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Abstract

This study investigates precipitation variability over the Arabian Peninsula (AP) during its wet season. The wet season is

split into winter (November – February) and spring (March and April) seasons, and early (1950–1986) and late (1986–2021)

periods to understand sub-seasonal characteristics of precipitation variability and long-term changes in global teleconnections.

The first three Empirical Orthogonal Functions explain ˜70% of the interannual wet season precipitation variance, which shows

an increase (decrease) in the late period winter (spring). Linear regression of the sea surface temperatures and geopotential

height onto associated principal components reveals many oceanic and atmospheric variability patterns, which exhibit significant

differences between winter and spring and early and late periods. Further, linear regressions of AP precipitation onto 14 natural

modes of climate variability reveal a complex network of global teleconnections. El Niño-Southern Oscillation (ENSO) is one of

the key contributors to precipitation variability but considering ENSO diversity is crucial to fully understand its influence. While

the direct ENSO influence only becomes robust after the 1980s, its indirect effect persists through projection onto atmospheric

modes, such as East Atlantic West Russia Pattern and East Atlantic Mode, or inter-basin interaction (e.g., via the Indian

Ocean). The Northern Hemisphere atmospheric modes also mediate influences of other natural modes in tropical Indian and

Atlantic oceans and extra-tropical regions over the AP. Several precipitation teleconnections exhibit a shift in the 1980s. Some

may be related to the introduction of satellite data, but further investigations are warranted to understand the causes of these

shifts.

Hosted file

953139_0_art_file_10573981_rnbb28.docx available at https://authorea.com/users/573289/

articles/617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-

peninsula

Hosted file

953139_0_supp_10573983_rngbvg.docx available at https://authorea.com/users/573289/articles/

617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-peninsula

1

https://authorea.com/users/573289/articles/617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-peninsula
https://authorea.com/users/573289/articles/617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-peninsula
https://authorea.com/users/573289/articles/617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-peninsula
https://authorea.com/users/573289/articles/617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-peninsula
https://authorea.com/users/573289/articles/617647-precipitation-teleconnections-during-1950-2021-over-the-arabian-peninsula


manuscript submitted to Journal of Geophysical Research - Atmospheres 

 

 

Precipitation teleconnections during 1950-2021 over the Arabian Peninsula 1 

Matthew F. Horan1,2 Nathaniel C. Johnson3 Fred Kucharski4, Muhammad Adnan Abid4, 2 
Sarah B. Kapnick5, Moetasim Ashfaq1,2  3 

1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak 4 
Ridge, Tennessee, United  States 5 
2 Bredesen Center, University of Tennessee, Knoxville, Tennessee, United States  6 
3 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, 7 
Princeton, NJ, United States 8 
4  Section of Earth System Physics, Abdus Salam International Centre for Theoretical Physics, 9 
Trieste, Italy 10 
5  National Oceanic Atmospheric Administration, Washington, DC, United States 11 

Corresponding author: Matthew Horan (mhoran@vols.utk.edu) 12 

 13 

This manuscript has been co-authored by employees of Oak Ridge National Laboratory, 14 
managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department 15 
of Energy. The publisher, by accepting the article for publication, acknowledges that the United 16 
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish 17 
or reproduce the published form of this manuscript, or allow others to do so, for United States 18 
Government purposes. The Department of Energy will provide public access to these results of 19 
federally sponsored research in accordance with the DOE Public Access Plan 20 
(http://energy.gov/downloads/doe-public-access-plan). 21 

 22 

 23 

Key Points: 24 

• Global patterns associated with Arabian Peninsula (AP) precipitation display substatial 25 
differences between winter and spring months. 26 

• Several global teleconnections’ correlation with precipitation variability over the AP 27 
displayed a drastic shift in the 1980s. 28 

• El Niño-Southern Oscillation diversity and indirect influence is a key factor in fully 29 
understanding AP precipitation variability. 30 

  31 
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Abstract 32 

This study investigates precipitation variability over the Arabian Peninsula (AP) during its wet 33 
season. The wet season is split into winter (November – February) and spring (March and April) 34 
seasons, and early (1950–1986) and late (1986–2021) periods to understand sub-seasonal 35 
characteristics of precipitation variability and long-term changes in global teleconnections. The 36 
first three Empirical Orthogonal Functions explain ~70% of the interannual wet season 37 
precipitation variance, which shows an increase (decrease) in the late period winter (spring). 38 
Linear regression of the sea surface temperatures and geopotential height onto associated 39 
principal components reveals many oceanic and atmospheric variability patterns, which exhibit 40 
significant differences between winter and spring and early and late periods. Further, linear 41 
regressions of AP precipitation onto 14 natural modes of climate variability reveal a complex 42 
network of global teleconnections. El Niño-Southern Oscillation (ENSO) is one of the key 43 
contributors to precipitation variability but considering ENSO diversity is crucial to fully 44 
understand its influence.  While the direct ENSO influence only becomes robust after the 1980s, 45 
its indirect effect persists through projection onto atmospheric modes, such as East Atlantic West 46 
Russia Pattern and East Atlantic Mode, or inter-basin interaction (e.g., via the Indian Ocean). 47 
The Northern Hemisphere atmospheric modes also mediate influences of other natural modes in 48 
tropical Indian and Atlantic oceans and extra-tropical regions over the AP. Several precipitation 49 
teleconnections exhibit a shift in the 1980s. Some may be related to the introduction of satellite 50 
data, but further investigations are warranted to understand the causes of these shifts. 51 

