=

∞∑
i=l

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (33)

By substituting Equations (12)–(14) into Equation (33) (Appendix E)

P (τ (1)m , · · · , τ (l)m |τM ) =

l∏
i=1

Pi(τ
(i)
m |τM ), where Pi(τ

(i)
m |τM ) :=

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩ . (34)

There are (n − 1) possible choices for the boundary position of the consecutive lower
intervals (Figure 6(a)), each with an equal probability

∏n
i=1 Pi. The number of consec-

utive upper intervals in the new time series is almost NMpM (τM )dτM , and therefore, the
number of cases to be excluded is

NMpM (τM )(n− 1)

(
n∏

i=1

Pi(τ
(i)
m |τM )

)
dτnmdτM .

Then

NmM (τM , τ (1)m , · · · , τ (n)m )

≈ NMpM (τM )

{
τM

⟨⟨τm⟩⟩ τM

n∏
i=1

pmM (τ (i)m |τM )− (n− 1)

n∏
i=1

Pi(τ
(i)
m |τM )

}
dτnmdτM . (35)

Therefore, from Equations (20) and (35), the approximation function (papproxMm (τM |τ (1)m , · · · , τ (n)m ))
of the inverse probability density function is derived as

papproxMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

τM
⟨⟨τm⟩⟩ τM

(
n∏

i=1

pmM (τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM )

− ⟨τm⟩
⟨τM ⟩

(n− 1)(
1− ⟨τm⟩

⟨τM ⟩

)n−1

(
n∏

i=1

Pi(τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ). (36)

–12–
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Figure 6. Schematic of the patterns of the consecutive lower intervals of lengths

{τ (1)
m , · · · , τ (n)

m } excluded from N ′
mM (τ

(1)
m , · · · , τ (n)

m |τM ). (a) There are (n − 1) ways to divide

the sequence of lower intervals by the event with a magnitude greater than M at the boundary of

the upper intervals of length τM . (b) The sequence can not be divided by more than one bound-

ary according to condition (26).

Equation (36) is composed of two parts: the first term of the r.h.s. involves the prod-
uct of the conditional probability density functions, and we refer to this part as the ker-
nel part of the approximation function (pkernelMm (τM |τ (1)m , · · · , τ (n)m )) hereafter.

pkernelMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

τM
⟨⟨τm⟩⟩ τM

(
n∏

i=1

pmM (τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ).

(37)
The second term of the r.h.s. is referred to as the correction term, and we denote the
part other than (n− 1) by pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) as

correction term = (n− 1)pcorrectMm (τM |τ (1)m , · · · , τ (n)m ), (38)

where pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

(
n∏

i=1

Pi(τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ).

Equation (36) can be explicitly written as (Appendix F)

papproxMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)(
A∆m

τM
⟨τM ⟩

+ 1

)
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

×
n∏

i=1

{
1−

(
τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)}
− ⟨τm⟩

⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)
(n− 1)e

− τM−
∑n

i=1 τ
(i)
m

⟨τM ⟩ . (39)

The kernel part is explicitly expressed as

pkernelMm (τM |τ (1)m , · · · , τ (n)m ) =
⟨τm⟩
⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)(
A∆m

τM
⟨τM ⟩

+ 1

)
× e

− τM−
∑n

i=1 τ
(i)
m

⟨τM ⟩

n∏
i=1

{
1−

(
τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)}
. (40)
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Note that functions (36)–(40) do not satisfy the normalization condition. Further-175

more, in some cases, papproxMm (τM |τ (1)m , · · · , τ (n)m ) in Equations (36) and (39) may take neg-176

ative values when the correction term is larger than the kernel part. The relationship177

between the inverse probability density function and its approximation function is dis-178

cussed in Appendix G.179

5 Examination of Bayesian updating method in uncorrelated time se-180

ries181

In this section, we compute the inverse probability density function given by Equa-182

tion (24) and the (part of) approximation function (Equations (36)–(40)) for the numer-183

ically generated uncorrelated time series, and we compare their properties (Tanaka &184

Umeno, 2021). We examine the numerical method of the Bayesian updating by chang-185

ing some conditions to see its utility.186

5.1 Time series generation and Bayesian updating methods187

The uncorrelated time series can be numerically generated by setting λ(t) ≡ λ0188

in Equation (1). In fact, it is numerically generated as the renewal process in which mag-189

nitudes and time intervals are generated randomly obeying Equations (9) and (10), re-190

spectively. We set the parameter values to be b = 1 and λ0 = 0.0007. The magnitude191

thresholds are set to (M,m) = (5.0, 3.0). The b-value condition of Equation (25) is sat-192

isfied for these settings. The occurrence time of each event is recorded to 20 decimal places.193

For such time series, Bayesian updating is applied as explained below.194

Bayesian updating is executed for each lower interval in the order of appearance195

starting from the one immediately after the event with a magnitude above M by sub-196

stituting their lengths {τ (1)m , τ
(2)
m , · · · , τ (n)m } into Equations (24), (39), and (40). The sum-197

mation of the lower intervals at the n-th update
∑n

i=1 τ
(i)
m is equivalent to the elapsed198

time T from the previous event with a magnitude above M . Further, the updating is per-199

formed until the event immediately before the next large event with a magnitude above200

M (i.e., the rightmost lower interval in an upper interval is not used). Therefore, we con-201

sider only cases where at least one event is (or two lower intervals are) included in an202

upper interval.203

In addition, we use the following numerical method based on Equations (36) and204

(37). First, we generate N time series each contains 105 events as sample data. From205

these sample data, numerically obtain the statistics required for the calculating Equa-206

tions (36) and (37), i.e., pm(τm), pM (τM ), pmM (τm|τM ) and Pi(τm|τM ), and the aver-207

age number of lower intervals included in the upper interval of length τM , τM/⟨⟨τm⟩⟩τM .208

Although the last one is a quantity related to the conditional probability, we calculate209

it separately. Moreover, we calculate only P1(τm|τM ) and use it instead of Pi(τm|τM )210

for i ≥ 2.211

These statistics are obtained as a vector or a matrix on discretized intervals as

τm,j := 10(j+0.5)∆τm ,

τM,k := 10(k+0.5)∆τM , (41)

where j, k ∈ Z, such that

pm = [pm,j ]j=jmin,··· ,jmax
,

pM = [pM,k]k=kmin,··· ,kmax
,

pmM =
[
[pmM,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax

,

P1 =
[
[P1,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax

.

(42)
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In Equation (42), jmin, jmax, kmin, and kmax represent the smallest and largest bin num-212

bers of each distribution. For the statistics obtained as a matrix, the range of j depends213

on k, and this is indicated as j
(k)
min and j

(k)
max. The ranges of j and k are different for dis-214

tribution; however, the same symbol is used in Equation (42). In this paper, we fix ∆τm =215

0.1, and in this section, we examine the cases N = 103, 105 and ∆τM = 0.1, 0.025. In216

the case N = 105, they are fully used only for pmM (τm|τM ) and P1(τm|τM ), and only217

103 of them are used for pm(τm), pM (τM ), and τM/⟨⟨τm⟩⟩τM .218

To use these amounts in numerical Bayesian updating, we perform the following219

interpolations between the data points and extrapolations outside the data range. We220

describe these procedures using the example of the case N = 103 and ∆τM = 0.1.221

First, for the inter-event time distributions (pm and pM ), we interpolate between222

the data points of each distribution (between τm,j and τM,k, respectively) using cubic223

spline functions. Outside the data range (i.e., τm < τm,jmin
, τm > τm,jmax

and τM <224

τM,kmin
, τM > τM,kmax

), we extrapolate the fitting curve for the edge 10 points (Fig-225

ure S1). The distributions are defined for all continuous τm values and for all τM,k us-226

ing this process.227

Second, for the bivariate distributions (pmM and P1), we perform the same inter-228

polations and extrapolations for τm,j (Figures S2 and S3). Meanwhile, for τM,k, the do-229

main is extended using the average of the functions at {τM,kmin
, · · · , τM,kmin+le−1} as the230

substitute for τM,k with k < kmin, whereas using the functions at {τM,kmax−le+1, · · · , τM,kmax}231

as the substitute for τM,k with k > kmax. We set le = 5 for ∆τM = 0.1 and le = 20232

for ∆τM = 0.025.233

Finally, for τM,k/⟨⟨τm⟩⟩τM,k
, the interpolation and extrapolation procedures are con-234

ducted in the same way as pM , although the extrapolation functions are different (Fig-235

ure S4).236

Thus, the discrete variable τm,j becomes continuous as τm and the distribution func-237

tions are defined for all τm larger than 0. This makes it possible to return a value for238

any input of the length of a lower interval when performing Bayesian updating. Further,239

the distribution functions are defined for any k in Equation (41). We set the range of240

k to be −120 ≤ k ≤ 70 for ∆τM = 0.1, and −480 ≤ k ≤ 280 for ∆τM = 0.025. Al-241

though this yields the maximum range of the Bayesian updating, the updating at the242

n-th step is performed within the range max{τ (1)m , · · · , τ (n)m } < τM . The properties of243

the inverse probability density function and the (part of) approximation function are ex-244

amined within this range.245

The kernel parts of the approximation functions are computed by calculating Equa-
tion (37) in a step-by-step manner as

ln pkernelMm (τM,k|τ (1)m ) = ln

(
⟨τm⟩
⟨τM ⟩

τM,k

⟨⟨τm⟩⟩ τM,k

)
+ ln pmM (τ (1)m |τM,k)− ln pm(τ (1)m ) + ln pM,k,

ln pkernelMm (τM,k|τ (1)m , τ (2)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ ln pmM (τ (2)m |τM,k)− ln pm(τ (2)m ) + ln pkernelMm (τM,k|τ (1)m ),

ln pkernelMm (τM,k|τ (1)m , τ (2)m , τ (3)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ ln pmM (τ (3)m |τM,k)− ln pm(τ (3)m ) + ln pkernelMm (τM,k|τ (1)m , τ (2)m ),

