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Abstract

Shelled pteropods and planktic foraminifers are calcifying zooplankton that contribute to the biological carbon pump, but their
importance for regional and global plankton biomass and carbon fluxes is not well understood. Here, we modelled global annual
patterns of pteropod and foraminifer total carbon (TC) biomass and total inorganic carbon (TIC) export fluxes over the top
200m using an ensemble of five species distribution models (SDMs). An exhaustive newly assembled dataset of zooplankton
abundance observations was used to estimate the biomass of both plankton groups. With the SDM ensemble we modeled global
TC biomass depending on multiple environmental parameters. We found hotspots of mean annual pteropod biomass in the
high Northern latitudes and the global upwelling systems, and in the high latitudes of both hemispheres and the tropics for
foraminifers. This largely agrees with previously observed distributions. For the biomass of both groups, surface temperature
is the strongest environmental correlate, followed by chlorophyll-a. We found mean annual standing stocks of 52 (48-57) Tg
TC and 0.9 (0.6-1.1) Tg TC for pteropods and foraminifers, respectively. This translates to mean annual TIC fluxes of 14
(9-22) Tg TIC yr-1 for pteropod shells and 11 (3-27) Tg TIC yr-1 for foraminifer tests. These results are similar to previous
estimates for foraminifers standing stocks and fluxes but approximately a factor of ten lower for pteropods. The two zooplankton
calcifiers contribute approximately 1.5% each to global surface carbonate fluxes, leaving 40%-60% of the global carbonate fluxes
unaccounted for. We make suggestions how to close this gap.
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Abstract20

Shelled pteropods and planktic foraminifers are calcifying zooplankton that contribute21

to the biological carbon pump, but their importance for regional and global plankton biomass22

and carbon fluxes is not well understood. Here, we modelled global annual patterns of23

pteropod and foraminifer total carbon (TC) biomass and total inorganic carbon (TIC)24

export fluxes over the top 200m using an ensemble of five species distribution models25

(SDMs). An exhaustive newly assembled dataset of zooplankton abundance observations26

was used to estimate the biomass of both plankton groups. With the SDM ensemble we27

modeled global TC biomass depending on multiple environmental parameters. We found28

hotspots of mean annual pteropod biomass in the high Northern latitudes and the global29

upwelling systems, and in the high latitudes of both hemispheres and the tropics for foraminifers.30

This largely agrees with previously observed distributions. For the biomass of both groups,31

surface temperature is the strongest environmental correlate, followed by chlorophyll-32

a. We found mean annual standing stocks of 52TgTC (48TgTC to 57TgTC) and 0.9TgTC33

(0.6TgTC to 1.1TgTC) for pteropods and foraminifers, respectively. This translates34

to mean annual TIC fluxes of 14TgTICyr−1 (9TgTICyr−1 to 22TgTICyr−1) for ptero-35

pod shells and 11TgTICyr−1 (3TgTICyr−1 to 27TgTICyr−1) for foraminifer tests.36

These results are similar to previous estimates for foraminifers standing stocks and fluxes37

but approximately a factor of ten lower for pteropods. The two zooplankton calcifiers38

contribute approximately 1.5% each to global surface carbonate fluxes, leaving 40%–60%39

of the global carbonate fluxes unaccounted for. We make suggestions how to close this40

gap.41

1 Introduction42

Marine calcifying plankton play a key role in the ocean’s carbon cycle, particularly43

through the formation, sinking, and dissolution of their CaCO3 shells (J. L. Sarmiento44

& Gruber, 2006). These processes impact the carbonate system throughout the water45

column and thus also affect the oceanic CO2 uptake (Takahashi & Bé, 1984; J. Sarmiento46

& Gruber, 2006). Annually, the inorganic carbon export flux from the surface ocean amounts47

to 0.6PgCyr−1 to 1.4PgCyr−1 (Iglesias-Rodriguez et al., 2002; Lee, 2001; Berelson et48

al., 2007; Jin. et al., 2006; Schiebel, 2002). However, there are significant uncertainties49

regarding the spatial and seasonal carbon flux patterns and the relative contribution of50

the different plankton groups to global calcification rates.51

The major groups of calcifying plankton are coccolithophores, shelled pteropods52

and planktic foraminifers (Schiebel & Hemleben, 2017; Stepien, 1980; Lalli & Gilmer,53

1989; Schiebel, 2002; Bednaršek, Mozina, et al., 2012). Shelled pteropods from the sub-54

order Thecosomata (in the following referred to as pteropods) build shells of aragonite,55

a metastable form of calcium carbonate (Lalli & Gilmer, 1989) with adults ranging from56

1mm to 30mm in size (Bednaršek, Mozina, et al., 2012; Bednaršek, Tarling, et al., 2012).57

Aragonite is 50% more soluble than calcite (Mucci, 1983), which makes pteropods more58

sensitive to ocean acidification than calcite-shelled organisms (Fabry et al., 2008; Bed-59

naršek et al., 2016; Manno et al., 2016). Pteropods are flux feeders, i.e., they secrete a60

floating mucus web to trap sinking organic particles (Gilmer & Harbison, 1986). They61

are active swimmers and some species perform diel vertical migration (DVM), feeding62

at night at the surface and spending the day at depths between 100m and in some cases63

up to 1000m (Bé & Gilmer, 1977; Bednaršek, Tarling, et al., 2012) to avoid predation.64

Foraminifers build calcareous tests that can reach diameters ranging between 100 µm and65

1mm (Frerichs et al., 1972; Schiebel & Hemleben, 2017). They are generally omnivorous66

and can capture prey actively, but feeding preferences differ between species (Rhumbler,67

1911; Caron & Bé, 1984; Spindler et al., 1984; Anderson et al., 1979) with some species68

also harboring facultative photosymbionts (Hemleben et al., 1989). The global abundances69

and habitat suitability of pteropods and foraminifers are known to be controlled by a70

range of environmental parameters, including temperature (Beaugrand et al., 2010; Helaouët71
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& Beaugrand, 2009; Hofmann Elizondo et al., 2021; Jonkers et al., 2019; Bednaršek et72

al., 2022), chlorophyll-a as a proxy for food availability (Vereshchaka et al., 2022; Pinker-73

ton et al., 2020; Thibodeau et al., 2019), and parameters related to physical mixing that74

influence and phytoplankton growth through light availability and particle sinking rates75

(Longhurst, 2007; Rothschild & Osborn, 1988; Boyce et al., 2010; Seuront et al., 2001;76

Govoni et al., 2010; Mackas et al., 2005; Bednaršek et al., 2022).77

The relative importance of the different calcifying plankton groups for global car-78

bonate fluxes remains uncertain. Coccolithophores were long thought to dominate the79

inorganic carbon export (Rost & Riebesell, 2004; Rembauville et al., 2016; Anglada-Ortiz80

et al., 2021; Iglesias-Rodriguez et al., 2002; Schiebel, 2002). However, in global observation-81

based estimates, they only accounted for 26%–52% of global carbonate fluxes, which leaves82

a significant fraction of the carbonate fluxes unattributed (Buitenhuis, Vogt, et al., 2013;83

C. J. O’Brien, 2015). This discrepancy shifted the attention towards the contribution84

of the two calcifying zooplankton groups, pteropods and foraminifers. Recent observa-85

tional studies estimated pteropods to contribute more than previously thought to global86

surface carbonate fluxes with a fraction of 20% to 42% (Bednaršek, Mozina, et al., 2012).87

Foraminifer carbon flux estimates vary by a factor of 100 (Schiebel & Movellan, 2012;88

Schiebel, 2002; Buitenhuis et al., 2019; Buitenhuis, Vogt, et al., 2013). However, recent89

studies based on newly available observations find significantly lower fluxes. Finally, a90

recent mechanistic modelling study found pteropods to dominate upper subsurface CaCO391

export, with contributions ranging between 33% - 89% (Buitenhuis et al., 2019). These92

results further suggest the key role of pteropods and foraminifers for the oceanic inor-93

ganic carbon cycle.94

To derive the magnitude of carbon export mediated by zooplankton calcifiers, we95

first need to quantify the global biomass standing stocks and characterize the global dis-96

tribution patterns of these groups. Earlier descriptions of the global patterns based on97

global plankton sampling data were made by the MARine Ecosystem DATa (MARE-98

DAT) project (Buitenhuis, Vogt, et al., 2013). Additionally, large-scale observational datasets99

have been collected by the Continuous Plankton Recorder (CPR) survey (Richardson100

et al., 2006). However, the existing observations are usually confined to specific ocean101

regions and have an overall low data coverage in the central oceanic basins (Bednaršek,102

Mozina, et al., 2012; Schiebel & Movellan, 2012; de Garidel-Thoron et al., 2022). Fur-103

thermore, plankton distributions are generally patchy in space and time (Boltovskoy, 1971;104

Beckmann et al., 1987; Siccha et al., 2012; Buitenhuis, Vogt, et al., 2013), which causes105

high variability in the observed abundances. Different sampling techniques and varying106

sampling depths and mesh sizes introduce additional variation (Wells, 1973). The deriva-107

tion of continuous global biomass maps and standing stock estimates for zooplankton108

calcifiers hence requires us to account for these data gaps and biases by employing sta-109

tistical methods.110

As statistical techniques, species distribution models (SDMs) empirically learn the111

relation between the target variable and a range of environmental predictors through re-112

sponse curves and can then extrapolate said target variable to un-sampled regions by113

projecting these response curves on predictor values (Guisan & Zimmermann, 2000; Elith114

& Leathwick, 2009; Merow et al., 2014). They have been successfully used in marine macroe-115

cology to model plankton species distributions based on occurrence data (presence/absence)116

(Righetti et al., 2019; Benedetti et al., 2021; Brun et al., 2016; Barton et al., 2016; Brun117

et al., 2015; Bednaršek et al., 2022) and are increasingly being used to model continu-118

ous abundance values (Waldock et al., 2022; Pinkerton et al., 2010; De Broyer et al., 2014).119

In the present work, we apply an SDM framework to estimate global biomasses for cal-120

cifying zooplankton.121

To this end, we use newly compiled global data compilation of pteropod and foraminifer122

abundances and species-specific biomass conversion methods to calculate biomass con-123

centrations over the top 200m. We combine the global gridded biomass data with an en-124
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semble of SDMs to address the following questions: (1) What are the biogeographic pat-125

terns and main environmental covariates of global total carbon (TC) biomass for pteropods126

and foraminifers (on a monthly, 1×1◦ gridded scale of the upper open ocean)? (2) What127

is the magnitude and range of uncertainty of the associated annual total inorganic car-128

bon (TIC) fluxes from pteropods and foraminifers?129

2 Methods130

We model the biomass patterns and associated carbon fluxes of pteropods and foraminifers131

at a global scale using SDMs and updated abundance datasets for the two groups. To132

this end, we use a multi-step modelling pipeline as shown in figure 1.133

Figure 1. Flow diagram illustrating the pipeline of numerical analyses implemented for the

present study. The various steps taken from the raw data to the final total carbon (TC) biomass

distributions and total inorganic carbon (TIC) flux estimates using species distribution models

(SDMs) are shown. The numbers in italics indicate the subsection of the Methods where the

corresponding step is described.
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2.1 Plankton data134

2.1.1 Data collection and pre-processing135

We updated the original MAREDAT pteropod and foraminifer abundance and biomass136

datasets of Schiebel and Movellan (2012) and Bednaršek, Mozina, et al. (2012) by ag-137

gregating abundance concentration data from large scale sampling campaigns, existing138

data compilation efforts, and unpublished sampling data (figure 1). The main data sources139

(figure S1) for both plankton groups included the Southern Ocean Continuous Plank-140

ton Recorder (SO-CPR) (Hosie, 2021), the Australian CPR (Aus-CPR) (IMOS, 2022),141

the North Atlantic and North Pacific CPR (NA-NP CPR) (Johns, 2021), and the Coastal142

and Oceanic Plankton Ecology, Production and Observation Database (COPEPOD) (T. D. O’Brien,143

2010). For pteropods, we added data from the Tara Oceans expeditions (Brandão et al.,144

2021), the Atlantic Meridional Transect (AMT24) (Burridge et al., 2017) and AMT27145

(Peijnenburg, 2021), as well as unpublished sampling data from the North Atlantic (Schiebel,146

2021). For foraminifers, we also gathered data from various individual sampling cam-147

paigns (Schiebel et al., 1995; Schiebel & Hemleben, 2000; Schiebel et al., 2001; Schiebel,148

2002; Schiebel et al., 2002, 2004; Jentzen et al., 2018).149

We took several pre-processing steps to ensure the quality of the biological obser-150

vations. To harmonize all classifications across datasets and correct for potential dep-151

recated scientific species names, we matched all taxonomic information against the list152

of accepted taxon names of the World Register of Marine Species (WoRMS) (Horton et153

al., 2017). Observations lacking complete sampling metadata (date, depth, longitude,154

latitude, and abundance value) and observations of body parts were removed (21303 points155

for pteropods, mainly due to observations of body parts and larvae, and 522 for foraminifers).156

Additionally, pteropod abundance values from the Ecosystem Monitoring - Ships Of OP-157

portunity surveys (EcoMon-SOOP) in the Gulf of Maine from the COPEPOD dataset158

were corrected by dividing them by a factor of 100 as the units in the original dataset159

had been erroneously reported. We did not standardize the abundance estimates between160

the various mesh sizes used in the different sampling cruises as there were not yet any161

published correction factors that we were aware of for these two specific plankton groups162

.163

The final, quality-controlled pteropod abundance dataset (figure S2) contains 841239164

data points at 309921 individual locations, collected at a mean sampling depth (± sd)165

of 38.15 ± 190.89m over the 1938–2021 period (2001.25 ± 15.23). Abundances range166

between 0 ind /m3 and 1066.67 ind /m3, with a mean of 4.38±79.86 ind /m3. The me-167

dian abundance (0.00 ind /m3) is low due to the CPR datasets which make up 91.15%168

of the data, and contain 92.06% absence observations. 50.19% of the data is resolved only169

to the order-level, whereas 24.03% of the observations are species-resolved and 22.41%170

resolved to the genus level (see table S2). The dataset contains observations on 33 species171

out of 165 currently recognized pteropod species (Peijnenburg et al., 2020) (see table S2).172