Plain Language Summary 52 

The Arabian Peninsula (AP) receives very little precipitation and accurate prediction of that 53 
precipitation is vital for socioeconomic planning in the region.  Most of the precipitation that 54 
does occur occurs between November and April, known as the wet season.  We analyze the main 55 
patterns of how precipitation changes over the Arabian Peninsula.  We additionaly analyze how 56 
14 global height, pressure, and sea surface temperature patterns and three definitions of the El 57 
Niño-Southern Oscillation (ENSO) using different regions of sea surface tempeatures are 58 
correlated with precipitation over the Arabian Peninsula.  Through this analysis, while we find 59 
that a lack of data makes results questionable in the southern portions of the AP, there is a 60 
distinct change in the most prominent patterns between the wintner months (November – 61 
February) and the spring months (March-April).  We additionally find that the region of the 62 
Pacific Ocean used to define ENSO is important in determining it’s association with AP 63 
precipitation.  While a direct influence of ENSO and several other patterns is only evident after a 64 
major shift in many patterns' correlation in the 1980s, evidence of ENSO's projection onto other 65 
patterns more consistently correlated with AP precipitation are present throughout the time 66 
period. 67 

1 Introduction 68 

The Arabian Peninsula (AP) is an arid to semi-arid region of the world with most low-lying areas 69 
having an annual precipitation of less than 150 mm and higher elevations averaging about 300 70 
mm per year of precipitation (Almazroui et al., 2012; Almazroui, 2011; Edgell, 2006; Abdullah 71 
& Al-Mazroui, 1998; Almazroui et al., 2013). AP precipitation is highly variable, and its 72 
accurate prediction is vital for informed water resources and socioeconomic planning.  With 73 
limited freshwater resources and a rapidly warming regional climate that regularly reaches 74 
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extreme temperatures due to the background environmental conditions, knowing the changes in 75 
the likelihood of anomalously wet and dry years is critical for the region. Trends since 1980 76 
indicate drying patterns with decreasing precipitation reaching statistical significance over the 77 
central AP (Kwarteng et al., 2009; Almazroui et al., 2012; Alsaaran & Alghamdi, 2022; Syed et 78 
al., 2022; Horan et al., 2022). 79 

In most areas of AP, over 90% of the annual precipitation falls between November and April 80 
(Almazroui, 2011; Abdullah & Al-Mazroui, 1998), a period known as the wet season. The 81 
precipitation distribution exhibits spatial heterogeneity, with higher magnitudes limited to the 82 
northern AP, central Saudi Arabia, and the coastal areas through Oman.  The exception is the 83 
areas bordering the Red Sea that are influenced by topographic-induced convection and receive 84 
noticeable precipitation (~30 %) outside the wet season (Horan et al., 2022). Several studies 85 
project that a continuously warming climate may lead to more commonplace occurrences of 86 
extreme precipitation and prolonged droughts across the AP region (Almazroui & Saeed, 2020; 87 
Donat et al., 2014). The aridity of AP climate, high seasonality of received precipitation, and 88 
vulnerability to future climate change highlight the need for reliable seasonal predictions and 89 
long-term climate projections. To this end, noting the relative roles of natural climate variability 90 
and anthropogenically driven climate change in shaping the characteristics of AP climate is 91 
essential for resource planning at varying timescales.   92 

The natural modes of climate associated with sea surface temperature (SST) anomalies in the 93 
tropical oceans and internal atmospheric variability in the Northern Hemispheric have been 94 
known to have a role in inter-annual precipitation variability across the region during the wet 95 
season (e.g., Mehmood et al., 2022; Alamzroui et al., 2013; Donat et al., 2014; Kang et al., 2015; 96 
Abid et al., 2016). The most well-known and widely studied phenomenon with influence over 97 
the AP is the El Niño-Southern Oscillation (ENSO). Studies show that the positive (negative) 98 
phase of ENSO is related to an increase (decrease) in precipitation over most of the AP 99 
(Almazroui et al., 2013; Donat et al., 2014; Kang et al., 2015; Atif et al., 2020; Horan et al., 100 
2022; Abid et al., 2016, 2020).  Kang et al. (2015) additionally noted the strengthening of ENSO 101 
influence on AP precipitation in recent decades.  Moreover, other studies on the Saudi Arabian 102 
climate relate the positive phase of the Indian Ocean Dipole (IOD; Saji et al., 1999) with more 103 
wet events (Chakraborty et al., 2006), while the negative phase of the Pacific Decadal Oscillation 104 
(PDO, Mantua et al., 1997) with an increase in the likelihood of droughts (Syed et al., 2022). 105 
However, much of this research is focused on the last 3-4 decades, and long-term variability in 106 
these teleconnections is not fully known.  107 

Moreover, there has been little research regarding the potential role of Atlantic Ocean SST 108 
variability on precipitation over the AP. Likewise, robust knowledge of the influences exerted by 109 
the internal modes of variability in the Northern Hemisphere is also lacking. The North Atlantic 110 
Oscillation (NAO) – the most prominent mode of variability in the Northern Hemisphere during 111 
winter – has been shown to have a generally negative, though statistically insignificant 112 
correlation with precipitation over most of the AP (Saeed & Almazroui, 2019; Ehsan et al., 2017; 113 
Atif et al., 2020; Donat et al., 2014; Horan et al., 2022).  However, several other frequently 114 
occurring Northern Hemisphere atmospheric patterns (Barnston & Livezey 1987), such as East 115 
Atlantic Mode (EAM), East Atlantic West Russia Pattern (EAWR), and Siberian High (SH), may 116 
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also impact AP precipitation through the modulation of extratropical storm tracks, which 117 
warrants thorough investigation.   118 

