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Abstract (< 250 words, currently 250) 30 

The long-term improvement trends in air quality and public health in the continental United States 31 

(US) were obscured in the past decade by the increase of fire emissions that potentially 32 

counterbalanced the decline in anthropogenic emissions. Here, we estimate daily concentrations 33 

of fine particulate matter (PM2.5) and its highly toxic component, black carbon (BC), at 1 km 34 

resolution in the US from 2000 to 2020 via deep learning that integrates big data from satellites, 35 

models, and surface observations. Daily (monthly) PM2.5 and BC estimates are reliable with cross-36 

validated R2 values of 0.85 (0.98) and 0.79 (0.94), respectively. Both PM2.5 and BC in the US show 37 

overall decreasing trends of 23% and 18% over the past two decades, leading to a reduction in 38 

premature deaths by ~1800 [95% confidence interval (CI): 1300, 2300] people per year. However, 39 

the premature death trend has downshifted since 2010; the western US exhibits large interannual 40 

fluctuations caused by wildfires, leading to an increase in PM2.5 concentrations and associated 41 

deaths [~360 (95% CI: [230, 510]) people] per year. In contrast, removing years with large fires 42 

would lead to a more significant decreasing trend in PM2.5 concentrations. Furthermore, the BC-43 

to-PM2.5 mass ratio for the US as a whole shows a significant increase of 1.82% per year, primarily 44 

due to the reduction of inorganic emissions and suggesting a potential increase in relative toxicity 45 

of PM2.5. Reducing fire risk via effective policies including mitigation of climate warming can 46 

substantially improve air quality and public health in the coming decades.  47 
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Main text 48 

Atmospheric particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) has 49 

significant impacts on air quality, climate change, and public health (1, 2). Understanding and 50 

estimating these impacts requires knowledge of the spatiotemporal variations of the amount and 51 

composition of surface-level PM2.5, but it is challenging due to multiple factors, including the 52 

change in and diversity of aerosol sources and aerosol processes as well as the limited number of 53 

surface observation sites. Anthropogenic sources are being regulated in many countries, whereas 54 

wildfires show significant temporal variations; both are significant contributors to the PM2.5 mass 55 

and composition, including sulfate, nitrate, ammonium, organic carbon, and black carbon (BC). 56 

Of particular importance is BC, due to its strong absorption of solar radiation and consequent 57 

warming effect on climate (3, 4) as well as its high toxicity and hence potentially more severe 58 

impact on public health (5-9). However, even in the United States (US), where the history records 59 

of anthropogenic emissions are well documented, the national outcome of reduced emissions on 60 

public health associated with PM2.5 and BC exposure still has not been studied on decadal scales 61 

(Table S1). Public health outcomes are obscured by large annual fluctuations in fire emissions and 62 

associated uncertainties regionally and seasonally. Only a few studies have shown the acute health 63 

effects (such as respiratory, cardiovascular, and asthma hospital admissions) from short-term 64 

exposure to increased ambient PM2.5 and BC mass concentration associated with fire emissions 65 

(10-12).   66 

 67 

How have the surface PM2.5 mass and its fraction of BC changed in the past two decades in the 68 

continental US? And how much change (if any) in mortality burden due to PM2.5 exposure may be 69 

attributed to fires? Here, we tackle both questions by building upon the advances enabled by 70 

machine learning (ML) and the long-term data record of aerosol measurements from both space 71 

and the surface over the US. Past studies have integrated satellite-based aerosol optical depth 72 

(AOD) products together with in situ ground measurements to estimate surface PM2.5 over the US 73 

via approaches such as kriging (13), land-use regression modeling (14), neural network (15), 74 

random forest (16), geographically weighted regression (17), ML ensemble-based modeling (18), 75 

and convolutional neural network (19). Unlike PM2.5, there are few studies focusing on BC 76 

estimates in the US (9, 17). The time periods of most previous studies are particularly short (< 10 77 

years, Table S1). Although it has been postulated that the PM2.5 concentration in the US should be 78 
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declining due to persistent regulations to reduce anthropogenic emissions since enaction of the 79 

