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removing the hydrologic loading component. 11 

• Provided the first detailed analysis of the loading response in InSAR data.  12 

• Found that the loading response on average represents 62% of the deformation in InSAR 13 

measurements in the Central Valley.  14 
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Abstract  18 

Working with five years (2015-2019) of high quality interferometric synthetic aperture radar 19 

(InSAR) data covering the Central Valley of California, we developed a new approach to isolate 20 

the poroelastic component in InSAR data by estimating and removing the hydrologic loading 21 

component. K-means clustering was used to identify the InSAR deformation time-series 22 

dominated by the loading response and those dominated by the poroelastic response. The former 23 

time-series include seasonal oscillations of uplift and subsidence primarily related to mass 24 

changes in snow and ice in the adjacent mountain range, while the latter include interannual 25 

deformation and seasonal oscillations related to changing head in the valley. The loading 26 

component accounts for, on average, 62% of the deformation in the Central Valley. Without 27 

correcting for the loading response, the deformation due to the poroelastic response (and 28 

therefore any derived estimate of change in head) is underestimated by 50-60% in areas of the 29 

valley.  30 

 31 

Plain Language Summary 32 

In the Central Valley of California, changes in ground elevation, often referred to as surface 33 

deformation, are mainly due to the changes in groundwater head, which result in a poroelastic 34 

response, and the changes in mass of water, snow, and ice, which result in a hydrologic loading 35 

response. Interferometric synthetic aperture radar (InSAR) provides a powerful way to map this 36 

surface deformation with an unprecedented level of resolution in space and time. The close 37 

connection between the InSAR data and changes in head has created great interest in using the 38 

InSAR data for mapping and monitoring changes in groundwater head, information that is of 39 

critical importance for groundwater management. However, without the removal of the loading 40 

response in the InSAR data, derived changes in head from the InSAR data can include significant 41 

errors that could impact decisions for groundwater management. Working with the five years of 42 

publicly available InSAR data in the Central Valley, we developed a new approach that can 43 

remove the loading component thereby advancing the ability to use InSAR data to monitor 44 

changes in groundwater head.  45 

 46 

1 Introduction 47 

Interferometric synthetic aperture radar (InSAR) (Farr & Liu, 2014; Zebker et al., 1994) provides 48 

a powerful way to map the deformation of the ground surface. Deformation quantified with 49 

InSAR data has been used to monitor the poroelastic response of groundwater systems caused by 50 

changes in effective stress that are driven by changes in hydraulic head due to the removal or 51 

addition of groundwater (Castellazzi et al., 2016; Miller et al., 2017; Smith & Knight, 2019). 52 

This introduces the potential use of InSAR data to remotely monitor the changes in hydraulic 53 



head. But it cannot be assumed that the deformation captured in the InSAR data is solely due to a 54 

poroelastic response. It has been recognized that the deformation of the ground surface is also 55 

sensitive to the loading caused by mass changes in liquid water, ice, and/or snow in the 56 

hydrologic system (Argus et al., 2014; Borsa et al., 2014). Therefore, in order to use the InSAR 57 

technique to monitor the poroelastic response of the groundwater system, the loading portion of 58 

the measured surface deformation needs to be accounted for. The high quality InSAR data now 59 

available have made it possible to do this. Working with five years of InSAR data (2015-2019) 60 

and hydrologic data from the data-rich Central Valley of California, U.S.A., we developed a new 61 

approach that removes the deformation due to the loading response in the InSAR data so as to 62 

isolate the deformation due to the poroelastic response. This significantly advances our ability to 63 

use InSAR data to monitor changes in hydraulic head, information that is of critical importance 64 

for groundwater management. 65 

The groundwater system of the Central Valley, the location of which is shown in Figure 1, is 66 

composed of sediments sourced from the Sierra Nevada and the Coast Ranges. Interbedded clays 67 

account for ~65% of the system (Faunt, 2010). In the southern part of the valley, there is a 68 

regional confining unit, the Corcoran Clay, which separates the shallow unconfined aquifer from 69 

the deeper confined aquifer; its extent is shown in Figure 1. The interbedded clays, which are 70 

orders of magnitude more compressible than coarser-grained materials, are responsible for much 71 

of the observed poroelastic response and associated deformation in areas where there are large 72 

head changes (Ireland et al., 1982). The months between November 1st and April 1st are defined 73 

as the wet season and other months as the dry season (Faunt, 2010) with the head typically 74 

reaching a maximum near the end of the wet season and a minimum near the end of the dry 75 

season.  76 

The starting point for our study were earlier publications that provide a detailed analysis of the 77 

deformation, captured in InSAR data, associated with the poroelastic response in the Central 78 