Given the highlighted gaps in our understanding, this study systematically investigates the 119 
potential influences of 14 naturally occurring modes of oceanic and atmospheric variability on 120 
AP precipitation since the mid of the 20th century, and how they relate to the most common 121 
variations of precipitation over the Arabian Peninsula. A more extended analysis period allows 122 
the identification of any shifts that might have occurred in remote teleconnections.  Moreover, 123 
the nature of these teleconnections has been investigated separately for the early (November to 124 
February) and late (March–April) wet seasons to understand their intra-seasonal persistence or 125 
variations.  Section 2 discusses the data, methods, and indices used throughout this study.  126 
Section 3 provides an overview of the analysis and results, further discussed in section 4.  127 
Finally, section 5 summarizes the main findings and discusses future directions to improve 128 
understanding of AP climate.  129 

2 Data and Methods 130 

2.1. Data used 131 

Our analysis uses monthly mean total precipitation, 500 hPa geopotential height (GPH), mean 132 
sea level pressure (SLP), and sea surface temperature (SST) variables from the European Centre 133 
for Medium Range Weather Forecast’s fifth generation reanalysis (ERA5) with complete data 134 
from 1959 to 2021 (Hersbach et al., 2020) and preliminary data from 1950 to 1958 (Bell et al. 135 
2021).  These data are available at 0.25° x 0.25° resolution. 136 

A significant disparity exists among gridded precipitation observations over the AP due to the 137 
relatively low density of station observations (Zittis, 2017; Patlakas et al., 2021). Therefore, we 138 
use multiple gridded observations and the reanalyzed precipitation from ERA5 to improve 139 
robustness.  The comparison of reanalyzed and grid-based observed precipitation guides the 140 
determination of the parts of AP where results should be considered relatively reliable.  As many 141 
gridded observations do not include data before 1979, we limit these comparisons to four 142 
datasets, including only those observations that extend through most of our analysis period: the 143 
University of East Anglia Climate Research Unit (CRU, Harris et al., 2014), the Global 144 
Precipitation Climatology Centre (GPCC, Schnieder et al., 2020), the University of Delaware 145 
(UDel, Matsuura & Willmott, 2018) and the Climatology Lab’s TerraClimate (Abatzoglou et al., 146 
2018) monthly precipitation products. All datasets are re-mapped to ERA5 resolution using 147 
bilinear interpolation for comparison. Data from CRU, GPCC, and UDel is only available 148 
through 2020, 2019, and 2017 respectively, while TerraClimate is not available before 1958, so 149 
only common seasons across datasets are considered in comparisons.   150 

2.2. Modes of Variability 151 

We consider 14 natural modes of climate variability in investigating AP precipitation global 152 
teleconnections (Table 1), including ENSO, IOD, PDO, Tropical Western Eastern Indian Ocean 153 
Dipole (TWEIO; Abid et al., 2020), Tropical South Atlantic Index (TSAI), SH, NAO, EAM, 154 
West Pacific Pattern (W. Pac), East Pacific/North Pacific Pattern (EP/NP), Pacific/North 155 
American Pattern (PNA), EAWR, Scandinavia Pattern (SCAND), and Polar/Eurasian Pattern 156 
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(POL/EUR). ENSO is represented using three indices: Niño3, Niño4, and Niño3.4 (see Table 1). 157 
Index values for the PDO are obtained from the National Center for Environmental Prediction at 158 
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat.  Index values for the 159 
NAO, EAM, W. Pac, EP/NP, PNA, EAWR, SCAND, and POL/EUR are obtained from the 160 
National Center for Environmental Prediction (NCEP) at 161 
https://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh.  The NCEP calculates indices 162 
by implementing a rotated Principal Component Analysis on the first 10 Empirical Orthogonal 163 
functions (EOFs) of monthly 500 hPa Geopotential (Barnston and Livezey 1987).  These EOF-164 
based indices are orthogonal at a monthly scale, but their seasonal subsets may have non-zero 165 
correlations.   166 

We additionally calculate the remaining indices, shown in Table 1, by finding the area-weighted 167 
mean anomaly from the climatology (1950 to 2021) of the specified variable over the given area. 168 
Each of these indices is standardized before its application. The use of multiple ENSO indices 169 
(Niño3, Niño3.4, and Niño4) is to establish a robust understanding of the role of SST variability 170 
in the eastern, east-central, and central Pacific.  TWEIO is used similarly to Abid et al. (2020), 171 
who showed that it could potentially modulate ENSO influence over remote regions.  Likewise, 172 
SH has also been shown to have positive teleconnections with AP temperatures (Hasanean et al., 173 
2013). TSAI is very similar to Enfield and Mayer (1997), but the area considered in this study is 174 
extended from 20°S to 30°S. 175 

Index Variable Region/calculation Source 

PDO SST 
Leading EOF 

20°N – 90°N, 110°W-110°E 
NCEI 

NAO 

EAM 

W. Pac 

EP/NP 

PNA 

EAWR 

SCAND 

POL/EUR 

500 hPa GPH 

Rotated EOFs (mode associated with each 

index varies by month) 

20°N – 90°N, full hemisphere 

NCEP 
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ENSO SST 

5°S - 5°N, 150°W-90°W – NIÑO3 

5°S - 5°N, 170°W-120°W – NIÑO3.4 

5°S - 5°N, 160°E-150°W – NIÑO4 

Calculated TWEIO Precipitation 
(10°S - 10°N, 40°E-80°E) – 

(10°S - 10°N, 90°E-140°E) 

TSAI SST 30°S - 0°, 30°W-10°E 

IOD SST 
(10°S - 10°N, 50°E-70°E) – 

(10°S - 0°, 90°E-110°E) 

Sib. High SLP 40°N - 65°N, 80°E-120°E 

Table 1. Definitions for the 14 modes of variability and three modes of ENSO used through the rest of the 176 
paper. 177 

