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Abstract

This study investigates the spatial and temporal dynamics of DOC concentration in a Mediterranean headwater catchment

(Turbolo River catchment, southern Italy) equipped with two multi-parameter sondes providing more than two-year (May 2019

to November 2021) continuous high-frequency measurements of several DOC-related parameters. The sondes were installed in

two nested sections, a quasi-pristine upstream sub-catchment and a downstream outlet with some anthropogenic disturbances

on water quality. DOC estimates were achieved by correcting the fluorescent dissolved organic matter - fDOM - values through

an original procedure not requiring extensive laboratory measurements. Then, DOC dynamics at the seasonal and storm

event scales were analyzed. At the seasonal scale, results confirmed the climate control on DOC production, with increasing

background concentrations in hot and dry summer months. The hydrological regulation proved crucial for DOC mobilization

and export, with the top 10th percentile of discharge associated with up to 79% of the total DOC yield. The analysis at

the storm scale using flushing and hysteresis indices highlighted substantial differences between the two catchments. In the

steeper upstream catchment, the limited capability of preserving hydraulic connection in time with DOC sources determined

the prevalence of transport as the limiting factor to DOC export. Downstream, transport- and source-limited processes were

observed almost equally. The correlation between the hysteretic behaviour and antecedent precipitation was not linear since

the process reverted to transport-limited for high accumulated rainfall values. The study demonstrated the importance of

high-resolution measurements to explain DOC dynamics at multiple time scales using a quantitative approach.
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Abstract 23 

This study investigates the spatial and temporal dynamics of DOC concentration in a 24 
Mediterranean headwater catchment (Turbolo River catchment, southern Italy) equipped with 25 
two multi-parameter sondes providing more than two-year (May 2019 to November 2021) 26 
continuous high-frequency measurements of several DOC-related parameters. The sondes were 27 
installed in two nested sections, a quasi-pristine upstream sub-catchment and a downstream 28 
outlet with some anthropogenic disturbances on water quality. DOC estimates were achieved by 29 
correcting the fluorescent dissolved organic matter - fDOM - values through an original 30 
procedure not requiring extensive laboratory measurements. Then, DOC dynamics at the 31 
seasonal and storm event scales were analyzed. At the seasonal scale, results confirmed the 32 
climate control on DOC production, with increasing background concentrations in hot and dry 33 
summer months. The hydrological regulation proved crucial for DOC mobilization and export, 34 
with the top 10th percentile of discharge associated with up to 79% of the total DOC yield. The 35 
analysis at the storm scale using flushing and hysteresis indices highlighted substantial 36 
differences between the two catchments. In the steeper upstream catchment, the limited 37 
capability of preserving hydraulic connection in time with DOC sources determined the 38 
prevalence of transport as the limiting factor to DOC export. Downstream, transport- and source-39 
limited processes were observed almost equally. The correlation between the hysteretic 40 
behaviour and antecedent precipitation was not linear since the process reverted to transport-41 
limited for high accumulated rainfall values. The study demonstrated the importance of high-42 
resolution measurements to explain DOC dynamics at multiple time scales using a quantitative 43 
approach. 44 

 45 

1 Introduction 46 

Inland waters receive approximately 70% of the global annual terrestrial net ecosystem 47 
production (ca. 5.1 Pg of terrestrial carbon (C) per year; Soares et al., 2019). However, 48 
approximately only 1 Pg C is exported from the land to the ocean each year. 65% of exported C 49 
is dissolved, with 40% of it being organic (Chaplot and Mutema, 2021). The complex behaviour 50 
of dissolved organic carbon (DOC) within inland waters, which can be seen as “active pipelines” 51 
contributing to negative net ecosystem production (Cole et al., 2007), needs to be deeply 52 
investigated to improve the understanding of the global carbon cycle.  53 

Hydrological factors are known to contribute to regulating the DOC balance at the reach 54 
scale (Bertuzzo et al., 2017; Parr et al., 2019). Interannual, intra-annual (seasonal) and event-55 
based hydrological variability, particularly in headwater streams (Butman and Raymond, 2011; 56 
Rovelli et al., 2018), affects stream-hillslope organic matter exchanges and river network 57 
connectivity, leading to significant space and time variations in sources and processes regulating 58 
DOC dynamics. The impact of this interaction reflects on broader spatial scales so that, recently, 59 
regional approaches have been undertaken to evaluate the relationship between streamflow and 60 
DOC export regimes (Morison et al., 2022) or combine streamflow and DOC observations to 61 
validate catchment classification (Giesbrecht et al., 2022). 62 

At different timescales, different processes emerge. At the seasonal scale, Viza et al. 63 
(2022) found that the intermittent flow regime of a Mediterranean river basin contributes to 64 
reducing organic matter decomposition rates. More generally, the effects of droughts on DOC 65 
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transport have being extensively investigated (e.g., Mehring et al., 2013; Humbert et al., 2015; 66 
Ahmadi et al., 2019; Wu et al., 2022). Available studies have highlighted the inhibition of DOC 67 
release during low flow conditions owing to reduced network connectivity but higher DOC 68 
concentrations after droughts. 69 

Several studies reported DOC concentration increase in the last decades (e.g., Roulet and 70 
Moore, 2006; Monteith et al., 2007; Wu et al., 2022). This trend is connected to rising 71 
temperatures that favour the DOC release (Freeman et al., 2001; Bengtson and Bengtsson, 2007; 72 
Zhong et al., 2020; Chen et al., 2021), an instance which establishes positive feedback with 73 
climate change (since DOC is eventually converted into CO2, a major greenhouse gas). Other 74 
causes, also linked to global warming, can concur to the observed increase of DOC export 75 
through the hydrological response, such as changes in land management, pH and sulfate, 76 
atmospheric CO2 increase, acidic deposition decrease and runoff changes (Worral and Burt, 77 
2007). 78 