Valley and the deformation, captured in Global Positioning System (GPS) data, associated with 79 

the loading response in the Central Valley and adjacent mountain range. Descriptions of both 80 

refer to interannual deformation, which is defined as uplift or subsidence that continues 81 

uninterrupted for more than one year, and seasonal deformation, which is defined as alternating 82 

periods of uplift and subsidence temporally correlated with the seasons.  83 

Studies of the poroelastic response (Farr and Liu, 2014; Levy et al., 2020; Neely et al., 2021; 84 

Lees et al., 2022) have focused on the link between the deformation of the ground surface and 85 

changes in head in the underlying groundwater system. The key observations of direct relevance 86 

to this study are summarized here. Seasonal cycles of subsidence and uplift have been found to 87 

correlate with seasonal oscillations in head, with subsidence when head falls and uplift when 88 

head rises; this is the elastic deformation response. When head in the interbedded clays falls 89 

below the historic minimum, significant subsidence of the ground surface occurs; this is due to 90 

an increase in the compressibility of the clays and the resulting inelastic, i.e., permanent or 91 

irreversible, compaction. A component of this form of subsidence can be delayed for decades 92 



due to the residual compaction in the clays that can continue long after cessation of the 93 

groundwater pumping that causes the head drop in the surrounding, coarser-grained materials. In 94 

the San Joaquin Valley, the southern part of the Central Valley, there have been many 95 

observations of periods of interannual subsidence, but few observations of periods of interannual 96 

uplift. 97 

The studies by Argus et al. (2014, 2017) provide the framework that we adopted for studying 98 

deformation associated with the loading response in the time period of our study, 2015 – 2019. 99 

Major sources of the seasonal loading response in the Central Valley were identified to be 100 

changes in the mass of snow and ice in the mountain range, the Sierra Nevada, along the eastern 101 

edge of the valley, the mass of water held as soil moisture in the valley, the mass of water in the 102 

reservoirs in the valley and Sierra Nevada, and the mass of groundwater in the valley. Of these 103 

sources, changes in snow and ice in the Sierra Nevada dominate the loading response observed 104 

regionally. The magnitude of deformation of the ground surface due to a change in mass loading 105 

will be proportional to the change in mass, and slowly decay from the location of the mass 106 

change (e.g., 1/𝑟 for loading at the surface) (Farrell, 1972). This response to loading suggests 107 

that the spatial variation of the loading response in the valley will be very smooth. The 108 

deformation associated with the loading response was found to display a seasonal character that 109 

oscillates out-of-phase with the changes in the mass of the snow/ice in the Sierra Nevada with 110 

peaks around April 1st and troughs around October 1st (Argus et al., 2014). A model of the 111 

continued removal of groundwater over multiple years predicts interannual uplift during our 112 

study period of about 1-2 mm/year in the southern part of valley where there has been chronic 113 

over-pumping of groundwater and much less, <0.5 mm/year, in the northern part of the valley 114 

(Argus et al., 2017). Interannual subsidence due to loading has not been reported or predicted 115 

during our study period, and is highly unlikely given the severe droughts at that time.  116 

The ability to use InSAR data to remotely monitor changes in head requires that the component 117 

of the deformation associated with the poroelastic response be isolated. Given the various 118 

sources that can cause a loading response, it is very likely that deformation due to loading will be 119 

present in the InSAR data at all locations in the Central Valley. Therefore, misinterpretation of 120 

the InSAR data in terms of the variation in head would result if a loading response were 121 

neglected and deformation attributed solely to a poroelastic response. To address this issue, we 122 

developed a new approach that first estimates the loading response at all locations throughout the 123 

