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Abstract

In this work we present a unique set of coincident and collocated high- resolution observations of surface currents and directional

properties of surface waves collected from an airborne instrument, the Modular Aerial Sensing System (MASS), collected off

the coast of Southern California. High-resolution observations of near surface current profiles and shear are obtained using a

new instrument, DoppVis, capable of capturing horizontal spatial current variability down to 128m resolution. This data set

provides a unique opportunity to examine how currents at scales ranging from 1-100 km modulate bulk (e.g. significant wave

height), directional and spectral properties of surface gravity waves. Such observations are a step toward developing better

understanding of the underlying physics of submesoscale processes (e.g. frontogenesis and frontal arrest) and the nature of

transitions between mesoscale and submesoscale dynamics.
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Abstract19

In this work we present a unique set of coincident and collocated high- resolution obser-20

vations of surface currents and directional properties of surface waves collected from an21

airborne instrument, the Modular Aerial Sensing System (MASS), collected off the coast22

of Southern California. High-resolution observations of near surface current profiles and23

shear are obtained using a new instrument, DoppVis, capable of capturing horizontal spa-24

tial current variability down to 128m resolution. This data set provides a unique oppor-25

tunity to examine how currents at scales ranging from 1-100 km modulate bulk (e.g. sig-26

nificant wave height), directional and spectral properties of surface gravity waves. Such27

observations are a step toward developing better understanding of the underlying physics28

of submesoscale processes (e.g. frontogenesis and frontal arrest) and the nature of tran-29

sitions between mesoscale and submesoscale dynamics.30

Plain Language Summary31

In recent years, through improvement of computational resolution of global ocean32

models, scientists have begun to suspect that kilometer-scale eddies, whirlpools and fronts,33

called “submesoscale” variability, make important contributions to horizontal and ver-34

tical exchange of climate and biological variables in the upper ocean. Such features are35

challenging to analyze, because of their size (and how quickly they evolve; within hours),36

they are too large to study from a research vessel but smaller than regions typically stud-37

ied with satellite measurements. In this work, we use a research aircraft instrumented38

to characterize ocean currents, temperature, color (in turn chlorophyll concentration)39

and the properties of surface waves over an area large enough to capture submesoscale40

processes. This approach is a step forward in understanding and quantifying the under-41

lying physics of submesoscale processes, and in turn develops parameterization that can42

help improve the fidelity of weather and climate models.43

1 Introduction44

The transfer of mass, momentum, and energy between the atmosphere and ocean45

are complex due to their interactions across a broad range of space and time scales (Melville,46

1996). A better understanding of the physics of these processes is fundamental for im-47

proved parameterizations used in coupled air-sea models of weather and climate, par-48

ticularly as Earth’s climate changes (Cavaleri et al., 2012). For example, although the49

importance of surface waves in these models has long been acknowledged, only relatively50

recently have global models included physics-based models of their effects (see, for ex-51

ample McWilliams & Restrepo, 1999; Sullivan & McWilliams, 2010; Li et al., 2016). Specif-52

ically, the effects of the non-breaking surface wave induced transport that catalyses Lang-53

muir circulations have been shown to reduce errors in sea surface temperature (Belcher54

et al., 2012), crucial to climate modelling.55

Submesoscale ocean currents have horizontal scales on the order of 0.1-10 km and56

have recently been hypothesized to make important contributions to vertical exchanges57

of climate and biological variables in the upper ocean as well as provide a pathway from58

energetically rich large scale flows to small scale dissipation. Model studies and limited59

observations (e.g. D’Asaro et al., 2018) show that submesoscale vertical exchange is con-60

centrated near kilometer-scale fronts, jets, and eddies (McWilliams, 2016). Submesoscale61

physics are at the smallest scales that have been resolved in global ocean models, where62

their net effect on heat exchange between the ocean and atmosphere has shown to be63

much larger than mesoscale eddies (Su et al., 2018). However, these simulations are sen-64

sitive to the parameterized physics of the smaller scale motion, which remains poorly un-65

derstood. To address the fundamental questions of the observed nature of submesoscale66

dynamics and the interactions between submesoscale dynamics and smaller scale surface67

wave processes, a comprehensive set of novel, coincident and collocated measurements68
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of the dynamical variables is needed to improve state-of-the-art high-resolution simula-69

tions of weather and climate, and better understand vertical exchanges of heat and bio-70

geochemical tracers.71

Due to non-linear coupling between oceanic and atmospheric processes, including72

currents, winds, and waves, coincident observations are necessary to understand these73

dynamics. A number of model and observational studies have demonstrated the variety74

of ways by which air-sea interaction can induce horizontal divergence of surface currents75

and thus force vertical velocities. Coincident observations of surface vector winds and76

currents are needed to better understand the coupling of winds and currents and in turn77

improve surface flux parameterizations (Bourassa et al., 2019). The wind stress can be78

modified by SST and velocity gradients (Dewar & Flierl, 1987; Fairall et al., 1996; Chel-79

ton et al., 2004; O’Neill et al., 2005) while the resulting convergence of the ocean Ek-80

man layer can be modified by surface vorticity (Stern, 1965; McGillicuddy Jr et al., 2007).81

At submesoscales, these effects are expected to increase in intensity. Frontal structures82

are strongly affected by the relative direction of the wind with downfront Ekman trans-83

port sharpening the fronts and inducing vertical exchange while upfront transport sub-84

dues the front and stratifies the upper ocean (Thomas et al., 2005). Surface waves and85

wave breaking can be strongly modulated at fronts (Romero et al., 2017; Vrećica et al.,86

2022), suggesting that even the basic formulation of air-sea exchange in terms of sim-87

ple bulk coefficients will likely break down at sufficiently small scales. As such, an un-88

derstanding of submesoscale structure and vertical velocity requires that air-sea inter-89

action parameters be observed simultaneously with submesoscale measurements. Of par-90

ticular interest are observations of surface and near surface currents, wave breaking (Vrećica91

et al., 2022), and the directional properties of ocean surface waves. While much progress92

have been made on characterizing the latter (e.g. Herbers et al., 2012; Lenain & Melville,93

2014; Melville et al., 2016; Lenain & Melville, 2017; Lenain & Pizzo, 2020), collecting94

observations of near surface currents, i.e. from the surface down to several meters depth,95

remains challenging and spatially limited in large part due to the presence of waves, which96

induce platform motions and additional sources of background noise. An alternative ap-97

proach to traditional in-situ techniques is to infer current profiles remotely based on ob-98

servations of the spatio-temporal evolution of surface waves that follow a dispersion re-99

lationship, pursued in the present study.100

In this work, we present a unique set of coincident and collocated observations of101

high-resolution surface currents and directional properties of surface waves collected from102

an airborne instrument, the Modular Aerial Sensing System (MASS), off the coast of South-103

ern California in May 2021 as part of the ONR-funded Task Force Ocean (TFO) research104

initiative and in October 2021 as part of the NASA-funded Submesoscale Ocean Dynam-105

ics Experiment (S-MODE) research initiative. Two of the TFO research flights were ded-106

icated to collecting observations across two small counter-rotating eddies separated by107

approximately 100 km. One of the S-MODE flights collected observations across a sharp108