Clean Air Act (CAA) of the 1970s, this conjecture cannot be fully verified with surface observation 80 

alone because it lacks full continental spatial coverage, especially when considering the recent 81 

increase of fires in the western US (20-23). As fire emissions are the second-largest source of BC 82 

in the US and a key source of PM2.5 in fire-prone areas (24, 25), both the amount and the toxicity 83 

of ambient PM2.5 could be increased, which leads to the hypothesis that the overall PM2.5 impact 84 

on the public health burden may not change at all or might even have increased in the US in the 85 

past two decades, at least in the west. 86 

 87 

We derived surface PM2.5 and BC concentrations from 2000 to 2020 in the US with full spatial 88 

coverage via the deep learning (DL) approach and estimated the mortality burden in terms of the 89 

number of premature deaths associated with the change of PM2.5 and BC at the national and 90 

regional scales. Our DL-based method integrates multiple sources of satellite-based data products, 91 

reanalysis datasets of aerosol composition, and datasets from surface monitoring stations in the 92 

US. Our method mitigates the impacts of the missing data associated with the spatial gaps in the 93 

satellite AOD retrievals due to clouds and surface snow or ice cover, and considers both spatial 94 

and temporal variations of the AOD-PM2.5 relationship. Our long-term estimate of BC is made 95 

daily at 1 km resolution, in contrast with past studies that used chemical transport models at a 96 

much coarser resolution (50 km or larger) (9) and monthly or annual averages (17) (Table S1). 97 

 98 

The association of health outcomes with exposure to PM2.5 is often assessed by integrating PM2.5 99 

mass concentration and population density distribution with different concentration-response 100 

functions (CRFs), such as the Integrated Exposure–Response (IER) model (26). The IER model 101 

was defined by the Global Burden of Disease (GBD) 2017 study (27) and was further updated in 102 

the recent GBD 2019 study (28). Using the IER model, Apte et al. (29) illustrated that the emission 103 

reduction of global PM2.5 to meet the World Health Organization guidance could have avoided 23% 104 

of the population deaths attributable to ambient PM2.5 in 2010. However, the CRFs in the IER 105 

model are steeper in clean areas, suggesting higher sensitivity of the mortality burden to the change 106 

of PM2.5 by fire emissions in the US than in more polluted countries (such as China or India). Wang 107 

et al. (30) found that, in California, the mortality burden in 2012 from exposure to air pollution 108 

that originated in nonlocal sources was greater than that caused by local anthropogenic emissions. 109 
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Aguilera et al. (31) found that the PM2.5 generated from the wildfires had larger effects on the 110 

human respiratory system than PM2.5 from other sources in Southern California during 1999–2012.  111 

 112 

Although the mortality burden associated with PM2.5 exposure has been estimated in many studies, 113 

few have investigated the health impacts of BC in the US (7-9, 32), which is due in part to the 114 

limited availability of both exposure data sources and CRF for BC. Smith et al. (32) calculated the 115 

mortality effects related to long-term BC exposure in 66 US cities through the cohort study. Pond 116 

et al. (7) and Wang et al. (8) documented two cohort studies showing the significant positive 117 

associations of cardiopulmonary and all-cause mortality, respectively, with exposure to major 118 

PM2.5 components, especially BC, in the US. Li et al. (9) estimated ~14,000 premature deaths 119 

caused by ambient BC in 2010 in the US. Here, we study the long-term (2000–2020) mortality 120 

burden from exposure to both PM2.5 and its BC component at each 1 km2 grid in the continental 121 

US and investigate the role of fire emissions in changing the annual mortality burden since the 122 

start of the new millennium. For the mortality burden assessment, the CRF of PM2.5 was collected 123 

from GBD 2019, and a sensitivity study was also conducted by taking the CRF of BC from the 124 

literature to consider the potentially greater toxicity of BC compared with other PM2.5 components 125 