At short timescales of a few days or hours, storm events dominate DOC mobilization and 79 
transport (Parr et al., 2019). Precipitation activates direct wet deposition and indirect dry 80 
deposition deriving from vegetation canopy and stem (Song et al., 2021) and soil erosion 81 
(Chaplot and Mutema, 2021). This contribution to total DOC export is further emphasized if the 82 
wet event occurs at the end of prolonged dry periods (Blaurock et al., 2021). Fazekas et al. 83 
(2020) highlighted that anomalous events lasting overall less than 20 days in a year could define 84 
the annual behaviour of the relationships between streamflow and organic matter concentration.  85 

For a specific basin, the concentration-discharge (C-Q) relationship is a signature of the 86 
interactions between biogeochemical and hydrological processes, which in their turn depend on 87 
climatic, geological and topographical features. C-Q relationships can reveal much of the DOC 88 
mobilization dynamics at different timescales (Chorover et al., 2017, Rose et al., 2017). At the 89 
seasonal or annual scale, null to low concentration variability in response to discharge 90 
fluctuations is called chemostasis (Godsey et al., 2009; Basu et al., 2010), indicating a 91 
homogeneous spatial distribution of DOC in the analyzed catchment. On the contrary, 92 
chemodynamic behaviour identifies stronger dependence of solute concentration on streamflow 93 
(Musolff et al., 2015; Fazekas et al., 2020). This behaviour is characterized by decreasing 94 
concentration with discharge if the DOC source is limited or, on the opposite, by increasing 95 
concentration with discharge if the limiting factor is the transport capacity. At the event scale, 96 
the hysteretic loop’s shape and direction help identify the main transport mechanisms. E.g., if the 97 
DOC source is close and well-connected to the stream, clockwise hysteretic loops can be 98 
identified. On the contrary, counterclockwise loops prevail if it is far and connected by pathways 99 
with slow transport velocities.  100 

The response of DOC dynamics is strictly connected to spatial features of heterogeneous 101 
ecosystems. Several studies showed that not only land cover type and land use (Aitkenhead-102 
Peterson et al., 2007; Vaughan et al., 2017; Fovet et al., 2018; Seybold et al., 2019) but also local 103 
topography and geomorphic features (Weiler and McDonnell, 2006) significantly affect DOC 104 
mobilization and transport, influencing the hillslope-channel hydraulic connectivity (Botter et al., 105 
2021). Therefore, the response in time of DOC dynamics in specific sections of a catchment is 106 
modulated by local properties of the upstream areas. Within the same catchment, significant 107 
differences can arise, which cannot be fully captured by a single downstream monitoring section 108 
that integrates heterogeneous upstream biogeochemical signals. It is a typical problem of scale 109 
(Lowe et al., 2006; McGuire et al., 2014), which also affects streamwater chemistry and needs to 110 
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be addressed with innovative theoretical concepts and technical approaches, including intensive 111 
spatially distributed monitoring campaigns in nested sections of the same catchment (McGuire et 112 
al., 2014; Blaurock et al., 2021).  113 

DOC dynamics monitoring across different spatial and temporal scales is possible thanks 114 
to the advancements in optical aquatic sensors technology. Through in-situ continuous high-115 
frequency measurements, such sensors catch rapidly changing concentrations during storm 116 
events and trends over more extended (seasonal to interannual) periods (Pellerin et al., 2014), 117 
supporting the development of accurate dynamic models (e.g., Jones et al., 2014) and, in general, 118 
providing great potential for a better understanding of aquatic ecosystems functioning (Snyder et 119 
al., 2018). Indeed, optical aquatic sensors do not measure DOC directly but rather the fluorescent 120 
dissolved organic matter (fDOM), the fraction of DOM that fluoresces. fDOM data can be 121 
corrected by accounting for some physical properties of the water (e.g., Watras et al., 2011; 122 
Downing et al., 2012; Snyder et al., 2018) and related to DOC using laboratory measurements 123 
needed to calibrate the transfer function. Many studies exploit optical sensor properties 124 
integrated into multi-parameter sondes to highlight several features of coupled DOC-streamflow 125 
dynamics at different timescales. E.g., Saraceno et al. (2009) analyzed a 4-week period including 126 
a short-duration storm event. Vaughan et al. (2017) and Fovet et al. (2018) focused on hysteresis 127 
in C-Q curves across many storms in catchments with different land use. Mistick and Johnson 128 
(2020) analyzed seasonal- and storm-scale DOC responses in clear-cut and forested headwater 129 
streams. Blaurock et al. (2021) highlighted the dependency on topography and antecedent 130 
wetness conditions. Koenig et al. (2017), Werner et al. (2019), Shogren et al. (2021), and 131 
Fazekas et al. (2020) performed multi-year investigations of the C-Q behaviour across multiple 132 
sites and timescales.  133 

This paper contributes to the ongoing effort to improve understanding of the related 134 
dynamics of streamflow and DOC concentration spatial variability across different timescales. 135 
Our investigation focused on a Mediterranean headwater catchment (Turbolo River, southern 136 
Italy) characterized by dry and hot summer climate enhancing network intermittency. The 137 
catchment was equipped with two multi-parameter sondes at two outlets, an upstream section 138 
closing a quasi-pristine sub-catchment and a downstream section closing a catchment affected 139 
moderately by human activities (agriculture and villages). More than two-year (May 2019 to 140 
November 2021) continuous high-frequency measurements of several chemical-physical 141 
parameters were recorded, including DOC-related parameters like fDOM, streamwater 142 
temperature and turbidity. On-site measurements were complemented by several samples 143 
collected during January-April 2021, aimed at characterizing the catchment and calibrating the 144 
fDOM-DOC transfer function. Furthermore, hydrometeorological observations, including 145 
discharge at the analyzed sections, were continuously performed. 146 

The study addresses the interrelated dynamics of DOC concentration, river discharge, and 147 
other hydrometeorological variables across multiple timescales in a Mediterranean headwater 148 
catchment. This general purpose was fulfilled through two specific objectives, which were 149 
addressed by exploiting a novel, simple procedure for the correction of recorded fDOM values 150 
that does not rely on extensive laboratory measurements: i) the assessment of the seasonal 151 
variability of DOC background values related to several hydrometeorological parameters in two 152 
nested sections characterized by different land uses; ii) the evaluation of the DOC concentration-153 
discharge relationships at the storm event timescale, considering season- and site-dependence, 154 
aimed at uncovering the main mobilization and transport mechanisms. For both the timescales 155 
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considered in this study (storm event and seasonal), the difference in DOC response of the two 156 
nested cross-sections was analyzed to infer the dependence of DOC dynamics on scale properties 157 
and other landscape features.  158 