Central Valley and then uses that to isolate the poroelastic response in the InSAR data. This 124 

enables the use of InSAR data to remotely monitor changes in head. 125 

2 Data Sources and Preparation 126 

The InSAR data used in this study were processed by TRE ALTIMERA (TREA) and provided to 127 

the California Department of Water Resources to support the implementation of the Sustainable 128 

Groundwater Management Act, passed by the California Legislature in 2014. The data are time-129 

series of vertical deformation from 1st January 2015 to 19th September 2019 with measurements 130 



every 7 days, resulting in 284 time channels. The level of error in the InSAR data, which was 131 

estimated by comparison with GPS data from 181 stations, is ± 9 mm (TREA, 2021). Within the 132 

valley, there are about 1.7M InSAR data locations. In order to obtain a regular distribution of 133 

data, we gridded the data with a uniform cell size of 0.01 degree (approximately 1 km×1 km) 134 

then, in each cell, used the last time channel in the InSAR data to find the location where the 135 

deformation corresponded to the median value within the cell; the InSAR time-series at this 136 

location were used as the data for this cell. This gridding of the data reduced the number of data 137 

locations and time-series to 50,472.  138 

Figure 1 shows the gridded InSAR data, displaying the total subsidence from 1st January 2015 to 139 

19th September 2019 with data missing in only ~5% of the valley. Most of the large subsidence 140 

anomalies, within the 5 cm subsidence contours, fall inside the lateral extent of the Corcoran 141 

Clay, which indicates the importance of this confining clay layer for generating conditions that 142 

lead to subsidence.  143 

Snow water equivalent (SWE) data covering the Sierra Nevada were available over the time 144 

period October 2009 to October 2019 (Schneider & Molotch, 2016). These data, monthly 145 

averages of daily measurements, provided SWE in units of mass of water per unit area and were 146 

in a gridded format with a cell size of approximately 500 m × 500 m. The spatial integral of all 147 

the data for each month was calculated allowing us to obtain a single SWE time-series, 148 

corresponding to the time period of the InSAR data, representing the total mass change of the 149 

snow and ice in the Sierra Nevada.  150 



 151 

Figure 1. 2D map of deformation derived from InSAR data in the Central Valley of California, 152 

USA, for the time period 1st January 2015 to 19th September 2019. 153 

4 Methods of Data Analysis 154 

We began with the assumption that there are two major components of the InSAR deformation 155 

data, 𝑑, in the Central Valley: the deformation data corresponding to the poroelastic response, 156 

referred to as the poroelastic data, 𝑑poroelastic, and the deformation data corresponding to the 157 

loading response, referred to as the loading data, 𝑑loading. This is represented by the following 158 

equation 159 

𝑑(𝑥, 𝑦; 𝑡) =   𝑑poroelastic  + 𝑑loading + noise                                   (1) 160 

where are x and y are spatial co-ordinates, and t is the time channel of the InSAR data. Example 161 

sources of noise are residual tectonic motion and atmospheric phase delays with the level of 162 

noise generally smaller than the error level of ± 9 mm in the InSAR-measured deformation 163 

(Argus et al., 2017). Given that the interannual uplift due to loading was estimated to be much 164 

less than the error level, and that interannual subsidence due to loading was highly unlikely, we 165 

presumed that the loading data would appear as the seasonal oscillations described by Argus et al. 166 

(2014), with peaks around October 1st and troughs around April 1st. The poroelastic data were 167 



expected to display a combination of interannual subsidence or uplift, and seasonal oscillations 168 

that were out-of-phase with the loading data. Our objective was to estimate the loading data in 169 

the InSAR deformation data and remove it so as to isolate the poroelastic data.  170 

4.1 Isolating the poroelastic data 171 

As a way to estimate the loading data at all locations in the Central Valley, we first identified 172 

areas where the InSAR data were dominated by the loading data, with some relatively minor 173 

contribution from poroelastic data. We did this using K-means clustering (Lloyd, 1982) to 174 

classify the InSAR time-series into clusters, each of which has distinct temporal features. In any 175 

cluster where the loading data dominate the InSAR data we expected to see evidence of the 176 

seasonal oscillations described by Argus et al. (2014).  177 

The starting InSAR time-series 𝑑(𝑡) contains measured surface deformation every 7 days where 178 