SST front. This data set provides a unique opportunity to examine how currents at scales109

ranging from 1-100 km modulate surface gravity waves, i.e. bulk, directional and spec-110

tral properties.111

This paper is structured as follows: the overview of the experiment and process-112

ing techniques is given in section 2 and 3. In sections 4 through 6, analysis of meso to113

submesoscales surface kinematics and currents collected during two experiments in South-114

ern California is discussed. Section 7 discusses potential implications for submesoscale115

and air-sea interaction studies and presents some summary points.116

2 Experiments117

In this study we consider observations collected during two distinct experiments.118

The first was conducted as part of the “Platform Centric ASW Processing with Through-119
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the-Sensor Data Assimilation and Fusion” project, funded through the ONR Task Force120

Ocean (TFO) initiative with the aim of collecting a simultaneous combination of acous-121

tic, air-sea interaction and oceanographic measurements. Observations from a research122

vessel, a drifting instrument array, autonomous surface vehicles and a research aircraft123

were collected in May 2021, approximately 45km offshore of San Diego, CA, in the vicin-124

ity of CalCoFi Line #90.125

The second experiment was conducted as part of the NASA S-MODE program, a126

project that aims to characterize the contribution of submesoscale ocean dynamics to127

vertical and horizontal transport in the upper ocean by employing a combination of aircraft-128

based remote sensing measurements of the ocean surface, in-situ measurements from re-129

search vessels and a variety of autonomous oceanographic platforms, and numerical mod-130

eling (Farrar et al., 2020). The “pilot” experiment considered here was conducted in the131

fall of 2021 off the coast of San Francisco, CA.132

Data collected from instrumented Wave Gliders (Grare et al., 2021) and an airborne133

instrument, the SIO Modular Aerial Sensing System (MASS, Melville et al., 2016) dur-134

ing these two field programs are considered in the analysis. During both experiments the135

MASS instrument was installed on a Twin Otter DHC-6 aircraft (Twin Otter Interna-136

tional, Grand Junction, CO).137

3 SIO-MASS DoppVis instrument: Enabling novel airborne observa-138

tions of near-surface currents139

The Modular Aerial Sensing System (MASS) is an airborne instrument developed140

at the Air-Sea Interaction Laboratory (SIO) to simultaneously collect observations of sea141

surface temperature and ocean color (Melville et al., 2016; Lenain & Pizzo, 2021a), winds142

and mean-square slope (Lenain et al., 2019), surface waves (Lenain & Melville, 2017; Lenain143

& Pizzo, 2020), and ocean topography (Villas Bôas et al., 2022), at horizontal scales rang-144

ing from sub-meter to mesoscales. Over the past 11 years, the instrument was flown for145

more than 30 missions, covering a broad range of environmental conditions, locations,146

and applications. Details on the system performance and various applications of the MASS147

can be found in Melville et al. (2016); Lenain and Melville (2017); Lenain et al. (2019);148

Lenain and Pizzo (2020); Vrećica et al. (2022).149

In 2020, we started the development and integration of a new sensor into the MASS150

instrument, called “DoppVis”, to obtain coincident observations of surface currents along-151

side the MASS observations listed above. The approach used is to infer currents from152

optical observations of the spatio-temporal evolution of surface waves, whose dispersion153

is altered by the presence of an underlying current. This technique has been primarily154

used with radar technology (e.g. Stewart & Joy, 1974; Campana et al., 2016; Lund et155

al., 2015) then later applied to airborne video imagery (Dugan et al., 2001; Dugan & Pi-156

otrowski, 2003; Anderson et al., 2013).157

Starting from the dispersion relation for small-amplitude linear waves propagat-
ing on top of a depth-varying current,

ω(k) = ω0(k) + c(k) · k, (1)

where ω is the wave frequency, ω0 is the frequency in the absence of currents, i.e equal
to

√
gk in deep water, k = (kx, ky) is the wavenumber, k = |k|, and c is the Doppler

shift velocity due to the underlying current. Following Stewart and Joy (1974), assum-
ing the waves are in deep-water, c can be approximated as a weighted average of the cur-
rent profile as a function of depth such that

c(k) = 2k

∫ 0

−∞
U(z)e2kzdz, (2)

where U(z) = (U, V ) is the Lagrangian mean current profile as a function of depth z158

(Pizzo et al., 2022). Based on this relationship, one can assign an effective depth ze to159
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the measured Doppler velocities c(k) by finding the depth at which the Doppler veloc-160

ity is equal to the current (Stewart & Joy, 1974; Smeltzer et al., 2019), such that ze(k) =161

−1/2k. This is referred to as the Effective Depth Method (EDM) in Smeltzer et al. (2019).162

The DoppVis instrument collects visible imagery of the ocean surface using a Nikon163

D850 camera with 14mm lens mounted with a 90 degree rotation (long edge of image164

parallel with flight track) and a 30 degree positive pitch angle from nadir (pointing slightly165

ahead of aircraft). The camera is synchronized to a coupled GPS/IMU system collect-166

ing images at a 2Hz frame rate. Raw images are carefully calibrated for lens distortion167

and boresight misalignment with the GPS/IMU over a hard terrestrial target, then geo-168

referenced and exported with reference to WGS84 datum with a UTM zone 10 projec-169

tion (EPSG 32610) at 50cm horizontal resolution. Each image is then interpolated on170

a regular grid, to enable the generation of 3D cubes of imagery (time, UTM X, UTM171

Y) of set duration and dimension (Nx, Ny), where Nx = Ny, typically in the range of172

128 to 512m. The number of collected data cubes in the cross and along track direction173

of the aircraft varies as a function of aircraft altitude. All data presented here were col-174

lected at 1500 AMSL, corresponding to approximately two 256x256 m2 cubes in the cross-175

track direction. Following the same approach described in (Smeltzer et al., 2019), all cubes176

of space–time data are converted to wavenumber–frequency space using a 3D FFT. Each177

of these 3D spectra are then averaged in the cross-track and along-track direction (1 km178

bin) to improve SNR. Doppler shift velocities are extracted from the spectrum as a func-179

tion of wavenumber by masking the spectrum into wavenumber magnitude bins (bin half-180

width of 4π/Nx), where for each bin the current c(k) is estimated using a normalized181

scalar product method (Huang et al., 2016; Streßer et al., 2017) with a Gaussian char-182

acteristic function (Smeltzer et al., 2019) peaked along the linear dispersion relation.183

Figure 1(a) shows an example of current profiles (U, V ) collected from DoppVis dur-184

ing an overflight of an instrumented Wave Glider during the S-MODE experiment on Novem-185

ber 4, 2021 at 17:20 UTC. The Wave Glider was instrumented with an upward-looking186