 159 

2 Data and Methods 160 

2.1 Study area 161 

The study area is the upper Turbolo creek catchment (Figure 1), closed at the Fitterizzi 162 
gauge (183 m a.s.l.), in southern Italy, a drought-prone area (Mendicino and Versace, 2007), for 163 
which an increasing drying scenario is projected (Senatore et al., 2022a). The catchment area is 164 
approximately 7 km2, with an elevation of up to 1005 m a.s.l. The Turbolo creek originates from 165 
the Calabrian Coastal Range, which is dominated by strongly altered and fractured crystalline-166 
metamorphic rocks that entail widespread slope instability and have overall high permeability. 167 
The geology allows ample groundwater recharge and storage that sustains almost perennial flow 168 
at the Fitterizzi gauge. Steep slopes characterize the catchment on the metamorphic rocks in the 169 
west. In the eastern part, slopes are less steep but affected by water erosion processes, inducing 170 
shallow landslides and soil creep (Senatore et al., 2020). 171 

The channel network consists of two main forks: the southern one (red-contoured on the 172 
map) is the San Nicola creek, 2 km2 wide, in whose closing section (231 m a.s.l.) a gauging 173 
station was installed. San Nicola is a quasi-pristine sub-catchment on which only an abandoned 174 
settlement is located. The average elevation of the catchment closed at the San Nicola gauge is 175 
600 m a.s.l. The northern fork reflects some more relevant anthropogenic effects, with more 176 
agricultural areas (mainly non-irrigated arable land and olive groves) and the village of 177 
Mongrassano with an adjoining sewage treatment plant sized for about 500 equivalent 178 
inhabitants. The average elevation of the catchment (closed at the Fitterizzi gauge) is 491 m a.s.l. 179 
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managed by the Regional Agency for the Protection of the Environment (ARPACal), while a 202 
water stage gauge operated in SN until March 2021. 203 

 204 

Table 1. Data sampling timesheet. 205 
 206 

FIT SN 
Start date End date Hourly samples Start date End date Hourly samples 

22/05/2019 18:00 19/11/2019 11:00 4338 22/08/2019 18:00 16/12/2019 12:00 2779 

16/01/2021 13:00 06/10/2021 06:00 6306 05/01/2020 11:00 30/01/2020 10:00 600 

18/10/2021 14:00 26/11/2021 00:00 923 05/04/2020 10:00 25/11/2020 10:00 5617 

   01/12/2020 11:00 25/03/2021 10:00 2736 

Total 11567 Total 11732 
 207 

2.3 Correction of measured fDOM values 208 

In the aim of acquiring DOC timeseries starting from fDOM measurements, the first 209 
correction was applied to the raw data to account for the fDOM signal decrease as a function of 210 
temperature implied by the increase of non-radiative deactivation pathways (Watras et al., 2011): 211 

 212 𝑓𝐷𝑂𝑀் = 𝑓𝐷𝑂𝑀 ሾ1 + 𝜌(𝑇௠ − 𝑇௥)ሿ⁄       (1) 213 

 214 

In the above equation, 𝑇௠ and 𝑇௥ are measured and reference temperatures in °C, and ρ is 215 
a specific temperature attenuation coefficient (°C–1) equal to -0.01°C-1 (Exo User Manual, 2020). 216 

Then, a suspended particle attenuation factor k was estimated to correct the values of 217 
fDOMT using the following equation (Downing et al., 2012): 218 

 219 𝑓𝐷𝑂𝑀௖௢௥௥ = ௙஽ைெ೅௘ೖ∗೟ೠೝ್         (2) 220 

 221 

where turb is the turbidity. 222 

The factor k = 0.004 ± 0.001 FNU-1 was calibrated using water samples collected under 223 
various conditions and analyzed in the laboratory (Figure 2).  224 
 225 
 226 
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 227 

Figure 2. Dispersion plot of the parameter fDOMT/DOC as a function of the turbidity. 228 

 229 

Finally, assuming a linear relationship between fDOMcorr and DOC:  230 

 231 𝐷𝑂𝐶 = 𝑚 ∙ 𝑓𝐷𝑂𝑀௖௢௥௥ + 𝑐        (3) 232 

 233 

The concentration of DOC was estimated. The parameters at eq. (3) were calibrated 234 
through linear fitting (using c = 0.8 ± 0.2 and m = 0.054 ± 0.007, Figure 3). 235 
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 236 

Figure 3. Correlation analysis between the laboratory DOC values measured on discrete samples 237 
and the corresponding fDOMcorr values (grey circles). The corresponding fDOMT values are also 238 
reported (red circles). 239 

 240 

For turbidity values much higher than those used to estimate the factor k, equation (2) 241 
could not be applied. Therefore, for continuous measurements with turbidity values higher than 242 
600 FNU, DOC values were extrapolated using multiple linear regressions of discharge and 243 
accumulated precipitation from 1 up to 12 previous hours. Such regressions reached R2 values up 244 
to 0.7 compared to observations. 245 

 246 

2.4 Event Selection and Indices Calculation 247 

A set of 29 focus events for each sub-catchment were identified during the study period 248 
following the approach proposed by Landson et al. (2013). At first, the baseflow was separated 249 
from quickflow using the following basic filter equations: 250 

 251 
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𝑞௙(𝑖) =  ቊ𝛼𝑞௙(𝑖 − 1) +  (ଵିఈ)ଶ ሾ𝑞(𝑖) − 𝑞(𝑖 − 1)ሿ        𝑓𝑜𝑟 𝑞௙(𝑖) > 00                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (4) 252 𝑞௕(𝑖) = 𝑞(𝑖) − 𝑞௙(𝑖)         (5) 253 