... (43)
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The correction terms of the approximation functions are calculated by first update as

ln pcorrectMm (τM,k|τ (1)m ) = ln

(
⟨τm⟩
⟨τM ⟩

)
+ lnP1(τ

(1)
m |τM,k)− ln pm(τ (1)m ) + ln pM,k,

ln pcorrectMm (τM,k|τ (1)m , τ (2)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ lnP1(τ

(2)
m |τM,k)− ln pm(τ (2)m ) + ln pcorrectMm (τM,k|τ (1)m ),

ln pcorrectMm (τM,k|τ (1)m , τ (2)m , τ (3)m ) = − ln

(
1− ⟨τm⟩

⟨τM ⟩

)
+ lnP1(τ

(3)
m |τM,k)− ln pm(τ (3)m ) + ln pcorrectMm (τM,k|τ (1)m , τ (2)m ),

... (44)

and then, we add ln(n− 1) for each ln pcorrectMm (τM |τ (1)m , · · · , τ (n)m ).246

The approximation functions are obtained by adding together the kernel part and247

the correction term calculated by these separate updates. The approximation functions248

are calculated only for such k’s that psup > ln pkernelMm , ln pcorrectMm > pinf . Here, psup(=249

600) and pinf(= −600) yield the upper and lower limits of pkernelMm and pcorrectMm to ensure250

that these are within the range of the computer capacity. In addition, such k’s for which251

the correction term is so large that Equation (36) becomes negative are excluded.252

Figure S5 shows an example of Bayesian updating for the uncorrelated time series.253

The inverse probability density function given by Equation (24) has a characteristic peak254

that is not observed in pM (τM ). The correction term makes the kernel part obtained from255

Equation (40) closer to the inverse probability density function. Moreover, the numer-256

ical calculations based on Equations (36) and (37) with N = 103 and ∆τM = 0.1 ap-257

pear to be consistent with these results.258

In the next subsection, we compare these functions statistically to examine numer-259

ical Bayesian updating method.260

5.2 Examination of numerical Bayesian updating method261

In this subsection, we compare the probability density functions and the (part of)262

approximation functions statistically. The Bayesian updating method described in the263

previous subsection is applied to 100 test data time series, each containing 105 events264

prepared separately from the sample data.265

5.2.1 Comparison by distance266

We define the distance for two square-integrable functions f(·) and g(·) as

D(f ||g) :=
∫ ∞

T

|f(τM )− g(τM )|2 dτM . (45)

The range of the integral is set to (T,∞) to exclude the Dirac’s delta function at τM =

T in the inverse probability density function. For f = pMm(τM |τ (1)m , · · · , τ (n)m ) and g =
pM (τM ), the distance can be analytically derived (Appendix H), whereas when f(·) or
g(·) is the (part of) approximation function, the distance is calculated numerically as

D(f ||g) ≃
∑

k;τM,k>T
psup>ln f,ln g>pinf

|f(τM,k)− g(τM,k)|2 (ln 10)τM,k∆τM . (46)

D(f ||g) is calculated for each update throughout the 100 test data time series. If267

no k’s satisfy psup > ln f, ln g > pinf , it is not included in the following calculation.268

The average distance ⟨D(f ||g)⟩ is calculated by averaging these distances for each elapsed269

time T ∈ [100.1l, 100.1(l+1)) with l ∈ Z from the previous event larger than M .270
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Figure 7(a) shows the average distance for the cases f = pMm(τM |τ (1)m , · · · , τ (n)m ),271

papproxMm (τM |τ (1)m , · · · , τ (n)m ), pkernelMm (τM |τ (1)m , · · · , τ (n)m ), and g = pM (τM ). In addition to272

the analytical calculation in Equation (45) for D(pMm||pM ), the results of the numer-273

ical integration of Equation (46) are presented; the calculations using Equations (39) and274

(40) are indicated by D′(·||·). The results of the calculation using Equations (36) and275

(37) with the numerical method in §5.1 with N = 103 and ∆τM = 0.1 are presented276

by D′′(·||·). The results for N = 105 with ∆τM = 0.1 and ∆τM = 0.025 are shown in277

Figure S6.278

First, one can see that ⟨D′(pMm||pM )⟩ is almost consistent with ⟨D′(papproxMm ||pM )⟩,279

which indicates that papproxMm (τM |τ (1)m , · · · , τ (n)m ) derived in the previous section certainly280

approximates the inverse probability density function, regardless of the elapsed time (or281

regardless of the number of updates, because the occurrence rate is constant). However,282

these separate from D(pMm||pM ) at around T ∼ 105 and at a large T . As such sepa-283

rations disappear when ∆τM = 0.025 (Figure S6(c,d)), this is attributed to the coarse-284

ness of the numerical integration.285

Second, ⟨D′(pkernelMm ||pM )⟩ is nearly consistent with ⟨D′′(pkernelMm ||pM )⟩. This suggests286

that the numerical updating method in Equation (43) certainly calculates the kernel part.287

However, ⟨D′′(papproxMm ||pM )⟩ gradually separates from ⟨D′(papproxMm ||pM )⟩ at a large T . This288

separation is more clearly illustrated in Figure 7(b), which shows the average distances289

between f = papproxMm , pkernelMm and g = pMm calculated by Equation (46). This separa-290

tion can be attributed to the calculation of the correction term in Equation (44), in par-291

ticular to the fluctuation in the numerically obtained P1 (Appendix I).292

5.2.2 Comparison by maximum peak time293

In the previous subsection, the approximation function calculated by the numer-294

ical Bayesian updating method is suggested to be separate from the inverse probability295

density function. However, we show that such a separation does not have a considerable296

effect around the maximum peak. To this end, we further compare the maximum points297

(hereafter, maximum peak time) of the inverse probability density function in Equation298

(23) and its approximation function in Equation (36) with the numerical updating method,299

each denoted by τ̂max
M and τmax,approx

M . Both functions are descretized as Equation (41);300

the corresponding k in Equation (41) is denoted by k̂max and kmax,approx, respectively.301

k̂max and kmax,approx are numerically searched for each update. These are deter-302

mined as such k that the function takes the maximum value within the range for which303

the above mentioned numerical results are obtained, while excluding its edges. Thus, if304

k̂max or kmax,approx is located at such edges, it is not considered the peak and is set to305

k = 80 when ∆τM = 0.1 and k = 320 when ∆τM = 0.025. Further, when the numeri-306

cal results of the approximation function are not obtained for any k (when the correc-307

tion term exceeds the kernel part for all k), kmax,approx is set to be 80 or 320.308

Figure 8 shows the joint probability mass function (p.m.f.) of (k̂max, kmax,approx)309

for N = 103 and ∆τM = 0.1. Those for N = 105 are presented in Figure S7. Here,310

the population is all the pairs of (k̂max, kmax,approx) obtained for each update through-311

out the test data. The maximum peak search is conducted in the two ranges; (a) τM >312

max{τ (1)m , · · · , τ (n)m }, and (b) τM > T . In the former case, the p.m.f. is bimodal; the313

higher peak exists around k̂max = kmax,approx, and the other lower peak around k̂max >314

kmax,approx. The second peak disappears in the latter case, and the first peak is intrin-315

sic, i.e., the positions of the maximum peak are close between the inverse probability den-316

sity function and its approximation function. The situation is the same for other cases317

(Figure S7). These results indicate that it is the off-peak region of the approximation318

function that contributes to the separation of the average distances.319
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Figure 7. Average distances for each elapsed time (T ) from the previous large event with a

magnitude above M . (a) Distances between the inter-event time distribution and other function.

D(pMm||pM ) (Equation (H2) in Appendix H) is shown by the red curve, and the symbols are nu-

merical results for Equation (46). (b) Distances between the inverse probability density function

and other function numerically calculated by Equation (46).

The results obtained in this section indicate that the numerical method using 1100320

time series (1000 for sample data and 100 for test data) is sufficient to calculate the ker-321

nel part as well as the maximum peak time of the approximation function that is im-322

portant in the inference, and to examine their statistical property. Further, these results323

indicate that Bayesian updating can be applied with the numerical method even if the324

explicit functional forms of the inter-event time distribution and the conditional prob-325

ability density function and so on are unclear, such as the time series of the ETAS model.326

6 Bayesian updating for the time series of the ETAS model327

In this section, Bayesian updating is applied to the time series of the ETAS model328

(Tanaka & Umeno, 2021). In this case, due to the correlations among events, it is dif-329

ficult to derive the inverse probability density function and its approximation function330

analytically. Therefore, we compute the approximation function (Equation (36)) and its331

kernel part (Equation (37)) using the numerical Bayesian updating method. The max-332

imum peak time of the kernel part is used as the estimate for the occurrence time of the333

next large event, and the effectiveness of forecasting based on that estimate is evaluated334

statistically.335

6.1 Time series generation and Bayesian updating methods336

We apply the numerical Bayesian updating method in §5.1 to the time series gen-337

erated by Equation (1) with the parameter values b = 1, α = 0.8, θ = 0.2 (p = 1.2),338

c = 0.01, M0 = 3, λ0 = 0.0007, and K = 0.0125. The magnitude thresholds are339

–18–



manuscript submitted to JGR: Solid Earth

-80

-60

-40

-20

 0

 20

 40

 60

 80

 90

-80 -60 -40 -20  0  20  40  60  80 90

(a)

k
m

a
x
,a

p
p
ro

x

k
^max

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

p
.m

.f
.

