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Abstract

As global observations of solar-induced chlorophyll fluorescence (SIF) have become available from multiple satellite platforms,

SIF is increasingly used as a proxy for photosynthetic activity and ecosystem productivity. Because the relationship between SIF

and gross primary productivity (GPP) depends on a variety of factors including ecosystem type and environmental conditions,

it is necessary to study SIF observations across various spatiotemporal scales and ecosystems. To explore how SIF signals

relate to productivity over a temperate deciduous forest, we deployed a PhotoSpec spectrometer system at the University of

Michigan Biological Station AmeriFlux site (US-UMB) in the northern Lower Peninsula of Michigan during the 2018 and 2019

growing seasons. The PhotoSpec system consisted of two narrowband spectrometers, for the retrieval of SIF in the red (680-686

nm) and far-red (745-758 nm) regions of the electromagnetic spectrum, and a broadband spectrometer for the assessment of

vegetation indices. We found that SIF correlated with GPP across diurnal and seasonal cycles, but that SIF irradiances were

more strongly related to downwelling radiation than GPP. However, while this dependence of SIF on radiation obscured drought

signals in SIF itself, we demonstrate that a SIF response to severe drought was apparent as a decrease in relative SIF. These

results highlight the potential of SIF for detecting stress-induced losses in forest productivity. Additionally, we found that the

red:far-red SIF ratio did not exhibit a response to drought stress, but was largely driven by seasonal and interannual changes

in canopy structure, as well as by synoptic changes in downwelling radiation.

Hosted file

952340_0_art_file_10547790_rn5hc4.docx available at https://authorea.com/users/560228/

articles/614968-accounting-for-changes-in-radiation-improves-the-ability-of-sif-to-

track-water-stress-induced-losses-in-summer-gpp-in-a-temperate-deciduous-forest

1

https://authorea.com/users/560228/articles/614968-accounting-for-changes-in-radiation-improves-the-ability-of-sif-to-track-water-stress-induced-losses-in-summer-gpp-in-a-temperate-deciduous-forest
https://authorea.com/users/560228/articles/614968-accounting-for-changes-in-radiation-improves-the-ability-of-sif-to-track-water-stress-induced-losses-in-summer-gpp-in-a-temperate-deciduous-forest
https://authorea.com/users/560228/articles/614968-accounting-for-changes-in-radiation-improves-the-ability-of-sif-to-track-water-stress-induced-losses-in-summer-gpp-in-a-temperate-deciduous-forest


manuscript submitted to Journal of Geophysical Research - Biogeosciences 

 

 

Accounting for Changes in Radiation Improves the Ability of SIF to Track Water 1 

Stress-Induced Losses in Summer GPP in a Temperate Deciduous Forest 2 

 3 

Zachary Butterfield1, Troy Magney2, Katja Grossmann3, Gil Bohrer4, Chris Vogel5, 4 

Stephen Barr1, Gretchen Keppel-Aleks1 5 

1Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan. 6 

2Department of Plant Sciences, University of California, Davis, California. 7 

3Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany. 8 

4Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio. 9 

5University of Michigan Biological Station, Pellston, Michigan. 10 

 11 

Corresponding author: Zachary Butterfield (zbutterf@umich.edu)  12 

 13 

Key Points: 14 

• Solar-induced chlorophyll fluorescence above a temperate deciduous forest is more 15 

strongly tied to radiation than to productivity. 16 

• Relative solar-induced fluorescence signals provide the strongest proxy for water stress-17 

induced summer losses in productivity. 18 

• The ratio of red to far-red solar-induced fluorescence is sensitive to phenological changes 19 

in canopy structure and downwelling radiation.  20 
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Abstract 21 

As global observations of solar-induced chlorophyll fluorescence (SIF) have become available 22 

from multiple satellite platforms, SIF is increasingly used as a proxy for photosynthetic activity 23 

and ecosystem productivity. Because the relationship between SIF and gross primary 24 

productivity (GPP) depends on a variety of factors including ecosystem type and environmental 25 

conditions, it is necessary to study SIF observations across various spatiotemporal scales and 26 

ecosystems. To explore how SIF signals relate to productivity over a temperate deciduous forest, 27 

we deployed a PhotoSpec spectrometer system at the University of Michigan Biological Station 28 

AmeriFlux site (US-UMB) in the northern Lower Peninsula of Michigan during the 2018 and 29 

2019 growing seasons. The PhotoSpec system consisted of two narrowband spectrometers, for 30 

the retrieval of SIF in the red (680-686 nm) and far-red (745-758 nm) regions of the 31 

electromagnetic spectrum, and a broadband spectrometer for the assessment of vegetation 32 

indices. We found that SIF correlated with GPP across diurnal and seasonal cycles, but that SIF 33 

irradiances were more strongly related to downwelling radiation than GPP. However, while this 34 

dependence of SIF on radiation obscured drought signals in SIF itself, we demonstrate that a SIF 35 

response to severe drought was apparent as a decrease in relative SIF. These results highlight the 36 

potential of SIF for detecting stress-induced losses in forest productivity. Additionally, we found 37 

that the red:far-red SIF ratio did not exhibit a response to drought stress, but was largely driven 38 

by seasonal and interannual changes in canopy structure, as well as by synoptic changes in 39 

downwelling radiation. 40 

Plain Language Summary 41 

Satellite measurements of solar-induced chlorophyll fluorescence (SIF), a faint light signal 42 

emitted from vegetation during photosynthesis, are increasingly being used to estimate 43 

ecosystem productivity and carbon uptake. To accurately do so requires a robust understanding 44 

of how the relationship between SIF and plant productivity changes over time, in response to 45 

environmental stressors, and across different ecosystems. To better understand SIF signals and 46 

how they relate to carbon uptake over a temperate deciduous forest, we used a high-precision 47 

spectrometer system to observe SIF signals at an AmeriFlux site (US-UMB) in the northern 48 

Lower Peninsula of Michigan. While the shared dependence of SIF and ecosystem productivity 49 

on sunlight lead to strong daily and seasonal correlations, we found that SIF signals were more 50 

closely tied to the amount of incoming sunlight than to ecosystem productivity. Despite the 51 

stronger dependence of SIF on sunlight, we show that drought conditions lead to a lower SIF 52 

relative to the total light signal. Lastly, we show that the observation of SIF at multiple 53 

wavelengths may provide additional information on seasonal and interannual changes in canopy 54 

structure. Our results demonstrate the value and limitations in using SIF to assess carbon 55 

dynamics over temperate deciduous forest ecosystems. 56 

1 Introduction 57 

Global ecosystems currently provide a sink for roughly one quarter of anthropogenic 58 

carbon emissions (Friedlingstein et al., 2022), and the climate-driven variations in this carbon 59 

sink therefore have significant implications for long-term changes in climate. Direct 60 

quantification of net and gross ecosystem productivity at regional to global scales is elusive, 61 

however, given the spatial heterogeneity of the global land surface and the sparse nature of direct 62 

observations of land-atmosphere carbon exchange, and contributes significant uncertainty to the 63 

global carbon budget (Friedlingstein et al., 2022; le Quéré et al., 2018). 64 
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The unique challenges involved in quantifying the biospheric carbon sink at the global 65 

scale underscore the need for satellite-based observations that allow for the inference of 66 

ecosystem productivity across a variety of ecosystems and spatiotemporal scales. Traditionally, 67 

optical indices such as the normalized difference vegetation index (NDVI) have been used to 68 

quantify ecosystem productivity (Tucker, 1979). These signals represent the ‘greenness’ of 69 

vegetation which relates to the amount of light absorbed by vegetation, and empirically correlate 70 

with productivity across spatial gradients. However, vegetation indices lack a direct mechanistic 71 

relation with the short-term variations of photosynthetic rates, and thus require ancillary 72 

meteorological data to account for environmental stressors and to estimate light use efficiency 73 