The largest contributions to total abundance summed over all observations stem from173

Limacina helicina sensu lato (47.7% of the total species-resolved abundance), Heliconoides174

inflatus (26.7%), and L. retroversa s.l. (10.0%).175

The final, quality-controlled foraminifer abundance dataset (figure S2) consists of176

1021283 points at 308641 unique locations, with a mean sampling depth of 108.06±340.49m177

and collected during the 1939-2021 period (mean 2000.36±13.30). Foraminifer abun-178

dances range between 0 ind /m3 and 152170.00 ind /m3, with a mean abundance of 3.63±179

163.08 ind /m3. There is a high prevalence of CPR data (74.35% of the total data) with180

89.72% zero abundance observations, which causes a low median abundance value of 0.00 ind /m3.181

59.79% of the data are species resolved, followed by 33.07% of the observations on a phy-182

lum level (see table S4). This dataset contains observations on 42 of the 47 extant foraminifer183

species (Schiebel & Hemleben, 2017). Most of the total abundance is composed of Glo-184
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bigerina bulloides (25.6% of the total species-resolved abundance), Neogloboquadrina in-185

compta (23.7%), Turborotalita quinqueloba (13.3%), and Globigerinita glutinata (11.3%).186

For model training, we performed additional data quality controls to ensure sen-187

sible relations between environmental predictors and biomass values could be derived.188

The NA-NP CPR dataset was flagged and discarded for modelling as it contained dis-189

crete medians of abundance bins instead of continuous values (removal of 340250 points190

for pteropods and 250620 points for foraminifers). Additionally, we excluded data from191

neritic sampling locations associated with a climatological salinity < 30 PSU from the192

analysis to avoid observations influenced by terrestrial freshwater and nutrient inputs193

(Brun et al., 2015) (removal of 18725 data points for pteropods and 17207 points for foraminifers).194

Lastly, observations for pteropods from the clades Gymnosomata and Pseudothecoso-195

mata were removed for modelling, as only some of the latter are calcifiers (Lalli & Gilmer,196

1989), and there is very little literature on their role in the carbon cycle (removal of 106929197

points). The final datasets used for modelling contain 375336 points for pteropoda and198

770663 points for foraminifers as shown in figure 2.199
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Figure 2. Global distribution of the final quality-controlled observations of pteropod (A) and

foraminifer (B) abundance used for modelling. The marginal plots show the density of observa-

tions and highlight the dominant role of the Southern Ocean Continuous Plankton Recorder (SO-

CPR) survey as well as a spatially confined, highly resolved dataset in the North Atlantic. This

plot shows the dataset used for modelling, i.e., the dataset after removing the North Atlantic

and North Pacific CPR data, coastal observations with surface salinity ≤ 30, and observations of

naked pteropods (Gymnosomata) as described above. For the full collected dataset, see figure S2.
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2.1.2 Biomass calculations200

To estimate calcifying zooplankton biomass and subsequent carbon fluxes, we con-201

verted the abundances to biomass data based on morphology-based conversion factors202

(cf. figure 1). To this end, we grouped species of similar morphology into shape groups203

and derive biomass as a function of average body size (maximum elongation) based on204

shape-specific conversion equations. Generally, we applied all conversions on the lowest205

taxonomic level available and only used shape-group or phylum-wise averages where the206

species identification was not available.207

Biomass calculation for pteropods To convert pteropod abundance into carbon biomass,
we used corrected species-specific biomass conversion equations from Bednaršek, Moz-
ina, et al. (2012) to calculate wet weight (WW) as shown in table S1. These equations
are based on six different morphological shape groups and relate an individual species’
body length in millimeters to its biomass. For observations without morphometric data
(99.8%), we used the species-average lengths from (Bednaršek, Mozina, et al., 2012). We
used pteropod shell length whenever given in Bednaršek, Mozina, et al. (2012), other-
wise we used the body length values from the same source. Table S2 shows the average
length value used for each species, their respective shape group, and the number of ob-
servations for each species. WW was then transformed to dry weight (DW) as per Davis
and Wiebe (1985) (equation 1)

DW = WW · 0.28 (1)

and subsequently transformed to total carbon (TC) following Larson (1986) (equation
2).

TC = DW · 0.25 (2)

Finally, total inorganic carbon (TIC) was computed (equation 3) following Bednaršek,208

Mozina, et al. (2012).209

TIC = 0.27 · TC (3)

This TC-TIC conversion factor is based on data for L. helicina antarctica and hence prob-210

ably not representative for all pteropod species and life stages (Hofmann Elizondo & Vogt,211

2022). To account for the lack of species-specific TC-TIC conversion factors in literature,212

we added an uncertainty range of ±20% to the conversion factor, based on the range of213

TIC values reported in Bednaršek, Tarling, et al. (2012). The effect of this parameter214

choice is assessed according to the methodology in section 2.3.4.215

Biomass conversion for foraminifers A morphological approach was also carried216

out for converting foraminifer abundances to TC concentrations. We were not aware of217

any published shape class definitions for foraminifers. Thus, we defined eight morpho-218

logical shape groups based on similar adult test shape and structure as shown in table219

S3.220

To derive biovolume-to-biomass conversion equations, we constructed species and
group-specific maximum test length to biomass functions from the literature. We col-
lected species-specific test weight measurements per plankton size class from Schiebel
and Hemleben (2000) and Takahashi and Bé (1984). We fitted linear functions to cal-
culate biomass as a function of length per species and per shape group, where the biomass
of a shape group is calculated as the average of all species within the group (figure S7).
To compare the ranges of the conversion factors to published equations for the entire foraminifera
phylum, we used the equation provided by Michaels et al. (1995) (figure S7). This func-
tion computes foraminifer cytoplasm carbon (i.e., total organic carbon, TOC) as a func-
tion of test length. The TC biomass is calculated based on the following conversion fac-
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tors (Schiebel & Movellan, 2012):

TIC = 0.36 · TOC (4)

TIC = 0.265 · TC (5)

To compute TC from the test weight measurements of Schiebel and Hemleben (2000)
and Takahashi and Bé (1984), we used the following molar relationship:

m(C) =
m(CaCO3)

M(CaCO3)
·M(C) =

m(CaCO3)

100.09 gmol−1 · 12.01 gmol−1, (6)

where m denotes the mass and M the molar weight.221

The biomass conversion factors (BCF) shown in table S5 are the coefficients of the
linear relation between foraminifer TC biomass and their biovolume. To apply the con-
version factors, the BCF values were substituted into the following equation:

TC = a ∗ L3 ∗BCF, (7)

where TC represents the TC biomass of foraminifers in µg, a denotes foraminifer abun-222

dance and L the species’ length in µm.223

We collected average length values for all species from the images of (Schiebel &224

Hemleben, 2017). These average length values as well as the number of observations per225

species can be found in table S4.226

2.1.3 Surface ocean aggregation227

To reduce spatio-temporal patchiness and noise in the data, we conducted a sur-228

face ocean aggregation (C. J. O’Brien, 2015). To this end, we re-gridded all data onto229

the 1×1◦ grid of the World Ocean Atlas 2018 (WOA18; Boyer et al. (2018)). For each230

grid cell, we summed all biomass concentrations from the same sampling event, as dif-231

ferent species were sometimes counted as separate measurements. Next, we averaged all232

biomass and abundance values per grid cell and month of the year over the top 200m.233

This depth cutoff was deemed reasonable as 99.1% and 99.4% of the summed abundance234

of pteropods and foraminifers, respectively, stem from the top 200m (figure S3).235

To better approximate a normal distribution, TC mass values were log-transformed236

with a log10(TC+1) transformation for further analyses. Lastly, to dampen the effect237

of plankton patchiness and bloom dynamics, we flagged outliers in the surface aggregated238

values based on the z-score criterion (Burba & Anderson, 2005). Hence, for modelling,239

we excluded high biomass observations with a score of z > 3, i.e., more than three stan-240

dard deviations away from the sample mean.241

2.2 Modelling242

2.2.1 Environmental predictor selection243

To identify the set of predictors used for training the biomass-based SDMs, we col-244

lected gridded monthly climatologies of meaningful environmental predictors as shown245

in table 1 and figure 1. Whenever necessary, the fields were averaged and re-gridded to246

monthly climatologies at a 1x1◦ resolution. Depth-resolved predictors from the WOA18247

were averaged over the climatological mixed layer depth (MLD). As many pteropods ac-248

tively migrate vertically (on a daily or seasonal basis) and both groups are passively ver-249

tically mixed within the water column (Mackas et al., 2005; Lalli & Gilmer, 1989; Schiebel250

& Hemleben, 2017; Wormuth, 1981; Myers, 1968), the depth-averaged environmental pre-251

dictors are more representative of the conditions they experience rather than the sur-252

face values. However, as sampling devices are often towed vertically or obliquely, the re-253

ported water depth interval of each observation is not directly representative of the depth254
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Table 1. Environmental predictor variables used in the univariate predictor evaluation.

WOA18 refers to the 2018 edition of the World Ocean Atlas (Boyer et al., 2018), SeaWiFS

denotes the Sea-viewing Wide Field-of-view Sensor satellite data (OB.DAAC, 2018) and SODA

describes the Simple Ocean Data Assimilation project (Carton et al., 2018).

Predictor Source Reference

Temperature WOA18 Locarnini et al. (2018)
Chlorophyll-a SeaWiFs NASA OB.DAAC (2018a)
Mixed layer depth (MLD) SODA3.4.2 Carton et al. (2018)
Eddy kinetic energy (EKE) Copernicus Copernicus (2021)
Salinity WOA18 Zweng et al. (2019)
Dissolved oxygen WOA18 Garcia et al. (2019b)
Nitrate WOA18 Garcia et al. (2019a)
Phosphate WOA18 Garcia et al. (2019a)
Depth of the euphotic layer (zeu) SeaWiFS NASA OB.DAAC (2018c)
Photosynthetically active radiation (PAR) SeaWiFS NASA OB.DAAC (2018e)
Particulate backscattering coefficient
at 443 nm (BBP443)

SeaWiFS NASA OB.DAAC (2018d)

Diffuse attenuation coefficient for
downwelling irradiance at 490 nm (Kd490)

SeaWiFS NASA OB.DAAC (2018b)

Total alkalinity (TA) OceanSODA-ETHZ Gregor and Gruber (2021)
Dissolved inorganic carbon (DIC) OceanSODA-ETHZ Gregor and Gruber (2021)
Partial pressure of CO2 (pCO2) OceanSODA-ETHZ Gregor and Gruber (2021)
Calcite saturation state (ΩCa) OceanSODA-ETHZ Gregor and Gruber (2021)
Aragonite saturation state (ΩAr) OceanSODA-ETHZ Gregor and Gruber (2021)

an organism dwells at over the entire day or even through its life span. Hence, we as-255

sume that pteropods and foraminifers move within the mixed layer, where the major-256

ity of the organic matter is present (Sallée et al., 2021; Soviadan et al., 2022). For all257

depth-resolved environmental predictors considered, the average over the top 200m, the258

values at the surface and the MLD-averaged predictor values are each correlated with259

a Pearson correlation coefficient of r > 0.99, so this simplification is deemed reason-260

able. For dissolved oxygen concentration, we used the value at 200m depth to avoid the261

strong collinearity with the sea surface temperature (SST) values. The distribution of262

chlorophyll-a concentrations, nutrient variables, MLD, and eddy kinetic energy (EKE)263

were right-skewed (figure S9), therefore we log-transformed those variables so their dis-264

tribution is closer to a normal one. Then, we collocated the environmental parameters265

with the gridded monthly pteropod and foraminifer biomass fields.266

To select the most meaningful environmental predictors for the final biomass-based267

SDMs we used a multi-step approach for each zooplankton group. First, we identified268

clusters of collinear predictors (Pearson correlation coefficient |r| > 0.7 calculated from269

the values matched up with the monthly biomass climatologies, Brun et al. (2020)). Sec-270

ond, we excluded all but one predictor in each cluster, which improves model performance271

(Dormann et al., 2013; Brun et al., 2020) (figures S10 and S11). Thus, for each cluster272

we first chose the most normally distributed predictor as assessed by the Shapiro-Wilk273

test (Shapiro & Wilk, 1965), and second, we chose predictors whose effect are easier to274

interpret from an ecological point of view (e.g. chlorophyll-a over Kd490, the remotely275

sensed light attenuation at a wave length of 490 nm, which is an indirect measure of sur-276

face productivity and turbidity). This selection procedure resulted in the following seven277

candidate predictors for both foraminifers and shelled pteropods: surface chlorophyll-278

a, MLD, temperature averaged over the MLD, surface EKE, oxygen at 200m depth, salin-279
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ity averaged over the MLD, partial pressure of CO2 (pCO2), photosynthetically active280

radiation (PAR), and particulate backscattering coefficient at 443 nm (BBP443).281

The exclusion of a predictor variable does not mean that it is not ecologically rel-282

evant for the organisms modelled. The calcite and aragonite saturation states are known283

to influence habitat suitability for foraminifers and pteropods, respectively (Lischka et284

al., 2011; Lischka & Riebesell, 2012; Manno et al., 2016; Bednaršek et al., 2016, 2022).285

However, the matched saturation states were determined to be highly correlated with286

water temperature averaged over the MLD (Pearson r > 0.99). As previous studies have287

shown temperature to be more biologically relevant in influencing large-scale biogeographic288

distribution patterns (Bednaršek et al., 2018; Howes et al., 2015; Beaugrand et al., 2013;289

MacKas & Galbraith, 2012), we excluded the saturation states as predictors. Exchang-290

ing temperature for the aragonite saturation state in the pteropod models does not have291

a significant effect on the biomass distribution pattern or the annual TC fluxes (figure292