 20

 40

 60

 80

 40  60  80

-80

-60

-40

-20

 0

 20

 40

 60

 80

 90

-80 -60 -40 -20  0  20  40  60  80 90

(b)

k
m

a
x
,a

p
p
ro

x

k
^max

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

p
.m

.f
.

 20

 40

 60

 80

 40  60  80

Figure 8. Joint probability mass function for (k̂max, kmax,approx). Numerical search of the

maximum peak is conducted for (a) τM > max{τ (1)
m , · · · , τ (n)

m } and (b) τM > T . The horizontal

line at kmax,approx = 80 and the vertical line at k̂max = 80 correspond to the cases when the peak

is not detected by the peak search.
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Figure 9. Omori–Utsu law for the parameter values in the text with a different mainshock

magnitude Mm. The number of aftershocks per unit day against the elapsed time (T ) from the

mainshock obeys λ(T ) = K10α(Mm−M0)/(T + c)θ+1. The background rate (λ0 = 0.0007) is also

shown.

(M,m) = (5.0, 3.0). Although the entire time series is stationary because the branch-340

ing ratio (nbr ≈ 0.785) is less than 1, it is locally non-stationary obeying the Omori–Utsu341

law after a large event, as shown in Figure 9. The activity can be categorized into three342

regimes with respect to the elapsed time (T ) from the mainshock, as summarized in Ta-343

ble 1.344

We prepare 1100 time series, with each containing 105 events. First, random num-345

bers generated from five different seed values are used to generate 240 time series for each346

seed. Among them, those contain events with magnitude above 10 are excluded. This347

is because the aftershock sequence excited by such an unrealistic large event do not fit348

within a single time series, and then, the non-stationarity affects the statistics of the sam-349

ple data. We use 1100 of the remaining time series. N = 1000 are used as the sample350

data to obtain statistics with ∆τM = 0.1; the interpolation and extrapolation proce-351

dures are conducted with le = 5 in the same way as explained in §5.1 (Figures S8–S12).352

Bayesian updating (Equations (43) and (44)) is applied to the remaining 100 time se-353
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Table 1. Three Regimes in the time series of the ETAS model

Category Regime Property

( I ) T ≲ c(= 0.01) Stationary, high occurrence rate
(II) c ≲ T ≲ γ(≈ 103) Non-stationary, relaxation process
(III) γ ≲ T Stationary, low occurrence rate (≲ λ0)

ries. The maximum range of k is −120 ≤ k ≤ 70, and the n-th update from the oc-354

currence time of the event above M is conduced in the range max{τ (1)m , · · · , τ (n)m } < τM .355

The numerical update is conducted when the lower interval is above 0 (for the occur-356

rence times recorded to 20 decimal places); otherwise, the update is skipped.357

The following normalizations are performed in the calculations of the Bayesian up-
dating. The result of the calculation in Equation (43) can be very large. In order to com-
pute the approximation functions together with Equation (44), it is necessary to use the
function value of pkernelMm as it is, though it can exceed psup. Therefore, to avoid such en-
largement, we normalize the result of Equation (43) for each update by subtracting the
following numerical integration from Equation (43).

ln

 ∑
k;τM,k>T

psup>ln pkernel
Mm >pinf

pkernelMm (τM,k|τ (1)m , · · · , τ (n)m )(ln 10)τM,k∆τM

 . (47)

Further, it is necessary to subtract Equation (47) from the correction term in Equation358

(44) at the same time (thereby the entire approximation function is multiplied by a con-359

stant). Thus, for each update of Equations (43) and (44), the numerical integration (47)360

is computed and subtracted from both.361

6.2 Comparison of the approximation function and its kernel part362

It is difficult to obtain Pi(τm|τM ) for the ETAS model, and therefore, we exam-363

ine the contribution from the correction term to the approximation function as follows.364

Instead of Pi(τm|τM ), we calculate the probability density functions PL(τm|τM ) and PR(τm|τM )365

(Figures S10 and S11). According to the Omori–Utsu law, we consider that these two366

are the end-members of Pi(τm|τM ). Then, the approximation functions are calculated367

numerically by replacing all Pi(τm|τM )’s in Equation (44) by either PL(τm|τM ) or PR(τm|τM ).368

We denote the maximum peak times of these approximation functions by τmax,L
M and τmax,R

M ,369

and their corresponding k’s in Equation (41) by kmax,L and kmax,R, respectively. Sim-370

ilarly, they are denoted by τmax
M and kmax for the kernel part, hereafter. The numerical371

search of kmax,L, kmax,R, and kmax is conducted in the same way as indicated in §5.2 in372

the range τM > max{τ (1)m , · · · , τ (n)m }.373

Figure 10 shows the joint p.m.f. of (kmax, kmax,L) and (kmax, kmax,R), which is cal-374

culated in the same way as indicated in §5.2. The maximum peak time of the kernel part375

is not significantly affected by the correction term, and then, it can be used to infer that376

of the inverse probability density function. However, its confidence interval or average377

cannot be used because the correction term is not taken into account. In the following,378

we use the maximum peak time of the kernel part (τmax
M ) as the estimator of the occur-379

rence time of the next large event with a magnitude above M , and we discuss the effec-380

tiveness of the forecasting based on the estimates.381
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Figure 10. Joint probability mass functions for (a)
(
kmax, kmax,L

)
and (b)

(
kmax, kmax,R

)
.

The horizontal lines at kmax,L = 80 and kmax,R = 80 and the vertical line kmax = 80 are the cases

where the peak is not detected.

6.3 Estimation of the occurrence time of the next large event and ef-382

fectiveness of forecasting383

We denote the estimate at the n-th update by τmax,n
M (= 10(k

max,n+0.5)∆τM ), and
the actual elapsed time of the next large event from the previous one by τ∗M . We eval-
uate the accuracy of the estimation at the n-th update using the relative error (δn), which
is given as

δn :=
τ∗M − τmax,n

M

τ∗M
, (48)

Equation (48) considers that the error |τ∗M−τmax,n
M | gets larger as τ∗M becomes longer.384

The relative error makes it possible to evaluate the accuracy in a manner that is com-385

parable regardless of τ∗M .386

The accuracy at the n-th update is judged by whether δn is within the threshold
(δth)

−δth ≤ δn ≤ δth. (49)

When Equation (49) is satisfied, the estimation at the n-th update is judged to be plau-
sible for the given threshold value δth in the present paper. This is equivalent for the ac-
tual occurrence time to be within the range

τmax,n
M

(1 + δth)
≤ τ∗M ≤

τmax,n
M

(1− δth)
. (50)

Based on the above accuracy at each update, we further evaluate whether a series387

of estimations yields effective forecasting. Here, effective forecasting implies that τmax
M388

takes a nearly constant value around τ∗M continuously from well before the occurrence389

time of the next large event. This can be quantitatively expressed as follows: Let n≤th390

be the number of consecutive updates immediately before the next large event, in which391

Equation (49) is satisfied. Further, we denote the last update as the nfin-th update. When392

the sequence of updates with a sufficiently long n≤th exists in the range of n ∈ (nfin−393

n≤th, nfin], we consider the forecasting to be effective. We judge the stability of τmax,n
M394

by Equation (49), and therefore, δth should not be too large. In the present paper, we395

set δth = 0.5 and 0.25.396
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To observe the relationship between the effectiveness of forecasting and the station-
arity of the time series, we examine the occurrence rate (Rn), variation of its log (∆ log10 Rn),
and variation of log-estimate (∆kmax

n ) defined below.