(see Materials and Methods).  126 

 127 

Results and Discussion 128 

Evaluation of PM2.5 and BC predictions. The daily PM2.5 and BC estimates at 1 km resolution 129 

in the continental US are evaluated via the widely used 10-fold cross-validation approach (33, 34). 130 

The DL-based approach works well in capturing daily surface PM2.5 levels. At more than 82% and 131 

79% of surface observation sites, cross-validation yields high R2 (coefficient of determination) 132 

values greater than 0.7, and low values of normalized root mean square error (NRMSE) less than 133 

0.4, respectively, especially for the eastern US (Fig. 1a). With a spatial distribution pattern similar 134 

to that of surface PM2.5, surface BC estimates overall have slightly smaller R2 values compared to 135 

ground-based observations (Fig. 1d), indicating a relatively decreasing accuracy in our estimates 136 

due to the much smaller concentration of BC and the relatively large uncertainty of BC 137 

measurements (a factor of two as compared to 10% for PM2.5) (35, 36). For the 21-year study 138 

period in the US, all daily PM2.5 and BC estimates show high fidelity, with average R2 values of 139 

0.85 and 0.79 against surface observations, and exhibit NRMSE values of 0.33 and 0.61, 140 
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respectively (Fig. 1a and 1d). These statistical agreements are further improved upon in the 141 

comparisons of monthly (i.e., CV-R2 = 0.98 and 0.94, NRMSE = 0.08 and 0.26, Fig. 1b and 1e) 142 

and annual (i.e., CV-R2 = 0.99 and 0.96, NRMSE = 0.05 and 0.16, Fig. 1c and 1f) averages. In 143 

addition, in terms of overall accuracy, our PM2.5 and BC estimates are more reliable than or 144 

comparable to those in previous studies with reference to ground measurements on different 145 

temporal scales (Table S1) (14-19), which ensures that the exposure data of PM2.5 and BC have 146 

the accuracy needed for assessing the effects of long-term PM2.5 exposure on public health. 147 

 148 

 149 

Fig. 1. Spatial distribution of R2 in the cross-validation of daily (a) PM2.5 and (d) BC estimates 150 

(unit: μg m-3) at each ground monitoring station during the years 2000–2020 in the US. Also 151 

shown are the inter-comparison of measured (x-axis) and estimated (y-axis) of (b & e) monthly 152 

and (c & f) annual PM2.5 (top row) and BC concentration (bottom row), respectively, in units of 153 

μg m-3. The insets in (a) and (d) show the spatial distribution of normalized root mean square 154 

error (NRMSE). 155 

 156 

Spatiotemporal variations of PM2.5, BC, and mortality burden. Figure 2 shows the 157 

spatiotemporal distribution on average and the trend of PM2.5, BC, and mortality burden in the US 158 

during the years 2000–2020 (maps for each year are provided in the Supplementary Information 159 
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(SI) in Figs. S1-S3). Both annual PM2.5 and BC concentrations have similar spatial distributions; 160 

their mean values of 9.5 ± 2.0 μg m-3 and 0.44 ± 0.16 μg m-3 in the eastern US (EUS) are about 161 

1.9 and 2.2 times higher than their counterparts in the western US except California (WUS, Fig. 162 

2a, b) and 1.2 and 1.5 times higher than those in the central US (CUS), which reflects the 163 

population distribution and anthropogenic emissions. At the individual state level, the highest 164 

persistent pollution levels are found in some areas in California, likely reflecting the wildfire 165 

smoke patterns and local source of dust, especially in the central valley. Indeed, both PM2.5 and 166 

BC increase by 35–38% in the fire seasons (autumn and summer) when compared to normal 167 

seasons (spring and winter) in the WUS (Figs. S4-S5). The cumulative number of premature deaths 168 

associated with exposure to PM2.5 pollution in most parts of the US is relatively small because of 169 

the small population density in these areas. The total mortality burden in the continental US is 170 

estimated to be ~1.8 million (95% CI: [1.1, 2.6]) during the 21-year period of this study (Fig. 2c). 171 