S22).293

To choose the final predictor set, we assessed the variance of the TC biomass ex-294

plained by each of the seven candidate predictors using univariate regression models (fig-295

ure S12). For this, we calculated both 1◦ pixel-wise and latitudinal 10◦, 5◦, and 1◦ monthly296

means of the TC biomass and the environmental predictors to identify the large-scale297

effects of the environmental predictors. To model variations in the TC biomass as a func-298

tion of each environmental predictor, we trained two Generalized Linear Models (GLMs)299

with a Gaussian response function (one with only a linear term and the second with both300

a linear and a quadratic term) and a Generalized Additive Model (GAM) with a cubic301

regression spline. Then, we assessed the percentage of deviance explained by each pre-302

dictor (Hosmer Jr et al., 2013; Nelder & Wedderburn, 1972). We retained all predictors303

that explained ≥ 5% of variability at any of the spatial aggregation levels. For pteropods,304

the resulting set of predictors included: MLD-averaged temperature, surface chlorophyll-305

a, and MLD. For foraminifers, we retained the MLD-averaged temperature, surface chlorophyll-306

a, and EKE (figure S12 and figure S13 for mean annual maps of the predictors).307

To assess the impact of this predictor selection procedure on SDM outputs, we also308

trained the models for both plankton groups on a Principle Component Analysis (PCA)309

transformation of the full initial predictor set (table 1). There was no significant differ-310

ence between the PCA-based global annual TIC fluxes and those calculated based on our311

final choice of predictors (p > 0.05 for both plankton types as assessed with a Kruskal-312

Wallis test (Kruskal & Wallis, 1952), see figure S23). This shows that the predictor se-313

lection procedure did not substantially affect the SDMs estimates.314

2.2.2 Multivariate modelling315

We used the identified predictors to train an ensemble of five SDMs of increasing316

complexity: a GLM, a GAM, a Random Forest (RF), a Gradient Boosting Machine (GBM)317

and a Neural Network/Deep Learning Model (DL) (see figure 1). GLMs, GAMs and RFs318

have been widely and successfully used in the modelling of global marine plankton dis-319

tributions (Righetti et al., 2019; Benedetti et al., 2021; Brun et al., 2016). The more com-320

plex models have also been used for modelling plankton distributions, though less fre-321

quently (GBMs in Pinkerton et al. (2020, 2010), DL models in C. J. O’Brien et al. (2016);322

Benedetti et al. (2021)). For an extensive description of the more complex model types,323

we refer to Boehmke and Greenwell (2019e, 2019b, 2019a) and sources within. All mod-324

elling was conducted with the h2o 3.36.0.3 R package (H2O.ai, 2021).325

For the GLM, we included both first and second-order dependencies on the pre-326

dictors and assumed a normal distribution of the target variable with an identity link327

function (Nelder & Wedderburn, 1972). In the GAM, we fitted smoothing terms for all328

predictor variables using cubic regression splines, the most common smoothing algorithm329
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(Hastie & Tibshirani, 1990), and a normal distribution with the identity function as link330

for the target variable. For the RF, GBM, and DL, the hyperparameters were tuned us-331

ing a grid search (Boehmke & Greenwell, 2019d). Tables S6, S7, and S8 show the grid332

of parameters evaluated for each model. The final setup of the RF as determined from333

the tuning process (table S6) included 830 trees for pteropods and 330 for foraminifers.334

At each tree node, one and two environmental predictors were evaluated (mtry) for pteropods335

and foraminifers, respectively, and the minimum number of rows at each final node (minrows)336

was set to three and two. The maximum tree size was constrained to 30 for pteropods337

and 10 for foraminifers. For each bootstrap replicate of the tree, we chose a fraction (rsample)338

of 0.8 and 0.632 of the total dataset. For the GBM, we determined a maximum depth339

(maxdepth = 5) and minimum number of observations per terminal node (minrows =340

1) for each individual tree for both plankton groups (see also table S7). The learning rate341

(rlearn) was determined to be 0.01 and each individual tree is trained on a fraction of342

0.75 and 0.5 of the total dataset for pteropods and foraminifers, respectively, using all343

of the predictor columns (rsamplecolumns). The DL (see also table S8) was determined344

to have a Tanh activation function for both plankton groups. The pteropod model has345

two hidden layers with 20 neurons each and the foraminifer model has two three hidden346

layers of 15 neurons each. To avoid overfitting, L1 and L2 regularizations were included347

(Boehmke & Greenwell, 2019a) with weight factors λL1
= 0 and λL2

= 1 ∗ 10−3 for348

pteropods, and λL1 = 1 ∗ 10−3 and λL1 = 1 ∗ 10−5 for foraminifers.349

We assessed the effect of the hyperparameter tuning on the global annual TIC fluxes350

by comparing the fluxes calculated using the tuned models (for the RF, GBM, and DL)351

to those based on the untuned models with standard hyperpameter set-up (see tables352

S6–S8). As expected, the tuned models showed a better model performance, but the global353

annual TIC fluxes did not differ significantly (p > 0.05 as assessed with a Kruskal-Wallis354

test (Kruskal & Wallis, 1952) for each plankton group). Tuning the models hence does355

not introduce unfounded model complexity or biases.356

To train the SDMs and assess their performance, we split the dataset into a train-357

ing and a testing set (Boehmke & Greenwell, 2019d). For a conservative estimate of model358

performance, we randomly assigned 75% of the values to the training dataset. On the359

training dataset, we performed a 5-fold cross validation, where we (i) split the training360

dataset into five equally-sized, randomly chosen, non-overlapping subsets, (ii) train the361

SDMs on four of the subsets, and (iii) evaluate the model performance of the trained SDM362

on the remaining subset based on the average root mean squared error (RMSE). This363

procedure was repeated until each of the five subsets of the data were used four times364

for training and once for validation. Finally, we evaluated the trained SDM on the test-365

ing set.366

2.2.3 Model performance367

We assessed model performance using three metrics (figure 1). The root mean squared368

error (RMSE) is an error metric estimating the deviation between predicted and true369

values. Pearson’s coefficient of correlation, R2 indicates the magnitude of correspondence370

between trends in the predicted and observed values. Finally, the Nash-Sutcliffe-efficiency371

(NSE; Nash and Sutcliffe (1970)) compares the model performance to a null model, i.e.,372

the mean of all observations. Positive NSE values indicate that the assessed model per-373

forms better than the null model. Each performance metric was calculated on both the374

training and the testing set of the data (cf. section 2.2.2).375
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2.3 Model inference376

2.3.1 Global total carbon (TC) biomass patterns377

We used the SDMs to project global monthly TC biomass values as a function of378

the monthly climatological environmental predictors (see figure 1). Projections were made379

for each grid cell and month where environmental data were available. We flagged and380

excluded all predictions of negative biomass values, because they correspond to unreal-381

istic predictions (0.33% of all predicted values for pteropods and 0.06% for foraminifers).382

Many complex SDMs suffer from low transferability into novel environmental conditions383

due to non-linear response curves (Elith et al., 2010; Qiao et al., 2019; Bell & Schlaepfer,384

2016). Thus, for each grid cell we evaluated whether the environmental conditions lie385

within the range of the training dataset or are considered non-analog using a Multivari-386

ate Environmental Similarity Surfaces (MESS) analysis (Elith et al., 2010). The MESS387

analysis assesses the similarity between the environmental conditions at any given point388

and the training dataset of each SDM. To avoid including unrealistically high values in389

the flux calculations and global summaries of calcifying zooplankton biomass, we excluded390

the biomass values from regions where non-analog environmental conditions were detected391

by the MESS analysis (3.25% of the values for pteropods and 4.03% for foraminifers).392

To analyze the spatial biomass patterns, we defined hotspots as unusually high biomass393

concentrations that lie above the 90th percentile for each plankton group.394

2.3.2 Annual total inorganic carbon (TIC) export fluxes395

We computed TIC fluxes from the projected global TC biomass values and envi-396

ronmental conditions (see figure 1). To compare our results to those of Buitenhuis et al.397

(2019), biomass values were calculated for TC, while export fluxes were based only on398

the inorganic shells, i.e., on TIC. Hence, we assumed that the carbon export flux is dom-399

inated by the sinking and empty shells.400

TIC export flux calculation for pteropods To compute the annual pteropod TIC401

flux, we applied a simplified approach based on an average overturn time of one year,402

following the methodology of Bednaršek, Mozina, et al. (2012). Based on grid cell-wise403

mean annual biomass concentrations, we computed the global annual mean biomass as404

the spatially weighted mean of the average concentrations of each grid cell, multiplied405

by the TIC-TC factor (Bednaršek, Mozina, et al., 2012), the depth of 200m, and the global406

open ocean area excluding shelf seas (362e6 km2) (Bednaršek, Mozina, et al., 2012; Di-407

etrich et al., 1975). To represent the variability and uncertainty in turnover times be-408

tween various pteropod species and regions, we added an uncertainty factor of ±20% to409

the flux conversion equation based on the range of values given in the review study by410

Wang et al. (2017). The effect of this parameter choice is evaluated according to the un-411

certainty analysis described in section 2.3.4.412

TIC export flux calculation for foraminifers To calculate foraminifer TIC fluxes,413

we used the phylum-resolved temperature-dependent growth rates from Lombard et al.414

(2009). To calculate annual TIC fluxes, we multiplied the daily growth rate at each grid415

cell and month by the current biomass concentration, the TIC-TC factor (equation 4 in416

section 2.1.2), and the depth of 200m, and weighted the result by grid-cell area. To rep-417

resent uncertainty in the growth rate, we calculated the minimum and maximum growth418

rates by computing all combinations within the parameter uncertainty range. Then, we419

chose those parameter combinations that would minimize or maximize the integral of420

the growth rate as a function of temperature from 0 to 30◦C, while maintaining ecologically-421

sensible response shapes (see figure S8 for an illustration of the growth rate options). The422

effect of this choice was evaluated according to the methodology described in section 2.3.4.423
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2.3.3 Environmental predictor analysis424

To examine how underlying ecological processes were captured by the SDMs (fig-425

ure 1), we assessed the models’ dependence on the predictor variables in two ways. First,426

we assessed the overall effect of each environmental predictor based on a permutation427

analysis using the Fisher-Yates algorithm (Fisher & Yates, 1953). Second, we charac-428

terized the biological relevance of the response curve learned by each SDM using par-429

tial dependence plot (PDP) curves. The PDP curves were calculated by computing biomass430

prediction at 25 evenly spaced points across each predictor’s range while keeping all other431

predictors constant at their mean value (Boehmke & Greenwell, 2019c).432

2.3.4 Uncertainty quantification433

We assessed the three main sources of uncertainty underlying our SDMs predic-434

tions: SDM choice (Thuiller et al., 2019), TIC-TC factor, and growth rate parametriza-435

tion (figure 1). First, we identified potential non-normal relationships based on the pat-436

terns of the model residuals. Second, we quantified the effect of different model and pa-437

rameter choices (see sections 2.1.2, 2.2.2 and 2.3.2 for details on the uncertainty setup)438

on the carbon flux predictions using a multivariate Analysis of Variance (mANOVA; Weinfurt439

(1995)) whose target variable was the monthly TIC flux values at each grid cell. We used440

the model type, the growth rate definition, the TIC-TC conversion factor, and the in-441

teractions between these three factors as input for the mANOVA.442

3 Results443

3.1 Global biogeographic total carbon (TC) biomass patterns444

The global mean annual TC biomass (±sd) is 0.701±0.648mgTCm−3 for pteropods,445

and 13.5 ± 28.7 µgTCm−3 for foraminifers, implying that pteropod biomass is a fac-446

tor of 50 larger than foraminifer biomass. The projected global mean biomass patterns447

are shown in figure 3A and 3B for pteropods and foraminifers, respectively. For both plank-448

ton groups, high biomass concentrations are found in the tropics and at latitudes ≥ 50◦N.449

Lower biomass concentrations (mean values of 0.31mgTCm−3 and 5 µgTCm−3 are found450

between 40◦S and 50◦S for pteropods and between 30◦ and 40◦ in both hemispheres for451

foraminifers. Contrary to pteropods, we find high biomass concentrations of up to 880µgTCm−3
452

for foraminifers in the Southern Ocean south of 50◦S.453

On a regional scale, the North Atlantic Ocean is associated with biomass hotspots454

(values above the 90th percentile) for both plankton groups, but particularly for foraminifers.455

A trail of high foraminifer biomasses with a mean value of 150µgTCm−3 is found across456

the North Atlantic that is likely associated with the Gulf Stream. Other regions of high457

biomass are associated with tropical and coastal upwelling systems. Pteropod biomass458

concentrations are particularly high in the coastal Eastern Boundary Upwelling Systems459

(EBUS) with an average concentration of 3mgTCm−3. For foraminifers, regions of high460

biomass are associated with the equatorial upwelling region.461

On a seasonal scale, biomass hotspots shift towards high latitudes during global462

summer (figures S16 and S17). The seasonal variation in biomass is stronger in the North-463

ern Hemisphere (NH) than in the Southern Hemisphere (SH) with a difference in vari-464

ability V (VNH−VSH) of +0.73mgTCm−3 for pteropods and of +45.59 µgTCm−3 for465

foraminifers (p < 2∗10−16 for both groups; t-test (Student, 1908) where seasonal vari-466

ability is computed from the maximum difference between the monthly mean surface ocean467

biomass concentrations at each grid point per model type). Foraminifers display a higher468

seasonal variation than pteropods (+0.28, p < 2 ∗ 10−16 when comparing the maxi-469

mum seasonal variation at each grid point normalized by the mean global biomass be-470

tween the plankton groups with a t-test).471
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Figure 3. Global mean annual total carbon (TC) biomass concentration for pteropods (left,

A) and foraminifers (right, B), averaged over all months and models. Values are shown as

log10(TC + 1), note also the different color scales for pteropods and foraminifers. Stippled re-

gions in plots A - D indicate grid points where the environmental conditions were outside the

training dataset for more than six months of the year as calculated with the Multivariate Envi-

ronmental Similarity Surfaces (MESS) analysis. The lower panel plots C and D show the mean

annual relative standard deviation of the model predictions for pteropods (left) and foraminifers

(right), normalized with the mean prediction value at each grid point to facilitate comparability.