 178 

2.3. Analyses 179 

The AP is defined following Horan et al. (2022) as the Asian continent south of the Turkish 180 
border and west of the Iranian border.  This includes the portions of Iraq and Syria that are not 181 
formally considered part of the Peninsula. In this study, a sub-selection of the AP region is made 182 
based on the consistency of precipitation distribution across observations (see section 3a). The 183 
wet season is split into two parts: one from November through February (winter) and one 184 
consisting of March and April (spring) to investigate the persistence (or lack thereof) of global 185 
teleconnections.   186 

The EOF analyses are performed to identify the modes of AP precipitation variability. The first 187 
three EOFs and their associated Principal Components (PCs) are considered for investigating 188 
precipitation variability. Furthermore, the detrended 500 hPa global GPH and SSTs over 30°S – 189 
60°N are regressed onto PCs to determine if the first three precipitation modes of variability can 190 
be associated with any of the known naturally occurring oceanic or atmospheric patterns.  We 191 
complete these analyses for both the winter and the spring for three time periods: 1) the entire 192 
length (November 1950 to April 2021), 2) the first half (early; November 1950 to April 1986), 193 
and 3) the second half (late; November 1986 to April 2021).  This data split is used to gain 194 
insight into the potential shifts or other changes in global teleconnections, such as those seen by 195 
Kang et al. (2015) for ENSO.  Note that where to split the dataset in our analyses (between 1975 196 
and 1990) had little impact on most EOF patterns and associated regressions of SST and GPH.   197 

Next, each index’s winter and spring averages are obtained and detrended, then detrended AP 198 
precipitation is regressed onto each index for both winter and spring for early and late periods.  199 
Finally, the Pearson correlation coefficients are calculated for a 21-year rolling period (beginning 200 
with Nov 1950 to April 1971 and ending with Nov 2010 to April 2021) between all 14 indices 201 
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and between indices and three PCs in winter and spring.  The statistical significance in all 202 
analyses is based on a two-tailed Student’s t-test with N-2 degrees of freedom at the 90% 203 
confidence level. 204 

3 Results 205 

3.1. Precipitation distribution uncertainty in datasets 206 

The arid nature of the AP region, combined with the limited density of surface observations, 207 
creates significant uncertainty in the gridded observations and reanalysis over this region. Earlier 208 
efforts studying the remote influences on AP precipitation have largely ignored investigating the 209 
robustness of findings within the context of data-driven uncertainty in global teleconnections. 210 
Here we first identify the AP region where uncertainty in precipitation is significant across the 211 
gridded observations or reanalysis and restrict our analyses to those parts of AP where relatively 212 
higher confidence exists.  This sub-selection of the AP region is achieved by performing a 213 
pairwise correlation between the datasets (CRU, TerraClimate, GPCC, UDel, ERA5) over the 214 
period shared in each case (Fig. 1, Supplementary Fig. S1).   The correlation remains relatively 215 
high (>0.5) between ERA5 and all datasets to the north of Saudi Arabia and in the eastern half of 216 
Saudi Arabia, with some small areas of exception in central Iraq.  ERA5 correlates best with 217 
TerraClimate because it blends station-based gridded observations and reanalysis (Abatzoglou et 218 
al. 2018).  The correlation between all datasets is consistently weak along the Red Sea coast, 219 
Yemen, and Western Oman (<0.5) (Fig. 1, Supplementary Fig. S1).  There is more consistency 220 
between ERA5 and GPCC in northwest Saudi Arabia in a more recent period (not shown), 221 
however, inconsistencies persist through Yemen and southwest Saudi Arabia. Note that 222 
attributing precipitation variability in gridded observations to global teleconnections depends on 223 
using dynamic and thermodynamic surface and atmospheric state variables from the reanalysis. 224 
Therefore, regions with poor consistency between reanalyzed and observed precipitation risk 225 
identifying inaccurate large-scale drivers for precipitation variability.   Therefore, this study on 226 
global teleconnections of AP precipitation is restricted to those parts of AP that exhibit relatively 227 
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high consistency between observations and reanalysis. The sub-selected AP region includes areas 228 
north of 22°N – a line from the Egypt–Sudan border to the eastern corner of Oman.   229 

 230 

Figure. 1. Correlation Coefficients (unitless) between ERA5 and a) CRU, b) GPCC, c) UDel and d) 231 
TerraClimate over the specified timeframe. 232 

3.2. Modes of AP precipitation variability  233 

While the general climatology of this reason has been discussed in previous research, (Almazroui 234 
et al., 2012; Almazroui, 2011; Edgell, 2006; Abdullah and Al-Mazroui, 1998; Almazroui et al., 235 
2013), and simple overview of the mean, standard deviation and trends of wet season, winter, 236 
and spring variability is available to the reader in Supplementary Figure S2. Of note, particularly 237 
with regards to trends, this climatology extends longer than previous research and many of the 238 
previous wet season drying trends (Almazroui & Saeed, 2020; Donat et al., 2014, Syed et al., 239 
2022, Horan et al., 2022) are not as apparent as an analysis that focuses only on the most recent 240 
40 years.  The structure of variability in winter precipitation over AP is described using the first 241 
three EOFs that collectively explain more than 67% of the variance for the entire 71-year period 242 
(Fig 2, PC Time Series in Fig. S3), and 63% and 75.2% variance for early (1950–1986, Fig S4 243 
and late (1986–2021, Fig S5) periods, respectively. The first EOF (EOF1) spatial pattern in 244 
winter consistently displays high precipitation in the northern part of the domain, steadily 245 
decreasing in central Saudi Arabia in all cases (entire, early, and late periods).  For the entire 246 
length, the EOF1 accounts for 42.1% of the variance but shows an increase from 36.4% to 48.1% 247 
when analyzed separately for early and late periods. The second EOF (EOF2) shows a dipole 248 
between a dryer pattern at the Turkish border, where the AP region receives maximum 249 
precipitation during winter (Horan et al., 2022), and a wetter pattern in southern Iraq and central 250 
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Saudi Arabia. The spatial distribution of the EOF2 pattern shows a close resemblance between 251 
the entire length and the early period though the wetter region during the early period is 252 
concentrated over central Saudi Arabia (Figs. 2, S3). Like EOF1, the explained variance 253 
increases from 16.9% in the early period to 19.7% in the late period (Figs. S4-S5). The third 254 
EOF (EOF3) consistently shows a dry-wet-dry pattern with a noticeably wetter pattern spanning 255 
over northern Saudi Arabia/southern Iraq and a dryer pattern over east-central Saudi Arabia, 256 
United Arab Emirates (UAE), and eastern Oman. A dry anomaly is also present over parts of 257 
Syria.   258 