As expected, these premature deaths were mainly concentrated in cities with large populations, 172 

such as Los Angeles, Houston, Chicago, Atlanta, and New York. In addition, our 1 km high-173 

spatial-resolution data allows us to study air pollution and its impacts on public health at a much 174 

finer scale (see magnified images in Fig. 2). Large differences in the pollution levels of urban and 175 

rural regions can be clearly seen; in particular, high BC concentrations along highways due to 176 

traffic-related emissions (from diesel trucks) are well captured. In addition, contrasting 177 

distributions in the mortality burden in large cities and their surrounding areas can also be well 178 

characterized. These results highlight the unique advantages of high-resolution air pollution data. 179 

 180 

Temporally, the annual amounts of PM2.5 and BC in the years 2000–2020 show steadily declining 181 

trends in the EUS, remain nearly the same in the CUS (Fig. 2d-e), and fluctuate with large 182 

variations in sign and magnitude across the WUS. In the WUS, significant decreasing trends were 183 

observed in the city clusters located in the southwest (Los Angeles) and northwest (Seattle) corners; 184 

by contrast, significant increasing trends were found in most central inter-mountainous and 185 

northwest areas, especially Northern California and Oregon. At the seasonal scale, declining trends 186 

throughout the US were found in winter and spring; however, in summer and autumn, trends were 187 

opposite, increasing in the WUS and decreasing in the EUS (Fig. S6-S7), which suggests the 188 

increasing impacts of wildfires on surface PM2.5 and BC, as these are the fire seasons in the WUS 189 

(37, 38). Overall, in the past two decades, the total number of premature deaths associated with 190 
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exposure to PM2.5 has reduced (> 10-3 per km2 per year) in populated parts of the US, especially 191 

in the EUS. It is also worthy to mention that this was also observed in places where PM2.5 pollution 192 

go down, but population go up (Fig. S8), which was mainly contributed to the improved air quality. 193 

Regionally, an increased number of deaths is found only in a few large cities located in the western 194 

and southern US (Fig. 2f), which may be attributed to an increase in local fire and dust emissions 195 

(20, 23, 39), transboundary transport from Mexico (40, 41), and/or an increase in population 196 

density (Fig. S8).  197 

 198 

 199 

Fig. 2. Spatial distribution of the annual mean (a) PM2.5 concentration (unit: μg m-3), (b) BC 200 

concentration (unit: μg m-3), (c) total cumulative mortality burden (MB) (unit: premature deaths 201 

per km2) during the years 2000-2020 in the US, and zoomed-in images (left column) for the Denver 202 

area, in which the gray lines represent the roads, and (d-f) represent corresponding annual trends 203 

across the US. Only the trends that are significant at the 95% (p < 0.05) confidence level are shown. 204 

 205 

The trends of the time series of annual mean PM2.5, BC, and premature deaths during the years 206 

2000–2020 were analyzed for the continental US, EUS, and WUS (Fig. 3). At the national level, 207 

PM2.5 and BC concentrations overall declined by ~23% and 18% during the entire period, with the 208 

highest and lowest levels in 2000 and 2019, respectively. The decreasing trends were larger in the 209 
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first decade and slowed in the second decade (Fig. 3a, d). Looking geographically, greater 210 

declining trends of 49% and 43% with small fluctuations were seen in the EUS (42) (Fig. 3b, e), 211 

whereas in the WUS, virtually no trends existed during the entire period due to larger interannual 212 

fluctuations (Fig. 3c, f), particularly in summer and autumn (Fig. S9c, f). More importantly, 213 

significant downward trends (p < 0.1 and 0.05) were observed before 2010 but were then reversed 214 

(slope > 0), likely showing the impact of increasing fire emissions in recent years (as revealed in 215 

the analysis below).  216 

 217 

The annual number of total premature deaths exposure to PM2.5 pollution across the continental 218 

US first significantly decreased from 110 [95% confidence interval (CI): 71, 154] thousand in 219 