3.2 Model performance472

To assess model performance of the five SDMs, we evaluated each model using the473

the root mean squared error (RMSE), the R2 and the Nash-Sutcliffe-Efficiency (NSE)474

as shown in table 2 for both plankton groups. Compared to the GLM and GAM, the more475

complex model types (RF, GBM, and DL) have a lower RMSE, a higher R2, and a higher476

NSE, i.e., they generally perform better across all three metrics (table 2, see also sec-477

tion 2.2.3 for a description of the metrics). For both pteropods and foraminifers, the RF478

performs best, followed by the GBM. However, the GBM’s R2 is significantly higher on479

the training set than on the testing set (2), which indicates model overfitting. The same480

pattern is visible for RMSE (table 2). In contrast, the RF achieves similar performances481

on the training an testing set, which indicates a robustly high performance. All model482

types perform better than using the mean observation value as prediction, which is in-483

dicated by the positive NSE values (table 2). Comparing the R2 values between the plank-484

ton groups shows that the pteropod models generally perform better and can explain a485

higher fraction of the biomass variability (table 2). For the complex non-parametric mod-486

els (RF, GBM, DL), R2 is not an optimal metric (Spiess & Neumeyer, 2010). However,487
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Table 2. Model performance for the pteropod and foraminifer models. Each model metric was

calculated on both the training set (Xtrain) and the testing set (Xtest). R
2 ranges from −∞ to

+1, with a perfect fit of the model and full variance explained indicated by a value of +1. The

root mean squared error (RMSE) is an error measure, hence smaller values show higher accuracy.

The Nash-Sutcliffe-efficiency (NSE) indicates improvement of the model predictions over using

the observation mean, with perfect model performance indicated by a value of +1 and a value

of 0 indicating that the models perform no better than the observation mean. The models are

ranked by their performance over the five metrics.

Model R2
train R2

test RMSEtrain RMSEtest NSEtrain NSEtest Ranking

Pteropoda

GLM 0.1113 -0.6427 0.2612 0.3633 0.1113 0.1442 5
GAM 0.1299 0.1678 0.2585 0.2586 0.1299 0.1678 4
RF 0.2332 0.2805 0.2408 0.2404 0.5581 0.2805 1
GBM 0.409 0.2674 0.2114 0.2426 0.3652 0.2674 2
DL 0.1597 0.1822 0.2521 0.2563 0.1625 0.1822 3

Foraminifers

GLM 0.0503 -0.0279 0.8554 0.8789 0.0503 0.0491 5
GAM 0.1116 0.0823 0.8274 0.8304 0.1116 0.0823 4
RF 0.2424 0.2003 0.7586 0.7752 0.4252 0.2003 1
GBM 0.3999 0.1926 0.6751 0.7789 0.3594 0.1926 2
DL 0.1718 0.1367 0.7931 0.8054 0.1780 0.1367 3

as it is frequently reported in plankton studies as a measure of the fraction of variance488

explained (Zurell et al., 2020; Pinkerton et al., 2010, 2020), we chose to still include it.489

All models tend to underestimate the total biomass on a global scale (-35% for pteropods490

and -5% for foraminifers of log-transformed biomass), with a stronger underestimation491

of the top 10th percentile biomass hotspots (on average -78% for pteropods and -53%492

for foraminifers). However, this underestimation is less pronounced in the more complex493

models (figures S19 and S20). On a basin-scale, highly productive regions are generally494

underestimated and low productivity areas overestimated with an average overestima-495

tion of the lowest 50% of log-transformed biomass by a factor of 8.7 for pteropods and496

a factor of 2.5 for foraminifers. Hence, biomass concentrations of both plankton groups497

are underestimated in the North Atlantic Ocean and the tropical Pacific and Atlantic,498

whereas predictions in the Indian Ocean and the region around Australia are on aver-499

age too high (figures S19 and S20).500

3.3 Environmental covariates501

In general, the modeled responses of biomass to the fitted predictors converges across502

the ensemble members, except near the outer ranges of the predictor values, and for EKE503

(figure 4). Temperature shows an overall positive relation to pteropod biomass and a bi-504

modal relation for foraminifer biomass with peaks around 5 ° to 7 °C and above 25◦C.505

Chlorophyll-a is positively related to both pteropod and foraminifer biomass. At high506

chlorophyll-a concentrations (Chl− a >1mgm−3), biomass concentrations stagnate for507

pteropods and decrease slightly for foraminifers. MLD has a negative parabolic relation508

to pteropod biomass. Deepening MLD up to 30m causes a decrease in biomass while a509

further deepening of the MLD leads to an increase in biomass concentrations. The ef-510

fect of EKE on foraminifer biomass varies across the models, with a strong positive ef-511

fect in the simpler GLM and GAM, a near neutral effect in the RF and GBM, and a neg-512

ative influence in the DL (see figure 4).513
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Figure 4. Partial dependence plots (PDP) for the environmental predictors in the pteropod

(A) and foraminifer (B) models. The curves indicate the relations learned by the different SDMs

and the rug on the x- and y-axis represents the distribution of the training data. MLD refers to

the mixed layer depth, EKE to the eddy kinetic energy. The different model types are the Gener-

alized Linear Model (GLM), Generalized Additive Model (GAM), Random Forest (RF), Boosted

Regression Tree (GBM) and Neural Network (DL).

3.4 Global annual total inorganic carbon (TIC) export fluxes514

Global mean annual biomass standing stocks are 52.2TgTC (ranging from 49.2TgTC515

to 57.3TgTC across SDM types) for pteropods and 0.9TgTC (0.6TgTC to 1.1TgTC)516

for foraminifers (table 3).517

The corresponding global annual TIC fluxes were calculated based on growth rate518

parametrizations (section 2.3.2) and are on average 14.1TgTICyr−1 (13.3TgTICyr−1
519

to 15.5TgTICyr−1; table 3) for pteropods. Foraminifer TIC fluxes amount to on av-520

erage 10.9TgTICyr−1 (8.5TgTICyr−1 to 14.3TgTICyr−1; table 3). The inter-SDMs521

range of the TIC fluxes increases by a factor of approximately 4—5 if the modelling un-522

certainty associated with the TIC-TC factor and the growth rate parametrization are523

included (table 3, see also section 3.5).524

3.5 Uncertainty quantification525

To assess the effects of SDM choice, growth rate parametrization and TIC-TC fac-526

tor parametrization on the TIC flux predictions, we conducted a mANOVA and eval-527
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Table 3. Global mean annual surface pteropod and foraminifer total carbon (TC) biomass

standing stocks and annual total inorganic carbon (TIC) flux estimates as calculated by the five

species distribution model (SDMs).

Pteropoda Foraminifers

Model
Standing stock

(TgTC)
Carbon flux

(TgTICyr−1)
Standing stock

(TgTC)
Carbon flux

(TgTICyr−1)

GLM 49.2 13.3 (8.5 - 19.1) 0.6 8.9 (4.0 - 16.4)
GAM 49.2 13.3 (8.5 - 19.1) 0.7 8.5 (3.0 - 19.0)
RF 57.3 15.5 (9.9 - 22.3) 1.0 14.2 (5.0 - 26.8)
GBM 56.9 15.4 (9.8 - 22.1) 1.1 13.2 (4.8 - 24.7)
DL 48.3 13.1 (8.4 - 18.9) 1.1 9.8 (3.7 - 20.3)

Average 52.2 14.1 0.9 10.9

uated spatial patterns of standard deviation between model predictions. The main sources528

of variability in global mean annual TIC fluxes differ between the plankton groups (fig-529

ure S21). For pteropods, the growth rate and TIC-TC conversion factor choice are the530

major sources of uncertainty, as each explains 27% of the variability. SDM choice explains531

10% of the variability in fluxes for pteropods. In contrast, the TIC flux variability for532

foraminifers is dominated by the parametrization of the foraminifer growth rate (71%),533

followed by the model choice (11%), and the TIC-TC factor (< 10%).534

From a spatial point of view, relative inter-SDMs variability is highest in regions535

of low productivity and where environmental conditions are outside the range of the train-536

ing dataset (figure 3, panels C and D). This encompasses the Southern Hemispheric (SH)537

oceanic gyres and the low-productivity latitudinal band around 45◦S for pteropods and538

around 30◦S for foraminifers. Absolute biomass predictions differ the most in regions of539

high biomass, i.e., mainly the North Atlantic for both groups (figure 3, panels A and B).540

4 Discussion541

4.1 Biogeographic biomass patterns542

The biogeographic distribution patterns found for pteropods and foraminifers largely543

agree with previous findings (Lalli & Gilmer, 1989; Bednaršek, Mozina, et al., 2012; Buiten-544

huis et al., 2019; Lombard et al., 2011; Schiebel, 2002). We found high biomass concen-545

trations for both plankton groups in the warm tropical waters, at the high northern lat-546

itudes and in the upwelling systems.547

The global warm-water belt around the equator has previously been identified as548

a region of high biomass for pteropods (Lalli & Gilmer, 1989; Bednaršek, Mozina, et al.,549

2012; Burridge et al., 2017) and foraminifers (Schiebel & Movellan, 2012). High biomass550

concentrations in the equatorial region for the two plankton groups are representative551

of total global mesozooplankton distributions (Moriarty et al., 2013; Strömberg et al.,552

2009), which also show peaks in the tropical ocean.553

Earlier studies also found the high latitudes to be regions of high biomass for both554

plankton groups (Lalli & Gilmer, 1989; Bednaršek, Mozina, et al., 2012; Schiebel & Movel-555

lan, 2012; Hunt et al., 2008). Contrary to previous studies (Bednaršek, Mozina, et al.,556

2012; Lalli & Gilmer, 1989; Hunt et al., 2008), the Southern Ocean was not identified557

as a region of major pteropod productivity in our study. This is likely due to the influ-558
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ence of the SO-CPR dataset, which included a high fraction (95.8%) of absences. Re-559

moving all CPR data from our training dataset (i.e., SO-CPR and Aus-CPR) significantly560

increases biomass concentrations for pteropods by a factor of 4–8 in the Southern Ocean561

but not in other basins (figures S24 and S25). However, removing the CPR data also leads562

to significantly less well constrained PDP curves for low temperatures, which increases563

the uncertainty of these CPR-depleted SDMs projections. As previous studies were based564

on much fewer and spatially confined observations in the Southern Ocean (e.g., 141 data565

points south of 60◦ S in Bednaršek, Mozina, et al. (2012)), it is possible that they con-566

stitute local upper bound estimates of pteropod abundance and biomass in the South-567

ern Ocean.568

Similar to our findings, upwelling regions have previously been found to be asso-569

ciated with high abundances of pteropods (Dadon & Masello, 1999; Koppelmann et al.,570

2013; McGowan, 1967; Burridge et al., 2017) and foraminifers (Schiebel et al., 2004; Naidu571

& Malmgren, 1996; Ivanova et al., 1999). Upwelling systems are characterized by recur-572

rent nutrient inputs that trigger high local primary productivity (Kämpf & Chapman,573

2016), which produces optimal conditions for opportunistic foraminifer and pteropod species574

(Kucera, 2007; Schiebel & Hemleben, 2017). However, the upwelling systems are also as-575

sociated with the upwelling of low pH waters (Joint et al., 2011; Hauri et al., 2013), and576

the shoaling of the calcite and aragonite saturation horizon (Leinweber & Gruber, 2013;577

Frenger et al., 2018). The effects of these changes in water chemistry in upwelling sys-578

tems on pteropod and foraminifer abundances are discussed in section 4.2.579

Overall, the modelled biogeographic patterns of pteropods and foraminifers are gen-580

erally in line with earlier work (Bednaršek, Mozina, et al., 2012; Lalli & Gilmer, 1989;581

Schiebel & Movellan, 2012). Deviations, as the lower pteropod biomass in the Southern582

Ocean are probably caused by previously low sampling density and current biases in sam-583

pling methodology.584

4.2 Environmental drivers585

In agreement with other studies (Pinkerton et al., 2020; Beaugrand et al., 2013; Meil-586

land et al., 2016; Jentzen et al., 2018), temperature was the strongest statistical covari-587

ate for the biomass distributions of pteropods and foraminifers in our study. This is not588

surprising since temperature influences all scales of biological processes, from intra-cellular589

reaction rates to species interactions (Chapperon & Seuront, 2011; Kirby & Beaugrand,590

2009; Schmidt-Nielsen, 1997; Brown et al., 2004). Temperature is also related to the wa-591

ter column stratification, which in turn can affect plankton biomass by influencing nu-592

trient availability (see section 2.2.1) and primary productivity (Chiswell et al., 2014). The593

present global dependencies of biomass on temperature can differ from the results of lo-594

cal studies (e.g., a negative dependency of pteropod biomass on temperature as found595

in Bednaršek et al. (2022)). As the geographic scale of the analysis is different, distinct596

effects are captured by the models, such as for example large-scale latitudinal effects in597

contrast to local upwelling influences.598

The modelled bimodal structure of the biomass dependency of our SDMs on tem-599

perature for foraminifers, and—to a lesser extent–pteropods (peaks around 5-7◦C and600

above 25◦ C, figure 4), likely reflects the existence of distinct assemblages of warm-water601

species and cold-water species within these groups (Bradshaw, 1959). Some foraminifer602

species are associated with one end of the temperature spectrum - for instance, Neoglobo-603

quadrina pachyderma is associated with temperatures below 10◦C and Globigerinoides604

ruber (white) with temperatures above 18◦C (Kucera, 2007; G. A. Schmidt & Mulitza,605

2002), which broadly matches our identified peaks (Morard et al., 2015; Antell et al., 2021;606

Rillo et al., 2022). Furthermore, the temperature interval around 17◦C constitutes a min-607

imum in the foraminifer biomass dependency curve and it can be associated with the sub-608

tropical front (D. N. Schmidt et al., 2004). As very dynamic dispersal barriers, fronts609
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are regions of significant environmental variability where foraminifer body sizes were found610

to be significantly smaller (D. N. Schmidt et al., 2004). This could help explain why the611

subtropical front was associated with lower foraminifer biomass. However, most foraminifer612

species display wide thermal tolerances of around 10◦C (Schiebel & Hemleben, 2017).613

Additionally, the sampling density was high in the cold regions of the Southern Ocean614

and at high temperatures in the tropics, but few data points (18.0% for pteropods and615