Nortek Signature 1000 ADCP (orange squares) and a downward-looking ADCP (Tele-187

dyne RDI Workhorse 300kHz), carefully motion compensated using an onboard GPS/IMU188

system (Grare et al., 2021). Observations from DoppVis and the wave glider were col-189

lected within 5min and no further than 500m from each other to minimize any error as-190

sociated with natural spatial and temporal variability. We find good agreement between191

in-situ and remotely sensed observations of near-surface current (U, V ), with a bias =192

-0.014 m/s and rms deviation = 0.052 m/s, and a coefficient of determination R2 = 0.96.193

Finally, airborne observations of SST collected from MASS on November 4, 2021,194

over the entire domain along with current estimates (1km along-track resolution) from195

DoppVis at two depths, z = −1.5±0.5m (black arrows) and z = −0.4±0.1m (red ar-196

rows) are shown in figure 1(c). Note the correlation between features present in the SST197

fields and the surface currents from DoppVis. Throughout the domain, we consistently198

find larger magnitudes of the eastern component of the current closer to the surface, likely199

caused by Stokes drift included in the Lagrangian current observed by DoppVis (Pizzo200

et al., 2022). Wind and waves were coming from the west at the time of the flight.201

4 Wave-current interactions from meso- to submesoscales202

The collocated observations from the multiple instruments on the MASS allow for203

investigation of interactions between currents and other oceanographic properties such204

as waves, heat, and biological communities. We now examine observations collected dur-205

ing the “Platform Centric ASW Processing with Through-the-Sensor Data Assimilation206

and Fusion” TFO project in May 2021 to illustrate the importance of high spatial res-207

olution, collocated observations for studying wave-current observations.208
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Figure 1. (a) Current profiles (U, V ) collected from DoppVis (gray triangles) during an over-

flight of an instrumented Wave Glider during the S-MODE experiment on November 4, 2021 at

17:20 UTC. The Wave Glider is equipped with an upward-looking Nortek Signature 1000 ADCP

(orange squares) and a downward-looking ADCP (Teledyne RDI Workhorse 300kHz; blue circles).

The location of the Wave Glider with respect to the DoppVis observations is shown in (c). (b)

Comparison between in-situ observations of currents collected at a 2 to 3m water depth obtained

from DoppVis and two Wave Gliders, named WHOI43 and STOKES, for the times and locations

of overflights (within 500m) during the entire S-MODE experiment. (c) Airborne observations

of SST collected from MASS on November 4, 2021 over the entire domain along with current

estimates (1km along-track resolution) from DoppVis at two depths, deep, z = −1.5±0.5m (black

arrows) and shallow, z = −0.4± 0.1m (red arrows).
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Several research flights were dedicated to collecting observations across two counter-209

rotating eddies separated by approximately 100 km. Figure 2(a) shows depth-averaged210

(0.3-2m) surface currents (250 m along-track resolution) along with significant wave height211

measurements collected coincidentally with the MASS instrument. The black contours212

represent the sea surface height (ssh, AVISO) at the time of the observations, while cor-213

responding surface currents from HYCOM (GOF 3.1, GLBy0.08-expt93.0) are shown as214

gray quivers. We find the HYCOM estimated currents to be in good agreement with DoppVis215

observations at the mesoscale, but strikingly miss many of the submesoscale features through-216

out the domain. We also find significant modulation of the surface wave properties across217

the domain that is not caused by temporal (e.g. inertial) variability.218

Currents modulate the properties of surface gravity waves both through wave re-219

fraction (e.g. Ardhuin et al., 2017; Romero et al., 2017, 2020; Bôas et al., 2020; Pizzo220

& Salmon, 2021) and local effects (Rascle et al., 2016, 2017; Lenain & Pizzo, 2021b), there-221

fore high-resolution measurements of currents and spectral wave properties is needed to222

better understand wave-current interaction from meso- to submesoscales.223

Figure 2 shows a subset of these observations, focusing on an area of the domain224

with significant submesoscale variability in ocean current magnitude and direction. We225

find large modulation of surface currents, at scales of 1-8 km associated with submesoscale226

variations within the mesoscale eddy. Panel (b) shows a sharp SST front at 32.885oN227

with a change in temperature of approximately 0.5oC, associated with a velocity gra-228

dient ∂U/∂x ≈ 10f , where f is the Coriolis frequency.229

Despite approximately constant surface wind (figure 2c) and significant wave height230

(figure 2d) as a function of latitude on this transect, the mean spectral saturation < B >231

(Romero et al., 2017) had significant variation (figure 2e). The saturation spectrum is232

defined as B = ϕ(k)k3, where ϕ is the omnidirectional wave spectrum (Phillips, 1984,233

1985). The mean saturation is obtained by averaging B over the saturation range of the234

wave spectrum, with a lower bound kn as defined in Lenain and Pizzo (2020). At that235

time, wind waves were approximately oriented in the same direction as the current V236

(figure 2d).237

We find that the mean saturation < B > generally follow the same evolution as238

V . While this comparison remains qualitative, it hints at the importance of incorporat-239

ing wave-current interaction in wave spectrum parameterization, along the line of Lenain240

and Pizzo (2021a) that investigated the use of WKB to predict the modulation of sur-241

face gravity waves by internal wave currents.242

Though beyond the scope of this work, but a focus of further studies in particu-243

lar as part of the S-MODE program, we expect that these collocated, coincident obser-244

vations will lead to new insights about coherent features that arise from wind-wave-current245

coupling, or some combination of those processes, which may be particularly important246

for the flux of climatically-important variables such as heat and biogeochemical tracers247

between atmosphere and ocean (Li et al., 2016; Smith et al., 2016; Verma & Sarkar, 2021;248

Freilich & Mahadevan, 2021; Gula et al., 2022).249

5 Transitions from mesoscale to submesoscale motion250

High-resolution measurements of surface currents enable the characterization of the251

transition between geostrophically balanced motion at larger scales and unbalanced (ageostrophic252

and wave) motion at smaller scales (Chereskin et al., 2019). In particular, determining253

the dynamics that predominate at the submesoscale has important implications for the254

vertical structure of the upper-ocean (Cronin et al., 2019) and the spatio-temporal dis-255

tribution of energy dissipation (Buckingham et al., 2019; Dong et al., 2020; Schubert et256

al., 2020; Ajayi et al., 2021), and can lead to improvement of ocean-atmosphere coupled257

models (Li et al., 2016). While DoppVis observations are accurate enough to resolve sub-258
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Figure 2. (a) MASS significant wave height Hs and DoppVis surface current observations

(250m along-track resolution) collected during the TFO experiment on May 19, 2021. The black

contours represent the sea surface height (ssh, AVISO) at the time of the observations, while

corresponding surface currents from HYCOM are shown as gray quivers. The larger scale trends

of the surface currents are in general agreement with the HYCOM product, though the latter

completely misses significant submesoscale features. We find significant modulation of the wave

conditions across the domain, by up to 20%. (b) Subset of the data presented in (a) (nortwestern

part of the flight) with the track colorcoded for measured SST. Note the strong modulation of

surface currents over very short distances (1-8 km), coinciding in places with sharp SST fronts