2000 to 79 (95% CI: 50, 114) thousand in 2010; it then stabilized at nearly constant level with only 220 

small fluctuations (blue line in Fig. 3g). A continuous decrease in deaths at a significant rate of 221 

~1260 people per year (p < 0.01) was observed in the EUS (blue line in Fig. 3h). In contrast, in the 222 

WUS (blue line in Fig. 3i), the annual death burden had a steady decrease (slope = -0.64 thousand 223 

per year, p < 0.01) until 2010 [16 thousand; 95% CI: (10, 24)], after which there was a significant 224 

increase (slope = 0.36 thousand per year, p < 0.05) with large annual fluctuations, leading to the 225 

peak burden in 2020 [22 thousand; 95% CI: (14, 32)]. 226 

 227 
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228 
Fig. 3. Time series of annual and area mean of (a-c) PM2.5 concentrations (μg m-3), (d-f) BC 229 

concentrations (μg m-3), and (g-i) total premature deaths (unit: thousand) associated with the total 230 

PM2.5 pollution in the years 2000–2020 in the continental US, eastern US, and western US, 231 

respectively. Orange and blue lines denote the estimates of premature deaths with and without 232 

considering the larger toxicity of BC (BCLT and BCNT), respectively. The regression lines are 233 

shown as black dotted lines, and their slope (k) values are also given with *, **, and ***, 234 

representing trends that are significant at the 90% (p < 0.1), 95% (p < 0.05), and 99% (p < 0.01) 235 

confidence levels, respectively. 236 

 237 

Impact of fire emissions and importance of BC on premature mortality. As more recent cohort 238 

studies have documented the importance of aerosol composition, especially BC, for the assessment 239 

of mortality burden, it is necessary to analyze not only the absolute amount but also the fractional 240 

concentration of BC. Figure 4 shows the spatiotemporal variations of BC-to-PM2.5 ratio (BPR) in 241 

summer from 2000 to 2020. High BPR values of 5-10% are mainly distributed in major 242 

metropolitan areas (Seattle, San Francisco, Denver, etc.), consistent with the mass fraction of BC 243 

in anthropogenic emissions of PM2.5 (24). Although it varies, the BC mass fraction in fire 244 

emissions of PM2.5 is generally less than 5% (43). Therefore, no significant trend of BPR can be 245 

found in fire-prone areas in the WUS, except in rural and remote areas where an increasing trend 246 

exists, likely due to either local wildfire emissions or the transport of smoke particles from the 247 
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upwind region (Fig. 4b). In addition, no significant trend in BPR values is found in the southern 248 

parts of the Gulf states in the US (Fig. 4b), which may be a result of fire emissions from prescribed 249 

burns (44). Overall, however, BPR values increased throughout the US with an average value of 250 

1.82% per year (p < 0.01), primarily driven by the increase in the EUS, reflecting a faster decline 251 

of other PM2.5 components such as sulfate and nitrate concentration as a result of the large 252 

reduction in emissions of nitrogen and sulfur oxides dioxide (45-47).  253 

 254 

In the WUS, especially in rural areas of California, Nevada, Arizona, and New Mexico, the 255 

significant increase in BPR can be explained by the high consistency between the annual mean 256 

PM2.5 and BC concentrations (p < 0.01) and the high correlation of BPR changes with the fire 257 

emissions of smoke particles during the last two decades, at a statistically significant level (p < 258 

0.1) since 2010 (Fig. S10). Indeed, in the WUS and California, the time series of monthly PM2.5 259 

anomaly shows large fluctuations in some individual years associated with large fires, e.g., 2020, 260 

2017, and 2018 (Fig. 4c), when PM2.5 concentrations are much higher, with estimates of 46%, 31%, 261 

and 30% from wildfires in the WUS, respectively. After these years of heavy wildfire events are 262 

removed, the original overall upward trend of PM2.5 is replaced by an opposite significant 263 

downward trend (p < 0.01) of PM2.5 pollution in the WUS, especially in California (p < 0.01) (Fig. 264 