 254 

Where 𝑞௙(𝑖), 𝑞(𝑖), and 𝑞௕(𝑖) are the quickflow, the streamflow, and the baseflow 255 
response at the ith sampling time (hourly), and 𝛼 the filter parameter. This iterative method must 256 
be run multiple times (called passes) forward and backward. Thereafter, the Baseflow Index 257 
(BFI), defined as the ratio between the baseflow and the streamflow volume, was used to identify 258 
the events. The events selection based on this method was performed through the “hydroEvents” 259 
package in Software R using 𝛼 = 0.925, while the appropriate number of passes to separate the 260 
baseflow for hourly data was chosen equal to 9, as suggested by Landson et al. (2013). The 261 
method adopted not always detected events in both catchments during the same storm. 262 
Furthermore, some minor events, though automatically detected, were discarded due to the very 263 
low flow associated, especially in the small San Nicola creek. 264 

The hysteresis index HI and the flushing index FI were calculated to evaluate the 265 
dynamics of DOC concentration in the analyzed basin, which is mobilized and transported by 266 
storm events. 267 

The hysteresis index HI indicates a clockwise or counterclockwise behaviour in the 268 
concentration-discharge (C-Q) relationship (Lloyd et al., 2016, Vaughan et al., 2017). For each 269 
event, the HI index was calculated starting from the normalized values of discharges and DOC 270 
concentrations: 271 

 272 𝑄௜,௡௢௥௠ =  ொ೔ିொ೘೔೙ொ೘ೌೣି ொ೘೔೙         (6) 273 𝐶௜,௡௢௥௠ =  ஼೔ି஼೘೔೙஼೘ೌೣି ஼೘೔೙         (7) 274 

 275 

where 𝑄௜ and 𝐶௜ are the discharge and the DOC concentration at the ith time step, 𝑄௠௜௡ 276 
and 𝑄௠௔௫ are the maximum and minimum discharge values, respectively, and 𝐶௠௜௡ and 𝐶௠௔௫ are 277 
the maximum and minimum DOC concentrations of the storm event. These normalized 278 
concentrations 𝐶௜,௡௢௥௠  were interpolated by linear regression using two adjacent measurements 279 
with an interval of 2%. For the same intervals (called j), the hysteresis index 𝐻𝐼௝ was calculated 280 
as follows: 281 

 282 𝐻𝐼௝ = 𝐶௝,௥௜௦௜௡௚ − 𝐶௝,௙௔௟௟௜௡௚         (8) 283 

 284 

where 𝐶௝,௥௜௦௜௡௚ and 𝐶௝,௙௔௟௟௜௡௚ are the DOC concentrations in the rising and falling limb, 285 
respectively. The final hysteresis HI (ranging from -1 to +1) of each storm event was obtained by 286 
averaging all 𝐻𝐼௝ values. Positive HI values indicate a clockwise hysteresis, while negative 287 
values indicate a counterclockwise hysteresis.  288 
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The flushing index (FI) evaluates the increase of concentration, i.e., flushing effect 289 
(positive values), or the decrease of concentration, i.e., diluting (negative values) effect of DOC 290 
concentration on the rising limb (Butturini et al. 2008, Vaughan et al. 2017). The FI index is 291 
defined as: 292 

 293 𝐹𝐼 = 𝐶ொ௣௘௔௞,௡௢௥௠ − 𝐶௜௡௜௧௜௔௟,௡௢௥௠       (9) 294 

 295 

where 𝐶ொ௣௘௔௞,௡௢௥௠ and 𝐶௜௡௜௧௜௔௟,௡௢௥௠ are the normalized DOC concentrations at the peak 296 
of discharge and the beginning of the storm, respectively. 297 

 298 

3 Results 299 

3.1 Seasonal variability of background DOC concentration 300 

The mean concentration of dissolved organic carbon across the monitoring campaign 301 
(2019-2021) for FIT and SN were 1.7 ± 0.3 mg l-1 and 2.1 ± 0.5 mg l-1, respectively. These are 302 
relatively low values in agreement with typical DOC concentrations in freshwater (≤ 5 mg l-1) 303 
(Stumm and Morgan, 1996). Concentrations between the two sites might not be directly 304 
comparable because the two recording periods do not entirely overlap. However, reducing the 305 
statistics only to the 91 non-rainy days with overlapping observations, DOC concentrations were 306 
higher in the SN section (1.8 ± 0.3 mg l-1 and 1.9 ± 0.4 mg l-1 for FIT and SN, respectively). 307 
Slightly higher background values for the upstream monitoring section can be due to the 308 
enhanced biomass production and decomposition and the steeper topography of the upstream 309 
forested catchment. 310 

Table 2 reports the descriptive statistics on the background values (days in the absence of 311 
rain) of FIT and SN sites for the entire monitoring campaign. Box and whisker plots of the DOC 312 
showing seasonal trends are given in Figure 4 for both locations. The analysis was conducted on 313 
average daily values, and the set of data corresponding to each site was also divided into four 314 
categories corresponding to calendar seasons - spring (Sp), summer (S), autumn (A) and winter 315 
(W). The two sites showed partially contrasting behaviour. For FIT, the downstream site, the 316 
highest average DOC was recorded in autumn, with a descending order of A> S> W> Sp. In SN, 317 
the upstream site, the descending order was similar. Still, the highest average DOC was observed 318 
in summer (S> A> W> Sp) instead of autumn, probably due to the greater availability of organic 319 
material in the surrounding pristine area that during the summer is converted into DOC by 320 
photochemical processes. Furthermore, lower autumn temperatures in SN than in FIT due to the 321 
higher mean altitude of the contributing catchment inhibit DOC production and export. The 322 
analysis suggested that the difference between mean and median values is larger in winter for 323 
both sites. This result is connected to the more frequent high-discharge events observed in 324 
winter, whose effects can be seen on the non-rainy days considered in this analysis. The one-way 325 
ANOVA statistical analysis showed that the four data sets associated with each season were 326 
significantly different (FIT p > 2.97 × 10-43; SN p > 1.70 × 10-71). 327 
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 365 