23.1% for foraminifers) stem from the intermediate temperature range between 10◦C and616

20◦C for both plankton groups. Hence, the bimodal structure might also be skewed due617

to an uneven sampling distribution (as seen in the uneven density of the x-axis rug plot618

in figure 4A).619

In our SDMs, surface chlorophyll-a concentration emerged as the second-most im-620

portant environmental covariate for the biomass of both plankton groups, which is also621

supported by the literature (Pinkerton et al., 2020; Schiebel et al., 2001; Meilland et al.,622

2016; Schiebel et al., 1995). Generally, a positive near-linear relationship between chlorophyll-623

a concentrations and pteropod and foraminifer biomasses is observed, particularly in the624

well-constrained range of the PDP curve (figure 4). As a measure of food availability,625

chlorophyll-a can be directly positively linked to zooplankton abundances and biomass626

(Schiebel et al., 2001; Pinkerton et al., 2020; Strömberg et al., 2009). However, both pteropods627

and foraminifers also feed on non-phytoplankton prey and organic particles to varying628

degrees (Lalli & Gilmer, 1989; Rhumbler, 1911; Caron & Bé, 1984; Spindler et al., 1984).629

Pteropods typically feed on particles that are one 100–1000th of their own size (Conley630

et al., 2018), while some foraminifers can digest prey larger than themselves (Schiebel631

& Hemleben, 2017). This can explain the smaller-scale deviations of the PDP curves from632

the near-linear trend and a certain decoupling at low chlorophyll-a concentrations (fig-633

ure 4) as the zooplankton can feed on alternative organic particles.634

The overall importance of the environmental variables driving biomass in models635

may vary with the spatio-temporal scale at which the analysis is conducted (Corney et636

al., 2006). Both MLD and EKE were found to be of minor importance as driving vari-637

ables in our SDMs, which might be due to their predominantly mesoscale effect on mix-638

ing and food availability. MLD negatively influences pteropod biomass concentrations639

over most of the assessed range (figure 4). As flux-feeders, pteropods rely on a steady640

downward flux of particles, which can be hindered by a deep and turbulent water col-641

umn mixing (Tsurumi et al., 2005). From a viewpoint of ecological successions over sea-642

sons, the shoaling of the deep winter mixed layer in spring is one of the main factors trig-643

gering spring phytoplankton blooms (Chiswell et al., 2014). Following these blooms, zoo-644

plankton productivity increases to feed on the remaining phytoplankton (Romagnan et645

al., 2015). This might explain the increase in pteropod biomass for shallow MLD val-646

ues as an indirect consequence. EKE shows a slight positive impact on foraminifer biomass647

in the simpler models (figure 4). At the mesoscale, eddies can sustain increases in foraminifer648

biomass, as they can drive the mixing of the deep chlorophyll-a maximum into shallower649

surface layers, i.e., into the habitat of foraminifers (Turner, 2015; Kupferman et al., 1986;650

Beckmann et al., 1987; Fallet et al., 2011; Steinhardt et al., 2014; Schiebel et al., 1995).651

However, the effect of eddies varies as their direction of rotation determines the dom-652

inant vertical direction of water movement (Dufois et al., 2016). The direct large-scale653

effects of MLD and EKE on biomass patterns are not frequently assessed in the liter-654

ature (exceptions for MLD are Pinkerton et al. (2020) and Schiebel et al. (2001)). On655

a local, short-term scale, however, they might have a strong influence on zooplankton656

biomass that cannot be captured by our global-scale monthly model.657

Previous work identified carbonate chemistry as an important predictor for net cal-658

cification on a local scale (Bednaršek & Ohman, 2015; Manno et al., 2017; Lischka et al.,659

2011; Bednaršek et al., 2022; Mekkes, Renema, et al., 2021). CO2 - rich waters charac-660

terized by low pH, low calcite, and low aragonite saturation states may negatively af-661

fect certain calcifying organisms by increasing their dissolution and lowering their cal-662
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cification rate (Bednaršek, Feely, et al., 2017; Bednaršek et al., 2022; Mekkes, Renema,663

et al., 2021; Mekkes, Sepúlveda-Rodŕıguez, et al., 2021). For pteropods, these changes664

in water chemistry can reduce their metabolic activity, increase shell dissolution, and de-665

crease their growth and survival (Lischka et al., 2011; Lischka & Riebesell, 2012; Maas666

et al., 2015; Gardner et al., 2017; Manno et al., 2007; Bednaršek et al., 2016; Bednaršek,667

Klinger, et al., 2017; Bednaršek et al., 2022; Bednaršek, Feely, et al., 2017). Foraminifers668

are less sensitive to changes in saturation states as their shells are made of calcite (Orr669

et al., 2005; Weinkauf et al., 2016), but the specific sensitivities are not yet well quan-670

tified (Fabry et al., 2008), and calcite saturation has not yet decreased as much as arag-671

onite saturation. As our models did not include any indicator of pteropod physiology672

or biominerology and were based on climatological environmental conditions, we could673

not account for these effects in the way that for example individual-based models do (Hofmann Eli-674

zondo & Vogt, 2022). So far, field studies have not found large-scale abundance decreases675

of either pteropods or foraminifers as a result of a changes in the carbonate chemistry676

(Ohman et al., 2009; Howes et al., 2015; Thibodeau et al., 2019), as the effects of other677

environmental variables such as temperature tend to prevail (Beare et al., 2013). How-678

ever, the fitness reduction of individual organisms leads to delayed responses on the pop-679

ulation level, such that large-scale changes may happen only in the near future under680

climate change (Bednaršek et al., 2022).681

Overall, the relative importance and response curves shapes (figures 4, S18) of the682

various environmental predictors are in line with our current state of knowledge. Some683

response curves are affected by uneven sampling across environmental and geographic684

space and scale dependencies, but within the most commonly observed ranges of envi-685

ronmental conditions, the response curves of the five SDMs agree well with each other686

for both plankton groups.687

4.3 Current global surface ocean biomass and TIC export fluxes688

Estimates of global plankton standing stocks from observations have only become689

possible during the past decade (Buitenhuis, Vogt, et al., 2013) due to paucity in the avail-690

able information about marine ecosystems. Hence, there are still large uncertainties, par-691

ticularly for organisms such as zooplankton with patchy abundance patterns (Buitenhuis,692

Hashioka, & Quéré, 2013) and strongly uneven sampling distributions and methodolo-693

gies (see also section 4.4 and figure S5 for an assessment of data patchiness). Estimates694

of standing stocks are highly uncertain, though less so than in marine systems than ter-695

restrial ones (Bar-On et al., 2018; de Garidel-Thoron et al., 2022). In this context, we696

deem the partly large deviations of our estimates from previous studies as plausible.697

On a global mean annual scale, our estimates of total plankton biomass standing698

stocks are a factor of 10 lower than previous MAREDAT observation-based estimates699

for pteropods (Bednaršek, Mozina, et al., 2012) and in the same range for foraminifers700

(Schiebel & Movellan, 2012) as shown in table 4. For both plankton groups, the previ-701

ous standing stock estimates were 1) calculated using globally averaged, unweighted biomass702

concentrations, 2) based on a spatiotemporal subset of our current observational dataset,703

and 3) based only on non-zero abundance observations.704

The discrepancy between our results and those of previous studies decreases when705

we calculate global standing stocks based on these different configurations (see table 4).706

Calculating standing stocks based on 1) MAREDAT methodology does not change the707

standing stock estimates strongly (46TgTC to 57TgTC for pteropoda and 0.5TgTC to708

1.1TgTC for foraminifers). Additionally 2) subsetting our prediction fields at the orig-709

inal MAREDAT sampling points increases pteropod standing stock estimates by approx-710

imately 50% to 62TgTC to 95TgTC, while foraminifer estimates remain near constant711

at 0.6TgTC to 1.9TgTC. Finally, 3) excluding zero abundance observations before mod-712

elling increases standing stock estimates to 91TgTC to 140TgTC for pteropods and 2TgTC713
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Table 4. Comparison between modeled total carbon (TC) standing stocks and total inor-

ganic carbon (TIC) fluxes for pteropods and foraminifers with previous studies. All values were

converted to represent TC and TIC, respectively. The results of the mechanistic studies from

Gangstø et al. (2008) and Buitenhuis et al. (2019) denote the reported CaCO3 production and

not the export flux. The export flux calculations include dissolution of the sinking calcium car-

bonate shells. However, we do not take this into account in the current study. Thus, we compare

the production terms before dissolution. The sensitivity analyses are shown in italics. For the

comparisons to MAREDAT, the projected biomass maps were sampled at the MAREDAT ob-

servation points of the respective plankton group (Bednaršek, Mozina, et al., 2012; Schiebel &

Movellan, 2012). To be consistent with the methodology used in Bednaršek, Mozina, et al. (2012)

and Schiebel and Movellan (2012), the total standing stocks and fluxes were calculated from

global non-weighted mean biomass concentrations and assuming one and nine complete overturn

periods for pteropods and foraminifers, respectively.

Pteropoda Foraminifers

Source
Standing stock

(TgTC)
Carbon flux

(TgTICyr−1)
Standing stock

(TgTC)
Carbon flux

(TgTICyr−1)

Estimates based on mechanistic modelling studies
Buitenhuis et al. (2019) 152 - 4183a 100 - 141a

Gangstø et al. (2008) 300
Estimates based on observational data

Bednaršek, Tarling, et al. (2012) 444 - 505b,c 112 - 150b,c

Schiebel and Movellan (2012) 1 - 5b 3 - 12b

Schiebel (2002) 157 - 389b,d

Our results 49 - 57 8 - 22 1 - 2 3 - 35
1: MAREDAT methodology 46 - 57 12 - 15 0.5 - 1.1 5 - 10
2: Sampled at MAREDAT points & methodology 62 - 95 17 - 26 1 - 2 1 - 4
3a: W/o zeros 91 - 140 24 - 38 2 - 3 16 - 33
3b: W/o zeros, MAREDAT points & methodology 132 - 220 35 - 60 2 - 9 4 - 20
W/o CPR data 90 - 155 25 - 42 1 - 3 18 - 33

aBased on calcite production, not flux, bBased on subset of observations used in this study,cEstimates based on non-zero observations only,
dFlux at 100m

to 3TgTC for foraminifers. Combining all three modifications causes an increase of fac-714

tor 3–4 for both plankton types. Following the same methodology, pteropod biomass es-715

timates are still a factor of 2–4 lower than the MAREDAT estimates, while foraminifer716

biomass estimates are in the same range. A potential reason for this difference between717

the two plankton groups might be the variation in patchiness due to the larger body size718

of pteropoda. The original MAREDAT pteropod abundance observations are nearly four719

times as patchy as those of foraminifers (Buitenhuis, Vogt, et al., 2013), which could have720

led to a higher bias in the pteropod standing stock estimate.721

In the context of the marine trophic foodweb, pteropods constitute approximately722

6% to 8% of total macrozooplankton biomass, whereas foraminifers make up 0.1% to 0.6%723

of microzooplankton biomass as shown in figure 5 (Buitenhuis, Vogt, et al., 2013). Each724

plankton size class encompasses a broad range of taxonomic groups, so that the relatively725

small contributions of pteropods and foraminifers is logical. In contrast to the other PFTs726

estimates and the earlier MAREDAT estimates for pteropods and foraminifers, our re-727

sults are based on global climatological biomass estimates instead of spatially discrete728

observation data. This causes a lower discrepancy between our mean and median esti-729

mates as well as a lower total standard deviation (figure 5), because high biomass ex-730

treme events are not as prevalent in our results as in the raw field observations (cf. also731

section 4.4 and figure S5).732

Estimated pteropod TIC fluxes are a factor of 5–100 lower than in previous numer-733

ical modelling studies (table 4). The estimates by Buitenhuis et al. (2019) and Gangstø734

et al. (2008) are based on mechanistic models which used published laboratory evidence735

for model calibration and observational data from MAREDAT for model evaluation. How-736
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Figure 5. Trophic pyramid of autotrophic and heterotrophic plankton functional types

(PFT). The bars show the mean (light grey filling) and median (dark grey filling, value in paren-

theses) biomass concentrations in µgTCL−1 in the surface 200m. The standard deviation is

denoted for each PFT. A shows the original results from the MAREDAT project presented in

Buitenhuis, Vogt, et al. (2013). B shows our updated estimates for pteropods and foraminifers as

highlighted in red.

ever, the parametrization of the growth rate is based on copepod observations instead737

of pteropods in Buitenhuis, Vogt, et al. (2013) and hence could have introduced a bias.738

The difference in depth at which TIC-fluxes are reported (100m in Buitenhuis et al. (2019)739

and 200m in our study) likely introduce further uncertainties, however as neither of the740

results include dissolution effects, these are deemed minor. An additional reason for the741

discrepancy could be an incomplete representation of the true abundances in our obser-742

vation data due to sampling biases (cf. section 4.4). Examples of such biases include net743

avoidance, diel vertical migration (DVM), and the use of sub-optimal mesh sizes for the744

target group (e.g. in the CPR), which can lead to underestimated abundances in our ob-745

servational data (Zamelczyk et al., 2021; Pinkerton et al., 2020; Doubek et al., 2020).746

Excluding CPR data from our models approximately doubles the estimated TIC fluxes747

(table 4), however it also increases uncertainty in the environmental driver dependen-748

cies (cf. section 4.1).749

Our foraminifer TIC flux estimates are of the same order of magnitude as the most750

recent observation-based estimates and mechanistic model-based studies, albeit on the751

lower end for the latter (Table 4). The earlier observational study by Schiebel (2002) is752

based on much smaller datasets with a spatial bias towards the highly productive North753

Atlantic Ocean and found substantially higher TIC fluxes. However, our results align well754

with the flux estimate calculated by more recent studies, such as Schiebel and Movel-755

lan (2012). In our work, we account only for large adults due to mesh size limitations,756

but including juvenile biomass might double foraminifer biomass and flux estimates(Schiebel757

and Movellan (2012), see also section 4.4). This uncertainty could also explain the de-758

viations of our results from the mechanistic model-based estimate by Buitenhuis et al.759