(LUE), which is the efficiency at which sunlight is used to drive photochemistry and carbon 74 

fixation (Running et al., 2004). Additionally, vegetation indices can be vulnerable to saturation 75 

effects (X. Yang et al., 2015) or influenced by factors unrelated to vegetation, such as snow 76 

cover (Beck et al., 2006). 77 

Solar-induced chlorophyll fluorescence (SIF) is a newer space-based proxy for terrestrial 78 

photosynthesis (Frankenberg, Butz, et al., 2011). As leaves absorb solar photons for use in 79 

photosynthesis, photons not used for photochemistry are either dissipated as heat via non-80 

photochemical quenching (NPQ) or are fluoresced back to the environment as SIF. SIF, 81 

therefore, is directly related to activity of the photosynthetic machinery, as it represents an 82 

emission of red and far-red photons from the photosystems. Satellite observations of far-red SIF 83 

have been shown to scale with spatial and seasonal patterns of gross primary productivity (GPP; 84 

Frankenberg, Fisher, et al., 2011; Sun et al., 2017), indicating a potential for SIF as a direct 85 

proxy of carbon uptake through photosynthesis. There has been a recent proliferation of satellite-86 

based observations of far-red SIF (Frankenberg et al., 2014; Joiner et al., 2013; Köhler et al., 87 

2018) and, more recently, red SIF (Köhler et al., 2020; Wolanin et al., 2015). Quantitative 88 

assessments of SIF signals across a range of ecosystems and spatial and temporal scales are 89 

needed to inform the interpretation of these data. 90 

The strong relationship between SIF and GPP stems in part from a shared dependence on 91 

solar radiation (Magney et al., 2020). Top-of-canopy SIF can be expressed as: 92 

 SIF = PAR x fPAR x SIFyield x fesc (1) 93 

(Zeng et al., 2019) where fluorescence yield (SIFyield) represents the efficiency at which the 94 

photosystems emit photons, photosynthetically active radiation (PAR) indicates downwelling 95 

radiation available for photosynthesis, and fPAR indicates the fraction of PAR absorbed by the 96 

canopy, which depends primarily on green leaf area, chlorophyll content, and canopy structure. 97 

The fluorescence escape ratio (fesc) represents the fraction of total emitted fluorescence that 98 

escapes the top of canopy and can be detected remotely, rather than being deflected or 99 

reabsorbed by leaves deeper within the canopy (Dechant et al., 2020; Zeng et al., 2019). 100 

Similarly, GPP can be expressed as the product of PAR, fPAR, and LUE (X. Yang et al., 2015): 101 

 GPP = PAR x fPAR x LUE (2) 102 

As LUE is the most difficult component of GPP to estimate using remote sensing and is 103 

traditionally inferred from models (Gitelson & Gamon, 2015; Monteith, 1977), there is much 104 

interest in characterizing its relationship with SIF (and SIFyield, or the rate at which absorbed 105 

photons are fluoresced as SIF). X. Yang et al. (2015) showed that SIF contained some 106 

information about LUE over a temperate deciduous forest, by dividing tower-based SIF by total 107 
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absorbed PAR to reveal a weak correlation between LUE and SIFyield, although this relationship 108 

was weaker than the correlation between far-red SIF and GPP. 109 

Magney, Bowling, et al. (2019) and Pierrat et al. (2022) further showed a strong 110 

relationship between SIF and GPP in northern evergreen forests under minimal changes in 111 

canopy structure and absorbed PAR, when more traditional observations such as NDVI, which 112 

are closely tied to changes in chlorophyll content, did not capture seasonal productivity 113 

dynamics. The demonstrated seasonality in SIF, even when greenness remains constant, suggests 114 

that the SIF signal is sensitive to seasonal changes in photoprotective pigments and LUE, and 115 

therefore provides a more robust proxy of GPP than greenness alone. 116 

Despite the strong correlations reported between SIF and GPP at seasonal and diurnal 117 

timescales, uncertainties remain in the mechanistic relationship between SIF and GPP (Ryu et 118 

al., 2019), and in how that relationship changes across different ecosystems and spatiotemporal 119 

scales. Several studies have found that SIF over cropland is more closely tied to absorbed PAR 120 

(APAR) than to GPP (Miao et al., 2018; K. Yang et al., 2018; Yazbeck et al., 2021), and Zeng et 121 

al. (2019) broadly demonstrated that SIF is strongly influenced by canopy structure and changes 122 

in fesc. SIF is also dependent on the fluorescence yield of the photosystems. Furthermore, while 123 

GPP is sensitive to ecosystem stress through changes in LUE, it is not understood how 124 

fluorescence yield, and therefore observed SIF, responds to stress-induced changes. It is 125 

therefore unclear how closely the SIF response to environmental stressors mirrors changes in 126 

GPP. Several satellite-based studies have used SIF to observe the impacts of moderate to severe 127 

drought (Li et al., 2020; Song et al., 2018; Yoshida et al., 2015); nonetheless, observations of SIF 128 

tend to be less sensitive to interannual variability in GPP during summer and may not show the 129 

impacts of mild stress (Butterfield et al., 2020). Furthermore, Yazbeck et al. (2021) demonstrated 130 

that SIF did not reliably capture daily-scale reductions in GPP due to water stress at multiple flux 131 

tower sites. Wohlfahrt et al. (2018) showed that local scale observations of SIF over a 132 

Mediterranean pine forest decoupled from GPP under environmental stress and suggested that 133 

much of the strong correlation between SIF and GPP in this ecosystem was driven by a shared 134 

dependence on APAR, calling into question the detectability of stress-induced changes in GPP 135 

from SIF observations. However, they also noted an increase in the red:far-red SIF ratio aligning 136 

with peak stress conditions. The differing behaviors of red and far-red SIF signals during an 137 

ecosystem stress event warrant further investigations into what can be learned from simultaneous 138 

observations of SIF at both red and far-red wavelengths. 139 

To assess the relationship between SIF and GPP and their responses to environmental 140 

variables and stressors, we deployed a tower-based PhotoSpec spectrometer system (Grossmann 141 

et al., 2018) above a temperate deciduous forest within the footprint of the US-UMB flux tower 142 

at the University of Michigan Biological Station.  We present results from two years of growing-143 

season observations, during which we collected red and far-red SIF observations at a high 144 

temporal frequency (~20 s), providing an opportunity to quantify diurnal and intraseasonal 145 

variation in the SIF signal. Our goals were to: 1) explore the dependence of SIF on downwelling 146 