Figure 6. Flow duration curves and corresponding normalized accumulated DOC loads for SN 366 
and FIT. It is noteworthy that, while flow duration curves are increasing by definition, 367 
corresponding load curves are not because DOC load could be higher with lower discharge 368 
values. Nevertheless, this behaviour, which can be detected especially in the low flow tail, is of 369 
little significance in this case. 370 

 371 

The behaviour of DOC concentrations in FIT and SN were evaluated by comparing 3760 372 
data (hourly time step) acquired simultaneously at both sections during August-November 2019 373 
and January-March 2021. Figure 7 shows that DOC concentration was generally higher in FIT 374 
(61% of the time) than in SN. This result, which overturns the indications obtained in the 375 
previous seasonal analysis, highlights the importance of the rain/discharge events determining 376 
the highest concentration values. The total yield measured in the overlapping measurements 377 
period was equal to 12.5·103 kg and 2.3·103 kg, respectively, for FIT and SN, leading to a ratio 378 
between the two total yields of 5.4, which is higher than the ratio between the two catchment 379 
areas, approximately equal to 3.5.  380 

The FIT catchment is characterized, overall, by a flatter topography. It is influenced by 381 
the significant contribution of the upstream northern fork, having different (less forested, more 382 
agricultural) land use and more relevant water erosion processes. It is plausible that DOC 383 
sources’ connection to the active drainage network in FIT is more dependent on rain events. On 384 
the other hand, the SN discharge regime, mainly controlled by groundwater sources with lower 385 
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Table 3. Storms statistics for FIT. Dates marked with * are also considered in SN. 404 

Start date/time End date/time Time 
(h) 

Mean 
discharge 

(m3 s-1) 

Max 
discharge 

(m3 s-1) 
Mean DOC 

(mg l-1) 
Max DOC 

(mg l-1) HI FI 

28/05/2019 06:00 29/05/2019 00:00 18 0.103 0.179 2.38 5.61 -0.27 0.17 
15/07/2019 20:00 16/07/2019 15:00 19 0.097 0.309 7.05 19.88 -0.26 0.28 
23/09/2019 22:00 24/09/2019 15:00 17 0.027 0.057 3.14 6.17 -0.51 0.10 
07/10/2019 02:00* 08/10/2019 07:00 29 0.065 0.217 4.43 8.83 0.17 1.00 
03/11/2019 21:00* 04/11/2019 17:00 20 0.080 0.217 5.03 9.78 0.03 0.73 
05/11/2019 14:00* 07/11/2019 17:00 51 0.049 0.260 2.60 5.76 -0.05 0.38 
11/11/2019 16:00 12/11/2019 16:00 24 0.083 0.146 4.16 7.32 0.04 0.65 
13/11/2019 00:00* 14/11/2019 03:00 27 0.121 0.362 4.35 8.53 0.00 0.90 
17/01/2021 13:00* 18/01/2021 17:00 28 0.370 1.226 3.50 8.54 0.27 0.99 
23/01/2021 04:00* 23/01/2021 19:00 15 0.508 1.956 4.42 10.75 0.10 0.41 
23/01/2021 18:00* 24/01/2021 05:00 11 0.506 1.165 4.14 10.75 0.31 0.00 
24/01/2021 03:00* 25/01/2021 14:00 35 2.182 6.796 7.38 17.72 -0.03 0.52 
25/01/2021 17:00* 26/01/2021 13:00 20 2.471 5.200 6.40 12.08 -0.02 0.59 
31/01/2021 14:00* 01/02/2021 14:00 24 1.224 2.407 4.31 7.57 -0.09 0.04 
31/01/2021 22:00* 01/02/2021 14:00 16 1.404 2.407 4.92 7.57 0.00 0.36 
01/02/2021 21:00* 02/02/2021 12:00 15 1.536 2.812 4.53 8.02 0.11 0.04 
08/02/2021 00:00* 09/02/2021 00:00 24 0.684 1.564 2.48 6.15 0.26 0.57 
09/02/2021 00:00* 10/02/2021 00:00 24 0.734 1.290 3.01 5.06 -0.02 0.79 
10/02/2021 13:00* 11/02/2021 13:00 24 1.644 4.721 5.31 12.99 0.20 0.54 
13/02/2021 09:00* 14/02/2021 02:00 17 1.352 2.707 3.91 6.33 0.27 0.92 
14/03/2021 16:00* 15/03/2021 15:00 23 0.225 0.542 2.47 6.11 -0.11 0.88 
19/03/2021 19:00* 20/03/2021 19:00 24 0.598 1.564 3.84 7.05 0.33 0.84 
20/03/2021 16:00* 22/03/2021 05:00 37 1.071 2.219 4.49 9.13 0.18 0.17 
23/04/2021 12:00 24/04/2021 23:00 35 0.524 1.226 3.22 5.85 0.23 0.68 
17/07/2021 13:00 19/07/2021 17:00 52 0.034 0.396 2.31 6.14 -0.36 0.70 
26/08/2021 15:00 27/08/2021 02:00 11 0.028 0.060 3.30 6.87 -0.15 0.32 
11/09/2021 06:00 11/09/2021 22:00 16 0.060 0.182 2.81 3.35 -0.38 0.78 
25/10/2021 14:00 26/10/2021 09:00 19 0.088 0.158 2.65 4.28 -0.14 0.87 
01/11/2021 17:00 02/11/2021 15:00 22 0.308 1.638 4.46 10.73 0.07 0.77 

 405 
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Table 4. Storms statistics for SN. Dates marked with * are also considered in FIT. 406 

Start date/time End date/time Time 
(h) 

Mean 
discharge 

(m3 s-1) 