(2019), which is a factor of 1.5–50 higher than our global annual TIC flux estimate. Sim-760

ilar as for pteropods, excluding CPR data prior to modelling approximately doubles the761

estimated global annual TIC fluxes (cf. table 4), which might be indicative of non-optimal762

representation of foraminifer abundances in this dataset.763

Pteropoda contribute 0.5%–2.2% to total annual global carbonate fluxes and foraminifers764

contribute 0.2%–3.5%, assuming annual global fluxes amount to 1.0PgTICyr−1 to 1.6PgTICyr−1
765

(Iglesias-Rodriguez et al., 2002; Lee, 2001; Berelson et al., 2007). We can assume that766

the carbon fluxes calculated in our study represent a lower bound estimate due to bi-767

ases and incompleteness of the observation dataset (see section 4.4). Coccolithophores768

are estimated to contribute 26%–52% to global carbonate fluxes (C. J. O’Brien, 2015),769
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which still leaves 40%–70% of global carbonate fluxes unaccounted for and points to an770

underestimation of the contribution from the calcifying zooplankton. Additional minor771

contributors to the marine CaCO3 budget are fishes, atlantid heteropods, pseudotheco-772

somes (particularly the fully shelled Peracle species), calcifying ostracods, dinoflagellates,773

ciliates and the larvae of both benthic molluscs and gymnosomates (Buitenhuis et al.,774

2019). However, their contribution to global carbonate fluxes is not well constrained, but775

may range between 3%–15% per group (Wilson et al., 2009; Schiebel, 2002; Buitenhuis776

et al., 2019), and hence warrants further investigation.777

4.4 Limitations and uncertainties778

Here, we use large global datasets and an exhaustive model ensemble approach to779

estimate pteropod and foraminifer biomass. We quantify and discuss the uncertainty aris-780

ing from the model choice and key parametrizations and estimates for the growth rate781

and the TIC-TC factor. However, our biomass and carbon flux estimates are affected782

by the characteristics and errors underlying the observational data and the simplifying783

assumptions made for the model setup. These include the interaction of spatio-temporal784

biases in sampling effort with the inherent patchiness of plankton distribution, variations785

in sampling net mesh sizes, and limited taxonomic resolution for biomass conversions (de786

Garidel-Thoron et al., 2022).787

Patchy sampling across space and time leads to spatiotemporal biases in the train-788

ing dataset (figures 2, S3 and S4). Data coverage is low in the low productivity oligotrophic789

gyres and during the less productive months (figure S4). We find that a large fraction790

of the inter-model variability is due to environmental conditions outside of or at the outer791

ranges of the training data (section 3.5 and figures 3 and 4). Nonetheless, a large frac-792

tion of the global environmental space of our predictor variables is covered by the abun-793

dance datasets, which allows us to predict biomass values with higher certainty (figure794

S6). Furthermore, plankton distributions are generally characterized by a high level of795

seasonal and spatial patchiness (figure S5, Boltovskoy (1971); Beckmann et al. (1987);796

Siccha et al. (2012); Buitenhuis, Vogt, et al. (2013). This introduces high variance in the797

observed abundances (figure S5) and a mismatch between the gridded monthly clima-798

tologies used as environmental predictors and the mesoscale-affected biomass patterns799

(Righetti et al., 2019; Benedetti et al., 2021). However, previous studies found no sig-800

nificant benefit of using highly temporally resolved data over climatologies (Pinkerton801

et al., 2020), as the environmental conditions an organism experiences are based on their802

Langrangian movement over time (Hofmann Elizondo & Vogt, 2022). Finally, the use803

of coarse mesh sizes for sampling relatively small zooplankton can underestimate the true804

abundances as small and/or mobile individuals are missed (Tseng et al., 2011; Wells, 1973;805

Miloslavić et al., 2014; Mack et al., 2012; Skjoldal et al., 2013; Fabry, 1989; Zamelczyk806

et al., 2021). This is particularly relevant for the SO-CPR and Aus-CPR observations807

which make up 91% and 73% of our training data for pteropods and foraminifers, respec-808

tively (section 2.1.1) due to the large mesh size of 270µm used (Richardson et al., 2006).809

These sampling data constraints hence cause our biomass and flux estimates to be lower810

end estimates.811

Further uncertainties in the standing stock and flux estimates come from the sim-812

plified abundance to biomass conversions and the biomass to carbon flux derivation. We813

assumed species-level or group-level averages for the size-based biomass conversion func-814

tions (section 2.1.2). Yet, in practice these values vary based on ontogenetic stage, sub-815

species, ambient temperature (Bradshaw, 1959), and food availability (Meilland et al.,816

2016; Schiebel et al., 2001; Schiebel & Hemleben, 2005). These factors vary with lati-817

tude and we could not account for them explicitly in the present carbon conversions (cf.818

section 2.1.2) due to a lack of available parametrizations. Therefore, we likely underes-819

timated the global latitudinal variability in our biomass predictions. To convert biomasses820

to TIC fluxes, growth rates and the TIC-TC conversion factor were based on spatially821
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constrained data and a limited number of species due to data availability (cf. section 2.1.2).822

The choices made for the growth rate function and the TIC-TC factor had a significant823

impact on flux estimates for pteropods, and for foraminifers to a lesser extent (section824

3.5). Plankton observations identified at a finer taxonomic level and species-specific laboratory-825

based conversion factors and growth rates would likely increase the accuracy of our cal-826

culations. To estimate export fluxes at depth, particle sinking velocities and dissolution827

rates need to be considered (Takahashi & Bé, 1984; Schiebel et al., 2007). During pe-828

riods of peak biomass production, high pulses of fast-sinking organisms occur and can829

drive higher export efficiency (Schiebel, 2002). However, the relative species abundances830

observed in our upper ocean foraminifera data (figure S26) are in good agreement with831

those found in sediment trap data in previous studies Kretschmer et al. (2018); Lombard832

et al. (2011). This shows that the foraminifer surface export fluxes and patterns found833

in our study are representative of export patterns found in the deeper ocean. For pteropods,834

to our knowledge, no comprehensive global sediment trap data analysis has yet been con-835

ducted. To assess comparability between fluxes at the surface and the deep ocean, such836

an analysis is hence much needed.837

5 Conclusion838

The aim of this study was to predict global monthly and annual patterns and drivers839

of shelled pteropod and planktic foraminifer TC biomass distributions, and their asso-840

ciated TIC fluxes, and to assess the importance of these groups for the global biogeo-841

chemical cycling of carbon and CaCO3.842

Globally, pteropods contribute 6%–8% and foraminifers 0.1%–0.6% to total global843

macrozooplankton and microzooplankton TC standing stocks, respectively. The sink-844

ing of their shells and tests constitutes approximately 1.5% each of the total global an-845

nual surface TIC fluxes. We found biomass hotspots for both plankton groups in the high846

Northern latitudes, around the equator, and in the upwelling systems. Temperature and847

chlorophyll-a concentrations were the two most important environmental covariates for848

modelling the biomass patterns.849

Based on newly assembled abundance data for different organism groups, we can850

use our modelling pipeline to project global biomass patterns for various plankton func-851

tional groups (Le Quéré et al., 2005). Thus, we can validate newly developed mechanis-852

tic marine ecosystem models (Le Quéré et al., 2016; Clerc et al., 2022) of increased com-853

plexity and higher diversity in zooplankton functional types. Additionally, the models854

can be employed to assess future changes in plankton biomass by projecting the present855

models on future environmental fields under climate change scenarios (Benedetti et al.,856

2021; Tittensor et al., 2021). This is particularly relevant considering the high sensitiv-857

ity of, for example, pteropods to ocean acidification and warming (Bednaršek et al., 2016;858

Manno et al., 2016). Thus, we can identify hotspots of future biomass changes (comple-859

mentary to future changes in diversity as modeled in Benedetti et al. (2021)) and po-860

tentially link these to risk assessments based on other ocean health indices (Halpern et861

al., 2012).862

Furthermore, the pipeline can be used to model other types of quantitative data,863

such as sediment trap data (Kretschmer et al., 2018) or measurements based on novel864

approaches like underwater imaging techniques or omics (Pesant et al., 2015). As a large865

fraction of the carbonate export fluxes still remains unaccounted for based on our results,866

we could calculate flux contributions of different organism groups such as fish and shelled867

heteropods (Wilson et al., 2009; Buitenhuis et al., 2019; Wall-Palmer et al., 2016). Com-868

paring estimates based on upper ocean data with those based on sediment traps could869

help to improve our understanding of export patterns driven by different organism groups870

as well as the impacts of carbonate dissolution and sinking rates on such patterns.871
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Open Research Section872

The observational datasets used to train the models as well as the model outputs873

will be made publicly available on AtlantECO’s GeoNode portal (https://atlanteco-geonode.eu/)874

upon acceptance of the manuscript. An adapted version of the modelling pipeline, ap-875

plicable to any species abundance or biomass dataset in the AtlantECO format is avail-876

able on the GitHub account of N.K. (https://github.com/nielja).877
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K., . . . Swan, C. (2013). MAREDAT: Towards a world atlas of MA-1024

Rine Ecosystem DATa. Earth System Science Data, 5 (2), 227–239. doi:1025

10.5194/essd-5-227-20131026

Burba, G., & Anderson, D. (2005). A Brief Practical Guide to Eddy Covariance1027

Flux Measurements (Tech. Rep.). Lincoln: LI-COR Biosciences. doi: 10.1076/1028

ceyr.18.1.62.53931029

Burridge, A. K., Goetze, E., Wall-Palmer, D., Le Double, S. L., Huisman, J., &1030

Peijnenburg, K. T. (2017). Diversity and abundance of pteropods and het-1031

–28–



manuscript submitted to Global Biogeochemical Cycles

eropods along a latitudinal gradient across the Atlantic Ocean. Progress in1032

Oceanography , 158 , 213–223. Retrieved from http://dx.doi.org/10.1016/1033

j.pocean.2016.10.001 doi: 10.1016/j.pocean.2016.10.0011034
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macrozooplankton abundance and biomass in the global ocean. Earth System1352

Science Data, 5 (2), 241–257. doi: 10.5194/essd-5-241-20131353

Mucci, A. (1983). The solubility of calcite and aragonite in seawater at various salin-1354

ities, temperatures, and one atmosphere total pressure. Am. J. Sci , 283 (7),1355

780–799.1356

Myers, T. D. (1968). Horizontal and vertical distribution of thecosomatous pteropods1357

off Cape Hatteras. Duke University.1358

Naidu, P. D., & Malmgren, B. A. (1996). A high-resolution record of late Qua-1359

ternary upwelling along the Oman Margin, Arabian Sea based on planktonic1360

foraminifera. Paleoceanography , 11 (1), 129–140.1361

–34–



manuscript submitted to Global Biogeochemical Cycles

NASA OB.DAAC. (2018a). Sea-viewing Wide Field-of-view Sensor (SeaWiFS)1362

Chlorophyll Data. Retrieved from https://oceandata.sci.gsfc.nasa.gov/1363

directaccess/SeaWiFS/Mapped/Monthly Climatology/9km/chlor a/ doi:1364

10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/20181365

NASA OB.DAAC. (2018b). Sea-viewing Wide Field-of-view Sensor (SeaW-1366

iFS) Downwelling Diffuse Attenuation Coefficient Data. Retrieved from1367

https://oceandata.sci.gsfc.nasa.gov/directaccess/SeaWiFS/Mapped/1368

Monthly Climatology/9km/Kd 490/ doi: 10.5067/ORBVIEW-2/SEAWIFS/1369

L3M/KD/20181370

NASA OB.DAAC. (2018c). Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Eu-1371

photic Depth Data. Retrieved from https://oceandata.sci.gsfc.nasa.gov/1372

directaccess/SeaWiFS/Mapped/Monthly Climatology/9km/Zeu lee/ doi:1373

10.5067/ORBVIEW-2/SEAWIFS/L3M/ZLEE/20181374

NASA OB.DAAC. (2018d). Sea-viewing Wide Field-of-view Sensor (Sea-1375

WiFS) Garver-Siegel-Maritorena (GSM) Model Data. Retrieved from1376

https://oceandata.sci.gsfc.nasa.gov/directaccess/SeaWiFS/Mapped/1377

Monthly Climatology/9km/bbp 443 gsm/ doi: 10.5067/ORBVIEW-2/1378

SEAWIFS/L3M/GSM/20181379

NASA OB.DAAC. (2018e). Sea-viewing Wide Field-of-view Sensor (SeaWiFS)1380

Photosynthetically Available Radiation Data. doi: 10.5067/ORBVIEW-2/1381

SEAWIFS/L3M/PAR/20181382

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual1383

models part I - A discussion of principles. Journal of hydrology , 10 (3), 282–1384

290.1385

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal1386

of the Royal Statistical Society: Series A (General), 135 (3), 370–384.1387

OB.DAAC, N. (2018). Sea-viewing Wide Field-of-view Sensor (SeaWiFS).1388

O’Brien, C. J. (2015). Global-scale distributions of marine haptophyte phytoplankton1389

(Unpublished doctoral dissertation). ETH Zurich.1390

O’Brien, C. J., Vogt, M., & Gruber, N. (2016). Global coccolithophore diversity:1391

Drivers and future change. Progress in Oceanography , 140 , 27–42. Retrieved1392

from http://dx.doi.org/10.1016/j.pocean.2015.10.003 doi: 10.1016/j1393

.pocean.2015.10.0031394

O’Brien, T. D. (2010). COPEPOD, a global plankton database : a review of the 20101395

database contents, processing methods, and access interface. Retrieved from1396

https://repository.library.noaa.gov/view/noaa/50401397

Ohman, M. D., Lavaniegos, B. E., & Townsend, A. W. (2009). Multi-decadal1398

variations in calcareous holozooplankton in the California Current System:1399

thecosome pteropods, heteropods, and foraminifera. Geophysical Research1400

Letters, 36 (18), 2–6. doi: 10.1029/2009GL0399011401

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., . . . Yool,1402

A. (2005). Anthropogenic ocean acidification over the twenty-first century1403

and its impact on calcifying organisms. Nature, 437 (7059), 681–686. doi:1404

10.1038/nature040951405

Peijnenburg, K. T. C. A. (2021). Personal communication.1406

Peijnenburg, K. T. C. A., Janssen, A. W., Wall-Palmer, D., Goetze, E., Maas, A. E.,1407
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Bednaršek, 4,5,6Sonia Chaabane, 7Catharina de Weerd, 7,8Katja T. C. A.