𝑑(𝑡) represents cumulative surface deformation from 1st January 2015 to the time channel, t.  179 

This integrating process decreases the noise level but acts as a low-pass filter damping high-180 

frequency content. Taking the difference between 𝑑(𝑡) and 𝑑(𝑡 + ∆𝑡 ) results in the surface 181 

deformation over the time between two time channels, ∆𝑡. Reducing ∆𝑡 improves the high-182 

frequency content but also increases the noise level. Hence, there is a trade-off in selecting the 183 

optimal ∆𝑡.  184 

We implemented a Python-based machine learning package, Scikit-learn (Pedregosa et al., 2011), 185 

for the K-means clustering. Two parameters that needed to be selected were 𝑛cluster and ∆𝑡. The 186 

optimal values of 𝑛cluster= 6 and ∆𝑡 = 35 days were determined through an iterative process with 187 

the goal of maximizing the number of clusters while maintaining sufficient dissimilarity between 188 

the clusters. The latter was done by minimizing the variance of the time-series included in each 189 

cluster.  190 

After clustering, we identified one cluster (referred to as Cluster 1) where the loading data – seen 191 

as the seasonal oscillation described by Angus et al.  (2014) – dominated the InSAR data. Within 192 

this cluster, we took each of the InSAR time series and removed any interannual trend due to 193 

interannual deformation (subsidence or uplift) which we attributed to a poroelastic response. We 194 

assumed that the interannual trend was piece-wise linear for each year, so set up a piece-wise 195 

linear interpolation problem, used a least squares approach to calculate the annual deformation 196 

rate, and subtracted it from each InSAR time-series to obtain a detrended time-series. The set of 197 

detrended time-series was taken to represent the loading data which dominated the deformation 198 

data at all the locations included in Cluster 1. At all other locations, the InSAR data were either a 199 

more balanced combination of loading data and poroelastic data or dominated by poroelastic data.  200 

In order to subtract the loading data from all of the InSAR time-series which contained variable 201 

levels of loading and poroelastic data, we needed to mathematically describe the loading data at 202 

all locations in the valley. We presumed that the loading response would be present everywhere 203 

and would vary smoothly, so treated it as an unknown regional response represented as a smooth 204 

2D surface defined by polynomials. For estimating this response, we adapted a technique widely 205 

used for the removal of regional effects in the processing of potential field data (Li & Oldenburg, 206 

1998). This required reducing the dimensionality of the InSAR time-series using principal 207 



component analysis (PCA). PCA was applied to the detrended InSAR data from Cluster 1, 208 

resulting in ten principal components and scores for each principal component (PC). The first PC 209 

displayed the seasonal variation interpreted as the loading response with peaks towards the end 210 

of the dry season and troughs towards the end of the wet season (inset of Figure 2a), so was 211 

selected as representative of the loading response. We fitted a surface (shown in Figure 2b) to the 212 

scores of the first PC (shown in Figure 2a) using 4th-degree polynomials with an iterative process 213 

that maximized the fit while penalizing the artifacts. We projected the fitted surface onto all 214 

InSAR data locations and then applied inverse PCA to obtain the estimated loading data. This 215 

gave us the final estimated loading data for all InSAR locations in the valley. Scikit-learn 216 

(Pedregosa et al., 2011) was used for conducting the PCA. For the polynomial fitting, a Python-217 

based spatial processing package, Verde (Uieda, 2018), was used.   218 

The estimated loading data were subtracted from the InSAR data, at all locations, resulting in the 219 

data that we interpreted to be solely the poroelastic data. At each InSAR data location we 220 

calculated the percentage of the total InSAR data that corresponded to loading data.  221 

 222 

Figure 2. (a) First principal component (PC) score on a 2D map. Inset shows the first PC as a 223 

time-series. (b) Estimated 2D surface of the first PC score using 4th order polynomial fitting. 224 