Max 
discharge 

(m3 s-1) 
Mean DOC 

(mg l-1) 
Max DOC 

(mg l-1) HI FI 

07/10/2019 12:00* 08/10/2019 02:00 14 0.019 0.044 3.23 7.58 0.01 0.33 
03/11/2019 14:00* 04/11/2019 18:00 28 0.013 0.069 3.40 8.36 0.06 0.20 
05/11/2019 14:00* 07/11/2019 17:00 51 0.009 0.056 2.18 5.49 -0.30 0.23 
12/11/2019 22:00* 14/11/2019 01:00 27 0.027 0.077 2.81 7.31 -0.21 0.20 
09/12/2019 08:00 10/12/2019 13:00 29 0.112 0.311 1.57 2.14 -0.01 0.52 
04/07/2020 12:00 05/07/2020 09:00 21 0.018 0.050 2.91 5.40 -0.11 0.59 
08/08/2020 08:00 09/08/2020 07:00 23 0.010 0.025 3.30 4.58 0.17 0.78 
25/09/2020 15:00 26/09/2020 20:00 29 0.028 0.140 3.87 7.00 0.04 0.96 
28/09/2020 08:00 29/09/2020 07:00 23 0.084 0.480 4.26 11.26 -0.01 0.69 
15/10/2020 06:00 16/10/2020 04:00 22 0.035 0.077 3.02 5.36 0.38 0.73 
08/12/2020 21:00 10/12/2020 01:00 28 0.399 0.959 2.65 4.36 -0.17 -0.34 
30/12/2020 21:00 31/12/2020 10:00 13 0.339 0.517 5.32 10.99 -0.06 -0.18 
09/01/2021 13:00 10/01/2021 13:00 24 0.136 0.430 4.54 9.52 -0.19 0.10 
15/01/2021 06:00 16/01/2021 09:00 27 0.156 0.304 4.07 7.61 -0.16 0.17 
17/01/2021 13:00* 18/01/2021 17:00 28 0.102 0.337 3.41 8.30 -0.16 0.12 
23/01/2021 04:00* 23/01/2021 19:00 15 0.158 0.537 3.46 6.80 -0.09 0.35 
23/01/2021 18:00* 24/01/2021 05:00 11 0.136 0.320 3.48 7.20 -0.04 -0.20 
24/01/2021 02:00* 25/01/2021 08:00 30 0.641 1.867 4.56 9.13 -0.20 -0.41 
25/01/2021 17:00* 26/01/2021 13:00 20 0.680 1.428 3.38 5.62 -0.24 0.19 
31/01/2021 14:00* 01/02/2021 14:00 24 0.338 0.661 2.90 4.78 -0.14 -0.11 
31/01/2021 22:00* 01/02/2021 14:00 16 0.390 0.661 3.08 4.78 -0.06 0.02 
01/02/2021 21:00* 02/02/2021 12:00 15 0.421 0.773 3.22 4.57 -0.03 0.09 
08/02/2021 00:00* 09/02/2021 00:00 24 0.190 0.430 2.21 5.89 -0.09 1.00 
09/02/2021 00:00* 10/02/2021 00:00 24 0.203 0.354 2.49 6.24 -0.17 0.15 
10/02/2021 13:00* 11/02/2021 12:00 23 0.463 1.297 3.27 5.26 -0.04 0.64 
13/02/2021 09:00* 14/02/2021 02:00 17 0.371 0.744 3.41 10.48 0.22 0.16 
14/03/2021 16:00* 15/03/2021 15:00 23 0.062 0.149 2.33 5.71 -0.21 0.84 
19/03/2021 18:00* 20/03/2021 17:00 23 0.166 0.430 3.31 6.61 0.12 0.43 
20/03/2021 16:00* 21/03/2021 21:00 29 0.328 0.610 4.27 8.42 0.27 0.70 

 407 

Analyzing the indices accounting for DOC concentration during storms helps understand 408 
the nature of the relevant mobilization and export processes driving DOC dynamics in stream 409 
water. Figure 8 provides a comprehensive overview of the catchment response during these 410 
events by comparing the two sites’ hysteresis (HI) and flushing (FI) indices. In FIT and SN, 411 
positive FI values largely prevailed (only SN showed 5 out of 29 slightly negative values). A 412 
positive flushing index means that the DOC sources in the regions that contribute to the fast 413 
response of the catchment (root zone and riparian areas) are abundant enough to increase 414 
concentration when discharge increases (rising limb of the hydrograph).  415 

HI results provided more contrasting information. In FIT, HI values were equally 416 
subdivided into positive and negative, with few values practically equal to zero. In SN, 8 values 417 
out of 29 were positive, but the general behaviour was not very different from FIT. HI values for 418 
the two sections during the 19 simultaneous events were correlated quite well (r = 0.63). 419 
Negative HI values represent counterclockwise behaviour in the concentration–discharge (C‐Q) 420 
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graphs, meaning that DOC concentration is higher in the falling limb of the hydrograph than in 421 
the rising. This behaviour generally occurs when the primary DOC sources are relatively far and 422 
hydraulically disconnected from the active river network at the beginning of the storm or when 423 
DOC transport is lower than water flux into the channel. Negative values of HI might also imply 424 
that the export process is transport-limited, i.e., the process ceases because of the reduced 425 
transport capacity when the water drains towards the watercourse. On the other hand, positive HI 426 
values mean clockwise behaviour in the C-Q graphs, higher concentrations in the rising limb, the 427 
proximity of the major DOC sources to the active network, and source-limited process, i.e., 428 
despite a still sustained water flow from the catchment to the river network, DOC concentration 429 
reduces in time. Therefore, the HI index allows quantifying event hysteresis dynamics, even with 430 
complex patterns (Williams, 1989) that are not easily interpretable. Overall, the slightly higher 431 
number of negative HI values in SN can be correlated to lower hydraulic connectivity of the 432 
upstream mountainous, steep catchment, presenting more accentuated flow spatial intermittency 433 
than FIT, as is typical for the headwater catchments. 434 

 435 

Figure 8. Storm hysteresis index (HI) versus storm flushing index (FI) for FIT and SN. 436 