Peijnenburg, 6Ralf Schiebel, 1Meike Vogt

1Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland

2National Institute of Biology, Marine Biological Station, Piran, Slovenia

3Cooperative Institute for Marine Resources Studies, Oregon State University, Oregon, USA
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Introduction

The supporting information includes additional figures and tables relating to the original

observation data, the abundance-to-biomass conversions and the modelling process. The

outputs of various sensitivity analyses are also shown as described and referenced in the

main text.
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Figures

Figure S1. Pteropoda (A) and planktic foraminifers (B) data sources. CPR refers to the

Continuous Plankton Recorder (NA-NP: North Atlantic and North Pacific, Aus: Australia, SO:

Southern Ocean), COPEPOD to the Coastal and Oceanic Plankton Ecology, Production and

Observation Database, AMT to the Atlantic Meridional Transect and MAREDAT to the MARine

Ecosystem DATabase. See section 2.1.1 for more details.



X - 4 KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE

Figure S2. Pteropoda (A) and planktic foraminifers (B) abundance observation data from the

full quality controlled AtlantECO dataset. The marginal plots show the density of observations

and highlight the dominant role of the North Atlantic and North Pacific Continuous Plankton

Recorder (NA-NP CPR) survey, the Southern Ocean CPR (SO-CPR) survey as well as a spatially

confined, highly resolved dataset in the North Atlantic.
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Figure S3. A, C: histogram of abundance observations for pteropods (A) and planktic

foraminifers (C). The prevalence of zero abundances is evident. B, D: depth distribution of the

sampling data for pteropods (B) and foraminifers (D). The dashed red line indicates the cut-off

of 200m. All data above this depth were used for the modelling.
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Figure S4. Hovmoeller diagrams showing the density of pteropod (A) and planktic foraminifer

(B) sampling points as a function of month and latitude. The dominance of the Southern Ocean

Continuous Plankton Recorder (SO-CPR) during the summer of the Southern Hemisphere as

well as increased sampling effort in the Northern Hemispheric summer can be seen for both

groups.
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Figure S5. Effect of surface data aggregation on abundance data distribution, note the

different axes limits. A and C show the distribution of raw observation data for pteropods and

planktic foraminifers, respectively. Plots B and D show the histograms after the surface ocean

aggregation. There is a notable reduction in points with zero abundance and the histograms are

less skewed.
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Figure S6. Coverage of the total global environmental background space by the observation

data for A pteropods and B planktic foraminifers. Grey shading indicates the environmental

background data and orange shading the environmental conditions at the spatio-temporal

location of the sampling points after the surface ocean aggregation. The density curves are

scaled to reach a maximum value of 1.
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Figure S7. Linear fits of foraminifer total carbon (TC) weight as a function of mean volume

based on sampling data from Schiebel and Hemleben (2000) and Takahashi and Bé (1984). The

colors indicate the different shape groups. The dashed line denotes the mean value as calculated

per Michaels et al. (1995) and the dotted lines the corresponding confidence interval.
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Figure S8. Foraminifer daily growth rates as derived from Lombard et al. (2009). Black lines

indicate all possible curves from the range of parameter values given. Colored lines indicate the

final choices for the modelling. Minimum and maximum curves were chosen based on the minimal

(maximal) area under the curve (AUC) between 0◦C and 30◦C while retaining ecologically sensible

shapes. This means the curves with a growth rate maximum between 0◦C and 10◦C were not

chosen despite their lower AUC as they are deemed non-representative of the entire foraminifera

phylum.



KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE X - 11

Figure S9. Histograms depicting the global distribution of values for the environmental pre-

dictors that were later log-transformed. The left column shows the histograms for the original

values and the right column those for the log-transformed ones. One can see that the transfor-

mation causes all variables to be more normally distributed than originally.
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Figure S10. Plot depicting the steps taken to select the final set of environmental predictors

for the pteropod species distribution models (SDMs). The dendrogram on the left shows the

correlation structure of the environmental predictors as assessed at the grid points where obser-

vation data are present. The red dashed line indicates a correlation level of |r| = 0.7, i.e. all

clusters right of this line are correlated to a higher degree. From each cluster, only one environ-

mental predictor can be chosen and the red-green tile plot in the middle shows an evaluation of

the two selection criteria, with green indicating a positive choice and red a negative one. 1) More

normally distributed predictors are preferred. The normality column in the tile plot is a measure

of the normality of the distribution of each environmental predictor. The values shown are the

log-transformed and subsequently normalized p-values of the Shapiro-Wilk test. 2) Predictors

with clearer known relevance for zooplankton abundances and hence simpler interpretability are

preferred. These choices were made manually, with green shading indicating the most easily

interpretable predictor. Finally, the last, black-and-white column highlights the final chosen pre-

dictors which were in the next step assessed for their predictive power.
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Figure S11. Plot depicting the steps taken to select the final set of environmental predictors for

the foraminifer species distribution models (SDMs). See figure S10 for an extensive explanation

of the plot structure.
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Figure S12. Variance explained by the different environmental predictors as assessed by

three univariate models (GLM, GLM with quadratic terms and GAM) across the grid-wise and

latitudinal aggregation levels for pteropods and foraminifers. The last column of both plots shows

the maximum deviance explained across any of the assessed spatial aggregation levels. These are

the values used for deciding which predictors to include in the species distribution models. The

subscript MLD refers to variables that were averaged over the mixed layer depth. The value of

oxygen was taken at 200m depth.
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Figure S13. Annually averaged distribution of the four environmental predictors used in the

modelling process.
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Figure S14. Mean annual pteropod total carbon (TC) biomass predictions as calculated

by the five different models. Values are shown as log10(TC + 1). Stippled areas indicate grid

points where the environmental conditions were outside the training dataset for more than

six months of the year as calculated with the Multivariate Environmental Similarity Surfaces

(MESS) analysis. The headers denote the mean TC biomass stock and the annual global total

inorganic carbon (TIC) flux with the range of uncertainty resulting from different choices of the

TIC-TC conversion factor and the growth rate formulation.
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Figure S15. Mean annual foraminifer total carbon (TC) biomass predictions as calculated

by the five different models. Values are shown as log10(TC + 1). Stippled areas indicate grid

points where the environmental conditions were outside the training dataset for more than

six months of the year as calculated with the Multivariate Environmental Similarity Surfaces

(MESS) analysis. The headers denote the mean TC biomass stock and the annual global total

inorganic carbon (TIC) flux with the range of uncertainty resulting from different choices of the

TIC-TC conversion factor and the growth rate formulation.



X - 18 KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE

Figure S16. Seasonal mean pteropod total carbon (TC) biomass predictions as mean over the

five models (DJF = December - February, MAM = March - May, JJA = June - August, SON =

September - November). Values are shown as log10(TC + 1). Stippled areas indicate grid points

where the environmental conditions were outside the training dataset for more than one month

of the respective season as calculated with the Multivariate Environmental Similarity Surfaces

(MESS) analysis.
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Figure S17. Seasonal mean foraminifer total carbon (TC) biomass predictions as mean over

the five models (DJF = December - February, MAM = March - May, JJA = June - August,

SON = September - November). Values are shown as log10(TC + 1). Stippled areas indicate

grid points where the environmental conditions were outside the training dataset for more than

1 months of the respective season as calculated with the Multivariate Environmental Similarity

Surfaces (MESS) analysis.
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Figure S18. Normalized pteropod (A) and foraminifer (B) predictor variable importance as

calculated with a permutation analysis across the five species distribution models (SDMs). A

high value indicates that a change in this variable has a large effect on the predicted biomass

values. All importance values are normalized to sum to one for each model.
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Figure S19. Pteropod total carbon (TC) biomass prediction residuals, averaged over all

months and 5◦grid bins. Negative residuals, i.e. an underestimation of the true values can

be seen in the tropical ocean as well as the North Atlantic and the South-eastern Pacific. In

contrast, an overestimation of the true values occurs mostly in the Indian Ocean and to a

small extent in the Southern Ocean between 0◦E and 150◦E. These patterns correspond to the

biomass predictions in that regions of high productivity are generally still underestimated, as

the bloom dynamics here cause very high biomass concentrations. Areas of lower productivity

are generally slightly overestimated.
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Figure S20. Foraminifer total carbon (TC) biomass prediction residuals, averaged over all

months and 5◦ grid bins. The Random Forest model (RF) performs overall best, with lowest

residual values everywhere, followed by the Boosted Regression Tree (GBM). The Generalized

Linear Model (GLM) and Generalized Additive Model (GAM) strongly underestimate biomass

concentrations in the highly productive regions of the North Atlantic, the equatorial region and

the Southern Ocean between 180◦W and 60◦W. This trend is seen to a lesser extent in the

Neural Network (DL) as well. In the GLM, GAM and DL, a slight overestimation of the true

biomass values can be seen in the Indian Ocean and around Australia.
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Figure S21. Percentage of variance in mean annual pteropod and foraminifer total inorganic

carbon (TIC) export fluxes explained by different model setup choices as assessed with a

multivariate Analysis of Variance (mANOVA).
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Figure S22. Global annual total inorganic carbon (TIC) fluxes for pteropods as calculated on

the main predictor set including temperature averaged over the mixed layer and when replacing

temperature by the aragonite saturation state (ΩAr) per SDM type. The range of values shown

depicts the uncertainty range based on the TIC-TC conversion factor and the growth rate

parametrization. For both plankton types, the difference in global annual TIC fluxes between

the two setups is not statistically significant.
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Figure S23. Global annual total inorganic carbon (TIC) fluxes for A pteropods and B

foraminifers as calculated on the main predictor set and on a Principle Component Analysis

(PCA) transformation of all environmental variables shown in table ?? per SDM type. The

range of values shown depicts the uncertainty range based on the TIC-TC conversion factor and

the growth rate parametrization. For both plankton types, the difference in global annual TIC

fluxes between the regular setup and the PCA-setup is not statistically significant.
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Figure S24. Relative change in pteropod biomass concentrations to baseline model when

removing all CPR data.



KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE X - 27

Figure S25. Global annual total inorganic carbon (TIC) fluxes for A pteropods and B

foraminifers per SDM as calculated on the full dataset and only on non-CPR data, respectively.

The range of values shown depicts the uncertainty range based on the TIC-TC conversion factor

and the growth rate parametrization. For both plankton types, emitting all CPR values leads

to a statistically significant increase in global annual TIC fluxes.
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Figure S26. Relative species abundance in % of six common foraminifer species. The

species-specific abundances were calculated by summing all unique counts of one species from a

single tow and subsequently computing 5 × 5◦ gridded annual means. The relative abundance

values were then calculated as a species-specific fraction of the sum over the six species’

abundances. The patterns agree reasonably well with those found in Kretschmer et al. (2018)

and Lombard et al. (2011) with the exception of edge cases in the Antarctic.
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Tables

Table S1. Pteropod biomass conversion equations to compute wet weight (WW ) or dry

weight (DW ) in mg based on an organisms length L or diameter D (collection adapted from

Bednaršek et al. (2012)). Equations are from [1] Bednaršek et al. (2012), [2] Little and Copley

(2003) and [3] Davis and Wiebe (1985).

Species Group Source Equation

Limacina helicina Round/cylindrical/globular [1] DW = 0.137 ∗D1.5005

Limacina spp. Round/cylindrical/globular [1] WW = 10(2.533∗log10(L)−3.89095) ∗ 105

Clione spp. Barell/oval-shaped (naked) [2] WW = π ∗ L(3∗3/25)

Hyalocylis spp. Cone/needle/tube/bottle-shaped [2] WW = π ∗ L(3∗3/25)

Styliola spp. Cone/needle/tube/bottle-shaped [2] WW = 10(2.533∗log10(L)−3.89095) ∗ 105

Spongiobranchaea spp. Barell/oval-shaped (naked) [2] WW = 10(2.533∗log10(L)−3.89095) ∗ 105

Pneumodermopsis spp. Barell/oval-shaped (naked) [2] WW = 10(2.533∗log10(L)−3.89095) ∗ 105

Paedocline spp. Barell/oval-shaped (naked) [2] WW = 10(2.533∗log10(L)−3.89095) ∗ 105

Cavolinia spp. Triangular/pyramidal [2] WW = 0.2152 ∗ L2.293

Clio spp. Triangular/pyramidal [2] WW = 0.2152 ∗ L2.293

Creseis spp. Cone/needle/tube/bottle-shaped [2] WW = π ∗ L(3∗3/25)

Cuvierina spp. Cone/needle/tube/bottle-shaped [2] WW = π ∗ L(3∗3/25)

Diacria spp. Triangular/pyramidal [2] WW = 0.2152 ∗ L2.293

Euthecosomata Shelled [3] WW = 0.2152 ∗ L2.293

Gymnosomata Naked [3] WW = 10(2.533∗log10(L)−3.89095) ∗ 103

Pteropoda Shelled [3] WW = 0.2152 ∗ L2.293
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Table S2: Pteropod average length values (mm; from Bednaršek et al. (2012))

for different taxa as used in the analysis. The third column indicates the

number of data points corresponding to this taxon in the full quality controlled

dataset, and the fourth one indicates the number of non-zero abundances.

Where no length value was available in Bednaršek et al. (2012), the fifth

column indicates the choices taken. Note that for Pseudothecosomata without

a given length value, the average value for the entire pteropod taxon was used.