PAR and test how this dependence influenced the ability of SIF to track intraseasonal changes in 147 

GPP; 2) characterize the relationship between SIF and GPP and test how it changed over the 148 

course of the growing season and during periods of water stress; and 3) explore the behavior of 149 

the red:far-red SIF ratio and assess its response to changes in environmental conditions. 150 
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2 Data and Methods 151 

2.1 Study Location at University of Michigan Biological Station 152 

We obtained data at the University of Michigan Biological Station site within a 153 

deciduous broadleaf forest composed primarily of aspen, oak, maple, beech, and some 154 

understory pine, with a canopy height of approximately 22 m. The forest age is roughly one 155 

century as widespread fires burned much of the region in the early twentieth century. The site is 156 

characterized by sandy soil, with rapid percolation of rainfall to deep soil layers. This location 157 

was chosen in part because it is a well-studied forest ecosystem, with long-standing eddy 158 

covariance-based observations of water and carbon fluxes (Frasson et al., 2015; Gough et al., 159 

2013, 2022), canopy structure (Fotis et al., 2018), soil moisture (He et al., 2014), and sap flow 160 

and tree hydrology (Aron et al., 2019; Matheny et al., 2014, 2017). 161 

2.2 PhotoSpec Tower-Based Observations 162 

We built and deployed a PhotoSpec spectrometer system (Grossmann et al., 2018) at the 163 

US-UMB tower during the 2018 and 2019 growing seasons (Butterfield et al., 2022). The 164 

PhotoSpec system consisted of two narrowband spectrometers (QEPro, Ocean Optics Inc.): one 165 

with a wavelength range of 670-732 nm and a resolution of 0.074 nm/pixel, 0.3 nm full width 166 

half maximum (FWHM), for measuring SIF in the red region of the spectrum, and a second 167 

QEPro (729-784 nm, 0.067 nm/pixel, 0.3 nm FWHM) optimized for measuring SIF in the far-168 

red. An additional broadband spectrometer (Flame, Ocean Optics Inc.; 177-874 nm, 0.382 169 

nm/pixel, 1.2 nm FWHM) permitted the calculation of vegetation indices, such as NDVI, from 170 

the measured spectra.  A 2-D scanning telescope was mounted on the US-UMB tower at a height 171 

of 45 m and could point at various locations in the canopy using a narrow field of view (about 172 

0.7°).  Light from the canopy was thus directed through a fiber optic cable, and subsequently 173 

split as input to the three spectrometers. 174 

We acquired automated observations in three azimuthal directions: 60° east of south, due 175 

south, and 60° west of south. For each azimuth angle, we acquired data along an elevation 176 

transect by scanning from 90° (nadir) to 45° below the horizon. For each individual location 177 

along the transects, we optimized the exposure times for the spectrometers to maintain consistent 178 

detector signal level. Multiple exposures were then integrated together into 20 s measurements 179 

before moving the telescope to the next location. Observations were collected when the solar 180 

elevation angle was > 10° and solar reference spectra were collected at least every 10 181 

measurements using an upward-facing diffuser disk. To ensure that observations included green 182 

vegetation and were of sufficiently high quality, data were further filtered to only include 183 

retrievals where NDVI was > 0.2, red and far-red SIF retrieval errors were < 0.1 mW m-2 sr-1 184 

nm-1, and SIF irradiances were calculated to be between -0.1 and 10 mW m-2 sr-1 nm-1 and 185 

between -2 and 20% of the total light signal. These filters resulted in the removal of ~12% of 186 

collected data. A full cycle through the three azimuth angles took approximately 90 minutes; 187 

therefore, after removing outlier data, we used 90-minute averages for sub-daily comparisons. 188 
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The uncertainty of each 90-minute period was calculated as the standard deviation of included 189 

observations.  190 

SIF irradiances were calculated from the QEPro spectra for both the red (680-686 nm) 191 

and far-red (745-758 nm) regions of the electromagnetic spectrum using a physical retrieval 192 

based on the infilling of solar Fraunhofer lines (Grossmann et al., 2018). To isolate SIF signals 193 

from their dependence on PAR, we calculated relative SIF by dividing the observed SIF 194 

irradiance by the total reflected and fluoresced irradiance at the respective wavelength to 195 

represent SIF as a percentage of the total light signal. We calculated NDVI, the photochemical 196 

reflectance index (PRI), which is sensitive to de-epoxidation of xanthophyll cycle pigments and 197 

light use efficiency (Gamon et al., 2001), and a chlorophyll index (ChlorophyllRS; Magney, 198 

Frankenberg, et al., 2019; Datt, 1999) using spectra from the broadband Flame spectrometer 199 

(Text S1). While our site did not include direct observations of fPAR, we assume a rough 200 

proportionality between NDVI and fPAR (Running et al., 2004) from which we inferred the 201 

qualitative seasonal behavior of fPAR (i.e., we assumed that seasonal changes in fPAR tracked 202 

seasonal changes in NDVI). 203 

The SIF observations were radiometrically calibrated using a second broadband Flame 204 

spectrometer with a cosine corrector (CC-3-UV-S, Ocean Optics Inc.) that was calibrated using 205 

radiometric standard lamp (HL-3-P-CAL, Ocean Optics Inc.). We recorded simultaneous 206 

measurements alongside the PhotoSpec instrument with the second Flame spectrometer using a 207 

reflective calibration disk (Spectralon Diffuse Reflectance Standard, Labsphere Inc.) at least 208 

once per growing season whenever any adjustments were made to the optical components. 209 

Between the 2018 and 2019 growing seasons, radiometric calibration coefficients remained 210 

within 2.5 and 1% for red and far-red SIF retrievals, respectively. Wavelength calibrations were 211 

done using a Mercury-Argon lamp (HG-1, Ocean Optics Inc.). 212 

2.3 AmeriFlux and Meteorological Data 213 

For this study, we compared PhotoSpec SIF data with ecosystem flux observations from 214 

the AmeriFlux tower (46 m above ground), from which CO2 and H2O flux data have been 215 

observed since 1999 (Gough et al., 2022). Eddy covariance (EC) flux observations of Net 216 

Ecosytem Exchange (NEE) were partitioned into estimates of ecosystem respiration (RE) and 217 

GPP, from which we used the processed half-hourly estimates of GPP from April 2018 through 218 

November 2019. We used the data from 2007-2019 for a baseline comparison with a multi-year 219 

mean. In addition to GPP flux data, we used coincident meteorological observations from the 220 

same AmeriFlux dataset. These included air temperature, precipitation, vapor pressure deficit 221 

(VPD), volumetric soil water content (SWC) at a depth of 30 cm, and downwelling PAR. Data 222 

for the site was obtained through the AmeriFlux database (AmeriFlux site ID: US-UMB; Gough 223 

et al., 2022). More details about the data processing approach for this site are described by 224 