 437 

Beyond the observed differences between the upstream and downstream sections, no 438 
general rules exhaustively explained the occurrence of clockwise/counterclockwise hysteresis 439 
during flow events. In SN, positive HI values were observed at the end of the winter, consistently 440 
with enhanced hillslope-channel hydraulic connectivity at the end of the wet season. Three 441 
positive HI events were detected from 13.02.2021 to 21.03.2021 (Table 4), also providing the 442 
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highest loads due to the corresponding high discharges. Nevertheless, four events with HI > 0 443 
occurred in early autumn (07.10.2019, 03.11.2019, 25.09.2020 and 15.10.2020) and one even in 444 
summer (08.08.2020). However, all these events were characterized by very low flows (the 445 
maximum peak flow overcame 0.1 m3s-1 only in one case), therefore providing a relatively low 446 
contribution in terms of DOC load. The maximum discharges of the events were weakly 447 
negatively correlated to HI values (r = -0.21), while correlations with FI were stronger (r = -448 
0.43). The latter result can be explained by considering that DOC removal might become supply-449 
limited during high-intensity events. Indeed, the average maximum discharge of the 5 diluting 450 
events in SN was almost double (0.865 m3s-1) that of all events. 451 

The positive HI values in FIT events occurred only in autumn and winter (Table 3). The 452 
only exception was given by one positive HI event in spring (23.04.2021), which, however, took 453 
place immediately after the wet winter season. Furthermore, the most negative index values 454 
occurred all in late spring/summer, with generally dry conditions. HI values were positively 455 
correlated with the maximum discharges of the events (r = +0.32), while FI correlations were 456 
weaker than SN (r = -0.12).  457 

Figure 9 shows examples of hydrographs, DOC chemographs and the corresponding C-Q 458 
relations for FIT and SN in the case of positive and negative HI values. Specifically, the 459 
17.01.2021 event (Figs. 9a-d) concerned both catchments, with opposite HI signs (-0.16 and 460 
+0.27, in SN and FIT, respectively). This event is peculiar because the DOC concentration 461 
evolution had similar behaviour and was synchronous in the two sections, occurring at the same 462 
time as the FIT discharge peak, while the discharge peak in SN was brought forward by one 463 
hour. In SN, despite the flow reduction, DOC concentration increased for the hour following the 464 
peak flow, contrasting the decrease in the total load. This result can be interpreted considering 465 
that the time needed to reach the peak flow in FIT corresponded to the time required to mobilize 466 
the primary DOC sources in both catchments, while the peak flow in SN was attained earlier. 467 
Rainfall peak intensity in the Fitterizzi rain gauge (only 4.4 mm hr-1) occurred in the same hour 468 
as the rainfall peak in SN. However, this rain gauge is not within the SN catchment; hence some 469 
rainfall features in this catchment, like the exact amount and timing, could have been missed. 470 

Figs. 9e-f show a summer event (15.07.2019) for FIT, with a negative HI value (-0.26) 471 
and significantly high DOC concentration. This event was characterized by a higher rainfall 472 
amount than the previous case (32.6 mm hr-1 two hours before the peak flow, 8.6 mm hr-1 one 473 
hour before and 15.8 mm hr-1 at the peak flow time). The suddenly increased hydraulic 474 
connection in the river network given by this typical summer rain shower following a dry period 475 
contributed to higher DOC concentration values in the falling limb. 476 

Finally, an event in SN with a positive HI value (+0.27) is shown (Figs. 9g-h). This event 477 
occurred at the end of the winter (wet) period (20.03.2021), concatenating two consecutive 478 
smaller events with clockwise evolution (Figure 9h). Interestingly, discharge was lower and 479 
DOC concentration higher in the first event, consistently with the assumption that, for positive 480 
HI values, the export processes are source-limited. In this case, rainfall intensity was low 481 
(maximum 3.8 mm hr-1 at the Fitterizzi gauge station).  482 
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 500 

Figure 10. HI correlation with precipitation accumulated in different time intervals (FIT and 501 
SN). 502 

The scatter plots of HI versus accumulated precipitation for the most highly correlated time 503 
intervals (i.e., 6 days for FIT and 0.5 days for SN; Fig. 11) highlight the non-linear nature of the 504 
correlation. Scattered points were interpolated through generalized additive models (GAMs, 505 
Hastie and Tibshirani, 1986; 1990), which are smooth, nonparametric functions. Especially in 506 
FIT (Figure 11a), GAMs highlighted the non-linear relation between HI and antecedent 507 
precipitation. In general, for low accumulated precipitation values, DOC export was transport-508 
limited (HI < 0). Then, for higher accumulation values, meaning continuous (not necessarily 509 
intense) precipitation in the considered interval, DOC sources tended to be flushed, and the 510 
process became source-limited (HI > 0). Nevertheless, when accumulated precipitation was high 511 
enough, it could mobilize other DOC sources, and the process tended to return transport-limited. 512 
The event with the highest antecedent 6-day rainfall in FIT started on 25.01.2021 after several 513 
other events had just happened. Indeed, the C-Q graph of this event (not shown) includes more 514 
than one loop and is characterized as complex, according to Rose et al. (2018). The relation 515 
between antecedent precipitation and hysteresis described for FIT is much more roughly 516 
sketched out in the smaller SN catchment (Figure 11b), for which a smaller accumulation 517 
interval was also considered. 518 
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temperature were positively correlated in both sites. Though, this correlation was more 552 
significant in the San Nicola site, an instance which may explain the differences in the earlier 553 
monthly DOC concentration peak observed in San Nicola. 554 

The baseflow carries a relatively low amount of DOC, primarily mobilized by individual 555 
storms. In agreement with previous studies, DOC peaks were observed during flood events 556 
(Vaughan et al., 2017, Rose et al., 2018, Blaurock et al., 2021), when significant DOC 557 
enhancement could be measured. As an example, Fovet et al. (2018) recorded an increase 558 Δ𝐶 = 5 ± 4 𝑚𝑔 𝐶 lିଵ compared to a concentration of DOC < 1 mg C l-1 during baseflow, 559 
Blaurock et al. (2021) observed peaks of 10.2-18.6 mg l-1 and 8.5-16.9 mg l-1 for two sites in 560 
comparison to a concentration of 2-3 mg l-1 during the baseflow. 561 