(for example at latitude around 32.885o in the northern part of the operation area). (c) and (d)

show the wind speed U10 and significant wave height Hs collected along the NNW-SSE track

shown in panel (b). (e) North component of the current V and mean spectral saturation ⟨B⟩, all
plotted over the same range of latitude as in panel (b). Note the modulation of ⟨B⟩ associated
with changes in V , the component of the current aligned with the waves, hinting at local wave-

current interaction.
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Figure 3. Comparison of Kinetic energy (KE) spectra collected from the DoppVis Lagrangian

surface currents on May 19 2021 during one of the long East - West transects shown in figure

2(a) compared with in-situ ADCP observations (20-m depth) and LLC4320 hourly model prod-

ucts from Chereskin et al. (2019).

mesoscale currents (horizontal resolution of less than 500 m), the airborne platform also259

travels quickly enough to collect nearly synoptic observations at the mesoscale (100 km).260

This is particularly valuable because it allows for examination of spatial variability across261

a range of scales and cross-scale interactions by not aliasing temporal variability. Fig-262

ure 3 shows kinetic energy (KE) spectra computed from the DoppVis surface current ob-263

servations collected during one of the long East-West transects shown in figure 2(a) com-264

pared with the average of 11 years of in-situ ADCP observations (20-m depth) and 1 year265

of LLC4320 hourly model products from Chereskin et al. (2019). The agreement at low266

wavenumbers (>10km) is remarkable, as well as the fact that the kinetic energy spec-267

trum from DoppVis maintains a nearly continuous slope for higher wavenumbers, down268

to 1 km scale. Feedbacks on ocean currents from wind and waves is likely important for269

determining dynamics at scales of less than 10 km where submesoscale processes pre-270

dominate (Haney et al., 2015; Suzuki & Fox-Kemper, 2016; Yuan & Liang, 2021). Un-271

derstanding these couplings needs to be advanced by direct observations that span scales272

from submesoscale to mesoscale. Characterization of the transition between geostroph-273

ically balanced motion and unbalanced dynamics is further explored in forthcoming work.274

6 Velocity gradient statistics275

Submesoscale dynamics are defined by the large velocity gradients at these scales,276

with O(1) Rossby number (McWilliams, 2016). Consistent with the small spatial scale277

of submesoscale dynamics, they also have fast temporal scales (Callies et al., 2020). Ob-278

servations of not just velocity, but 2D velocity gradients of quickly evolving submesoscale279

features are therefore important for understanding submesoscale dynamics, but require280
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Figure 4. (a) Surface vorticity–strain and (b) divergence-strain JPDFs computed from 128m

resolution DoppVis products collected on October 5 2021 during the S-MODE pilot program. (c)

and (d) Surface vorticity–strain for ∆/f > 0.8 and ∆/f < −0.8 respectively. The dashed lines

represents the σ = ζ lines.

synoptic observations over scales of tens of kilometers, which is not feasible with rela-281

tively slow-moving ship-based observations. Previous observations of submesoscale ve-282

locity gradients have used two ships (Shcherbina et al., 2013). Aircraft-based observa-283

tions offer a well-suited platform for studying submesoscale dynamics due to their fast284

speed relative to ships and much higher resolution measurements than what is afforded285

by satellites.286

In recent years, through numerical (Balwada et al., 2021) and observational (Shcherbina287

et al., 2013) studies, the surface vorticity–strain Joint Probability Density Function (JPDF)288

has been demonstrated as a useful tool to distinguish between different flow regimes, in289

particular in the context of submesoscale dynamics. In figure 4, we show vorticity-strain290

and divergence-strain JPDFs computed from high-resolution DoppVis surface current291

observations collected during the S-MODE pilot experiment on October 2021 (60km long292

section). During that portion of the flight, the aircraft flew at 3000ft AMSL, increasing293

the swath width of surface current observation up to 2 km, with a horizontal resolution294

(cross and along-track) of 128 m. Vorticity ζ, strain rate σ and divergence ∆ are then295

computed from the gradients of the measured surface currents. These velocities are first296

low-pass filtered (3-point tophat) prior to computing gradients. Overall, the distribu-297

tion is skewed toward positive ζ/f values, with σ/f > ζ/f consistent with frontal struc-298

tures, and classical submesoscale frontogenesis. This is particularly evident in panel (d),299

where the vorticity-strain JPDF for ∆/f < −0.8 (i.e. convergence) is shown to be skewed300

to positive values. The same JPDF for positive values of ∆/f , larger than 0.8 (panel c)301

is not skewed toward negative ζ/f values, perhaps implying the contribution of other302

processes, e.g. surface wave modulation properties and associated Stokes drift (recall that303

DoppVis observes Lagrangian current).304
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7 Discussions and summary305

Direct spatial and temporal observations of the lower atmosphere, sea surface and306

upper ocean are crucial for improved knowledge of air-sea interaction. However, the broad307

range of scales, or equivalently the strong spatial and temporal variability of theses in-308

teractions (see figure 1), make this a formidable theoretical, numerical, and observational309

challenge. Traditional in-situ assets such as moorings and buoys are limited by their spa-310

tial coverage or their potential spatial biasing, in particular near an ocean front where311

buoys or drifters can cluster, while satellite imagery estimates important quantities like312

wind, significant wave height and currents through indirect methods (often based on σ0313

relations) and can also only sample at sparse time intervals. Observations and models314

have revealed two-way coupling processes between ocean currents and wind (Chelton &315

Xie, 2010; Wenegrat & Arthur, 2018) and ocean currents and waves (Marechal & de Marez,316

2022; Wang et al., 2020) at both the mesoscale and submesoscale.317

In this work, we present unique coincident and collocated suborbital high-resolution318

observations of SST, surface currents and directional properties of surface waves collected319

from an airborne instrument (MASS), off the coast of Southern California, across sub-320

mesoscales features.321

Central to this work is the development of a novel airborne instrument, DoppVis,322

that enables high-resolution observations of surface currents, vertical and horizontal shear323

alongside the other MASS instruments to capture quickly evolving features (both in time324

and space) such as submesoscale fronts, but also tidal estuarine flows, and more gener-325

ally ocean phenomena that require frequent revisits (e.g oil spills).326

The combination of surface waves, currents, and SST remotely observed from this327

instrument provides a unique opportunity to examine how currents at scales ranging from328

1-100 km modulate surface gravity waves, i.e. bulk (e.g. significant wave height), direc-329

tional and spectral properties. Observations of near-surface currents at such high spa-330

tial resolution also enable the investigation of the transition between balanced and un-331

balanced motion, and the flow structure (vorticity-strain space), crucial to developing332

a better understanding of the underlying physics of submesoscale processes such as fron-333

togenesis and frontal arrest.334
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Colosi1, Simen Å. Ellingsen2, Laurent Grare1, Hugo Peyriere1, and Nick4