Gough et al. (2013). 225 

Flux data were processed by the site team following the standard EC processing protocol 226 

(Rebmann et al., 2012). Flux data during periods of low turbulent mixing were filtered using the 227 

u*-filter threshold approach, with the threshold values calculated seasonally following 228 

Reichstein et al. (2005). Filtered nighttime NEE observations were assumed to represent RE, and 229 

seasonal nighttime RE observations were then used to train an automated neural network model 230 
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(ANN; see Morin et al., 2014) to infer daytime RE using time of day, air temperature, vapor 231 

pressure deficit, soil temperature, and soil moisture as inputs (Lasslop et al., 2010). For all ANN 232 

models, 50% of the data were used for training, 25% for evaluation and 25% for validation of the 233 

ensemble’s goodness of fit. The ensemble mean of the best-performing 10% of 1000 ANN 234 

models was used to predict RE during the day, and during nighttime observation gaps. GPP was 235 

assumed to be zero during winters and overnight, and daytime GPP during the growing season 236 

was calculated as the difference between observed NEE and modelled RE. ANN models with a 237 

setup similar to the one used for RE were used to model GPP and gapfill missing daytime 238 

observations during the growing season. The GPP ANN models used air temperature, incoming 239 

PAR, relative humidity, vapor pressure deficit, sensible and latent heat fluxes, and soil moisture 240 

as input variables.  241 

We aggregated the half-hourly AmeriFlux data to 90-minute and daily values for each 242 

variable either by simple summation (precipitation) or averaging (other variables). As NDVI 243 

(and therefore fPAR) was generally constant between leaf out and senescence, we calculated an 244 

LUE proxy as GPP/PAR (Gitelson & Gamon, 2015). Seasonal estimates for species-specific 245 

maximal leaf area index (LAI) at the site were measured using samples collected with leaf litter 246 

traps. 247 

2.4 Satellite Observations of SIF from OCO-2 248 

We compared satellite-based observations of SIF from the Orbiting Carbon 249 

Observatory-2 (OCO-2; Science Team et al., 2017; Yu et al., 2019) with our tower-based 250 

PhotoSpec observations. OCO-2 is a polar orbiting satellite with a local overpass time of 251 

1:30pm. SIF was retrieved from OCO-2 spectra at 757 nm and 771 nm using a non-linear least-252 

squares approach to evaluate the infilling of solar Fraunhofer lines (Sun et al., 2018). We 253 

averaged OCO-2 SIF retrievals at 757 nm (which was within our far-red fitting window of 745-254 

758 nm) that fell within a one-degree grid cell centered at US-UMB. Individual soundings were 255 

converted to daily-averages using a clear-sky PAR proxy, which uses the cosine of the solar 256 

zenith angle to account for diurnal variability in the SIF signal. We subsequently calculated a 257 

single mean and standard deviation of OCO-2 observations for each day with available overpass 258 

data, resulting in nine individual data points throughout the 2018 and 2019 growing seasons. We 259 

then tested the linear correlation of these data with corresponding daily means observed using the 260 

PhotoSpec instrument. 261 

3 Results 262 

 3.1 Climatological Context for 2018-2019 Growing Seasons 263 

The 2018 and 2019 growing seasons were both more productive than the 2007-2019 264 

mean based on eddy covariance GPP data (Figure 1a). In 2018, growing season onset was 265 

delayed by about a week relative to the multi-year mean, but GPP increased rapidly (~0.5 μmol 266 

m-2 s-1 day-1) throughout the second half of May during a period with above average 267 

temperatures (Figure 1a-b). GPP reached a seasonal peak value of about 10 μmol m-2 s-1 in late 268 

June, roughly 25% higher than the multi-year mean, and remained higher than average until mid-269 

August. In 2019, onset of the growing season occurred even later, following the multi-year mean 270 

by about 2 weeks, due to very wet and cold spring conditions (Figure 1b-c). GPP subsequently 271 
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reached a peak value of > 12 μmol m-2 s-1 day-1 in late July, 50% higher than the multi-year 272 

mean, and remained nearly a standard deviation higher than average until September (Figure 1a).  273 

 274 
Figure 1. Observations of GPP (a), temperature (b), and cumulative precipitation (c) at US-UMB during 275 

the 2018 (dark blue) and 2019 (light blue) growing seasons. The 2007-2019 multi-year mean for each 276 

panel is included as a black line, with shading representing ±1 standard deviation. GPP and temperature 277 

are plotted as 7-day running means. 278 

Both 2018 and 2019 experienced water stress-induced declines in GPP during late 279 

summer that occurred with moderate to severe drought conditions as classified by the U. S. 280 

Drought Monitor (USDM; Svoboda et al., 2002; accessed via http://droughtmonitor.unl.edu).  281 

The USDM classification showed a severe drought in mid-August 2018 that followed a series of 282 

three dry spells in early June, early July, and August (Figure 1c). While the first of these dry 283 

periods did not lead to dry soil moisture conditions, the cumulative influence of the two later dry 284 

periods led to soil water content falling to ~5% and coincided with local maxima in VPD 285 

upwards of 9 hPa (Figure 2g).  GPP levels were relatively robust during the first period of dry 286 

soil conditions from late June through July 11, but during the second dry period from late July 287 

through August 18, productivity ultimately declined by about 30%, to levels below the multi-288 

year mean. Towards the end of August, GPP recovered back to about 20% above the 289 

climatological mean. GPP may be increasingly sensitive to dry soil conditions over the growing 290 

season due to the fact that the soil matric potential can continue to increase even as SWC 291 

asymptotes to a lower limit (Köcher et al., 2009; Lascano et al., 2007). The soil matric potential 292 

reflects soil hydraulic tension, which at higher values indicates greater resistance to vegetation 293 

taking up water through their roots. Late summer declines in GPP occur roughly every other year 294 

at the US-UMB site and are not always tied to an obvious drought signal (Figure S1). While 295 

2019 was not characterized by any periods of severe drought stress, GPP observations did 296 
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decrease in late July from about 50% to only 20% above the climatological mean (Figure 1a). 297 

This decline in productivity coincided with decreasing SWC (Figure 2h) and little accumulated 298 

precipitation (Figure 1c), but also with cooler temperatures (Figure 1b) and only a slight increase 299 

in VPD (Figure 2h). 300 

 301 
Figure 2. Growing season time series of GPP and SIF irradiance (a, b), GPP/PAR and relative SIF (c, d), 302 

photosynthetically active radiation (PAR) and the red:far-red SIF ratio (e, f), soil water content (SWC) 303 

and vapor pressure deficit (VPD (g, h), and NDVI, ChlorophyllRS, and PRI (i, j) during 2018 (left) and 304 