Figure 2. The first three EOFs (in mm/day) during (first row) the full wet season from November to April, 259 

(second row) winter months from November through February and (third row) spring months consisting of 260 

March and April. The amount of variability explained by each EOF during their respective season is indicated 261 

in the bottom right corner of each map. 262 

 Like the EOF analyses for winter precipitation, the structure of variability in spring 263 
precipitation is described using the first three EOFs that collectively explain more than 71.2% of 264 
the variance for the entire 71-year period (Fig. 2), and 77.1% and 68.4% variance for the early 265 
and late periods, respectively (Figs. S4-S5). Contrary to the winter, where the first three EOFs 266 
explain more variance in the late period of the analyses, the collectively explained variance of 267 
spring precipitation through the first three EOFs decreases in the late period.  Spatially, the three 268 



manuscript submitted to Journal of Geophysical Research - Atmospheres 

 

EOFs for the spring precipitation show patterns like the ones seen in the corresponding winter 269 
EOFs when the entire 71-year period is considered.  However, compared to the winter, we note 270 
that the above or below-average conditions depicted in all EOFs are substantially more robust in 271 
the spring (Fig 2). As stated earlier, the explained variance using the first three EOFs decreases 272 
during the late period (Figs S4-S5). Most of this reduction comes from EOF1, which decreases 273 
from 52% in the early period to 43.7% in the late period. As a result, the spatial pattern of above-274 
average precipitation in EOF1 is relatively subdued over Saudi Arabia in the late period. 275 
Interestingly, the spatial variation in EOF1 over Saudi Arabia during the early and late periods is 276 
opposite to what we notice during the winter (Figs. S4-S5).  277 

3.3. Modes of AP precipitation variability and global teleconnections  278 

To gain insight into the potential influence of naturally occurring modes of climate variability on 279 
AP precipitation, we regress the 500 hPa GPH and global SST anomalies on the first three 280 
leading PCs of AP precipitation (Figs 3-6). The regression with SSTs should highlight areas in 281 
oceanic basins with a potential role in inducing these patterns of precipitation variability over the 282 
AP region. On the other hand, regression with GPH should reveal dynamic patterns associated 283 
with each of the three modes of AP precipitation variability, some of which may be recognizable 284 
as the commonly occurring internal modes of atmospheric variability in the Northern 285 
Hemisphere. The regressions are performed separately for winter and spring. 286 

Figure 3. The (left, winter) November through February and (right, spring) March and April regression of the 287 

(top row) first, (middle row) second, and (bottom row) third Principal components of AP Precipitation onto 288 

30°S-60°N SST (°C per 1 standard deviation in PC) between the 1950-1951and 1985-1986 wet seasons. Areas 289 

outlined in purple indicate areas where correlations are statistically significant (p < .10). 290 



manuscript submitted to Journal of Geophysical Research - Atmospheres 

 

Figure. 4. Same as Figure 3 except for GPH (m per 1 standard deviation in PC) 291 

In the winter of the earlier period (1950–1986), the regressions of global SST anomalies (Fig 3) 292 
reveal a lack of linkages with any of the oceanic basins except in the case of the first PC (PC1), 293 
which displays a pattern of significant association with the Pacific Ocean SSTs, north of 20°N, 294 
resembling negative PDO.  The regressions of global SST anomalies in spring exhibit patterns 295 
strikingly different from those in winter. All three modes display a significant negative 296 
association with the tropical SSTs, including equatorial central Pacific (Niño4 region), equatorial 297 
Atlantic, and the eastern Indian Ocean in the case of PC1, tropical Atlantic, western Pacific, and 298 
Indian Oceans in the case of second PC (PC2), and equatorial Pacific in the case of third PC 299 
(PC3). Moreover, in PC2 regression, a significant positive association exists in the eastern 300 
tropical Pacific (Niño3 region). 301 

In the winter of the earlier period, the regressions of three PCs onto GPH anomalies (Fig. 4) 302 
exhibit distinct patterns. The PC1 regression displays a significant negative GPH anomaly over 303 
AP, representing the strengthening of the subtropical westerly jet over the region and supporting 304 
wetter-than-normal conditions. The anomaly over the Pacific, north of the equator, represents a 305 
negative PDO pattern consistent with the corresponding SSTs regression. The PC2 regression 306 
displays a weak and insignificant dipolar GPH anomaly pattern with the positive in the northern 307 
portions of the AP and negative over Scandinavia, consistent with the distribution of dry 308 
precipitation anomaly over Northern Iraq and Syria in EOF2 of AP precipitation (Fig. 2). The 309 
characteristics of a negative NAO phase are also present over the northern Atlantic. The PC3 310 
regression reveals a negative EAWR pattern (Barnston & Livezey, 1987) over the Eurasian 311 
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region, with positive GPH anomalies extending over the central AP region, partly consistent with 312 
the below-normal precipitation pattern in EOF3 over parts of AP (Fig 2, S4).  313 