Statom1
5

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA6
2Department of Energy Process Engineering, Norwegian University of Science and Technology, N-74917

Trondheim, Norway8
3SINTEF Ocean, Marinteknisk senter, N-7052 Trondheim, Norway9

4Department of Earth, Environmnetal and Planetary Science and Division of Applied Mathematics,10

Brown University, Providence, RI 02912, USA11

Key Points:12

• Unique coincident and collocated airborne observations of SST, surface currents13

and properties of surface waves across submesoscales features14

• A new airborne instrument enables observations of surface currents, vertical and15

horizontal shear to capture quickly evolving ocean features16

• Such observations are crucial to develop better understanding of the physics of sub-17

mesoscale processes and wave-current interaction18

∗Corresponding author: Luc Lenain llenain@ucsd.edu

–1–



manuscript submitted to Geophysical Research Letters

Abstract19

In this work we present a unique set of coincident and collocated high- resolution obser-20

vations of surface currents and directional properties of surface waves collected from an21

airborne instrument, the Modular Aerial Sensing System (MASS), collected off the coast22

of Southern California. High-resolution observations of near surface current profiles and23

shear are obtained using a new instrument, DoppVis, capable of capturing horizontal spa-24

tial current variability down to 128m resolution. This data set provides a unique oppor-25

tunity to examine how currents at scales ranging from 1-100 km modulate bulk (e.g. sig-26

nificant wave height), directional and spectral properties of surface gravity waves. Such27

observations are a step toward developing better understanding of the underlying physics28

of submesoscale processes (e.g. frontogenesis and frontal arrest) and the nature of tran-29

sitions between mesoscale and submesoscale dynamics.30

Plain Language Summary31

In recent years, through improvement of computational resolution of global ocean32

models, scientists have begun to suspect that kilometer-scale eddies, whirlpools and fronts,33

called “submesoscale” variability, make important contributions to horizontal and ver-34

tical exchange of climate and biological variables in the upper ocean. Such features are35

challenging to analyze, because of their size (and how quickly they evolve; within hours),36

they are too large to study from a research vessel but smaller than regions typically stud-37

ied with satellite measurements. In this work, we use a research aircraft instrumented38

to characterize ocean currents, temperature, color (in turn chlorophyll concentration)39

and the properties of surface waves over an area large enough to capture submesoscale40

processes. This approach is a step forward in understanding and quantifying the under-41

lying physics of submesoscale processes, and in turn develops parameterization that can42

help improve the fidelity of weather and climate models.43

1 Introduction44

The transfer of mass, momentum, and energy between the atmosphere and ocean45

are complex due to their interactions across a broad range of space and time scales (Melville,46

1996). A better understanding of the physics of these processes is fundamental for im-47

proved parameterizations used in coupled air-sea models of weather and climate, par-48

ticularly as Earth’s climate changes (Cavaleri et al., 2012). For example, although the49

importance of surface waves in these models has long been acknowledged, only relatively50

recently have global models included physics-based models of their effects (see, for ex-51

ample McWilliams & Restrepo, 1999; Sullivan & McWilliams, 2010; Li et al., 2016). Specif-52

ically, the effects of the non-breaking surface wave induced transport that catalyses Lang-53

muir circulations have been shown to reduce errors in sea surface temperature (Belcher54

et al., 2012), crucial to climate modelling.55

Submesoscale ocean currents have horizontal scales on the order of 0.1-10 km and56

have recently been hypothesized to make important contributions to vertical exchanges57

of climate and biological variables in the upper ocean as well as provide a pathway from58

energetically rich large scale flows to small scale dissipation. Model studies and limited59

observations (e.g. D’Asaro et al., 2018) show that submesoscale vertical exchange is con-60

centrated near kilometer-scale fronts, jets, and eddies (McWilliams, 2016). Submesoscale61

physics are at the smallest scales that have been resolved in global ocean models, where62

their net effect on heat exchange between the ocean and atmosphere has shown to be63

much larger than mesoscale eddies (Su et al., 2018). However, these simulations are sen-64

sitive to the parameterized physics of the smaller scale motion, which remains poorly un-65

derstood. To address the fundamental questions of the observed nature of submesoscale66

dynamics and the interactions between submesoscale dynamics and smaller scale surface67

wave processes, a comprehensive set of novel, coincident and collocated measurements68
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of the dynamical variables is needed to improve state-of-the-art high-resolution simula-69

tions of weather and climate, and better understand vertical exchanges of heat and bio-70

geochemical tracers.71

Due to non-linear coupling between oceanic and atmospheric processes, including72

currents, winds, and waves, coincident observations are necessary to understand these73

dynamics. A number of model and observational studies have demonstrated the variety74

of ways by which air-sea interaction can induce horizontal divergence of surface currents75

and thus force vertical velocities. Coincident observations of surface vector winds and76

currents are needed to better understand the coupling of winds and currents and in turn77

improve surface flux parameterizations (Bourassa et al., 2019). The wind stress can be78

modified by SST and velocity gradients (Dewar & Flierl, 1987; Fairall et al., 1996; Chel-79

ton et al., 2004; O’Neill et al., 2005) while the resulting convergence of the ocean Ek-80

man layer can be modified by surface vorticity (Stern, 1965; McGillicuddy Jr et al., 2007).81

At submesoscales, these effects are expected to increase in intensity. Frontal structures82

are strongly affected by the relative direction of the wind with downfront Ekman trans-83

port sharpening the fronts and inducing vertical exchange while upfront transport sub-84

dues the front and stratifies the upper ocean (Thomas et al., 2005). Surface waves and85

wave breaking can be strongly modulated at fronts (Romero et al., 2017; Vrećica et al.,86

2022), suggesting that even the basic formulation of air-sea exchange in terms of sim-87

ple bulk coefficients will likely break down at sufficiently small scales. As such, an un-88

derstanding of submesoscale structure and vertical velocity requires that air-sea inter-89

action parameters be observed simultaneously with submesoscale measurements. Of par-90

ticular interest are observations of surface and near surface currents, wave breaking (Vrećica91

et al., 2022), and the directional properties of ocean surface waves. While much progress92

have been made on characterizing the latter (e.g. Herbers et al., 2012; Lenain & Melville,93

2014; Melville et al., 2016; Lenain & Melville, 2017; Lenain & Pizzo, 2020), collecting94

observations of near surface currents, i.e. from the surface down to several meters depth,95

remains challenging and spatially limited in large part due to the presence of waves, which96

induce platform motions and additional sources of background noise. An alternative ap-97

proach to traditional in-situ techniques is to infer current profiles remotely based on ob-98

servations of the spatio-temporal evolution of surface waves that follow a dispersion re-99

lationship, pursued in the present study.100

In this work, we present a unique set of coincident and collocated observations of101

high-resolution surface currents and directional properties of surface waves collected from102

an airborne instrument, the Modular Aerial Sensing System (MASS), off the coast of South-103

ern California in May 2021 as part of the ONR-funded Task Force Ocean (TFO) research104

initiative and in October 2021 as part of the NASA-funded Submesoscale Ocean Dynam-105

ics Experiment (S-MODE) research initiative. Two of the TFO research flights were ded-106

icated to collecting observations across two small counter-rotating eddies separated by107

approximately 100 km. One of the S-MODE flights collected observations across a sharp108