Rn := 10/ (tn+9 − tn) , (51)

∆ log10 Rn := log10 Rn+10 − log10 Rn, (52)

∆kmax
n := kmax,n+10 − kmax,n, (53)

where tn represents the occurrence time of the n-th update.397

Figures S11–S13 show examples of Bayesian updating for each regime in Table 1.398

Although these are only examples and not all updating proceeds in this way, these ex-399

amples suggest that the stability of the estimate is related to the stationarity of the time400

series.401

6.4 Statistical analysis of the effectiveness of forecasting402

We show the results of the statistical analysis on the effectiveness of forecasting.403

Only the cases of nfin ≥ 30 are used in the analysis to ensure that the temporal infor-404

mation of lower intervals is fully reflected in the estimate. Figure 11(a) shows the total405

number of upper intervals (N) obtained from the test data for each τ∗M ∈ [100.5l, 100.5(l+1))406

with l ∈ Z. Further, N30 represents the total number of upper intervals such that nfin ≥407

30, which is shown with the ratio to N . The updates included in these N30 upper inter-408

vals are analyzed.409

Figures 11(b–d) show the results of the statistical analysis with δth = 0.5. Fig-410

ure 11(b) shows the probability (Pfin) of n≤th > 0 (or |δnfin
| ≤ δth) for each τ∗M . The411

average of Pfin for the overall τ∗M is about 0.52, and the Pfin for each τ∗M is about the same,412

except for τ∗M > ⟨τM ⟩ in which Pfin takes a higher probability around 0.67. Of such n≤th >413

0 cases, the proportion (P≥30) of those with relatively long n≤th ≥ 30 is also shown in414

Figure 11(b) (the probability distribution of n≤th is shown in Figure S16(a)). Thus the415

regions of high P≥30 are overlapped with regimes ( I ) and (III), though the former is shifted416

toward larger τ∗M . On the other hand, P≥30 is lower in regime (II); it gradually decreases417

as τ∗M gets larger. This is consistent with the average of n≤th (⟨n≤th⟩, this average is taken418

for n≤th > 0), but also with the average of its proportion to nfin (⟨n≤th/nfin⟩) as shown419

in Figure 11(c). This implies that, as the fraction of non-stationary times in [0, τ∗M ) in-420

creases in regime (II), the domination rate of n≤th in the total nfin-updates decreases grad-421

ually. These properties are preserved for δth = 0.25 (Figure S17).422

Figure 12 shows the joint probability density-mass functions of ∆ log10 R and ∆kmax
423

calculated numerically for each τ∗M . The case kmax = 80 is excluded from the popula-424

tion. If τ∗M is in the regions of high P≥30, the distribution is almost symmetrically con-425

centrated near the origin. This implies that, when the time series is dominated by sta-426

tionarity (∆ log10 R ≈ 0), the estimated value is stable (∆kmax ≈ 0). On the other427

hand, if τ∗M is in regime (II), the probability density function gradually has a region in428

the second quadrant as τ∗M gets larger. This region indicates the existence of a non-stationary429

time series in which the estimate has an increasing trend (∆kmax > 0).430

These results present the following conclusions. First, the probability that the rel-431

ative error is within the threshold at the last update (|δnfin
| ≤ δth) is almost indepen-432

dent of the actual occurrence time (τ∗M ). This suggests that the length of the upper in-433

terval can be estimated by the inverse probability density function reflecting the tem-434

poral pattern of lower intervals, at the last update when the information of the lower in-435

tervals can be utilized fully. Second, the stationarity of the time series is related to the436

stability of the estimate; if the time series is non-stationary, it causes the estimate τmax
M437

to shift. Third, the domination rate of stationarity in the time series determines the ef-438

fectiveness of forecasting. Immediately or long after the large event, the stationary time439
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series is dominant. Therefore, based on the second point mentioned above, the estimate440

becomes stable, which leads to an effective forecasting with a relatively long n≤th. How-441

ever, these regions are not identical to regimes ( I ) and (III). This is attributed to lag un-442

til the ratio of the non-stationary region in the time series becomes dominant. On the443

other hand, in regime (II), the non-stationarity becomes gradually dominant, which leads444

to the shifting of τmax
M and shortening of n≤th.445

Finally, we discuss the effectiveness of forecasting in terms of the duration time (τ≤th)446

during the n≤th updates. Figure 11(d) shows the average of the duration time (⟨τ≤th⟩)447

and the average of its ratio to the actual occurrence time (⟨τ≤th/τ
∗
M ⟩) for each τ∗M (the448

probability distribution of τ≤th is shown in Figure S16(b)). Unlike ⟨n≤th⟩ in Figure 11(c),449

⟨τ≤th⟩ increases linearly as τ∗M gets larger, and it is sufficiently long in regime (III). On450

the other hand, τ≤th is very short in regime ( I ); however, the ratio ⟨τ≤th/τ
∗
M ⟩ is high451

(nearly 0.7). Therefore, from the perspective of the time interval, the forecasting is also452

considered to be effective immediately or long after the large event.453

7 Discussion and Conclusions454

The Bayes’ theorem and Bayesian updating on the inter-event times at different455

magnitude thresholds in a marked point process are considered. The analytical results456

for the uncorrelated time series are used to apply Bayesian updating to the time series457

of the ETAS model for examining its utility toward forecasting a large event using the458

temporal pattern of the smaller events.459

First, the Bayes’ theorem is considered for the general marked point process. The460

Bayes’ theorem provides the relationship between the conditional and inverse probabil-461

ity density functions for the lengths of one upper interval and one lower interval. The462

inverse probability density function is represented by the generalized forms of the prob-463

ability density functions of the inter-event times and the conditional probability density464

function. This inverse probability density function is derived for the uncorrelated time465

series analytically, and the condition to have a peak is also found.466

The Bayes’ theorem is extended to Bayesian updating that yields the inverse prob-467

ability density function between the lengths of multiple consecutive lower intervals and468

the upper interval that includes them. Although the inverse probability density func-469

tion is different for the updating manner, we consider the updating without the restric-470

tion on the position of the lower intervals. For the uncorrelated time series, the inverse471

probability density function and its approximation function are derived, and the latter472

approximation is shown to be reasonable using the distances.473

Bayesian updating is applied to the time series of the ETAS model. We numeri-474

cally analyze the approximation function and its kernel part. We use the maximum point475

of the kernel part as the estimate of the occurrence time of the next large event because476

the maximum peaks of these two functions are shown to not be different drastically. The477

accuracy of the estimation at each update is evaluated by the relative error with the ac-478

tual occurrence time of the next large event; the effectiveness of the forecasting through-479

out the series of updates is judged by the continuity of the plausible estimations prior480

to the large event.481

Statistical analysis indicates that the accuracy of the estimation at the last update482

does not drastically depend on the occurrence time of the next large event. This sug-483

gests that the inverse probability density function can estimate the occurrence time of484

the next large event in response to the temporal pattern of minor events. However, the485

continuity of plausible estimation depends on the occurrence time of the next large event.486

This is because the dominance rate of the non-stationary time series in which the esti-487

mate becomes unstable varies with the elapsed time from the previous large event obey-488

ing the Omori–Utsu law. The stationarity is dominant either immediately after or long489
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Figure 11. (a) (Blue) Number of upper intervals N , (Cyan) number of upper intervals that

include at least 30 updates N30, and (Black) their ratio N30/N , for each τ∗
M in the test data.

(b–d) Statistical results with δth = 0.5 for each τ∗
M . (1)–(3) indicates the τ∗

M ’s of the exam-

ples in Figures S13–S15. (b) (Red) Probability Pfin that n≤th > 0 holds (or the probability

that Equation (49) is satisfied at the last (nfin-th) update), and (Orange dotted line) the aver-

age of Pfin ≈ 0.52 for the overall τ∗
M . (Blue) Proportion P≥30 of such cases among them where

n≤th ≥ 30. (c) (Red) Average of n≤th, ⟨n≤th⟩, and (Blue) the average of its proportion to the

total number of updates, ⟨n≤th/nfin⟩. (d) (Red) Average of the duration time τ≤th, ⟨τ≤th⟩ and
(Blue) the average of its proportion to the actual occurrence time, ⟨τ≤th/τ

∗
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Figure 12. Joint probability density-mass functions of ∆ log10 R and ∆kmax for each τ∗
M .

after the previous major event. Therefore, the forecasting by the Bayesian updating method490

can be effective for secondary disaster prevention in the former case, and for long-term491

risk assessment in the latter case.492

The approximation function derived for the uncorrelated time series is applied in493

the Bayesian updating for the time series of the ETAS model. This allows us to perform494

the update in the convenient form of the product of the conditional probabilities. How-495

ever, this implicitly assumes that there is no correlation between events and lower in-496

tervals; such an assumption can be reasonable for the stationary part of the time series,497

although it is not reasonable for non-stationary part. This probably is one of the rea-498

sons why forecasting is ineffective in the non-stationary regime.499

Further, only the kernel part of the approximation function is used when estimat-500

ing the occurrence time of the next large event for the time series of the ETAS model.501

The correction term needs to be investigated in detail to use the entire approximation502

function to perform point estimation by average, interval estimation, or probabilistic risk503

assessment using hazard rate. Comparison with the probabilistic evaluation using the504

inter-event time distribution becomes possible after clarifying the correction term.505

Although the statistical property of Bayesian updating is examined for only one506

set of ETAS parameters, it is considered to be different for activities generated by other507

parameter values. For example, for the time series with the high background rate (λ0)508

that corresponds to taking up a large spatial area, forecasting is considered to be less509

effective because in such time series, different mainshock-aftershocks sequences overlap510

(Touati et al., 2009) and the correlations between the upper and lower intervals are weak-511

ened. Further, if the background rate is low, forecasting is considered to be improved512

because a single mainshock-aftershocks sequence is exposed (Touati et al., 2009) and the513

correlation is easily reflected in the conditional probability. Forecasting is also consid-514

ered to be improved for the time series with a large branching ratio (nbr). If the branch-515

ing ratio is large, the number of aftershocks generated by an event increases (Helmstetter516
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& Sornette, 2003), which increases the number of updates in the Bayesian updating; this517

is advantageous for forecasting.518

In this study, only one lower threshold magnitude (m) is set for a given upper thresh-519

old (M). One approach for performing Bayesian updating using more temporal infor-520

mation of the lower intervals is to set multiple lower thresholds (m1 < m2 < · · · (<521

