Cross-Attractor Transformations: A Novel Machine Learning Framework to Minimize Forecast Error in the Presence of Model Bias

Niraj Agarwal¹, Daniel E. Amrhein¹, and Ian Grooms¹

¹Affiliation not available

January 2, 2023

Abstract

Imperfect models are often used for forecasting and state estimation of complex dynamical systems, typically by mapping a reference initial state into model phase space, making a forecast, and then mapping back to the reference space. In many cases these mappings are implicit, and forecast errors thus reflect a combination of model forecast errors and mapping errors. Techniques to infer parameterizations and parameters to reduce model bias have been the subject of intense scrutiny; however, we lack a general framework for discovering optimal mappings between system and model attractors. Here we propose a novel Machine Learning paradigm for inferring cross-attractor transformations (CATs) that minimize forecast error. CATs are pairs of transformations from the phase space of a reference system to the phase space of a model and vice versa that serve as a bridge between the attractors of a true system and an imperfect model. A computationally efficient analog approximation to tangent linear and adjoint models is developed to enable efficient stochastic gradient descent algorithms to train CAT parameters. Neural networks constructed with a custom analog-adjoint layer permit specification of affine transformations as well as more general nonlinear transformations.

Cross-Attractor Transformations (CATs): A Novel Machine Learning Framework to Minimize Forecast Error in the Presence of Model Bias

Introduction

Imperfect models are often used for forecasting and state estimation of complex dynamical systems, typically by mapping a reference initial state into model phase space, making a forecast, and then mapping back to the reference space. In many cases these mappings are implicit, and forecast errors thus reflect a combination model forecast errors and mapping errors. Techniques to infer parameterizations and parameters to reduce model bias have been the subject of intense scrutiny; however, we lack a general framework for discovering optimal mappings between system and model attractors.

Here we propose a novel Machine Learning paradigm for inferring cross-attractor transformations (CATs) that minimize forecast error. CATs are pairs of transformations from the phase space of a reference system to the phase space of a model and vice versa that serve as a bridge between the attractors of a true system and an imperfect model. A computationally efficient analog approximation to tangent linear and adjoint models is developed to enable efficient stochastic gradient descent algorithms to train CAT parameters. Neural networks constructed with a custom analog-adjoint layer permit specification of affine transformations as well as more general nonlinear transformations.

Theory and Methods

Consider two dynamical systems, reference and model, denoted by r and m, respectively. Their states, x_r and x_m , belong to Hilbert spaces V_r and V_m , respectively, with propagation maps $\mathcal{F}_r: V_r \to V_r$ and $\mathcal{F}_m: V_m \to V_m$. We seek two maps T_{rm} (reference to model) and T_{mr} (model to reference) such that

 $[T_{mr} \circ \mathcal{F}_m \circ T_{rm}](x_r) \approx \mathcal{F}_r(x_r).$

An obvious loss function for the training of T-map parameters is: $\left\| x_r(t+\tau) - [T_{mr} \circ \mathcal{F}_m \circ T_{rm}] (x_r(t)) \right\|^2$

However, for optimization, differentiation through the model dynamical system \mathcal{F}_m is required, which is generally infeasible. Therefore, an analog approximation of \mathcal{F}_m was considered with a carefully designed tangent linear model.

¹ University of Colorado Boulder/CIRES, Boulder, Colorado; ² Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado; ³ Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

W

A schematic diagram of CATs (τ : forecast lead time)

Training methodology:

pairs of states separated by a lag τ (denoted by + and -), i.e.,

 $\mathcal{C}_{r} = \left\{ \left(x_{r,i}^{-}, x_{r,i}^{+} \right) \right\}_{i=1}^{N_{r}}$

combination of its N nearest neighbors (or, analogs), i.e.

$$x_m = c_1 x_{m,j_1}^- + \dots + c_N x_{m,j_N}^-,$$

here $\{j_1, j_2, \dots, j_N\} \subset \{1, 2, \dots, N_m\}$ are nearest neight expressed as,
 $c = (A^T A)^{-1} A^T x$

$$c = (A^{T}A)^{-1} A^{T} x_{m},$$

where $A = [x_{m, j_{1}}^{-}, x_{m, j_{2}}^{-}, ..., x_{m, j_{N}}^{-}], c = [c_{1}, c_{2}, ..., c_{N}]$

- Then use analog forecasting (\widehat{F}) to advance the state as computing gradient of the loss function.
- gradient, as calculated above. NN input: $x_{r,i}^-$, NN output: $x_{r,i}^+$.

Post training, the original model dynamical system \mathcal{F}_m can be used to produce forecasts instead of the analogs. However, only analog results are shown here.

Results

Testbed: Lorenz'63 (L63) butterfly system $\frac{dx}{dt} = \sigma(y-x); \ \frac{dy}{dt} = x$

Reference: L63 with the parameter values $\sigma = 10$, $\rho = 28$, $\beta = 8/3$. Model Forecast: L63 with different levels of errors. Four cases are considered.

CATs 1 hidden layer vith 3 neurons: Linear activation MAE loss; Adam optimizer; Standardized inputs; 50 Epochs; 32 batch size

Niraj Agarwal¹, Daniel E Amrhein², Ian Grooms³

Consider catalogs (datasets) of the two dynamical systems, composed of

$$\mathcal{C}_m = \{(x_{m,j}^-, x_{m,j}^+)\}_{i=1}^{N_m}.$$

• To compute the forecast of any state x_m in V_m , we first express it as a linear

nbors' indices. This can

 $\widehat{F}(x_m) = \boldsymbol{B} c = \boldsymbol{B} (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T x_m,$ where $B = [x_{m,j_1}^+, x_{m,j_2}^+, ..., x_{m,j_N}^+]$. Here, A and B are piecewise-constant functions of x_m , and thus $d\hat{F}(x_m)/dx_m = B (A^T A)^{-1} A^T$. This allows

• A multilayer Neural Network (NN) is used to optimize T_{rm} and T_{mr} with a custom analog forecast layer in the middle; this layer also uses a custom

$$c(\rho - z) - y; \frac{dz}{dt} = xy - \beta z$$

Case 1: L63 with x and y interchanged, i.e., $x \to y$ and $y \to x$. This is a simple affine transformation. Note that $T_{rm} \& T_{mr}$ are known analytically in this case.

- models.
- by definition.

However, CATs can be generalized much further to, e.g., highres vs low-res systems, coupled vs atmosphere-/ocean-only

One significant downside of the current CATs implementation is the dependency on analog forecasting, which carries errors