SST front. This data set provides a unique opportunity to examine how currents at scales109

ranging from 1-100 km modulate surface gravity waves, i.e. bulk, directional and spec-110

tral properties.111

This paper is structured as follows: the overview of the experiment and process-112

ing techniques is given in section 2 and 3. In sections 4 through 6, analysis of meso to113

submesoscales surface kinematics and currents collected during two experiments in South-114

ern California is discussed. Section 7 discusses potential implications for submesoscale115

and air-sea interaction studies and presents some summary points.116

2 Experiments117

In this study we consider observations collected during two distinct experiments.118

The first was conducted as part of the “Platform Centric ASW Processing with Through-119
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the-Sensor Data Assimilation and Fusion” project, funded through the ONR Task Force120

Ocean (TFO) initiative with the aim of collecting a simultaneous combination of acous-121

tic, air-sea interaction and oceanographic measurements. Observations from a research122

vessel, a drifting instrument array, autonomous surface vehicles and a research aircraft123

were collected in May 2021, approximately 45km offshore of San Diego, CA, in the vicin-124

ity of CalCoFi Line #90.125

The second experiment was conducted as part of the NASA S-MODE program, a126

project that aims to characterize the contribution of submesoscale ocean dynamics to127

vertical and horizontal transport in the upper ocean by employing a combination of aircraft-128

based remote sensing measurements of the ocean surface, in-situ measurements from re-129

search vessels and a variety of autonomous oceanographic platforms, and numerical mod-130

eling (Farrar et al., 2020). The “pilot” experiment considered here was conducted in the131

fall of 2021 off the coast of San Francisco, CA.132

Data collected from instrumented Wave Gliders (Grare et al., 2021) and an airborne133

instrument, the SIO Modular Aerial Sensing System (MASS, Melville et al., 2016) dur-134

ing these two field programs are considered in the analysis. During both experiments the135

MASS instrument was installed on a Twin Otter DHC-6 aircraft (Twin Otter Interna-136

tional, Grand Junction, CO).137

3 SIO-MASS DoppVis instrument: Enabling novel airborne observa-138

tions of near-surface currents139

The Modular Aerial Sensing System (MASS) is an airborne instrument developed140

at the Air-Sea Interaction Laboratory (SIO) to simultaneously collect observations of sea141

surface temperature and ocean color (Melville et al., 2016; Lenain & Pizzo, 2021a), winds142

and mean-square slope (Lenain et al., 2019), surface waves (Lenain & Melville, 2017; Lenain143

& Pizzo, 2020), and ocean topography (Villas Bôas et al., 2022), at horizontal scales rang-144

ing from sub-meter to mesoscales. Over the past 11 years, the instrument was flown for145

more than 30 missions, covering a broad range of environmental conditions, locations,146

and applications. Details on the system performance and various applications of the MASS147

can be found in Melville et al. (2016); Lenain and Melville (2017); Lenain et al. (2019);148

Lenain and Pizzo (2020); Vrećica et al. (2022).149

In 2020, we started the development and integration of a new sensor into the MASS150

instrument, called “DoppVis”, to obtain coincident observations of surface currents along-151

side the MASS observations listed above. The approach used is to infer currents from152

optical observations of the spatio-temporal evolution of surface waves, whose dispersion153

is altered by the presence of an underlying current. This technique has been primarily154

used with radar technology (e.g. Stewart & Joy, 1974; Campana et al., 2016; Lund et155

al., 2015) then later applied to airborne video imagery (Dugan et al., 2001; Dugan & Pi-156

otrowski, 2003; Anderson et al., 2013).157

Starting from the dispersion relation for small-amplitude linear waves propagat-
ing on top of a depth-varying current,

ω(k) = ω0(k) + c(k) · k, (1)

where ω is the wave frequency, ω0 is the frequency in the absence of currents, i.e equal
to

√
gk in deep water, k = (kx, ky) is the wavenumber, k = |k|, and c is the Doppler

shift velocity due to the underlying current. Following Stewart and Joy (1974), assum-
ing the waves are in deep-water, c can be approximated as a weighted average of the cur-
rent profile as a function of depth such that

c(k) = 2k

∫ 0

−∞
U(z)e2kzdz, (2)

where U(z) = (U, V ) is the Lagrangian mean current profile as a function of depth z158

(Pizzo et al., 2022). Based on this relationship, one can assign an effective depth ze to159
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the measured Doppler velocities c(k) by finding the depth at which the Doppler veloc-160

ity is equal to the current (Stewart & Joy, 1974; Smeltzer et al., 2019), such that ze(k) =161

−1/2k. This is referred to as the Effective Depth Method (EDM) in Smeltzer et al. (2019).162

The DoppVis instrument collects visible imagery of the ocean surface using a Nikon163

D850 camera with 14mm lens mounted with a 90 degree rotation (long edge of image164

parallel with flight track) and a 30 degree positive pitch angle from nadir (pointing slightly165

ahead of aircraft). The camera is synchronized to a coupled GPS/IMU system collect-166

ing images at a 2Hz frame rate. Raw images are carefully calibrated for lens distortion167

and boresight misalignment with the GPS/IMU over a hard terrestrial target, then geo-168

referenced and exported with reference to WGS84 datum with a UTM zone 10 projec-169

tion (EPSG 32610) at 50cm horizontal resolution. Each image is then interpolated on170

a regular grid, to enable the generation of 3D cubes of imagery (time, UTM X, UTM171

Y) of set duration and dimension (Nx, Ny), where Nx = Ny, typically in the range of172

128 to 512m. The number of collected data cubes in the cross and along track direction173

of the aircraft varies as a function of aircraft altitude. All data presented here were col-174

lected at 1500 AMSL, corresponding to approximately two 256x256 m2 cubes in the cross-175

track direction. Following the same approach described in (Smeltzer et al., 2019), all cubes176

of space–time data are converted to wavenumber–frequency space using a 3D FFT. Each177

of these 3D spectra are then averaged in the cross-track and along-track direction (1 km178

bin) to improve SNR. Doppler shift velocities are extracted from the spectrum as a func-179

tion of wavenumber by masking the spectrum into wavenumber magnitude bins (bin half-180

width of 4π/Nx), where for each bin the current c(k) is estimated using a normalized181

scalar product method (Huang et al., 2016; Streßer et al., 2017) with a Gaussian char-182

acteristic function (Smeltzer et al., 2019) peaked along the linear dispersion relation.183

Figure 1(a) shows an example of current profiles (U, V ) collected from DoppVis dur-184

ing an overflight of an instrumented Wave Glider during the S-MODE experiment on Novem-185

ber 4, 2021 at 17:20 UTC. The Wave Glider was instrumented with an upward-looking186