Figure 5. Same as Figure 3 except for the wet season from 1986-1987 through the wet season from 2020-314 
2021. 315 

Figure 6. Same as Figure 3 except for GPH for the wet season from 1986-1987 through the wet season from 316 

2020-2021. 317 
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The GPH anomalies associated with spring PCs exhibit some commonalities with corresponding 318 
patterns seen in winter (Fig. 4). The strengthening of the subtropical westerly jet over AP in PC1 319 
regression, the dipole pattern in PC2 regression, and the weakening of the subtropical westerly 320 
jet in PC3 regression are similar in the two seasons. However, the dipole pattern in the PC2 321 
regression is significant and robust in spring (Fig 4), which is consistent with the stronger 322 
precipitation anomalies pattern seen in spring EOF2 (Fig 2). Similarly, the weakening of the 323 
subtropical jet is no longer significant in PC3 regressions. Beyond the AP region, no 324 
recognizable atmospheric mode of Northern Hemisphere variability emerges except in the PC2 325 
regression, where the GPH anomaly pattern resembles the positive NAO phase.       326 

A dramatic shift in the potential role of oceanic modes is witnessed in winter during the late 327 
period (Figs. 5-6). For instance, SST regression onto PC1 reveals a robust positive association 328 
with the equatorial pacific over the ENSO region and the western Indian Ocean.  Likewise, PC3 329 
regression onto SSTs shows a relatively less strong but significant negative association with 330 
Atlantic and Pacific Niño regions. Interestingly, on the other hand, when compared to the early 331 
period (Fig. 3), the role of oceanic modes also displays shifts or lack of robustness in spring. For 332 
instance, PC3 does not significantly relate to SSTs in the tropical oceans. The positive 333 
association with the ENSO region in PC2 regression is spatially more robust, while the negative 334 
association in the Atlantic region now shifts to the tropical south Atlantic extending as far south 335 
as 30° south. Moreover, PC1 regression shows a positive association with SSTs in the tropical 336 
oceans, which is opposite to the spring of the earlier half. (Figs 3, 5) 337 

3.4. AP precipitation regression onto indices 338 

The PC regressions onto global SSTs and GPH anomalies unravel those broad areas in global 339 
oceans and atmosphere that may have a physical linkage with precipitation variability over the 340 
AP region. The emerging patterns over some of these areas represent recognizable natural 341 
modes. Therefore, to further identify specific roles that natural modes of climate variability may 342 
have in precipitation distribution over the AP region, we regress AP precipitation onto 16 indices 343 
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representing 14 natural modes of climate variability (See Table 1). The regressions are 344 
performed separately for winter, spring, and the two periods (Figs.7-8, S6-S9). 345 

 346 

Figure 7.  The regression of AP Precipitation on key climate indices (standard deviation of local precipitation 347 
per standard deviation of the index) from (left) the winter (Nov – Feb) of 1950-1951 through the winter of 348 
1985-1986. and (right) the winter of 1986-1987 through the winter of 2021. Stippling indicates areas where the 349 
correlation between the index and precipitation is statistically significant (p<.10).  All indices are shown in 350 
Figures S5 and S6.  351 

  352 
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 353 

Several modes display spatiotemporally varying influence on AP winter precipitation. ENSO (all 354 
indices, Figs 7, S6) show little to no effect on precipitation variability in the winter of the early 355 
period, which dramatically changes to a widespread significant positive influence in the later 356 
period (Fig 7, S7). The PDO exhibits limited negative impact over the northern parts of the 357 
Peninsula in the early period, reversing to a spatially more substantial positive influence over the 358 
central and north AP regions later.  The same is true in the case of EAM, POL/EUR, and EP/NP. 359 
IOD influence is significantly positive over the western parts of AP, which spatially switches to 360 
the eastern regions in the late period. The only exception is EAWR, which consistently displays 361 
a similar pattern of significant positive influence in both periods.  This may be due to increased 362 
(decreased) evaporation from the Red Sea during the positive (negative) phase of EAWR 363 
(Abualnaja et al., 2015). 364 

 365 
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 366 

Figure 8. The regression of AP Precipitation on key climate indices (standard deviation of local precipitation 367 

per standard deviation of the index) from (left) the spring  (Mar – Apr) of 1951 through the spring of 1986. and 368 

(right) the spring of 1987 through the spring of 2021. Stippling indicates areas where the correlation between 369 

the index and precipitation is statistically significant (p<.10).  All indices are shown in Figures S7 and S8 370 
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 371 

The spatiotemporal variability of global teleconnections of AP precipitation persists in spring 372 
(Figs 8, S8-S9). However, the characteristics of these variations are distinct between winter and 373 
spring. In the early period, central and western Pacific-based ENSO indices (Niño3.4, Niño4, Fig 374 
S8) display a strong negative association except over parts of Oman and UAE, while the Indian 375 
Ocean-based TWEIO and eastern Pacific-based Niño3 index exhibit no Influence. Contrarily, all 376 
ENSO indices and TWEIO show significant positive associations throughout the AP region in 377 
the late period (Figs 8, S9).  EAM, W. Pac, and EP/NP display a robust negative association in 378 
the early period, which shifts to insignificant influence in the case of EAM and W. Pac (Figs. S8-379 
S9), and a significant positive impact in the case of EP/NP during the late period (Fig. 8). The 380 
IOD influence also shifts from widespread significant positive to considerably limited negative 381 
regressions (Figs. S8-S9). TSAI and PNA show substantial positive impacts in the late period but 382 
no influence in the early period. The only exception is POL/EUR, which consistently delivers a 383 
significant positive influence in the northern AP in both periods and a somewhat negative effect 384 
in the lower parts (Fig. 8). However, the negative impact is only robust in the late period.     385 