2019 (right). With the exception of SWC and VPD, bold lines represent the 7-day running mean of daily-305 

averaged data (thin lines). 306 

3.2 Characteristics of Red and Far-red SIF Signals 307 

Far-red SIF observations during 2018 and 2019 generally followed a seasonal cycle 308 

similar to that of GPP (Figure 2a-b). Both SIF and GPP reached peak levels in early summer and 309 

steadily declined throughout late summer and fall. The red SIF signal followed a similar pattern 310 

but exhibited relatively higher values in early spring and fall (Figure 2a-b), illustrated by higher 311 

red:far-red SIF ratios during the shoulder seasons (Figure 2e-f) corresponding with low NDVI 312 

and ChlorophyllRS values (Figure 2i-j). This contrast between red and far-red SIF seasonality 313 
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results from top-of-canopy red SIF observations being more sensitive to canopy structure and 314 

chlorophyll content (Magney, Frankenberg, et al., 2019), since a smaller fraction of total emitted 315 

SIF is scattered or reabsorbed by the canopy during the springtime when the canopy is not yet 316 

fully developed or as chlorophyll content decreases in fall. This dependence is also evident in 317 

lower red:far-red SIF ratios in 2018, concurring with differences in other observations including 318 

NDVI (maximum value of 0.88 in 2018 and 0.84 in 2019) and LAI, where measurements using 319 

leaf litter traps showed almost a 20% reduction in 2019 compared to 2018 (4.38 in 2018 versus 320 

3.64 in 2019; Table 1). The lower red:far-red SIF ratio in 2018, when LAI was high, corroborates 321 

the hypothesis that a denser canopy limits top-of-canopy red fluorescence. Taken together, these 322 

differences in the behavior of SIF at different wavelengths suggested that far-red SIF better 323 

reflected the seasonal cycle of productivity in a temperate deciduous forest, and that red SIF was 324 

more sensitive than far-red SIF to seasonal, and potentially interannual, changes in canopy 325 

structure and chlorophyll concentration. 326 

 327 

Table 1. Species-specific leaf area index (LAI) values as observed at the US-UMB AmeriFlux site for 328 

2018 and 2019 using leaf litter traps. 329 

 330 

Species 2018 LAI 2019 LAI 

Bigtooth aspen (Populus grandidentata) 1.286 0.981 

Red maple (Acer rubrum) 0.891 0.730 

American beech (Fagus grandifolia) 0.292 0.281 

Red oak (Quercus rubra) 1.073 0.878 

Paper birch (Betula papyrifera) 0.238 0.178 

White pine (Pinus strobus) 0.587 0.578 

Red pine (Pinus resinosa) 0.008 0.011 

Total 4.375 3.636 

 We calculated correlations between SIF and GPP with data aggregated to 90-minute, 331 

daily, and weekly timescales (Figure 3). For far-red SIF, weekly-aggregated data had the highest 332 

correlation with GPP (R2 = 0.81), while 90-minute- and daily-aggregated data had R2 values of 333 

0.61 and 0.62, respectively. The correlations between GPP and red SIF were weaker (R2 values 334 
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of 0.56, 0.54, and 0.72 for 90-minute, daily, and weekly timescales; Figure S2). Over the 335 

growing season, weekly values of far-red SIF span the range from near zero during the early and 336 

late growing season, to 0.2 mW m-2 sr-1 nm-1 during peak growing season in July (Figure 3d). 337 

Daily values during the month of July, in contrast, have a standard deviation of ~0.05 mW m-2 338 

sr-1 nm-1 and reach as high as 0.3 mW m-2 sr-1 nm-1 (Figure 3c), suggesting that cloud-driven 339 

variability in PAR may be a significant driver in far-red SIF variability while GPP in this 340 

ecosystem may be less sensitive to day-to-day variability in light availability. 341 

 342 
Figure 3. Correlation between far-red SIF and GPP, temporally aggregated to 90-minute (a, b), daily (c), 343 

and weekly (d) resolutions. Color bars indicate hour of day (a) or day of year (b-d). 344 

To investigate how seasonal changes influence the relationship between GPP and far-red 345 

SIF we fit linear correlations to data within individual months for 2018 and 2019 (Figure 4). We 346 

quantified uncertainties both on slopes and R2 values using a bootstrapping approach in which 347 

we sampled the monthly data with replacement. Results for daily-averaged data confirmed that 348 

GPP and far-red SIF are best correlated during spring and fall, when seasonal phenological 349 

changes in the deciduous forest result in a large dynamic range in fPAR (using NDVI as a 350 

proxy). Shared dependence on fPAR between SIF and GPP thus lead to stronger correlations 351 

during these months (Figure 4d; discussed in more detail in section 4.1).  Correlations between 352 

90-minute data showed that the inclusion of diurnal variations led to consistently stronger 353 

correlations throughout the summer (Figure 4b). The resulting slopes from the linear fits of daily 354 

data exhibited large uncertainties and do not exhibit obvious changes over the course of the 355 

growing season (Figure 4c). Linear fits of 90-minute data were better constrained to the origin by 356 
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including near-zero values in morning and evening, resulting in more precise slopes (Figure 4a). 357 

These results showed that the far-red SIF:GPP slope was highest during the spring and declined 358 

over the course of the growing season (Figure 4a; further discussed in Section 4.2). 359 

 360 
Figure 4. Slopes and R2 values from monthly linear regressions of 90-minute- (a, b) and daily-averaged 361 

(c, d) far-red SIF with GPP. Data from 2018 are in red, while 2019 data are in blue. Error bars represent 362 

the standard deviations of results from a bootstrapping method used to test the robustness of the linear 363 

regressions. 364 

While both SIF and GPP depend on PAR (Equation 1 and 2), SIF was more tightly 365 

coupled to downwelling PAR than was GPP at our site (Figure 5). Without direct observations of 366 

fPAR, we assumed that fPAR was near constant under peak growing season conditions when 367 

NDVI was stable (see Running et al., 2004; Figure 2i-j), and that the relationship during summer 368 

between SIF and PAR were therefore indicative of the relationship between SIF and APAR. The 369 

close dependence of SIF on radiation was illustrated by shared temporal patterns of SIF and PAR 370 

throughout summer (Figure 2a-b, e-f), and by a strong correlation between daily-aggregated far-371 

red and red SIF with PAR (R2 = 0.90, Figure 5a, S3). GPP and PAR exhibited a much weaker 372 

correlation (R2 = 0.51; Figure 5b). Monthly correlations of far-red SIF and GPP with PAR 373 

confirmed that GPP exhibits a weaker relationship with downwelling PAR than SIF (Figure S4b, 374 

d). Monthly correlations also showed that the relationship between SIF and PAR was weakest 375 

during spring and fall (Figure S4d) when variations in NDVI (and fPAR), due to rapid changes 376 

in the canopy (i.e. leaf-out and senescence), cause APAR to deviate qualitatively from PAR. 377 

Lower NDVI (and fPAR) during spring and fall also led to lower values of SIF and GPP relative 378 
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to PAR (Figure S4a, c), as a smaller fraction of downwelling radiation is absorbed by vegetation 379 

during these periods. 380 

 381 
Figure 5. Correlation between daily-averaged far-red SIF (a) and GPP (b) with photosynthetically active 382 

radiation (PAR). Color bars are weighted by day of year. 383 

We calculated relative SIF, or SIF as a fraction of the total light signal, in order to 384 

decouple the SIF signal from its dependence on PAR (Figure 2c-d). During peak summer 385 

conditions, relative far-red SIF typically was just under 2% of total observed light, while relative 386 

red SIF was 5-10%. Red and far-red relative SIF exhibited lower values during early spring and 387 

late fall, when the ecosystem absorbs less downwelling radiation for photosynthesis. We 388 

calculated an LUE proxy as GPP divided by PAR and found that relative far-red and especially 389 

red SIF visually track intraseasonal patterns in LUE (Figure 2c-d), notably during the August 390 