Nortek Signature 1000 ADCP (orange squares) and a downward-looking ADCP (Tele-187

dyne RDI Workhorse 300kHz), carefully motion compensated using an onboard GPS/IMU188

system (Grare et al., 2021). Observations from DoppVis and the wave glider were col-189

lected within 5min and no further than 500m from each other to minimize any error as-190

sociated with natural spatial and temporal variability. We find good agreement between191

in-situ and remotely sensed observations of near-surface current (U, V ), with a bias =192

-0.014 m/s and rms deviation = 0.052 m/s, and a coefficient of determination R2 = 0.96.193

Finally, airborne observations of SST collected from MASS on November 4, 2021,194

over the entire domain along with current estimates (1km along-track resolution) from195

DoppVis at two depths, z = −1.5±0.5m (black arrows) and z = −0.4±0.1m (red ar-196

rows) are shown in figure 1(c). Note the correlation between features present in the SST197

fields and the surface currents from DoppVis. Throughout the domain, we consistently198

find larger magnitudes of the eastern component of the current closer to the surface, likely199

caused by Stokes drift included in the Lagrangian current observed by DoppVis (Pizzo200

et al., 2022). Wind and waves were coming from the west at the time of the flight.201

4 Wave-current interactions from meso- to submesoscales202

The collocated observations from the multiple instruments on the MASS allow for203

investigation of interactions between currents and other oceanographic properties such204

as waves, heat, and biological communities. We now examine observations collected dur-205

ing the “Platform Centric ASW Processing with Through-the-Sensor Data Assimilation206

and Fusion” TFO project in May 2021 to illustrate the importance of high spatial res-207

olution, collocated observations for studying wave-current observations.208

–5–



manuscript submitted to Geophysical Research Letters

Figure 1. (a) Current profiles (U, V ) collected from DoppVis (gray triangles) during an over-

flight of an instrumented Wave Glider during the S-MODE experiment on November 4, 2021 at

17:20 UTC. The Wave Glider is equipped with an upward-looking Nortek Signature 1000 ADCP

(orange squares) and a downward-looking ADCP (Teledyne RDI Workhorse 300kHz; blue circles).

The location of the Wave Glider with respect to the DoppVis observations is shown in (c). (b)

Comparison between in-situ observations of currents collected at a 2 to 3m water depth obtained

from DoppVis and two Wave Gliders, named WHOI43 and STOKES, for the times and locations

of overflights (within 500m) during the entire S-MODE experiment. (c) Airborne observations

of SST collected from MASS on November 4, 2021 over the entire domain along with current

estimates (1km along-track resolution) from DoppVis at two depths, deep, z = −1.5±0.5m (black

arrows) and shallow, z = −0.4± 0.1m (red arrows).
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Several research flights were dedicated to collecting observations across two counter-209

rotating eddies separated by approximately 100 km. Figure 2(a) shows depth-averaged210

(0.3-2m) surface currents (250 m along-track resolution) along with significant wave height211

measurements collected coincidentally with the MASS instrument. The black contours212

represent the sea surface height (ssh, AVISO) at the time of the observations, while cor-213

responding surface currents from HYCOM (GOF 3.1, GLBy0.08-expt93.0) are shown as214

gray quivers. We find the HYCOM estimated currents to be in good agreement with DoppVis215

observations at the mesoscale, but strikingly miss many of the submesoscale features through-216

out the domain. We also find significant modulation of the surface wave properties across217

the domain that is not caused by temporal (e.g. inertial) variability.218

Currents modulate the properties of surface gravity waves both through wave re-219

fraction (e.g. Ardhuin et al., 2017; Romero et al., 2017, 2020; Bôas et al., 2020; Pizzo220

& Salmon, 2021) and local effects (Rascle et al., 2016, 2017; Lenain & Pizzo, 2021b), there-221

fore high-resolution measurements of currents and spectral wave properties is needed to222

better understand wave-current interaction from meso- to submesoscales.223

Figure 2 shows a subset of these observations, focusing on an area of the domain224

with significant submesoscale variability in ocean current magnitude and direction. We225

find large modulation of surface currents, at scales of 1-8 km associated with submesoscale226

variations within the mesoscale eddy. Panel (b) shows a sharp SST front at 32.885oN227

with a change in temperature of approximately 0.5oC, associated with a velocity gra-228

dient ∂U/∂x ≈ 10f , where f is the Coriolis frequency.229

Despite approximately constant surface wind (figure 2c) and significant wave height230

(figure 2d) as a function of latitude on this transect, the mean spectral saturation < B >231

(Romero et al., 2017) had significant variation (figure 2e). The saturation spectrum is232

defined as B = ϕ(k)k3, where ϕ is the omnidirectional wave spectrum (Phillips, 1984,233

1985). The mean saturation is obtained by averaging B over the saturation range of the234

wave spectrum, with a lower bound kn as defined in Lenain and Pizzo (2020). At that235

time, wind waves were approximately oriented in the same direction as the current V236

(figure 2d).237

We find that the mean saturation < B > generally follow the same evolution as238

V . While this comparison remains qualitative, it hints at the importance of incorporat-239

ing wave-current interaction in wave spectrum parameterization, along the line of Lenain240

and Pizzo (2021a) that investigated the use of WKB to predict the modulation of sur-241

face gravity waves by internal wave currents.242

Though beyond the scope of this work, but a focus of further studies in particu-243

lar as part of the S-MODE program, we expect that these collocated, coincident obser-244

vations will lead to new insights about coherent features that arise from wind-wave-current245

coupling, or some combination of those processes, which may be particularly important246

for the flux of climatically-important variables such as heat and biogeochemical tracers247

between atmosphere and ocean (Li et al., 2016; Smith et al., 2016; Verma & Sarkar, 2021;248

Freilich & Mahadevan, 2021; Gula et al., 2022).249

5 Transitions from mesoscale to submesoscale motion250

High-resolution measurements of surface currents enable the characterization of the251

transition between geostrophically balanced motion at larger scales and unbalanced (ageostrophic252

and wave) motion at smaller scales (Chereskin et al., 2019). In particular, determining253

the dynamics that predominate at the submesoscale has important implications for the254

vertical structure of the upper-ocean (Cronin et al., 2019) and the spatio-temporal dis-255

tribution of energy dissipation (Buckingham et al., 2019; Dong et al., 2020; Schubert et256

al., 2020; Ajayi et al., 2021), and can lead to improvement of ocean-atmosphere coupled257

models (Li et al., 2016). While DoppVis observations are accurate enough to resolve sub-258
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Figure 2. (a) MASS significant wave height Hs and DoppVis surface current observations

(250m along-track resolution) collected during the TFO experiment on May 19, 2021. The black

contours represent the sea surface height (ssh, AVISO) at the time of the observations, while

corresponding surface currents from HYCOM are shown as gray quivers. The larger scale trends

of the surface currents are in general agreement with the HYCOM product, though the latter

completely misses significant submesoscale features. We find significant modulation of the wave

conditions across the domain, by up to 20%. (b) Subset of the data presented in (a) (nortwestern

part of the flight) with the track colorcoded for measured SST. Note the strong modulation of

surface currents over very short distances (1-8 km), coinciding in places with sharp SST fronts