4d). This attests to the importance of the combined effects of fire emissions and the long-term 265 

reduction of anthrophonic emissions in regulating the ambient PM2.5 concentration.  266 

 267 
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 268 

Fig. 4. Spatial distribution of (a) mean (unit: %) and (b) trends (unit: % yr-1) of BC-to-PM2.5 ratios 269 

(BPR) in summer during the period 2000–2020 across the continental US. Also shown are the time 270 

series of monthly PM2.5 anomalies (c) before and (d) after removing the years of wildfires from 271 

2000 to 2020 in the western US (blue lines) and California (orange lines), respectively. In (b), only 272 

the trends that are significant at the 95% (p < 0.05) confidence level are shown. In (c-d), the 273 

regression lines are colored by region, and their slope (k, units: μg m-3 yr-1) values are given with 274 

*, **, and ***, representing trends that are significant at the 90% (p < 0.1), 95% (p < 0.05), and 275 

99% (p < 0.01) confidence levels, respectively. 276 

 277 

The toxicity of BC to human health remains uncertain in the literature. Many studies illustrate that 278 

BC has a larger relative risk and, therefore, a larger impact on mortality than other PM2.5 279 

components (5-8), but some others suggest low confidence (48). As a sensitivity study, we 280 

compared estimates of premature deaths under the assumption that BC is no more toxic than and 281 

has a similar impact on health as non-BC PM2.5 constituents (blue lines in Fig. 3g-i) with deaths 282 

calculated assuming larger BC toxicity (orange lines in Fig. 3g-i). We found that the mortality 283 

burdens of total PM2.5 could be increased by 80-100% and that their trends could have accelerated 284 

much more in recent years. This acceleration was distinct in the WUS (slope = 0.73 thousand or 285 

730 per year, p < 0.05), resulting in extra loss of life (due to higher toxicity) at the increasing rate 286 

of 370 people per year (Fig. 3i), suggesting that the mortality burden is highly related to the 287 

variations of BC and that the increasing number and intensity of wildfires in recent years led to 288 
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the reversal of the otherwise decreasing trend. Hence, this sensitivity analysis highlights the 289 

importance of future studies to accurately define the CRF for BC. 290 

 291 

Summary and Conclusion 292 

By combining the long-time-series and high-quality observations of the amounts and compositions 293 

of surface PM2.5 mass in the US with satellite observations and model reanalysis, we developed a 294 

deep-learning approach to generate daily 1-km-resolution, high-quality PM2.5 concentrations with 295 

full spatial coverage for 21 years (2000–2020) and derived the BC component (often found to be 296 

more strongly associated with premature mortality than other aerosol components). The nation-297 

wide PM2.5 and BC products estimated in this study agree well with ground-based measurements 298 

at highly limited stations. Based on the uniform and fine-resolution data sets, we further 299 

investigated the long-term trends of both PM2.5 and BC pollution in the US during the last two 300 

decades and assessed their impacts on mortality burden at a 1 km fine grid. While PM2.5 and BC 301 

concentrations have decreased considerably and the mortality burden associated with PM2.5 302 

pollution was alleviated overall in 2000–2020 in the continental US, the BC concentration declined 303 

at a slower pace and non-uniformly with time. As a result, PM2.5 could be relatively more toxic 304 

due to the increase of BPR in the US. Furthermore, fire emissions in recent years have led to a 305 

national slowdown and a regional reversal in the WUS of the declining trend of mortality burden 306 

associated with PM2.5 and BC, not only during fire seasons but also at the annual scale. Sensitivity 307 

studies underscored the importance of future work to further examine the concentration-response 308 

function to BC, especially during fire seasons. The potentially larger toxicity of BC compared to 309 

other PM2.5 components could further exacerbate the health outcomes associated with the 310 

slowdown in the decrease of PM2.5 concentration due to fires. The policies to mitigate climate 311 

change have co-benefits of reducing not only the impact of heatwaves but also the impact of fire 312 

emissions and aerosol composition, especially BC, on public health (49).  313 

 314 

Materials and Methods 315 

Big Data. Measurements of surface 24-hour-average PM2.5 and BC concentrations were collected 316 

daily from the Environmental Protection Agency (EPA) Air Quality System (AQS) and Chemical 317 