2018 severe drought. Relative red SIF shares a similar seasonal pattern with GPP/PAR, leading 391 

to a stronger correlation between daily-aggregated data (R2 = 0.34; Figure S5b), while the 392 

correlation between relative far-red SIF and GPP/PAR is weaker (R2 = 0.07; Figure S5a). 393 

3.3 Detectability of Mid-summer Ecosystem Stress 394 

While there were clear stress-induced decreases in GPP inferred from eddy covariance in 395 

August 2018 (Figure 2a; Section 3.1) coinciding with severe drought as classified by USDM 396 

(Svoboda et al., 2002; accessed via http://droughtmonitor.unl.edu), these intraseasonal stress 397 

dynamics were not obvious in remote sensing observations of SIF irradiances from PhotoSpec. 398 

Variations in red and far-red SIF irradiances followed synoptic-scale patterns in downwelling 399 

PAR (Figure 2a-b, e-f) rather than changes in GPP. Only relative red and far-red SIF values 400 

showed a notable change coinciding with the mid-summer drought, which dipped to a local 401 

minimum in mid-August (Figure 2c). Optical vegetation indices, including NDVI, 402 

ChlorophyllRS, and PRI, remained constant over the course of the growing season (Figure 2i-j), 403 

indicating limited changes in chlorophyll and carotenoid pigments within the canopy. 404 

To further investigate potential influences of drought stress on canopy SIF, we linearly 405 

detrended peak growing season observations (between July 15 and September 15, 2018) to 406 

distinguish intraseasonal variability from seasonal trends. We then calculated 5-day binned 407 

averages of observed data over the course of the August 2018 drought (Figure 6), and calculated 408 

correlation coefficients between detrended GPP and other variables over this period using both 409 
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daily and 5-day binned data (Table 2). GPP first experienced a decline around August 10 and 410 

recovers roughly 20 days later, but the far-red and red SIF irradiances exhibited higher (instead 411 

of lower) values over these 20 days (Figure 6a). The higher SIF irradiances during a cloud- and 412 

precipitation-free period was consistent with the strong relationship with PAR demonstrated 413 

above, however relative red and far-red SIF signals were more sensitive to ecosystem stress and 414 

saw local minimum values during the second 5-day period of the drought (August 14-18; Figure 415 

6b). Relative far-red SIF was the only variable to show a statistically significant (p < 0.01) 416 

correlation with GPP at both daily and 5-day temporal scales, but did not exhibit significant 417 

correlations with GPP/PAR, our LUE proxy, at daily (R = -0.17) or 5-day (R = 0.08) scales. 418 

Relative red SIF, however, showed a strong correlation with GPP/PAR at both daily (R = 0.69) 419 

and 5-day (R = 0.87) temporal scales. In contrast to Wohlfahrt et al. (2018), our observations did 420 

not show a strong red:far-red SIF ratio response to drought-induced stress (Figure 6a, c; 421 

discussed further in Section 4.3), but instead the detrended daily SIF ratio was strongly 422 

anticorrelated (R2 = 0.79) with PAR. Diurnal stress-induced effects were also not seen in the 90-423 

minute-aggregated observations of the red:far-red SIF ratio (Figure S6).  We note that there was 424 

a delayed increase in PRI following the drought by ~10 days (Figure 6), which may indicate an 425 

increase in carotenoid pigments resulting from the drought period; however, we did not observe 426 

any corresponding changes in ChlorophyllRS (Figure 6d). 427 

 428 
Figure 6. Five-day binned and detrended data showing GPP and SIF irradiances (a), GPP/PAR and 429 

relative SIF (b), the red:far-red SIF ratio and PAR (c), and NDVI, ChlorophyllRS, and PRI (d) during 430 

drought conditions in August 2018. Error bars represent the standard deviation of each five-day bin. 431 
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Table 2. R-values resulting from linear fits between detrended GPP and other variables between July 15 432 

and September 15, 2018 for both daily and 5-day binned observations. Values in bold indicate statistically 433 

significant fits (p < 0.01).  434 

 435 
 

Daily GPP 5-day binned 

GPP 

Far-red SIF 0.51 0.31 

Red SIF 0.51 0.29 

Relative Far-red SIF 0.56 0.76 

Relative Red SIF 0.20 0.43 

Red:Far-red SIF Ratio -0.41 -0.27 

PAR 0.39 0.10 

NDVI 0.15 0.12 

ChlorophyllRS 0.37 0.17 

PRI 0.05 0.15 

3.4 Comparison with Space-based SIF from OCO-2 436 

The ultimate goal of our tower-based SIF observations is to improve the interpretation of 437 

space-based, global SIF observations. We compared daily averages of far-red SIF observations 438 

from PhotoSpec with mean estimates of daily-averaged SIF from the OCO-2 satellite (Figure 7). 439 

The OCO-2 satellite observations were well correlated with our tower observations (R2 = 0.79) 440 

showing that both sets of observations captured proportionally similar patterns in the SIF signal. 441 

However, the slope between the two datasets of 2.2 ± 0.4, reflected that the raw SIF irradiance 442 

measured by OCO-2 was twice that measured by PhotoSpec. The lower irradiance values 443 

observed by our PhotoSpec instrument likely resulted from including observations with larger 444 

incident angles between solar and viewing directions, due to including elevation angles up to 45° 445 

below horizon in the calculation of daily-averaged SIF, as well as deploying the telescope on the 446 

south side of the tower. Thus, our tower-based observations included a greater fraction of shaded 447 

vegetation because illumination and viewing angles were often from opposing cardinal 448 

directions.  These differences highlight that, while tower- and space-based platforms capture 449 

similar relative patterns in SIF signals, more comprehensive comparisons between SIF 450 

observations require a more complex study of viewing and illumination angle sensitivities in top-451 

of-canopy SIF observations. 452 

453 
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 454 
Figure 7. Correlation plot and linear fit results between far-red SIF observations from PhotoSpec and the 455 

OCO-2 satellite. OCO-2 data includes soundings within a one-degree gridcell centered at US-UMB. Each 456 

sounding was multiplied by a daily correction factor, which uses a clear-sky proxy to account for diurnal 457 

changes in the SIF signal. Means were calculated from soundings across individual days, and error bars 458 

represent the standard deviation of included observations. Mean daily values from OCO-2 were then 459 

correlated with the daily-average SIF signal seen from the PhotoSpec instrument, where uncertainties 460 

were propagated from the standard deviation of 20 s observations included in every sub-daily 90-minute 461 

average. Circles indicate data from 2018 and triangles indicate 2019. The color bar is weighted by day of 462 

year. 463 

4 Discussion 464 

 4.1 Dependence of SIF and GPP on PAR 465 

While our results align with several studies that suggest that high correlations between 466 