This case study confirms the influence of the topography on the mechanism of DOC 562 
mobilization and export during storms. Similarly to the catchment located in southeastern 563 
Germany and analyzed by Blaurock et al. (2021), the DOC was monitored in two different sub-564 
catchments situated in an upper position with steep slopes and in a lower and flatter site. While 565 
during the background periods, the DOC concentration was higher in the upstream sub-566 
catchment (i.e., SN), greater concentrations were recorded in the downstream site during the 567 
storm events. The DOC average values in response to storm events confirm the results found by 568 
Blaurock et al. (2021). They found average values for the 4 events reported equal 3.88 mg l-1 and 569 
1.75 mg l-1 in the lower and upper sub-catchment, respectively. They correlated this behaviour to 570 
topography, highlighting that saturated soils are needed in flatter areas to allow efficient lateral 571 
water transport through DOC-rich soil layers towards the active river network. Moreover, like in 572 
Blaurock et al. (2021), DOC mobilization was generally delayed in the flat lower catchment, as 573 
confirmed by the slighter decrease after the peak and hysteretic loops wider than the upper 574 
catchment (larger absolute values of HI in 13 cases out of the 19 simultaneous events).  575 

 In literature test areas, there is a prevalence of counterclockwise loops (negative values 576 
of HI) for DOC hysteresis (e.g., 51 counterclockwise compared to only 3 clearly clockwise and 577 
46 complex events in Rose et al., 2018; 6 cases out of 8 counterclockwise in Blaurock et al., 578 
2021). Instead, the flushing index FI is mainly positive (Vaughan et al., 2017). In this study, the 579 
negative HI values were 21 over 29 and 13 over 29 for SN and FIT, respectively, while negative 580 
FI values were only 5 out of 29 for SN and were undetected in FIT. The clockwise loop is likely 581 
linked to the total catchment wetness seasonal pattern. Indeed, during or immediately after the 582 
end of the wet season, when the catchment water storage is high, the hillslope-channel 583 
hydrological connections are favoured compared to other periods, as shown by previous studies 584 
in the catchment (Senatore et al., 2021; Micieli et al., 2022). Therefore the DOC peak anticipates 585 
the discharge peak describing a clockwise hysteresis. This seasonal dependence of hysteresis is 586 
also in line with the results of Fovet et al. (2018). They showed clockwise hysteresis for 62% of 587 
events at a high flow period typical of the wet season in a Brittany, Western France catchment. 588 

Finally, the study of the correlation between catchment wetness conditions and hysteresis 589 
direction was already addressed. Blaurock et al. (2021) found a positive correlation with the 590 
rainfall accumulated 14 days before the event started. Our analysis based on a variable 591 
accumulation time window confirmed such influence and highlighted different process timings 592 
depending on the catchment’s size and other features. In larger, flatter catchments, complete 593 
hydraulic activation generally requires extended periods. Nevertheless, also precipitation 594 
intensity and amount count. We demonstrated that by expanding the analysis to high 595 
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precipitation amounts, a non-linear correlation arises, given by the connection of new DOC 596 
sources far from the stream. 597 

5 Conclusions 598 

This study presented the results of a long-term monitoring campaign to unveil space and 599 
time DOC dynamics in a Mediterranean headwater catchment, relating them to meteorological 600 
and hydrological drivers. The different DOC dynamics observed in two nested sites were linked 601 
to spatially heterogeneous catchment properties (extent, orographic features, land uses). Two 602 
multi-parameter sondes were used to achieve that aim, and high-resolution continuous timeseries 603 
of several biogeochemical parameters were obtained.   604 

The analysis relied on an original correction method, requiring water temperature and 605 
turbidity measurements to convert the observed fDOM into DOC values. Then, analyses 606 
performed at seasonal and storm event timescales provided several insights into DOC 607 
mobilization and export processes:  608 

− At the seasonal scale, univariate and multivariate statistical analysis confirmed the climate 609 
(seasonal) control on DOC production, with background concentrations increasing in hot 610 
and dry summer months due to the combined effect of enhanced photocatalytic degradation 611 
and reduced discharge in the channels; 612 

− Comparison of DOC concentrations taken simultaneously over 91 non-rainy days led to 613 
slightly higher values in the forested upstream catchment, having steeper topography and, 614 
of course, smaller streamflow; 615 

− However, observations made clear the importance of the hydrological regulation of DOC 616 
export, significantly activated by high-flow events, with discharge above Q10 being 617 
associated with 69% of the total yield in the upstream and 79% in the downstream site; 618 

− Also, the increased hillslope-channel connectivity all over the downstream catchment 619 
triggered by hydrological processes overturned the results of the seasonal background 620 
analysis, with DOC concentration higher in the downstream site considering the 3760 621 
simultaneous observations at the hourly time scale; 622 

− DOC sources proved to be plentiful in the zones contributing to the catchment’s fast 623 
response in both sites, being able to increase concentration during almost all the storm 624 
events. Instead, the limiting factor of DOC export processes varied by season and location. 625 
In the steep upstream catchment with accentuated spatial intermittency, generally, such 626 
processes were transport-limited, while in the downstream catchment, more source-limited 627 
processes were observed; 628 

− Therefore, the hysteresis index was more positively correlated to antecedent precipitation 629 
in the downstream catchment. However, such correlation was not linear since new DOC 630 
sources were activated with exceptionally high accumulated rainfall values, and the 631 
process tended to be transport-limited again. 632 

Overall, the study demonstrated the importance of high-resolution measurements to 633 
explain DOC dynamics at multiple time scales with a quantitative approach. However, though 634 
supported by laboratory measurements, the on-site recording showed some inherent weaknesses, 635 
primarily when high discharge was associated with high turbidity values, requiring the statistical 636 
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retrieval of DOC peak values. Such a drawback can be partially overcome with increased on-site 637 
discrete automatic sampling during storm events and subsequent laboratory analysis. One of the 638 
further developments of the research goes towards this direction. Furthermore, it will be 639 
necessary to focus more on the processes’ scaling properties, taking advantage of both the 640 
measurements in this and other sites, to support modelling approaches and contribute to a better 641 
understanding of the global carbon cycle. 642 
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