Speciation Monitoring Network (CSN) and every third day from the Interagency Monitoring of 318 

Protected Visual Environments (IMPROVE) (50, 51) at approximately 2740 monitoring stations 319 



 14 

from 2000 to 2020 throughout the US. Spatial representation has been improved by integrating the 320 

EPA and IMPROVE networks, in which monitors are distributed mainly in urban and rural areas, 321 

respectively.  322 

 323 

Daily 1-km-resolution Multi-Angle Implementation of Atmospheric Correction (MAIAC) 324 

Collection 6 AOD (at 550 nm) products (MCD19A2) retrieved from Moderate Resolution Imaging 325 

Spectroradiometer (MODIS) instruments on Terra (~10:30 a.m. local time) and Aqua (~1:30 p.m. 326 

local time) satellites since their respective inception (February 25, 2000, and July 4, 2002) to the 327 

end of 2020 were employed (52). Also used in the estimates of the surface BC was the Multi-angle 328 

Imaging SpectroRadiometer (MISR) Version 23 Level 3 monthly absorbing AOD product (~0.5 329 

degrees) (53). Total aerosol extinction AOD, absorbing AOD (calculated by subtracting scattering 330 

AOD from total AOD), black carbon extinction AOD, and the surface mass concentrations of 331 

different aerosol components, including BC, organic carbon, dust, sulfate, and sea salt) were 332 

collected from MERRA-2 aerosol diagnostics at a horizontal resolution of 0.625° × 0.5° (54). 333 

Monthly anthropogenic emissions, including BC, nitrogen oxides, ammonia, sulfur dioxide, and 334 

volatile organic compounds, were obtained from the Copernicus Atmosphere Monitoring Service 335 

(CAMS) global emission inventories (~0.1 degrees) (55). In addition, monthly smoke emissions 336 

from the Fire Energetics and Emissions Research (FEER) database (~0.5 degrees before 2003 and 337 

0.1 degrees after 2003) (56). 338 

 339 

Meteorological fields were extracted from ERA5 global reanalysis (~0.1°–0.25° degrees) (57, 58), 340 

including the 2 m temperature, precipitation, evaporation, relative humidity, 10 m u-component 341 

and v-component of winds, surface pressure, boundary layer height, and surface solar radiation 342 

downwards. In addition, the 90 m Shuttle Radar Topography Mission (SRTM) digital elevation 343 

model (59), monthly 1 km MODIS normalized difference vegetation index (60) and annual 1 km 344 

LandScanTM global population distribution (61) products were also used as inputs in machine 345 

learning and prediction. All the auxiliary variables above were aggregated or resampled (using the 346 

bidirectional linear interpolation approach) to 0.01° × 0.01° grids (≈ 1 km) to be compatible with 347 

the resolution of MAIAC AOD products. 348 

 349 
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Surface PM2.5 and BC estimates with deep learning. A deep learning model was trained by 350 

using the aforementioned satellite data and model outputs as features and surface measurements 351 

of PM2.5 and BC as targets. MAIAC AOD was the primary input to the deep-learning model for 352 

PM2.5 estimation. Terra and Aqua MODIS AOD values were first integrated using a linear 353 

regression model to minimize the difference caused by different observation times and enlarge the 354 

spatial coverage (62). In conditions of clouds and snow/ice surfaces and places with satellite swath 355 

gaps where MAIAC AOD was missing, AOD values were provided by using MERRA-2 reanalysis. 356 

MERRA2 AOD data is generated by assimilating a variety of satellite retrievals (including MODIS) 357 

and ground-based observations and has been shown to have accuracy comparable to satellite AOD 358 

data in areas with high-density observation networks (e.g., North America and Europe) (63, 64).  359 