M)). When setting such lower thresholds, it is better to refer to the condition of ∆m >522

log10 3/b so that the inverse probability density function has a peak. This condition in-523

dicates that there is a trade-off between the b-value and ∆m, and then, the range of lower524

thresholds that can be set varies with the b-value. However, the condition ∆m > log10 3/b525

is for the uncorrelated time series; finding the corresponding condition for the time se-526

ries of the ETAS model is a future work. Considering such an extension is important for527

applying the Bayesian updating method to the real seismic catalogs in which the num-528

ber of earthquakes is limited.529

To utilize as much temporal information on small events as possible using the method530

described above is important for applying the Bayesian updating method to real seis-531

mic catalogs with a limited number of data. Another idea to apply the Bayesian updat-532

ing method to seismic catalogs while compensating for the shortage of data is to use the533

ETAS model in combination. The ETAS model can be used to generate a sufficient amount534

of synthetic data with the parameter set determined for the past seismic activity. From535

such synthetic data, statistical amounts necessary in the numerical Bayesian updating536

method is obtained precisely. Moreover, it is necessary to develop further ingenuity by537

studying the properties of the conditional and inverse probability density functions through538

the analysis of seismic catalogs. With these auxiliaries, the application of the Bayesian539

updating method to real seismic activity is expected to proceed while solving the lim-540

itation of seismic data.541

Appendix A Derivation of the conditional and inverse probability den-542

sity functions for the uncorrelated time series543

First, we derive the conditional probability density function (Equation (15)) by sub-
stituting Equations (12)–(14) into Equation (11). The denominator of Equation (11) is

∞∑
i=1

iΨmM (i|τM ) = A∆m
τM
⟨τM ⟩

+ 1,

and the numerator is
∞∑
i=1

iρmM (τm|i, τM )ΨmM (i|τM ) = e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+ e
−A∆m

τm
⟨τM ⟩

A∆m

⟨τM ⟩

∞∑
i=0

(i+ 2)

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)}i

i!
e
−A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
θ(τM − τm)

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) + e

−A∆m
τm

⟨τM ⟩
A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
+ 2

}
θ(τM − τm).

Equation (15) is obtained by rearranging the above equations.544

We confirm that Equation (2) with this conditional probability in its kernel has the
exponential distribution (Equation (10)) as the solution. By dividing both sides of Equa-
tion (2) by Nm and rewriting it using NM/Nm = ⟨τm⟩/⟨τM ⟩ as well as Equation (15)

pm(τm) =
⟨τm⟩
⟨τM ⟩

∫ ∞

τm

[
e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+
A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩

{
A∆m

τM − τm
⟨τM ⟩

+ 2

}
θ(τM − τm)

]
pM (τM ), (A1)
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where the following general relation is used.

τM
⟨⟨τm⟩⟩τM

=

∞∑
i=1

iΨmM (i|τM ).

We show that the r.h.s. of Equation (A1) is equivalent to the l.h.s., pm(τm) = e−
τm

⟨τm⟩ /⟨τm⟩.
Substitute pM (τM ) = e

− τM
⟨τM ⟩ /⟨τM ⟩ into the r.h.s. of Equation (A1) and note that A∆m+

1 = ⟨τM ⟩/⟨τm⟩; the integral involving the delta function (R1) is

R1 =
⟨τm⟩
⟨τM ⟩2

e−
τm

⟨τm⟩ , (A2)

and the integral involving the step function (R2) is

R2 =
⟨τm⟩
⟨τM ⟩3

A∆me
−A∆m

τm
⟨τM ⟩

∫ ∞

τm

{
A∆m

τM − τm
⟨τM ⟩

+ 2

}
e
− τM

⟨τM ⟩ dτM

=
⟨τm⟩
⟨τM ⟩2

A∆m(A∆m + 2)e−
τm

⟨τm⟩ . (A3)

Therefore, the r.h.s. of Equation (A1) is shown to be equivalent to the l.h.s. of Equa-
tion (A1) as follows:

R1 +R2 =
⟨τm⟩
⟨τM ⟩2

(1 +A∆m)
2
e−

τm
⟨τm⟩

=
1

⟨τm⟩
e−

τm
⟨τm⟩ . (A4)

Second, we derive the inverse probability density function (Equation (16)). From
Equation (15), the generalized probability density functions for the uncorrelated time
series are derived as

zm(τm) =
τm

⟨τm⟩2
e−

τm
⟨τm⟩ ,

zM (τM ) =
τM

⟨τM ⟩2
e
− τM

⟨τM ⟩ ,

zmM (τm|τM ) =
τm
τM

e
−A∆m

τm
⟨τM ⟩

[
δ(τM − τm) +

A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
+ 2

}
θ(τM − τm)

]
.

Equation (16) is obtained by substituting the above equations in Equation (8).545

Derivative of Equation (16) by τM is

∂

∂τM
pMm(τM (> τm)|τm) = − ⟨τm⟩2

⟨τM ⟩5
A2

∆me
τm−τM
⟨τM ⟩

[
τM −

{
τm + ⟨τM ⟩

(
1− 2

A∆m

)}]
.

Therefore, the inverse probability density function has a peak at

τmax
M = τm + ⟨τM ⟩

(
1− 2

A∆m

)
,

under the condition of τmax
M > τm, which is equivalent to

∆m >
log10 3

b
.
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Appendix B Derivation of Equation (24) from Equation (23)546

The summation part in the r.h.s. of Equation (23) is

∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= ΨmM (n|τM )ρmM (τ (1)m |n, τM )

n∏
j=2

ρmM

(
τ (j)m |n− j + 1, τM −

j−1∑
k=1

τ (k)m

)

+

∞∑
i=n+1

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
.

The first term on the r.h.s. of the above equation is transformed by substituting Equa-
tions (12)–(14) as[

A∆m
τM
⟨τM ⟩

]n−1

(n− 1)!
e
−A∆m

τM
⟨τM ⟩

(n− 1)

τM

(
τM − τ

(1)
m

τM

)n−2
(n− 2)

τM − τ
(1)
m

(
τM − τ

(1)
m − τ

(2)
m

τM − τ
(1)
m

)n−3

· · ·
δ(τM −

∑n
i=1 τ

(i)
m )

τM −
∑n−2

i=1 τ
(i)
m

=

(
A∆m

⟨τM ⟩

)n−1

e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

n∑
i=1

τ (i)m

)
. (B1)

The second term except the step function is also transformed as

∞∑
i=n+1

(i− n+ 1)

[
A∆m

τM
⟨τM ⟩

]i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

(i− 1)

τM

(
τM − τ

(1)
m

τM

)i−2

×
n∏

j=2

(i− j)

τM −
∑j−1

k=1 τ
(k)
m

(
τM −

∑j
k=1 τ

(k)
m

τM −
∑j−1

k=1 τ
(k)
m

)i−j−1

=

∞∑
i=n+1

(i− n+ 1)

(i− n− 1)!

(
A∆m

⟨τM ⟩

)i−1

e
−A∆m

τM
⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)i−n−1

=

∞∑
i=0

i+ 2

i!

(
A∆m

⟨τM ⟩

)i+n

e
−A∆m

τM
⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)i

=

(
A∆m

⟨τM ⟩

)n

e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩

∞∑
i=0

i+ 2

i!

{
A∆m

⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)}i

e
−A∆m

τM−
∑n

k=1 τ
(k)
m

⟨τM ⟩

=

(
A∆m

⟨τM ⟩

)n

e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩

(
A∆m

τM −
∑n

i=1 τ
(i)
m

⟨τM ⟩
+ 2

)
. (B2)

Finally, Equation (24) is obtained by substituting Equations (B1) and (B2) in Equa-
tion (23), with the denominator of the r.h.s. of Equation (23)

n∏
i=1

pm(τ (i)m ) =
1

⟨τm⟩n
e−

∑n
i=1 τ

(i)
m

⟨τm⟩ .

Appendix C Another Bayesian updating method547

In this appendix, we consider another method of Bayesian updating from the one548

introduced in §4; this method considers the consecutive lower intervals in the order of549

the appearance from the last event with magnitude greater than M . We derive the in-550

verse probability density function for this updating method in the uncorrelated time se-551

ries.552
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Let N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) be the total number of such upper intervals of length553

τM that include the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } start from the554

leftmost one in the upper interval. Further, we denote the inverse probability density func-555

tion for this updating by p∗Mm(τM |τ (1)m , · · · , τ (n)m ). We derive it by representing N∗
mM (τM , τ

(1)
m , · · · , τ (n)m )556

in two ways as follows:557

First, we derive N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) by counting the total number of the up-

per intervals of length τM that include the leftmost consecutive lower intervals of lengths
{τ (1)m , · · · , τ (n)m }. The position of the first interval in the sequence of the consecutive lower
intervals is fixed at the leftmost one in an upper interval, and therefore, the number of
the sequence {τ (1)m , · · · , τ (n)m } in the time series is

NM

n∏
i=1

pm(τ (i)m )dτnm.

Among them, the number of sequences that belong to the same upper interval is

NM

(
1− ⟨τm⟩

⟨τM ⟩

)n−1 n∏
i=1

pm(τ (i)m )dτnm.

Therefore, the first representation is obtained as

N∗
mM (τM , τ (1)m , · · · , τ (n)m )

= NM

(
1− ⟨τm⟩

⟨τM ⟩

)n−1
{

n∏
i=1

pm(τ (i)m )

}
p∗Mm(τM |τ (1)m , · · · , τ (n)m )dτMdτnm.