Black line shows the boundary of the Central Valley. Gray regions within the valley indicate 225 

either no available InSAR data or locations of Clusters 2-5.  226 



5 Results and Discussion 227 

5.1 K-means clustering  228 

In Figure 3a, we show the locations of the InSAR times-series falling into the six clusters 229 

obtained through the K-means clustering; we also show the 5-cm subsidence contours of the 230 

InSAR data at the last time channel from Figure 1. Although there were no spatial constraints 231 

imposed for the clustering, the clusters clearly aggregate into distinct regions of the Central 232 

Valley revealing data-driven spatial patterns. In Figure 3b, we show the mean InSAR time-series 233 

for each of the six clusters.  234 

Seventy-six percent of all InSAR time-series were classified as Cluster 1, which corresponds to 235 

approximately 72% of the area of the valley. The mean InSAR time-series from this cluster 236 

corresponds to what we would expect to see in a region where the deformation data are 237 

dominated by loading data − seasonal oscillations with peaks towards the end of the dry season 238 

and troughs towards the end of the wet season, with minor interannual subsidence due to a 239 

poroelastic response. The mean time-series in Cluster 1 also shows higher frequency oscillations, 240 

most likely associated with sub-seasonal changes in the loading response.   241 

The InSAR time-series that are classified in Clusters 2 to 6 fall primarily within the 5-cm 242 

subsidence contours, with most located in the southern part of the valley where large a 243 

poroelastic response has been observed (e.g., Neely et al., 2021; Smith et al., 2017). These time-244 

series are dominated by the poroelastic response as evidenced by the presence of interannual 245 

subsidence and seasonal oscillations that are out-of-phase with the loading response, i.e., uplift in 246 

the wet season and subsidence in the dry season. The mean time-series in Clusters 2, 3, and 4 247 

show the interannual subsidence while those of Clusters 5 and 6 show pronounced seasonal 248 

oscillations. The rate of interannual subsidence varies across the clusters with an average rate of 249 

4 cm/year for Cluster 2, 10 cm/year for Cluster 3, 20 cm/year for Cluster 4, 1 cm/year for Cluster 250 

5, and 8 cm/year for Cluster 6. The uplift in Cluster 5 during 2017 can be attributed to an 251 

increase in delivered surface water that decreased the need for, and thus the pumping of, 252 

groundwater. 253 



 254 

 255 

Figure 3. (a) Map displaying the locations of the six clusters resulting from K-means clustering 256 

of the InSAR data. Gray regions are either outside of the Central Valley or have no available 257 

InSAR data. (b) Mean InSAR time-series for each of the six clusters. Blue and white bars show 258 

the wet (1st November-1st April) and dry (the rest of the year) seasons, respectively. 259 

5.2 The loading response 260 

This is the first detailed study the loading response in InSAR data. Most analyses to date have 261 

focused exclusively on interpretation of InSAR data in terms of the poroelastic response. We 262 

first defined the loading data and then corrected for this in the InSAR data so as to obtain the 263 

data of primary interest for groundwater management – the data due to a poroelastic response 264 

related to head.  265 

Our first step was to solve for the loading data at all locations in the Central Valley where InSAR 266 

data were available. Figure 4a shows the comparison of the mean time-series of the final 267 

estimated loading data in the valley and the total SWE time-series for the Sierra Nevada. We see 268 

the expected out-of-phase correlation between the two time-series where the presence of the 269 

snow or ice causes subsidence.  270 

In Figure 4b, we show the percentage of the InSAR data that corresponds to loading data. The 271 

percentage is 62% over the entire valley. The loading data are on average 80% of the Cluster 1 272 

InSAR data, which are dominated by the loading response. In the clusters dominated by the 273 

poroelastic response, the InSAR data in Clusters 2 and 5 contain a higher percentage of loading 274 

data - 6% and 12% respectively, than the data in Clusters 3 and 6 at 1%, and Cluster 4 at 0.7%. 275 