Taxon Length (mm) # Obs
#Obs

(non-zero)

Comment for

length value

Cavolinia gibbosa 6.2 62 2 Family value used

Cavolinia globulosa 6

Cavolinia inflexa 7.7 247 50 Mean of subspecies

Cavolinia inflexa imitans 8

Cavolinia inflexa inflexa 7

Cavolinia inflexa labiata 8

Cavolinia longirostris angulosa 3.9

Cavolinia longirostris longirostris 6.2

Cavolinia longirostris strangulata 4

Cavolinia uncinata 6.3 62 3 Mean of subspecies

Cavolinia uncinata pulosatupsilla 6.1

Cavolinia uncinata uncinata 6.5

Cavolinia spp. 6.2 23849

Clio convexa 8 3292 217

Clio cuspidata 20 62 10

Clio piatkowskii 13.5



KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE X - 31

Table S2 continued from previous page

Taxon Length (mm) # Obs
#Obs

(non-zero)

Comment for

length value

Clio pyramidata 20 56077 645

Clio pyramidata antarctica 17 31 3

Clio pyramidata lanceolata 20

Clio pyramidata martensi 17

Clio pyramidata spp. 18.5

Clio recurva 16.5 31 1 Family value used

Clio spp. 16.5 52136

Clione limacina antarctica 40 51717 66

Clione limacina meridionalis 20

Clione limacina larvae 0.3

Clione limacina spp. 12 1589

Clione spp. 14.57 51739

Corolla 8.9 31 3 Pteropod value used

Creseis acicula acicula 33

Creseis acicula clava 6

Creseis acicula spp. 19.5 524

Creseis clava 11.5 31 14 Family value used

Creseis conica 11.5 62 17 Family value used

Creseis spp. 11.5 11211

Creseis virgula conica 7

Creseis virgula constricta 3.5

Creseis virgula spp. 5.5 557

Creseis virgula virgula 6



X - 32 KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE

Table S2 continued from previous page

Taxon Length (mm) # Obs
#Obs

(non-zero)

Comment for

length value

Cuvierina atlantica 8.1 31 3 Thecosomata value used

Cuvierina columnella columnella 10

Cuvierina spp. 8.1 62 Thecosomata value used

Desmopterus papilio 8.9 1 1 Pteropod value used

Diacavolinia spp. 8.1 62 Thecosomata value used

Diacria costata 2.3

Diacria danae 1.7 31 14

Diacria major 10.7 31 1

Diacria quadridentata 3

Diacria rampali 9.5

Diacria trispinosa 8 277 56 Mean of subspecies

Diacria trispinosa trispinosa 8

Diacria spp. 5.9 3708

Gleba spp. 8.1 31 Thecosomata value used

Heliconoides inflatus 8.1 4755 2970 Thecosomata value used

Hyalocylis 8 162 9 Mean of subspecies

Hyalocylis striata 8 217 9

Hydromylidae 12 7056 1 Gymnosomata value used

Limacina bulimoides 2 3732 466

Limacina helicina antarctica 5 31 6

Limacina helicina antarctica rangii 2

Limacina helicina helicina 6 31 1

Limacina helicina pacifica 5
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Table S2 continued from previous page

Taxon Length (mm) # Obs
#Obs

(non-zero)

Comment for

length value

Limacina helicina spp. 4.22 1538

Limacina inflata 1.3 104 104

Limacina lesueuri 0.8 1073

Limacina rangii 2.98 62 7 Family value used

Limacina retroversa 2.5 9070 1422

Limacina retroversa australis 2.5 62 3 Species value used

Limacina spp. 2.98 62618

Limacina trochiformis 1 3741 1389

Paedoclione doliiformis 1.5 3 3

Peracle bispinosa 8.9 31 3 Pteropod value used

Peracle diversa 8.9 31 10 Pteropod value used

Peracle reticulata 8.9 524 133 Pteropod value used

Peracle valdiviae 8.9 31 5 Pteropod value used

Peracle spp. 8.9 4193 Pteropod value used

Pneumodermopsis 6.5 5 5

Pneumodermopsis canephora 12

Pneumodermopsis ciliata 15 1

Pneumodermopsis macrochira 2

Pneumodermopsis paucidens 5

Pneumodermopsis polycotyla 5

Pneumodermopsis pulex 8

Pneumodermopsis simplex 5

Pneumodermopsis spoeli 3
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Table S2 continued from previous page

Taxon Length (mm) # Obs
#Obs

(non-zero)

Comment for

length value

Pneumodermopsis teschi 9.1

Spongiobranchaea australis 22 58773 103

Spongiobranchaea australis larvae 10

Spongiobranchaea spp. 15

Styliola 13 8 8 Mean of subspecies

Styliola subula 13 66 29

Telodiacria danae 8.1 62 11 Thecosomata value used

Telodiacria quadridentata 8.1 337 5 Thecosomata value used

Thielea helicoides 8.1 3184 119 Thecosomata value used

Euthecosomata 8.1 340250 43596

Gymnosomata 12 2331 741

Pteropoda 8.9 79613 14713

Total 841239 66978
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Table S3. Foraminifer shape groups as defined for the following analysis. The images are

exemplary for each shape type. Sources refer to the images.

Group Species Example Source

1 Digitate type
Beella digitata

Globigerinella adamsi

Hastigerinella digitata

Saito, Thompson, and Breger (1976)

2 Low trochospiral type

Berggrenia pumilia

Dentigloborotalia anfracta

Tenuitella fleisheri

Tenuitella iota

Tenuitella parkerae

Globigerinita humilis

Turborotalita quinqueloba

Orcadia riedeli

Globigerinita minuta

Globigerinoides tenellus

Globorotaloides hexagonus

Neogloboquadrina dutertrei

Neogloboquadrina incompta

Neogloboquadrina pachyderma

Coxall and Spezzaferri (2018)

3 Medium trochospiral type

Candeina nitida

Globigerina bulloides

Globigerina falconensis

Globigerinita glutinata

Globigerinoides ruber

Globoquadrina conglomerata

Globoturborotalita rubescens

Spaeroidinella dehiscens

Trilobatus sacculifer

Loeblich and Tappan (1994)

4 Oblique planispiral type

Hastigerina pelagica

Globigerinella calida

Globigerinella siphonifera

Weiner, Weinkauf, Kurasawa, Darling, and Kucera (2015)

5 Discoidal-pyramidal type

Globorotalia scitula

Globorotalia theyeri

Globorotalia crassaformis

Globorotalia hirsuta

Globorotalia menardii

Globorotalia tumida

Globorotalia ungulata

Globorotalia truncatulinoides

Globorotalia inflata

Lam and Leckie (2020)

6 Subsphaeroidal type

Pulleniatina obliquiloculata

Globigerinoides conglobatus

Sphaeroidinella dehiscens

Trilobatus sacculifer

Lam and Leckie (2020)

7 Elongate type Globigerinita uvula

Streptochilus globigerus

Miranda-Mart́ınez, Carreño, and McDougall (2017)

8 Sphaeroidal type Orbulina universa Srinivasan and Kennett (1983)



X - 36 KNECHT ET AL.: CALCIFYING ZOOPLANKTON AND THE CARBON CYCLE

Table S4: Average length values (µm) for the different foraminifer taxa.

Values for individual species were collected from the images in Schiebel and

Hemleben (2017). The third column indicates the number of data points per

taxon present in the full quality controlled dataset, while the fourth column

shows the number of non-zero abundance observations. For higher taxonomic

levels than the species level, the fifth column indicates the choices taken for

the length calculation.

Taxon Length (µm) # Obs
#Obs

(non-zero)

Comment for

length value

Beella digitata 300 5650 4

Berggrenia pumilio 100 5650 3

Candeina nitida 250 5650 4

Dentigloborotalia anfracta 100 5650 80

Globigerina bulloides 250 57372 3445

Globigerina falconensis 250 5650 141

Globigerina spp. 250 11 11 Mean of species used

Globigerinella adamsi 400 5650 29

Globigerinella calida 300 5650 194

Globigerinella siphonifera 300 5650 1018

Globigerinita glutinata 250 5650 1986

Globigerinita minuta 100 5650 87

Globigerinita uvula 150 57367 117

Globigerinoides conglobatus 300 5650 34

Globigerinoides ruber 250 11300 1971

Globigerinoides tenellus 150 11300 498
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Table S4 continued from previous page

Taxon Length (µm) # Obs
#Obs

(non-zero)

Comment for

length value

Globoquadrina conglomerata 300 5650 11

Globorotalia theyeri 300 5650 150

Globorotalia crassaformis 250 5650 74

Globorotalia hirsuta 250 5650 539

Globorotalia inflata 250 57367 1212

Globorotalia menardii 400 5650 273

Globorotalia scitula 150 5650 990

Globorotalia truncatulinoides 300 5650 757

Globorotalia tumida 300 5650 31

Globorotalia ungulata 300 5650 33

Globorotalia spp. 278 65829 128 Mean of species used

Globorotaloides hexagonus 250 5650 185

Globoturborotalita rubescens 150 5650 264

Hastigerina pelagica 500 5650 169

Hastigerinella digitata 500 5650 12

Neogloboquadrina dutertrei 250 5650 630

Neogloboquadrina incompta 200 57367 2001

Neogloboquadrina pachyderma 200 57367 1235

Orbulina universa 400 5650 242

Orcadia riedeli 150 51717 2

Pulleniatina obliquiloculata 250 5650 46

Sphaeroidinella dehiscens 300 5650 23

Tenuitella fleisheri 100 5650 15
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Table S4 continued from previous page

Taxon Length (µm) # Obs
#Obs

(non-zero)

Comment for

length value

Tenuitella iota 100 5650 54

Tenuitella parkerae 100 5650 159

Trilobatus sacculifer 300 11300 929

Turborotalita humilis 125 5650 181

Turborotalita quinqueloba 150 57367 1258

Planktic foraminifers 242 344819 80782 Mean of all species used

Total 1021283 102007
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Table S5. Total carbon (TC) biomass conversion factors (BCF) for foraminifers. These

factors are derived from length and test weight measurements from Schiebel and Hemleben

(2000) and Takahashi and Bé (1984). The conversion factor for foraminifers in total is derived

from Michaels et al. (1995). All conversion factors are converted to total carbon (TC) biomass,

using equations (4) to (6) in the main document.

Taxon
Biomass conversion

factor (µg TC µm−3)

Species

Globigerina bulloides 1.1645 ∗ 10−7

Globigerina falconensis 1.9051 ∗ 10−7

Globigerinella siphonifera 0.7496 ∗ 10−7

Globigerinita glutinata 1.9304 ∗ 10−7

Globorotalia hirsuta 2.1544 ∗ 10−7

Globorotalia scitula 1.7367 ∗ 10−7

Neogloboquadrina incompta 2.1566 ∗ 10−7

Turborotalita quinqueloba 1.3571 ∗ 10−7

Shape groups

2 - Low trochospiral type 1.7568 ∗ 10−7

3 - Medium trochospiral type 1.6667 ∗ 10−7

4 - Oblique planispiral type 0.7496 ∗ 10−7

5 - Discoidal-pyramidal type 1.9456 ∗ 10−7

Foraminifers 1.2109 ∗ 10−7
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Table S6. Hyperparameter options for the Random Forest (RF) model, the untuned parameter

value and the final parameter choices for pteropods and foraminifers as determined via a grid

search by assessing all hyperparameter options for those that would minimize the root mean

squared error (RMSE). ntree denotes the number of bootstrap samples created from the original

dataset, using a fraction of rsample of the entire data for each bootstrap. mtry refers to the

number of predictors evaluated at each node for their ability to discriminate the data most clearly.

minrows describes the minimum number of observations in each terminal node and maxdepth the

maximum size of the tree. For an extensive description of the hyperparameters and their effects,

refer to Boehmke and Greenwell (2019c).

Hyperparameter Parameter values tested
Untuned

parameter

Final value

pteropods

Final value

foraminifers

ntree
30, 130, 230, 330, 430,

530, 630, 730, 830, 930
50 830 330

mtry 1, 2, 3 1 1 2

minrows 1, 3, 5, 10 1 3 2

maxdepth 10, 20, 30 20 30 10

rsample 0.55, 0.632, 0.70, 0.80 0.632 0.80 0.632
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Table S7. Hyperparameter options for the Gradient Boosting Machine (GBM) model,

the untuned parameter value, and the final parameter choices for pteropods and foraminifers

as determined via a grid search by assessing all hyperparameter options for those that would

minimize the root mean squared error (RMSE). maxdepth describes the maximum size of each

individual tree and minrows denotes the minimum number of observations in each terminal node.

The model’s learning rate is determined by rlearn. Each of the individual trees that together make

up the GBM is trained on a a random fraction rsample of the data, using a fraction rsamplecolumns

of the predictors. For an extensive description of the hyperparameters and their effects, refer to

Boehmke and Greenwell (2019b).

Hyperparameter Parameter values tested
Untuned

parameter

Final parameter

pteropods

Final parameter

foraminifers

maxdepth 1, 3, 5 6 5 5

minrows 1, 5, 10 1 1 1

rlearn 0.01, 0.05, 0.1 0.3 0.01 0.01

rsample 0.5, 0.75, 1 1 0.75 0.5

rsamplecolumns
1
3
, 2

3
, 1 1 1 1
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Table S8. Hyperparameter options for the Deep Learning (DL) model, the untuned parameter

value, and the final parameter choices for pteropods and foraminifers as determined via a grid

search by assessing all hyperparameter options for those that would minimize the root mean

squared error (RMSE). The activation function describes the non-linear transformation applied

at each neuron. The hidden layer structure determines the number of layers and the number of

neurons per layer, e.g. (10, 10) denotes a network with two hidden layers of ten neurons each. λL1

and λL2 are weight parameters used for penalizing complexity. To avoid overfitting, L1 (Lasso

regression) or L2 (Ridge regression) can be employed to add a penalty term based on the network

weights. The strength of this penalizing factor is determined by the respective parameter λ. For

an extensive description of all hyperparameters, refer to Boehmke and Greenwell (2019a).

Hyperparameter Parameter values tested
Untuned

parameter

Final parameter

pteropods

Final parameter

foraminifers

activation function
Rectifier, Rectifier with dropout,

Tanh, Maxout, Maxout with dropout

Rectifier Tanh Tanh

hidden layer structure
(5, 5), (10, 10), (15, 15), (20, 20),

(50, 50, 50)

(5) (20, 20) (15, 15)

λL1
0, 1 ∗ 10−3, 1 ∗ 10−5 0 0 1 ∗ 10−3

λL2
0, 1 ∗ 10−3, 1 ∗ 10−5 0 1 ∗ 10−3 1 ∗ 10−5
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