This equation is rewritten using Equation (10) in the explicit form as

N∗
mM (τM , τ (1)m , · · · , τ (n)m )

= NM

(
1− ⟨τm⟩

⟨τM ⟩

)n−1
1

⟨τm⟩n
e−

∑n
i=1 τ

(i)
m

⟨τm⟩ p∗Mm(τM |τ (1)m , · · · , τ (n)m )dτMdτnm. (C1)

Second, we derive N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) by counting the total number of con-

secutive lower intervals that start from the leftmost one in the upper intervals of length
τM . There is only one way for the sequence of consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }
to be involved in each of the NMpM (τM )dτM upper intervals of length τM . The prob-
ability of the occurrence of that sequence in the upper interval is, when i(≥ n)-lower
intervals are included in it

ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτnm.

Therefore, the second representation is obtained as

N∗
mM (τM , τ (1)m , · · · , τ (n)m )

= NMpM (τM )

∞∑
i=n

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτMdτnm.

This equation is rewritten in the explicit form using Equations (12)–(14) in the same way
as in Appendix B.

N∗
mM (τM , τ (1)m , · · · , τ (n)m ) = NM

1

⟨τM ⟩
e
− τM

⟨τM ⟩ dτMdτnm

(
A∆m

⟨τM ⟩

)n−1

×

{
e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

n∑
i=1

τ (i)m

)
+

(
A∆m

⟨τM ⟩

)
e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩ θ

(
τM −

n∑
i=1

τ (i)m

)}
. (C2)
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Finally, p∗Mm(τM |τ (1)m , · · · , τ (n)m ) is derived from Equations (C1) and (C2) as

p∗Mm(τM |τ (1)m , · · · , τ (n)m )

=
⟨τm⟩
⟨τM ⟩

{
A∆m

⟨τM ⟩
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩ θ

(
τM −

n∑
i=1

τ (i)m

)
+ e−

τM−
∑n

i=1 τ
(i)
m

⟨τm⟩ δ

(
τM −

n∑
i=1

τ (i)m

)}
.

(C3)

This is different from Equation (24), which reflects the difference whether the position558

of lower intervals is specified.559

Appendix D Derivation of Equation (29)560

First, we substitute Equations (12)–(14) into Equation (28)

PR(τm|τM ) = PL(τm|τM )

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+
∞∑
i=2

(i− 1)

τM

(
1− τm

τM

)i−2

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩ θ(τM − τm).

In the above equation, the summation part of the term including the step function can
be transformed as

∞∑
i=2

(i− 1)

τM

(
1− τm

τM

)i−2

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

=
A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩

∞∑
i=0

{
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)}i

i!
e
−A∆m

τM
⟨τM ⟩

(
1− τm

τM

)

=
A∆m

⟨τM ⟩
e
−A∆m

τm
⟨τM ⟩ .

Finally, Equation (29) is obtained by rearranging the above equations.561

Appendix E Derivation of Equation (34)562

In this appendix, P (τ
(1)
m , · · · , τ (l)m |τM ) is derived for the uncorrelated time series.

First, we divide the summation in Equation (33) into two parts:

P (τ (1)m , · · · , τ (l)m |τM ) =

∞∑
i=l

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= ΨmM (l|τM )ρmM (τ (1)m |l, τM )

l∏
j=2

ρmM

(
τ (j)m |l − j + 1, τM −

j−1∑
k=1

τ (j)m

)

+

∞∑
i=l+1

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
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This equation is further rewritten by substituting Equations (12)–(14) in the same way
as in Appendix B. The second term on the r.h.s. except for the step function is

∞∑
i=l+1

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

i− 1

τM

(
τM − τ

(1)
m

τM

)i−2

×
l∏

j=2

(i− j)

τM −
∑j−1

k=1 τ
(k)
m

(
τM −

∑j
k=1 τ

(k)
m

τM −
∑j−1

k=1 τ
(k)
m

)i−j−1

=

∞∑
i=l+1

1

(i− l − 1)!

(
A∆m

⟨τM ⟩

)i−1

e
−A∆m

τM
⟨τM ⟩

(
τM −

l∑
k=1

τ (k)m

)i−l−1

=

∞∑
i=0

1

i!

(
A∆m

⟨τM ⟩

)i+l

e
−A∆m

τM
⟨τM ⟩

(
τM −

l∑
k=1

τ (k)m

)i

=

(
A∆m

⟨τM ⟩

)l

e
−A∆m

∑l
i=1 τ

(i)
m

⟨τM ⟩

∞∑
i=0

{
A∆m

⟨τM ⟩

(
τM −

∑l
k=1 τ

(k)
m

)}i

i!
e
−A∆m

⟨τM ⟩ (τM−
∑l

k=1 τ(k)
m )

=

l∏
i=1

Pi(τ
(i)
m |τM ),

where Pi(τ
(i)
m |τM ) :=

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩ .563

Therefore

P (τ (1)m , · · · , τ (l)m |τM ) =

(
A∆m

⟨τM ⟩

)l−1

e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

l∑
i=1

τ (i)m

)
+

l∏
i=1

Pi(τ
(i)
m |τM )θ

(
τM −

l∑
i=1

τ (i)m

)
.

Finally, because τM ≩
∑l

i=1 τ
(i)
m holds for l < n by the condition of Equation (26)

P (τ (1)m , · · · , τ (l)m |τM ) =

l∏
i=1

Pi(τ
(i)
m |τM ).

Appendix F Derivation of Equation (39)564

In this appendix, the approximation function of the inverse probability density func-
tion for the uncorrelated time series (Equation (39)) is derived. By substituting Equa-
tions (10), (15), and (34) into Equation (36)

pMm(τM |τ (1)m , · · · , τ (n)m )

=
⟨τm⟩
⟨τM ⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
(
A∆m

⟨τm⟩
⟨τM ⟩

)n−1

 n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩ A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τ(i)

m

τM

)
+ 2
}

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
 1

⟨τM ⟩
e
− τM

⟨τM ⟩

− ⟨τm⟩
⟨τM ⟩

(n− 1)(
A∆m

⟨τm⟩
⟨τM ⟩

)n−1

 n∏
i=1

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

 1

⟨τM ⟩
e
− τM

⟨τM ⟩ , (F1)

where the following relation is used.

τM
⟨⟨τm⟩⟩τM

=

∞∑
i=1

iΨmM (i|τM )

= A∆m
τM
⟨τM ⟩

+ 1.
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The two products ([· · · ]’s) in Equation (F1) are respectively transformed as

n∏
i=1

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩+
τ
(i)
m

⟨τm⟩

=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n n∏
i=1

e
τ
(i)
m

⟨τM ⟩ . (F2)

n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩ A∆m

⟨τM ⟩

{
A∆m

τM
⟨τM ⟩

(
1− τ(i)

m

τM

)
+ 2
}

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n
(

n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩+
τ
(i)
m

⟨τm⟩

)
n∏

i=1

A∆m
τM
⟨τM ⟩ + 1−

(
A∆m

τ(i)
m

⟨τM ⟩ − 1
)

A∆m
τM
⟨τM ⟩ + 1


=

(
A∆m

⟨τm⟩
⟨τM ⟩

)n
(

n∏
i=1

e
τ
(i)
m

⟨τM ⟩

){
n∏

i=1

(
1−

τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)}
. (F3)

Finally, Equation (39) is derived by substituting Equations (F2) and (F3) into Equation565

(F1).566

Appendix G Relation between the inverse probability density func-567

tion and its approximation function in the uncorrelated568

time series569

In this appendix, we discuss the relation between the inverse probability density570

function (Equation (23)) and Equation (36), i.e., the approximations made on Equation571

(23) that correspond to the assumptions made in §4.2 to derive Equation (36).572

The summation in Equation (23) can be decomposed into

∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= −(n− 1)

∞∑
i=n

ΨmM (i|τM )ρmM (τ (1)m |i, τM )
n∏

j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

+

∞∑
i=n

iΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (G1)

The first term on the r.h.s. of Equation (G1) is equivalent to −(n−1)
∏n

i=1 Pi (Ap-573

pendix E), and then, this term formally coincides with the correction term in Equation574

(36). Therefore, the second term corresponds to the kernel part (Equation (37)).575

n-consecutive lower intervals must be included in only one upper interval. Under576

this condition, three constraints are imposed on the lower intervals, which appear on the577

l.h.s. of Equation (G1) as follows: (1) The number of lower intervals included in the up-578

per interval must be larger than or equal to n. Then, the summation is taken in the range579

of i ≥ n. (2) The way to choose the n-consecutive intervals from the i-lower intervals580

in an upper interval is only (i− n+ 1). If the first lower interval (or the leftmost one581

in the sequence of the consecutive lower intervals) is in either remaining (n−1) ways,582

the sequence overflows from the upper interval. (3) The probability of the length of the583

j-th interval in the consecutive lower intervals depends on the way other (k-th, 1 ≤ k <584
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j) lower intervals appear, i.e., it is dependent on the remained time τM−
∑j−1

k=1 τ
(k)
m and585

number of pieces of lower intervals (i− j + 1), ρmM

(
τ
(j)
m |i− j + 1, τM −

∑j−1
k=1 τ

(k)
m

)
.586

These constraints are relaxed in the derivation in §4.2. In the view in §4.2, the up-
per intervals of length τM are collected and the new time series is generated as shown
in Figure 5. For this new time series, the only constraint imposed on the lower intervals
is that they are included in the upper interval of length τM ; each interval is assumed to
occur independently. Therefore, the three constraints are changed in the following man-
ner: (1) The new time series is generated by gathering all upper intervals of length τM ,
regardless of the number of lower intervals included in it. In addition, the restriction on
the range of the summation (i ≥ n) does not make much sense because the consecu-
tive lower intervals are not assumed to be within only one upper interval, i.e., it is ex-
panded to i ≥ 1. (2) The number of ways to choose the n-consecutive intervals from
i-lower intervals is unchanged; this exceeds the above mentioned upper limit (i− n+
1) although such cases are subtracted by the first term on the r.h.s. of Equation (G1),
i.e., the correction term in Equation (36). (3) The constraints imposed on the condition
in ρmM are removed; because the probability of the length of j-th interval is only not
affected by other lower intervals, the temporal part of ρmM is replaced by τM (Equation
(G2)). In addition, the constraint on the number of division can be eliminated by tak-
ing the average (Equation (G3)).