SIF and GPP primarily result from a shared dependence on absorbed radiation or APAR 467 

(Wohlfahrt et al., 2018; K. Yang et al., 2018), our findings also support many studies that have 468 

demonstrated that GPP can be estimated from SIF observations from either satellite (Guanter et 469 

al., 2012; Sun et al., 2017) or tower (Magney, Bowling, et al., 2019; Pierrat et al., 2022; X. Yang 470 

et al., 2015). That the linear relationship between SIF and GPP is largely driven by APAR is 471 

illustrated by stronger correlations between daily-averaged GPP with far-red SIF during spring 472 

and fall months (Figure 4) when canopy changes drive large swings in fPAR. The strong 473 

dependence of SIF on APAR also likely explains why correlations between far-red SIF and GPP 474 

were stronger for weekly-averaged data (which are sensitive to seasonal light variability, but 475 

average away changes driven by clouds and weather) than for daily-averaged data (which reflect 476 

both seasonal and cloud/weather-driven variations in light; Figure 3). However, the decrease in 477 

relative SIF values during the August 2018 drought (Figure 2a, c) demonstrate that SIF signals, 478 

when normalized by light levels, may reflect changes in productivity that are independent from 479 

APAR. This was confirmed by shared intraseasonal patterns between GPP/PAR, an LUE proxy, 480 

and relative SIF (Figure 2c, d), and the strong correlation between detrended GPP/PAR and 481 

relative red SIF during the August 2018 drought. These findings echo X. Yang et al. (2015) who 482 
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also showed that SIF provided information related to LUE above another temperate deciduous 483 

location at Harvard Forest (US-Ha1).  484 

We showed that SIF is more closely tied to APAR than to GPP at our site through the fact 485 

that daily-averaged SIF data were more strongly correlated with downwelling PAR (R2 = 0.90; 486 

Figure 5a), which was roughly proportional to APAR during peak summer conditions with near-487 

constant NDVI, than it was with GPP (R2 = 0.61; Figure 3b). Given that the correlation between 488 

GPP and PAR was significantly weaker (R2 = 0.51; Figure 5b), these results demonstrate the 489 

challenges in using direct SIF observations to detect changes in LUE as they may not be an 490 

effective indicator of synoptic-scale changes in productivity under mid-season conditions where 491 

canopy structure and fPAR remain relatively stable. These results contrast with the findings of X. 492 

Yang et al. (2015) who found only slightly weaker correlations between SIF and GPP than 493 

between SIF and APAR at US-Ha1. US-Ha1 is, however, more radiation-limited than is US-494 

UMB (Wozniak et al., 2020), which would explain a closer coupling between variations in 495 

radiation and GPP at their site. Our results are in line with those of K. Yang et al. (2018), who 496 

found that SIF is a better indicator of APAR than of GPP albeit over a rice paddy. The different 497 

relationships among SIF, GPP, and PAR in these three studies indicate that SIF-derived 498 

estimates of productivity may not be free from the need for additional inputs, such as 499 

meteorological conditions that may signal ecosystem stress (as have been used for NDVI-derived 500 

estimates of GPP; see Running et al., 2004), but also that the necessity of these additional inputs 501 

is likely influenced by whether ecosystem productivity is limited by water, temperature, or 502 

radiation. At our site, we showed that relative far-red SIF responded to water stress and served as 503 

a better proxy than SIF irradiances for seasonally detrended GPP during severe drought, however 504 

this was only the case under water-limited conditions. Furthermore, as relative far-red SIF 505 

tracked productivity only during drought conditions where SIF and PAR were decoupled from 506 

GPP, we could not derive a simple regression model that combined absolute and relative SIF 507 

observations to reflect both stressed and non-stressed conditions. Future studies should 508 

investigate the necessity of using ancillary data or relative SIF to model GPP from space-based 509 

SIF observations across ecosystems comprised of various plant types and also characterized by 510 

various productivity limiting factors. 511 

4.2 Relationship between SIF and Ecosystem Productivity 512 

One key finding from this study is the variable relationship between far-red SIF and GPP 513 

over the course of the growing season, with the linear slope between 90-minute far-red SIF and 514 

GPP decreasing over the course of the growing season (Figure 4a). While a seasonally changing 515 

relationship between SIF and productivity has been noted in previous studies (e.g. K. Yang et al., 516 

2018), these studies occurred over cropland where such changes could be attributed to structural 517 

changes among different phenological stages. While we see the most drastic changes in spring 518 

when there is rapid structural change, we show that the SIF:GPP relationship above a temperate 519 

deciduous forest continues to evolve after the emergence of a well-developed canopy when 520 

changes in canopy structure are minimal. The higher SIF:GPP slope in spring suggests that 521 

assuming constant proportionality may lead to an overestimate of productivity in springtime, or 522 

an underestimate in fall, when converting SIF to GPP based on an annual mean slope. Butterfield 523 

et al. (2020) showed that interannual variability in satellite-based SIF observations is higher in 524 

spring and is in better agreement with optical vegetation indices, whereas IAV in fall SIF is 525 

small and only weakly correlated with other remote sensing products. The seasonal decline in the 526 
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SIF:GPP relationship could partly explain this phenomenon since it suggests that late-season 527 

observations are characterized by a lower signal (and thus a lower signal-to-noise ratio) than are 528 

spring data, potentially obscuring IAV. The decrease in the SIF:GPP slope as the growing season 529 

progresses (Figure 4a) may be due to leaf age effects that impart subtle changes in the canopy. 530 

Specifically, if leaves wilt or shrivel as they age due to progressive water stress, absorption of 531 

PAR may shift slightly deeper into the canopy where fesc is lower, thus leading to lower top-of-532 

canopy SIF. In the future, observations of leaf area and angle distribution over the course of the 533 

growing season, in combination with canopy radiative transfer modeling, may help to further 534 

elucidate the drivers of seasonal changes in the SIF:GPP slope. 535 

The challenges of using SIF to estimate productivity under stable canopy conditions were 536 

further illustrated by the limited response of red or far-red SIF irradiances to summer declines in 537 

GPP. When GPP declined in response to drought conditions in August 2018, SIF signals 538 

continued to reflect changes in radiation. Wohlfahrt et al. (2018) similarly found that SIF signals 539 

in a Mediterranean pine forest exhibited poor correlation with GPP during a heat wave, although 540 

their data indicated that that top-of-canopy SIF signals eventually declined in response to losses 541 

in productivity. Marrs et al. (2020) also found that SIF signals in individual deciduous species 542 

did not exhibit an immediate response to induced water stress. Yet, we found that relative far-red 543 

SIF tracks stress-induced changes in GPP more effectively than SIF irradiances and various 544 

vegetation indices over both daily and 5-day timescales, and that relative red SIF consistently 545 

mirrored synoptic-scale changes in GPP/PAR, indicating that SIF observations do capture 546 

changes in GPP and LUE when isolated from their dependence on PAR. While PAR levels in 547 