4 Discussion 386 

Several key points can be derived from our analysis of AP precipitation variability and its global 387 
teleconnections.  While precipitation generally shows similar patterns of variability when 388 
aggregated at the wet season, winter, and spring levels, some crucial distinctions can still be 389 
drawn. The robustness of EOF patterns varies between winter and spring (Fig. 2), and so does 390 
the temporal variation in the associated explained variances. More importantly, the role of 391 
naturally occurring oceanic and atmospheric variability in projecting winter and spring EOF 392 
patterns, which are visibly similar, onto the AP displays sharp disparities.   For instance, the 393 
ENSO role only becomes visible in the late period in winter, while it shows influence in both 394 
periods in spring (Figs. 3,5,7-8). Moreover, EAWR displays a strong impact in winter but little to 395 
no influence in spring (Figs 7, S8-S9). Spatiotemporal heterogeneities in the role of several other 396 
modes also exist.  Additionally, stronger subtropical jet and lower GPH anomalies through 397 
northern Africa are more associated with spring variability than winter (Figs 4,6).  While much 398 
of the previous research investigating AP precipitation has considered the entire wet season 399 
(Abdullah & Al-Mazroui, 1998; Abid et al., 2020; Almazroui, 2011; Atif et al., 2020; Horan et 400 
al., 2022; Kang et al., 2015) , and some others have focused on only the winter months (Abid et 401 
al., 2016; Saeed & Almazroui, 2019), these distinctive comparisons between winter and spring 402 
suggest that separating the wet season into two separate parts is necessary to accurately 403 
determine the large-scale processes shaping precipitation variability over the region.  404 

The spatial variability in SST anomalies in the equatorial Pacific (ENSO flavors) also plays a 405 
role in AP precipitation variability. For instance, in the early period spring, Niño3 exhibits a 406 
limited positive association over parts of eastern AP, while Niño4 has a widespread negative 407 
influence (Fig S8). Likewise, Niño3’s positive impact over central AP is more robust than Niño4 408 
in winter (Figs S6-S7). Therefore, ENSO diversity should be a consideration while investigating 409 
AP precipitation variability. The results also clearly manifest the varying influence of several 410 
natural modes of variability over time. ENSO transitioned from little impact to a significant 411 
positive effect in the winter (Figs S4-S5). The Niño3.4 and Niño4 correlate negatively with AP 412 
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precipitation in the early period spring but are positively associated with the central and western 413 
equatorial Pacific in the late period spring (Figs S8-S9). 414 

Similarly, while the IOD maintains a positive correlation with AP precipitation in winter of both 415 
periods, in spring, its influence reverses from positive to negative over Kuwait and central Saudi 416 
Arabia over time (Figs S8-S9).  Moreover, the most consistent teleconnection from the Northern 417 
Hemispheric atmospheric modes of variability in the winter comes through the EAWR pattern, 418 
which positively impacts winter precipitation in both periods (Fig. 7).  However, EAWR shows 419 
little influence on spring precipitation (Figs S8-S9).  Conversely, while the POL/EUR pattern 420 
shows a clear dipole between northern and southern regions during the late period and a dipole 421 
between northwest and southeast in spring of the early period in the spring (Fig. 8), during the 422 
winter, POL/EUR does not show a significant correlation with AP precipitation in most areas, 423 
transitioning from an insignificant dry correlation to an insignificant wet correlation (Figs. S6-424 
S7).  Finally, while the tropical south Atlantic Ocean shows little impact on winter and early 425 
spring periods (Figs S6-S8), it displays significant dipolar influence between precipitation in the 426 
northern portion of the AP and that near the Gulf of Oman during the late period spring (Fig. S9). 427 

Note that analyses thus far have focused on each index individually. However, a significant 428 
interaction between oceanic and atmospheric modes while propagating their remote influences is 429 
typical. Mehmood et al. (2022) note a substantial role of interactions within extratropics and 430 
between tropics and extratropics in global teleconnections of precipitation variability over central 431 
and southwestern Asia in the cold season.  Atmospheric diabatic heating anomalies induced by 432 
tropical forcing often propagate eastward Rossby waves in the higher latitudes. In the Northern 433 
Hemisphere, these Rossby waves can interact with each other when multiple tropical forcing 434 
coexists and with the internal modes of atmospheric variability. Thus, understanding global 435 
teleconnections of AP precipitation would remain incomplete without considering interactions 436 
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between natural modes of variability.  We investigate these interactions using the 21-year 437 
moving correlations between all indices spanning the entire analysis period (Figs 9-10, S10-S11). 438 

Figure 9. Rolling 21-year correlations during the winter months (Nov – Feb) for all indices that reach 439 

statistical significance with at least one EOF for 17/51 wet seasons with all other indices and all 3 EOFs. Years 440 

on the horizontal axis indicate the mid-point of the 21-year correlation. Dotted lines indicate statistical 441 