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
≈ ρmM

(
τ (j)m |i− j + 1, τM

)
(G2)

≈
∑∞

i=1 iΨmM (i|τM )ρmM (τ
(j)
m |i, τM )∑∞

i=1 iΨmM (i|τM )
(G3)

= pmM (τ (j)m |τM ).

Thus, ρmM ’s are simply replaced by the conditional probability density functions.587

In this way, the approximate view in §4.2 implies the following replacement in the
exact inverse probability density function.

∞∑
i=n

iΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

n∑
k=1

τ (k)m

)

≈
∞∑
i=1

iΨmM (i|τM )

n∏
j=1

pmM (τ (j)m |τM )

=
τM

⟨⟨τm⟩⟩τM

n∏
j=1

pmM (τ (j)m |τM ).

Appendix H Distance between the inverse probability density func-588

tion and the inter-event time distribution589

In this Appendix, we derive the distance between the inverse probability density
function (Equation (24)) and the inter-event time distribution (pM (τM ))

D(pMm||pM ) :=

∫ ∞

T

|pθ(τM , T )− pM (τM )|2 dτM , (H1)

where

pθ(τM , T ) =
⟨τm⟩
⟨τM ⟩2

(
1− ⟨τm⟩

⟨τM ⟩

)
e
− τM−T

⟨τM ⟩

(
A∆m

τM − T

⟨τM ⟩
+ 2

)
,

pM (τM ) =
1

⟨τM ⟩
e
− τM

⟨τM ⟩ .
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By substituting these functions in Equation (H1), the distance is derived as

D(pMm||pM ) =
⟨τM ⟩C2

1

4
+

C1C2(T )

2
+

C2(T )
2

2⟨τM ⟩
, (H2)

where

C1 =
1

⟨τM ⟩

(
1− ⟨τm⟩

⟨τM ⟩

)2

,

C2(T ) = 2
⟨τm⟩
⟨τM ⟩

(
1− ⟨τm⟩

⟨τM ⟩

)
− e

− T
⟨τM ⟩ .

Appendix I On the cause of the separation of ⟨D′(papprox
Mm ||pM)⟩ and590

⟨D′′(papprox
Mm ||pM)⟩ at large T591

In this appendix, we examine the cause of the separation between ⟨D′(papproxMm ||pM )⟩592

and ⟨D′′(papproxMm ||pM )⟩ at long-elapsed time T . Let us compare Figure 7 to Figures S6(a)593

and (c) for N = 105. The separation is suppressed compared to that shown in Figure594

7, which indicates that the fluctuations in the spline functions of P1 caused by a rela-595

tively small number of samples in the calculation of P1 are suppressed by increasing the596

sample data. This leads to the reduction of errors in the calculations (44), and to the597

improvement of the calculation of distance in Equation (46).598

In addition, we tested numerical updating with N = 105 by excluding some larger
columns of the matrix P1, i.e., by using the following matrix P ′

1 with an integer lc

P ′
1 =

[
[P1,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax−lc

. (I1)

For this P ′
1, the interpolation and extrapolation procedures are conducted in the same599

way as in §5.1, and the numerical updating is executed.600

Figures S6(b) and (d) show the results of the distance for such updating with (b)601

∆τM = 0.1 and lc = 5, and (d) ∆τM = 0.025 and lc = 20. Compared to the results602

obtained using P1 in Figures S6(a) and (c), the separation is suppressed further. Com-603

bined with the results for the kernel part, these results suggest the following; the num-604

ber of samples to calculate P1 is so small compared to that of the conditional probabil-605

ity (the number of sample is only one for an upper interval for P1 whereas all the lower606

intervals included in an upper interval are used as a sample to calculate the conditional607

probability), in particular for a large k, that its fluctuation becomes too large to com-608

pute the correction term precisely.609
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1. Figures S1 to S17

Introduction The following figures are provided in this supporting information. Figure

S1–S7 present information regarding the numerically generated uncorrelated time series.

Figure S1 shows the probability density functions of the length of the inter-event times

(pm(τm) and pM(τM)) and their interpolation and extrapolation functions. Figure S2

shows the conditional probability density function of the length of the lower intervals

included in the upper interval of length τM (pmM(τm|τM)) and its interpolation and ex-

trapolation functions. Figure S3 shows the conditional probability density function of

the length of the left-most lower interval included in the upper interval of length τM

(P1(τm|τM)) and its interpolation and extrapolation functions. Figure S4 shows the aver-

age number of lower intervals included in the upper interval of length τM (τM/⟨⟨τm⟩⟩τM )

and its interpolation and extrapolation functions. Figure S5 shows an example of Bayesian
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updating. Figure S6 shows the average distances between the distribution functions and

the (part of) approximation functions including the results of numerical Bayesian updat-

ing using statistical amounts calculated using the N = 105 time series. Figure S7 shows

the joint probability mass function of the logarithm of the positions of the maximum peak

of the inverse probability density function and its approximation function calculated by

numerical Bayesian updating with N = 105. Figures S8–S17 are about the numerically

generated time series of the ETAS model. Figure S8 shows pm(τm) and pM(τM), and their

interpolation and extrapolation functions. Figure S9 shows pmM(τm|τM) and its interpo-

lation and extrapolation functions. Figure S10 and S11 show the conditional probability

density functions of the left-most and right-most lower intervals included in the upper

interval of length τM (pL(τm|τM) and pR(τm|τM), respectively) and their interpolation and

extrapolation functions. Figure S12 shows τM/⟨⟨τm⟩⟩τM and its interpolation and extrap-

olation functions. Figure S13–S15 show examples of Bayesian updating for δth = 0.5.

Figure S16 shows the probability density functions of n≤th and τ≤th for δth = 0.5. Figure

S17 shows the statistical results of the effectiveness of forecasting for δth = 0.25.
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Figure S1. Probability density functions of the length of inter-event times at magnitude

thresholds m = 3.0 and M = 5.0 calculated for the numerically generated uncorrelated time

series, and their interpolation and extrapolation functions. Symbols (+ and ⊙) show the proba-

bility density functions obtained numerically. The intervals between the symbols are interpolated

by cubic spline functions represented by the black curves. Further, outside of the range covered

by the symbols are extrapolated by the fitting functions at the edge represented by the red lines;

constant function (ln p(τ) ≡ C) on the small side and the exponential function (ln p(τ) = Aτ+B)

on the large side. The parameter values (A,B,C) are determined by the least squares method

using 10 points at each end.
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Figure S2. Conditional probability density function of the length of the lower interval (τm)

included in the upper interval of length τM for the uncorrelated time series, and its interpolation

and extrapolation functions in (a) an oblique view and (b) a horizontal view parallel to the

log10 τM -axis. Gray curved surface is the part of the step function of Equation (15). Symbols

(+) represent the probability density function obtained numerically. For each τM , only data

points with 30 or more points in the range of τM > τm are displayed. The intervals between

the symbols in the log10 τm-axis direction are interpolated by cubic spline functions represented

by the black curves. Outsides of the range covered by the symbols in the log10 τm-axis direction

are extrapolated by the fitting functions at the edge represented by the colored lines (the color

varies with log10 τM); constant function (ln p(τ) ≡ C) on the small τm side and the exponential

function (ln p(τ) = Aτ + B) on the large τm side for each τM . The parameter values (A,B,C)

are determined by the least squares method using 10 points at each end for each τM .
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Figure S3. Conditional probability density function of the length of the left-most lower interval

included in the upper interval of length τM for the uncorrelated time series, and its interpolation

and extrapolation functions in (a) an oblique view and (b) a horizontal view parallel to the

log10 τM -axis. Gray curved surface shows the part of the step function of Equation (29). The

description of the figure is the same as in Figure S2.
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Figure S4. Average number of lower intervals included in the upper interval of length τM

(τM/⟨⟨τM⟩⟩τM ) for the uncorrelated time series, and its interpolation and extrapolation functions.