 360 

To improve the estimates of PM2.5, the spatiotemporal autocorrelation and difference in PM2.5 were 361 

considered in the deep learning, i.e., deep forest (DF) (65), leading to a novel spatiotemporal 362 

weighted deep forest (SWDF) model (for details, see SI Text S1). Deep forest is a deep learning 363 

model that uses the Cascade structure by including multiple random forests and extremely 364 

randomized trees in each middle layer. The final result was determined by integrating the results 365 

of all intermediate hidden layers using the Light Gradient Boosting Machine.  366 

 367 

Specifically, the model construction included two main steps: we first derived daily PM2.5 by 368 

training the SWDF model between PM2.5 measurements and AOD together with PM2.5 components, 369 

meteorological fields, anthropogenic emissions of PM2.5 precursors, and land-use and population 370 

variables. Once PM2.5 estimates were made, they were subsequently used as the main predictor in 371 

the SWDF model to predict BC mass concentration; additional factors highly associated with BC, 372 

e.g., the absorbing AOD and BC AOD, and BC surface mass concentrations and emissions, were 373 

also used as inputs in training (for details, see SI Text S1).  374 

 375 

For model training, since there were enough data samples for PM2.5 every year (i.e., the number of 376 

samples, N, ranges from 160,000 to 370,000 per year; total N of all years = 5,931,081), data 377 

collected each year from 2000 to 2020 were used to train the SWDF model for that year. Differing 378 

from PM2.5, all data samples of BC (N = 467,002) collected from the years 2000–2020 were used 379 
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together to construct the SWDF model for all years since the number of surface BC monitors is 380 

smaller than that of PM2.5 throughout the US.  381 

 382 

Mortality Burden Assessment. The total premature deaths from exposure to ambient PM2.5 383 

pollution was calculated at each grid box of 1 km in the US for each year from 2000 to 2020 using 384 

the concentration-response functions from the GBD 2019 study (28). The GBD framework 385 

integrates relative risk with population density, the number of people in each age group, and 386 

baseline cause-specific mortality to estimate cases of cause-specific mortality that are attributable 387 

to PM2.5 (Equation 1). This calculation was carried out separately for mortality from six diseases 388 

(i.e., acute lower respiratory infection, chronic obstructive pulmonary disease, ischemic heart 389 

disease, lung cancer, stroke (ischemic and hemorrhagic), and diabetes (Type 2)) at 16 different age 390 

groups (i.e., children < 5 years old; adults 25-95 at intervals of 5, and > 95 years old), which are 391 

then summed to yield total PM2.5-attributable mortality:  392 

 𝑀𝐵PM2.5(𝑑,𝑎,𝑦) =  
𝑅𝑅𝑑,𝑎,𝑦−1

𝑅𝑅𝑑,𝑎,𝑦
× 𝐵𝑑,𝑎,𝑦 × 𝑃𝑦  (1) 393 

where 𝑀𝐵PM2.5(𝑑,𝑎,𝑦) indicates the mortality burden from the exposure to ambient PM2.5, i.e., the 394 

number of premature deaths caused by disease d for age group a in year y, and 𝑅𝑅𝑑,𝑎,𝑦 and 𝐵𝑑,𝑎,𝑦 395 

are the relative risk and baseline mortality of disease d for age group a in year y, which are collected 396 

from the disease- and age-specific risk look-up table exceeding the theoretical minimum risk 397 

exposure level (TMREL: 2.4–5.9 μg m-3) and from the mortality rate data provided by the GBD 398 

2019, respectively. 𝑃𝑦 indicates the population in age group a in year y, where the population data 399 

is collected from the LandScanTM global population database at a 1 km resolution.  400 

 401 

The mortality risk of BC to public health is reported to be more harmful (up to ten times higher) 402 

than PM2.5 (5-8), but no universal concentration-response function for BC is available. Thus, the 403 

health burden of BC is assessed by employing the pooled estimate of concentration-response 404 

function exposure to long-term BC pollution, i.e., the relative risk per 1 μg m-3 increase in BC for 405 

all-cause mortality is 1.06 (95% CI: 1.04, 1.09) (5). 406 
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