These results demonstrate the importance, particularly in some parts of the valley, of first 276 

subtracting the loading data from the InSAR data in order to use the remaining data – the 277 

poroelastic data, to monitor changes in head. Given the large percentage of loading in the InSAR 278 

data in Cluster 1, an assumption that the InSAR data are reflecting purely a poroelastic response 279 

related to head would be invalid; and changes in head derived directly from the InSAR data in 280 

Cluster 1 would be highly inaccurate. In other clusters, where the percentage of loading is 281 

smaller than for those in Cluster 1, accounting for the loading response, will result in a more 282 

accurate representation of the poroelastic component, and thus a more accurate interpretation of 283 

changes in head. 284 

We demonstrate the importance of correcting for the loading response by using examples from 285 

two sites − Site A and Site B, the locations of which are shown in Figures 3a and 4b. Site A is 286 

located close to the interface between Cluster 1 and 2. Site B is located close to the interface 287 

between Cluster 1 and 5. Comparisons of the time-series for the total InSAR data, the loading 288 

data, and the poroelastic data are shown in Figures 4c (for Site A) and 4d (for Site B). The most 289 

significant difference in terms of using InSAR data to monitor changes in head, is the amplitude 290 

of the peaks and troughs in the time series. Because the loading data are out of phase with the 291 

poroelastic data, the peaks and troughs in the poroelastic data are, in most cases, of higher 292 

amplitude that those in the total InSAR time series. Given that amplitude is linearly related to the 293 

change in head and change in groundwater storage, neglecting to correct for the loading data 294 

would result in underestimation of head and storage changes. The red arrows in Figures 4c and 295 

4d show locations in the time-series where use of the total InSAR data would result an 296 

underestimation of head or storage change up to 50-60%.  297 

  298 

 299 



 300 

Figure 4. (a) Comparison of the mean time-series of the loading data and the total SWE time-301 

series. (b) Percentage of the InSAR data that corresponds to loading data. Comparison of InSAR 302 

time-series, poroelastic data, and loading data at (c) Site A and (d) Site B; locations of the sites 303 

are shown in Figure 4b. Red arrows show examples where the use of the total InSAR data would 304 

introduce errors in the estimation of change in head or storage.  305 

  306 



7 Conclusions  307 

There is great interest in the use of InSAR data as a means of mapping and monitoring head 308 

changes in groundwater systems. In order to be used in this way, the component of the InSAR 309 

deformation data that is related to head changes – the poroelastic data – needs to be isolated.  310 

The quantity and quality of InSAR data now available made it possible for us to develop a 311 

methodology to correct for the impact of loading on the InSAR deformation data, by subtracting 312 

the loading data from the total InSAR data. We conclude that this methodology, that corrects for 313 

the loading response, should be implemented whenever there is a desire to monitor changes in 314 

the groundwater system in the Central Valley with InSAR data. While we found that the 315 

percentage of the total InSAR data that the loading data comprise varies from 0.7% to 80%, the 316 

low percentages were found in areas with large total deformation, so are significant in terms of 317 

the deformation they represent.  If the total InSAR deformation data are used to estimate head 318 

and storage changes instead of the poroelastic deformation data, there can be a high level of 319 

inaccuracy in the derived estimates. Our results suggest errors on the order of 50% to 60% in 320 

areas of the Central Valley.  321 

As part of our methodology, we have derived from the InSAR data a quantitative description of 322 

the deformation throughout the Central Valley due to the mass loading with snow and ice in the 323 

Sierra Nevada. Beyond the importance of the use of this in isolating the poroelastic deformation 324 

data, there is the potential to integrate this loading response with other measurements of SWE so 325 

as to obtain improved accuracy in monitoring the spatial and temporal variation in SWE.  326 

The methodology that we have developed employs numerical tools that are publicly available. It 327 

is thus readily transferrable to other areas in a similar hydrologic setting when there is a desire to 328 

use InSAR data to estimate head changes. In addition, the basic idea of using K-means clustering 329 

to classify InSAR time-series, could be utilized whenever there is a need to separate the various 330 

mechanisms contributing to an InSAR deformation measurement. The developed methodology 331 

can be adopted to support and advance the many ways in which InSAR data can be used for a 332 

wide range of applications in the Earth sciences. 333 
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