Wohlfahrt et al. (2018) were largely consistent from day to day, indicating that SIF irradiances 548 

should have been roughly proportional to relative SIF, we note the differences in timescale 549 

between our two studies (i.e., the heatwave in their study occurred over a period of 8 days while 550 

our observations captured the effects of longer-term, cumulative drought stress). 551 

4.3 Applications of the Red:Far-red SIF Ratio 552 

Our results show that the red:far-red SIF ratio is sensitive to changes in downwelling 553 

PAR as well as canopy structure at both seasonal and interannual scales. Similar to Magney, 554 

Frankenberg, et al. (2019), we saw considerably higher red:far-red ratios during early spring 555 

canopy development, and in late fall as canopy chlorophyll content dropped, and as lower leaf 556 

area and decreased chlorophyll content  lead to decreased reabsorption of red SIF by the canopy. 557 

The red:far-red SIF ratio showed significant differences between 2018 and 2019, with 2018 558 

ratios being slightly lower than in 2019. These year-to-year differences in the red:far-red SIF 559 

ratio are very likely explained by 2018 having greater NDVI and LAI values (see section 3.2), in 560 

turn leading to variations in the canopy escape ratio for red fluorescence on interannual 561 

timescales. However, we also showed that the red:far-red SIF ratio is highly correlated with 562 

downwelling PAR (Figure 6c), suggesting that it is also dependent on light conditions that are 563 

independent of canopy traits. These results highlight the value in simultaneous retrievals of SIF 564 

at multiple wavelengths, which are becoming increasingly available from satellites such as 565 

TROPOMI (Köhler et al., 2020), but also demonstrate that the interpretation of SIF observations 566 
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at multiple wavelengths must be cognizant of differences in sensitivity to ecosystem and 567 

environmental changes on synoptic, seasonal, and interannual timescales. 568 

Our results highlight the difficulty in leveraging the red:far-red SIF ratio to detect 569 

ecosystem stress. Magney, Frankenberg, et al. (2019) showed that stressed conditions lead to a 570 

lower red:far-red ratio at the leaf level, but that these leaf-level changes in NPQ were not 571 

noticeable in canopy-level measurements. In contrast, Wohlfahrt et al. (2018) observed an 572 

increase in the red:far-red ratio coinciding with a heat wave, and hypothesized that the 573 

contrasting response of SIF at different wavelengths may have been due to a decrease in 574 

chlorophyll content leading to less reabsorption of red fluorescence. Our results generally 575 

corroborated Magney, Frankenberg, et al. (2019; see their Figure 7b, our Figure S6), and showed 576 

that while the red:far-red SIF ratio at canopy-scale does reflect seasonal and interannual changes 577 

in canopy structure, it is also influenced by changes in downwelling PAR (Figure 6c). Thus, 578 

further studies into the response of the red:far-red SIF ratio to environmental stress would require 579 

a detailed analysis of both the influence of phenological changes in canopy structure as well as 580 

incoming light conditions on top-of-canopy SIF observations. These analyses necessitate that 581 

observations be made at high temporal frequency since year-to-year or even month-to-month 582 

changes are primarily driven by changes in canopy structure that are independent from 583 

environmental stress, as well as the incorporation of canopy radiative transfer modeling. 584 

5 Conclusions 585 

We deployed a PhotoSpec system with two high spectral resolution spectrometers to measure red 586 

and far-red SIF to a deciduous forest in northern Michigan.  Results from the first two years of 587 

data acquisition showed that SIF signals over a temperate deciduous forest are more strongly 588 

related to radiation than to photosynthetic productivity. While a shared dependence on PAR did 589 

result in a significant correlation between SIF and GPP, the slope of this linear relationship 590 

gradually decreased over the course of the growing season, indicating that temporal changes in 591 

the far-red SIF:GPP ratio should be considered when using SIF to assess ecosystem productivity. 592 

Our study demonstrates challenges in using SIF irradiances to detect short-term stress-induced 593 

declines in ecosystem productivity. Nonetheless, we show that observations of relative SIF may 594 

be a more reliable indicator of ecosystem stress, indicating that SIF signals do respond to stress-595 

induced changes in productivity and track changes in LUE after accounting for changes in solar 596 

radiation. Additionally, we show that the red:far-red SIF ratio is sensitive to seasonal and 597 

interannual changes in canopy structure. Our results point to the need for coordinated multi-scale 598 

studies on the relationship between SIF and photosynthesis including at the leaf and canopy 599 

level, especially under conditions of environmental stress. 600 
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Text S1. Equations for calculating vegetation indices 

 

The normalized difference vegetation index (NDVI; Tucker, 1979), photochemical 

reflectance index (PRI; Gamon et al., 1992), and chlorophyll index (ChlorophyllRS; Datt, 

1999; Magney et al., 2019) were calculated using the below equations using canopy 

reflectance observed by the broadband Flame spectrometer (Ocean Optics Inc.). Rλ 

represents the reflectance at a wavelength of λ nm, or in the red (620-670 nm) or near-

infrared (NIR; 830-860 nm) regions of the electromagnetic spectrum. 

 

 NDVI = (RNIR – RRed)/(RNIR + RRed) (S1) 

 

 PRI = (R531 – R570)/(R531 – R570) (S2) 

 

 ChlorophyllRS = (R850 – R710)/(R850 – R680) (S3) 
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Figure S1. Observations of gross primary productivity (GPP) at US-UMB for 2007-2017 

(a-k) and composite means of years with and without late-summer dips in productivity 

(l). In panel l, the mean of 2007, 2013, 2014, 2016, and 2018 is shown in red as years 

experiencing summer losses in productivity, while the mean of 2010, 2011, 2015, 2017, 

and 2019 is shown in blue as years that did not see summer losses (see also Figure 1a). 

The black line in panels a-k represents the 2007-2019 multi-year mean. Shading in all 

panels represents ±1 standard deviation of the respective multi-year means. 
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Figure S2. Correlation plots between red solar-induced chlorophyll fluorescence (SIF) 

and GPP at 90-minute (a, b), daily (c), and weekly (d) temporal resolution observations. 

Color bars are weighted by day of year (b-d) or by hour of day (a).   

 

 

 

Figure S3. Correlation plot between daily-averaged red SIF and photosynthetically active 

radiation (PAR). Color bar is weighted by day of year.   
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Figure S4. Slopes and correlation coefficients from monthly linear fits of daily-averaged 

GPP (a, b) and far-red SIF (c, d) with PAR. Data from 2018 are in red, while 2019 data are 

in blue. Error bars represent the standard deviations of results from a bootstrapping 

method used to test the robustness of the linear regressions.  

 

 

 

Figure S5. Correlation plot between daily-averaged relative far-red (a) and red (b) SIF 

and GPP/PAR, an LUE proxy. Color bar is weighted by day of year.   
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Figure S6. Correlation plot between 90-minute far-red SIF and GPP observations. Color 

scale is weighted by the red:far-red SIF ratio. (Compare with Figure 7b from Magney et 

al., 2019.)   
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