Symbols (⊙) indicate the results obtained numerically. The intervals between the symbols are

interpolated by cubic spline functions represented by the black curves. Outsides of the range

covered by the symbols are replaced or extrapolated by following functions represented by red

lines; ln τM/⟨⟨τM⟩⟩τM ≡ 0 on the small side, whereas the fitting function τM/⟨⟨τM⟩⟩τM = AτM+B

on the large side with the parameter values determined by the least squares method using 10

points at the end.
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Figure S5. Examples of the Bayesian updating on a numerically generated uncorrelated time

series. In this example, the total number of updates between the events with a magnitude above

M is 73. The horizontal axis represents the elapsed time from the previous event with a magnitude

above M , and the vertical axis is the logarithmic scale of the inverse probability density function

and its approximation function for n = (a) 1, (b) 20, (c) 40, and (d) 60, respectively. Gray

curve is pM(τM) and black vertical dotted line indicates the actual elapsed time of the next

large event with a magnitude above M . At each update, (Exact) the inverse probability density

function (Equation (24)), (Approx) the approximation function (Equation (39)), and (Kernel) its

kernel part (Equation (40)) are shown. Further, the results with the numerical updating method

(Equations (43) and (44)) are shown for the approximation function and its kernel part; (Kernel,

Numerical) represents the result of Equation (43), and (Approx, Numerical) is for Equations (43)

and (44).

December 27, 2022, 4:35pm



X - 8 :

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

(a)

<
D

>

log10T

10
-7

10
-6

10
-5

10
-4

 4  4.5  5  5.5  6  6.5

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

(b)

<
D

>

log10T

10
-7

10
-6

10
-5

10
-4

 4  4.5  5  5.5  6  6.5

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

<
D

>

log10T

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7
<

D
>

log10T

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

(c)

<
D

>

log10T

10
-6

10
-5

10
-4

10
-3

 4  4.5  5  5.5  6  6.5

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

(d)

<
D

>

log10T

10
-6

10
-5

10
-4

10
-3

 4  4.5  5  5.5  6  6.5

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

<
D

>

log10T

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

-3 -2 -1  0  1  2  3  4  5  6  7

<
D

>

log10T

Figure S6. Average distances for elapsed time T from the last event greater than M . Each

symbol represents the same distance as in Figure 7. The results of the numerical updating of

⟨D′′⟩ are calculated using statistical amounts in Equation (42) taken from the N = 105 time

series with (a) ∆τM = 0.1 and lc = 0, (b) ∆τM = 0.1 and lc = 5, (c) ∆τM = 0.025 and lc = 0,

and (d) ∆τM = 0.025 and lc = 20.
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Figure S7. Joint probability mass function of (k̂max, kmax,approx). kmax,approx is obtained using

the numerical updating method with statistical amounts in Equation (42) taken from theN = 105

time series with (a) ∆τM = 0.1 and lc = 0, (b) ∆τM = 0.1 and lc = 5, (c) ∆τM = 0.025 and

lc = 0, and (d) ∆τM = 0.025 and lc = 20. For (a) and (b), the horizontal lines at kmax,approx = 80

and the vertical line at k̂max = 80 correspond to cases when no peak is detected by the peak

search. Further, for (c) and (d), the lines at kmax,approx = 320 and at k̂max = 320 correspond to

the no peak cases. The left panels are results when the peak search is conducted in the range of

τM > max{τ (1)m , · · · , τ (n)m } and the right panels in the range of τM > T .
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thresholds m = 3.0 and M = 5.0 calculated for the numerically generated time series of the

ETAS model, and their interpolation and extrapolation functions. The description of the figure

is the same as in Figure S1.
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Figure S9. Conditional probability density function of the length of the lower interval (τm)

included in the upper interval of length τM for the numerically generated time series of the

ETAS model, and its interpolation and extrapolation functions. The description of the figure is

the same as in Figure S2.
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Figure S10. Conditional probability density function of the length of the left-most lower

interval included in the upper interval of length τM for the numerically generated time series of

the ETAS model, and its interpolation and extrapolation functions. The description of the figure

is the same as in Figure S3.
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Figure S11. Conditional probability density function of the length of the right-most lower

interval included in the upper interval of length τM for the numerically generated time series of

the ETAS model, and its interpolation and extrapolation functions. The description of the figure

is the same as in Figure S3.
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(τM/⟨⟨τM⟩⟩τM ) for the numerically generated time series of the ETAS model. The description of

the figure is the same as in Figure S4.

December 27, 2022, 4:35pm



X - 14 :

-40
-35
-30
-25
-20
-15
-10
-5
 0
 5

 10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

(a)

ln
(p

M
m

k
e
rn

e
l )

τM

n=15
n=30
n=45
n=60
n=75
n=85

10
-5

10
-4

10
-3

10
-2

10
-1(b)

τ
M

τM
max

/(1±δth)

τM
max

τM
*

Elapsed time

-2

-1

 0

 1

 2(c)

δ
n

δth

10
-4

10
-2

10
0

10
2

10
4

10
6

 3

 4

 5(d)

R

M
a

g
n

it
u
d

e

-2

-1

 0

 1

 2

 0  10  20  30  40  50  60  70  80  90
-12

-8

-4

 0

 4

 8

 12(e)

∆
lo

g
1
0
R

∆
k

m
a
x

n

∆log10R

∆k
max

Figure S13. First example of Bayesian updating. This is the case where τ ∗M is in regime ( I ).

(a) Around the peak of the kernel part for each update. The dotted curve indicates pM(τM).

(b) Evolutions of the estimate (τmax,n
M ) and the tolerance of error

[
τmax,n
M

1+δth
,
τmax,n
M

1−δth

]
in Equation (50)

with δth = 0.5. The elapsed time from the last large event is indicated by the dotted line. (c)

Evolution of the relative error (δn). The orange band indicates the tolerance range ±δth. (d)

Evolution of the occurrence rate (Rn defined by Equation (51)). The magnitude of the event

at each update is indicated by black bars. (e) Evolutions of the variation of the log-occurrence

rate (∆ log10Rn defined by Equation (52)) and the variation of the log-estimate (∆kmax
n defined

by Equation (53)). In this example, the occurrence rate is high, and it stays almost constant

as shown in (d). The kernel part has a peak as shown in (a). Its maximum peak time (τmax,n
M )

continues to be nearly constant around τ ∗M from well before the large event as shown in (b); this is

confirmed in (c), which indicates that |δn| ≤ δth is satisfied consecutively for n ∈ (nfin−n≤th, nfin]

with a long n≤th, and in (e), that shows that ∆kmax
n fluctuate around 0. Then, in this example,

τ ∗M is judged to be effectively forecasted for the setting of δth = 0.5.

December 27, 2022, 4:35pm



: X - 15

-40
-35
-30
-25
-20
-15
-10
-5
 0
 5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

(a)

ln
(p

M
m

k
e
rn

e
l )

τM

n=50
n=100
n=150
n=200
n=233

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6(b)

τ
M

τM
max

/(1±δth)

τM
max

τM
*

Elapsed time

-2

-1

 0

 1

 2(c)

δ
n

δth

10
-4

10
-2

10
0

10
2

10
4

10
6

 3

 4

 5(d)

R

M
a
g

n
it
u

d
e

-2

-1

 0

 1

 2

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200  210  220  230  240  250
-12

-8

-4

 0

 4

 8

 12(e)

∆
lo

g
1
0
R

∆
k

m
a
x

n

∆log10R

∆k
max

 0
 30
 60

 0  5  10  15

Figure S14. Second example of Bayesian updating. This is the case that τ ∗M is in regime

(III). In some cases, the kernel part does not have the maximum peak, and the estimate is not

determined, which causes some jumps in the time series. The inset in (e) shows ∆kmax
n for small

number of updates, indicating a rapid variation of kmax,n at small n. Other descriptions of the

figure is the same as in Figure S13. In this example, the occurrence rate is low and keeps almost

constant around λ0 = 0.0007, as shown in (d). (b) and (c) show that the maximum peak time of

the kernel part (τmax,n
M ) transitions to around τ ∗M , and it consecutively satisfies |δn| ≤ δth = 0.5

from long to immediately before the next large event. Further, this is also confirmed by ∆kmax
n ≈ 0

in (e). Therefore, in this example, the forecasting is judged to be conducted effectively.
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Figure S15. Third example of Bayesian updating. This is the case that τ ∗M is in regime (II).

The descriptions of the figure are the same as in Figure S13. In this example, unlike in Figures

S13 and S14, the time series is dominated by the non-stationary activity as shown in (d) and (e).

Although |δn| ≤ δth = 0.5 is satisfied only immediately before the large shock, τmax,n
M continues

shifting and |δn| ≤ δth does not hold as shown in (b), (c), and (e). Therefore, the forecasting is

not effective in this case.
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Figure S16. (a) Probability distributions (p(n≤th)) of the number of consecutive updates (n≤th)

with |δn| ≤ δth = 0.5 for each τ ∗M . Only the cases with n≤th > 0 are included in the population.

The vertical dotted line indicates n≤th = 30. (b) Probability density function (p(τ≤th)) of the

duration time (τ≤th) during nth-updates with δth = 0.5 for each τ ∗M . The distributions rescaled

by the averages (⟨τ≤th⟩ :=
∫∞
0 τ≤thp(τ≤th)dτ≤th) are shown.
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Figure S17. Statistical results for each τ ∗M with δth = 0.25. (a) Pfin, P≥30, and the average

of Pfin(≈ 0.27) for the overall τ ∗M ; (b) ⟨n≤th⟩ and ⟨n≤th/nfin⟩; and (c) ⟨τ≤th⟩ and ⟨τ≤th/τ
∗
M⟩ are

shown.
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