(for example at latitude around 32.885o in the northern part of the operation area). (c) and (d)

show the wind speed U10 and significant wave height Hs collected along the NNW-SSE track

shown in panel (b). (e) North component of the current V and mean spectral saturation ⟨B⟩, all
plotted over the same range of latitude as in panel (b). Note the modulation of ⟨B⟩ associated
with changes in V , the component of the current aligned with the waves, hinting at local wave-

current interaction.
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Figure 3. Comparison of Kinetic energy (KE) spectra collected from the DoppVis Lagrangian

surface currents on May 19 2021 during one of the long East - West transects shown in figure

2(a) compared with in-situ ADCP observations (20-m depth) and LLC4320 hourly model prod-

ucts from Chereskin et al. (2019).

mesoscale currents (horizontal resolution of less than 500 m), the airborne platform also259

travels quickly enough to collect nearly synoptic observations at the mesoscale (100 km).260

This is particularly valuable because it allows for examination of spatial variability across261

a range of scales and cross-scale interactions by not aliasing temporal variability. Fig-262

ure 3 shows kinetic energy (KE) spectra computed from the DoppVis surface current ob-263

servations collected during one of the long East-West transects shown in figure 2(a) com-264

pared with the average of 11 years of in-situ ADCP observations (20-m depth) and 1 year265

of LLC4320 hourly model products from Chereskin et al. (2019). The agreement at low266

wavenumbers (>10km) is remarkable, as well as the fact that the kinetic energy spec-267

trum from DoppVis maintains a nearly continuous slope for higher wavenumbers, down268

to 1 km scale. Feedbacks on ocean currents from wind and waves is likely important for269

determining dynamics at scales of less than 10 km where submesoscale processes pre-270

dominate (Haney et al., 2015; Suzuki & Fox-Kemper, 2016; Yuan & Liang, 2021). Un-271

derstanding these couplings needs to be advanced by direct observations that span scales272

from submesoscale to mesoscale. Characterization of the transition between geostroph-273

ically balanced motion and unbalanced dynamics is further explored in forthcoming work.274

6 Velocity gradient statistics275

Submesoscale dynamics are defined by the large velocity gradients at these scales,276

with O(1) Rossby number (McWilliams, 2016). Consistent with the small spatial scale277

of submesoscale dynamics, they also have fast temporal scales (Callies et al., 2020). Ob-278

servations of not just velocity, but 2D velocity gradients of quickly evolving submesoscale279

features are therefore important for understanding submesoscale dynamics, but require280
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Figure 4. (a) Surface vorticity–strain and (b) divergence-strain JPDFs computed from 128m

resolution DoppVis products collected on October 5 2021 during the S-MODE pilot program. (c)

and (d) Surface vorticity–strain for ∆/f > 0.8 and ∆/f < −0.8 respectively. The dashed lines

represents the σ = ζ lines.

synoptic observations over scales of tens of kilometers, which is not feasible with rela-281

tively slow-moving ship-based observations. Previous observations of submesoscale ve-282

locity gradients have used two ships (Shcherbina et al., 2013). Aircraft-based observa-283

tions offer a well-suited platform for studying submesoscale dynamics due to their fast284

speed relative to ships and much higher resolution measurements than what is afforded285

by satellites.286

In recent years, through numerical (Balwada et al., 2021) and observational (Shcherbina287

et al., 2013) studies, the surface vorticity–strain Joint Probability Density Function (JPDF)288

has been demonstrated as a useful tool to distinguish between different flow regimes, in289

particular in the context of submesoscale dynamics. In figure 4, we show vorticity-strain290

and divergence-strain JPDFs computed from high-resolution DoppVis surface current291

observations collected during the S-MODE pilot experiment on October 2021 (60km long292

section). During that portion of the flight, the aircraft flew at 3000ft AMSL, increasing293

the swath width of surface current observation up to 2 km, with a horizontal resolution294

(cross and along-track) of 128 m. Vorticity ζ, strain rate σ and divergence ∆ are then295

computed from the gradients of the measured surface currents. These velocities are first296

low-pass filtered (3-point tophat) prior to computing gradients. Overall, the distribu-297

tion is skewed toward positive ζ/f values, with σ/f > ζ/f consistent with frontal struc-298

tures, and classical submesoscale frontogenesis. This is particularly evident in panel (d),299

where the vorticity-strain JPDF for ∆/f < −0.8 (i.e. convergence) is shown to be skewed300

to positive values. The same JPDF for positive values of ∆/f , larger than 0.8 (panel c)301

is not skewed toward negative ζ/f values, perhaps implying the contribution of other302

processes, e.g. surface wave modulation properties and associated Stokes drift (recall that303

DoppVis observes Lagrangian current).304
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7 Discussions and summary305

Direct spatial and temporal observations of the lower atmosphere, sea surface and306

upper ocean are crucial for improved knowledge of air-sea interaction. However, the broad307

range of scales, or equivalently the strong spatial and temporal variability of theses in-308

teractions (see figure 1), make this a formidable theoretical, numerical, and observational309

challenge. Traditional in-situ assets such as moorings and buoys are limited by their spa-310

tial coverage or their potential spatial biasing, in particular near an ocean front where311

buoys or drifters can cluster, while satellite imagery estimates important quantities like312

wind, significant wave height and currents through indirect methods (often based on σ0313

relations) and can also only sample at sparse time intervals. Observations and models314

have revealed two-way coupling processes between ocean currents and wind (Chelton &315

Xie, 2010; Wenegrat & Arthur, 2018) and ocean currents and waves (Marechal & de Marez,316

2022; Wang et al., 2020) at both the mesoscale and submesoscale.317

In this work, we present unique coincident and collocated suborbital high-resolution318

observations of SST, surface currents and directional properties of surface waves collected319

from an airborne instrument (MASS), off the coast of Southern California, across sub-320

mesoscales features.321

Central to this work is the development of a novel airborne instrument, DoppVis,322

that enables high-resolution observations of surface currents, vertical and horizontal shear323

alongside the other MASS instruments to capture quickly evolving features (both in time324

and space) such as submesoscale fronts, but also tidal estuarine flows, and more gener-325

ally ocean phenomena that require frequent revisits (e.g oil spills).326

The combination of surface waves, currents, and SST remotely observed from this327

instrument provides a unique opportunity to examine how currents at scales ranging from328

1-100 km modulate surface gravity waves, i.e. bulk (e.g. significant wave height), direc-329

tional and spectral properties. Observations of near-surface currents at such high spa-330

tial resolution also enable the investigation of the transition between balanced and un-331

balanced motion, and the flow structure (vorticity-strain space), crucial to developing332

a better understanding of the underlying physics of submesoscale processes such as fron-333

togenesis and frontal arrest.334
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