significance in correlations (p<.10). All indices are shown in Fig. S10. 442 

During winter (Figs. 9, S10, early/late period full correlation values shown in Table S1-S2), the 443 
first EOF manifests interactions within the extratropics and between the tropics and extratropics. 444 
In the early period, PDO and EAM are the two natural forcings that significantly correlate 445 
negatively with the EOF1. Interestingly, during this period, EAM exhibits high correlations with 446 
indices representing ENSO, TWEIO, and W. Pac, which have high correlations among them 447 
(Fig. 9). These interactions suggest that while tropical forcings, such as ENSO, do not directly 448 
impact the AP precipitation variability described in EOF1 of the early period, they may 449 
indirectly influence via their projections onto EAM. The same is partly true in the case of PDO, 450 
which exhibits varying but most significant relationships with ENSO indices during the winter of 451 
the early period. The relationship of PDO and EAM with EOF1 becomes insignificant in the 80s 452 
and reverses to positive in the late period, but only PDO’s influence becomes significantly 453 
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positive. The late period is also the time when all ENSO indices and TWEIO display significant 454 
correlations with EOF1. EAWR relationship with EOF1 remains consistently positive, shows 455 
multi-decadal variability in the early period, and then becomes relatively strong and stable in the 456 
late period, which coincides with the time when EAWR exhibits strong correlations with ENSO 457 
indices and TWEIO. Note that EAWR also exhibits a significant negative relationship with 458 
several extratropical modes of variability (particularly SH), which have no direct role in shaping 459 
the first mode of AP precipitation variability (Fig S10).  Therefore, these interactive relationships 460 
suggest that ENSO and TWEIO have both direct and indirect influences (via EAWR) on AP 461 
precipitation variability manifested in EOF1. Similarly, extratropical forcings, such as SH, may 462 
also indirectly impact the AP precipitation distribution via EAWR.  463 

The IOD is the only natural mode with a meaningful relationship with the winter EOF2 other 464 
than in the 1980s when this relationship disappears (Fig. 9). The temporal variability in the IOD 465 
relationship coincides nicely with the variation in IOD correlation with ENSO indices, TWEIO 466 
and TSAI, which suggests an indirect role of these forcings. The same is true in the case of 467 
EAM, which displays a strong correlation with IOD in the late period. EOF3 shows the role of 468 
SST variability in the central and western Pacific and EAWR. Interestingly, EAWR’s 469 
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relationship with EOF3 is strong when the west and central Pacific SST’s relationship is weak 470 
and vice versa. 471 

 472 
Figure 10. Same as Figure 9 but for spring months (Mar–Apr). All indices are shown in Figure S11. 473 

During the spring (Figs. 10, S11, early/late period full correlations in Tables S3-S4), EOF1 474 
shows a positive IOD and negative influences of central and western equatorial Pacific SSTs 475 
(Niño3.4, Niño4), PDO, EP/NP, and EAM. PDO and EP/NP correlate positively with Niño3.4 476 
and Niño4 during this period, while EAM correlates positively with PDO. As previously noted, 477 
the IOD influence reverses after the 1980s and remains mostly weak and negative during the rest 478 
of the late period. At the same time, all negatively influencing forcings change to positive except 479 
for EAM, which becomes irrelevant. The TWEIO influence also reverses from weak negative in 480 
the early period to significant positive in the late period. EOF2 only correlates significantly to the 481 
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W. Pac, which has no noticeable relationship to any other forcing throughout the analysis period. 482 
EOF3 in spring shows a strong negative influence of western equatorial Pacific SSTs (Niño4) in 483 
the early half, a strong positive effect of POL/EUR through the 1980s, and a strong positive 484 
influence of TSAI in the late period. Note that POL/EUR exhibits a high correlation with TSAI 485 
throughout the analysis period, suggesting that TSAI may have both direct and indirect 486 
relationships with the third EOF (Fig. 10). Overall, these analyses suggest substantial variability 487 
in the roles of several naturally occurring climate modes in shaping the AP precipitation 488 
variability. Additionally, tropical-extratropical interactions exhibit an important role in 489 
establishing teleconnections of natural modes in tropical oceans. 490 

5 Conclusions 491 

We thoroughly examine precipitation variability over the AP regions, its linkage with naturally 492 
occurring oceanic and atmospheric modes, and spatiotemporal variations in those 493 
teleconnections. The first three EOFs of AP precipitation, which explain ~70% of the variance, 494 
suggest intra-seasonal and multi-decadal variations in the characteristic of precipitation 495 
variability. These EOFs are consistent amongst the seasons and allow future work to recognize 496 
the patterns seen in precipitation over the region. Linear regression analysis unravels a complex 497 
network of global teleconnections where often more than one natural modes of climate 498 
variability are at play. The influence of several of these modes displays a shift in the 1980s. The 499 
key findings based on these analyses are as follows: 500 

1) Consistent with previous research (Zittis, 2017), our analysis reveals 501 
inconsistency in precipitation observations in the southern portion of the AP and 502 
emphasizes the consideration of data-based uncertainty.  503 

2) The patterns of precipitation variability and their global teleconnections display 504 
substantially different characteristics in the winter and spring seasons. Therefore, using 505 
November –April as a wet season for investigating drivers of precipitation variability and 506 
change may be misleading.  507 

3) ENSO plays a key role in precipitation variability over the AP. However, ENSO 508 
diversity plays a role in shaping its influence over the AP region. Moreover, while the 509 
direct ENSO influence only becomes more robust after the 80s, as noted in Kang et al. 510 
(2015), the indirect ENSO influence through its projection onto Northern Hemisphere 511 
atmospheric modes, such as EAM and EAWR, or through inter-basin interaction (e.g., 512 
via the Indian Ocean) persists throughout the analyses period.  513 

4) The Northern hemisphere modes of atmospheric variability are important in 514 
establishing interactions within the extratropics and tropics-extratropics. These 515 
interactions partly meditate tropical (ENSO, TSAI, TWEIO) and extra-tropical (SH, 516 
PDO) teleconnections over the AP region.  517 

5) Several teleconnections of AP precipitation exhibit a shift in the 1980s. While 518 
some of these changes may be related to using satellite data in reanalysis, further 519 
investigations are warranted to understand the causes of these shifts fully.  Moreover, 520 
with growing uncertainty over the future of ENSO (Lee et al. 2022) other teleconnections 521 
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may dominate future precipitation variability and may be exhibiting a further shift. Future 522 
targeted modeling analysis may provide insight into the dynamical origins of these 523 
precipitation patterns.       524 
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