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Abstract

A numerical solute transport model was history matched to a high-resolution monitoring dataset to characterize a multicom-

ponent source of nonaqueous phase liquids (NAPLs) and evaluate the uncertainty of estimated parameters. The dissolution

of NAPL mass was simulated using the SEAM3D solute transport model with spatially-varying NAPL saturations and mass

transfer rate coefficients, representing the heterogenous architecture of the source zone. Source zone parameters were simulta-

neously estimated using PEST from aqueous-phase concentrations measured in a multilevel monitoring transect and from mass

recovery rates measured at extraction wells during a controlled field experiment. Data-worth analyses, facilitated by PEST

ancillary software, linked maximum aqueous-phase concentrations of all compounds to reductions in prior uncertainty of mass

transfer coefficients. In turn, transient concentrations of the most soluble NAPL fraction constrained the source mass estima-

tion. Accurately estimating the source mass and reducing prior uncertainties was possible by removing concentrations measured

during early NAPL dissolution stages, identified as prior-data conflicts using the iterative ensemble smoother PESTPP-iES.

Prior-based Monte Carlo analyses highlighted model limitations for representing sub-grid-scale heterogeneity of source zone

architecture and NAPL dissolution, yet history-matching of final dissolution stages measured at multilevel ports eliminated

parameter bias and produced long-term projections of source depletion with multistage behavior. Including mass discharge

constraints further improved the accuracy of source mass estimation, complementing multilevel monitoring constraints on the

source architecture and mass transfer coefficients
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Abstract 22 
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A numerical solute transport model was history matched to a high-resolution monitoring dataset 24 

to characterize a multicomponent source of nonaqueous phase liquids (NAPLs) and evaluate the 25 

uncertainty of estimated parameters. The dissolution of NAPL mass was simulated using the 26 

SEAM3D solute transport model with spatially-varying NAPL saturations and mass transfer rate 27 

coefficients, representing the heterogenous architecture of the source zone. Source zone 28 

parameters were simultaneously estimated using PEST from aqueous-phase concentrations 29 

measured in a multilevel monitoring transect and from mass recovery rates measured at extraction 30 

wells during a controlled field experiment. Data-worth analyses, facilitated by PEST ancillary 31 

software, linked maximum aqueous-phase concentrations of all compounds to reductions in prior 32 

uncertainty of mass transfer coefficients. In turn, transient concentrations of the most soluble 33 

NAPL fraction constrained the source mass estimation. Accurately estimating the source mass and 34 

reducing prior uncertainties was possible by removing concentrations measured during early 35 

NAPL dissolution stages, identified as prior-data conflicts using the iterative ensemble smoother 36 

PESTPP-iES. Prior-based Monte Carlo analyses highlighted model limitations for representing 37 

sub-grid-scale heterogeneity of source zone architecture and NAPL dissolution, yet history-38 

matching of final dissolution stages measured at multilevel ports eliminated parameter bias and 39 

produced long-term projections of source depletion with multistage behavior. Including mass 40 

discharge constraints further improved the accuracy of source mass estimation, complementing 41 

multilevel monitoring constraints on the source architecture and mass transfer coefficients. 42 
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Plain Language Summary 47 
 48 

Quantifying dissipation timeframes of DNAPL source zones and contaminant discharge rates is 49 

fundamental for environmental-management support. Both variables depend on the distribution of 50 

DNAPL mass (architecture) within the source zone, and cannot be quantified by direct observation 51 

methods. We elucidated upon the worth of multilevel monitoring for characterizing the source 52 

zone architecture of a field experiment with inverse numerical modeling of contaminant transport 53 

and DNAPL dissolution. Uncertainties on estimated DNAPL distribution and dissolution rates 54 

were primarily associated to variability in dissolved concentration trends at multiple scales. 55 

Dissolved concentration peaks measured during early DNAPL dissolution stages were found 56 

responsible for inducing model parameter and predictive errors. Yet the depleting signature of the 57 

least soluble component accurately constrained the source zone architecture, combining mass 58 

recovery rates with multilevel monitoring to reduce model uncertainties. Hence, our approach and 59 

results have beneficial implications for management support of aged source zones undergoing final 60 

depletion stages. 61 

 62 

Index Terms and Keywords 63 
 64 

1831 Groundwater Quality, 1846 Model calibration (3333), 1873 Uncertainty quantification 65 

(3275), 4314 Mathematical and computer modeling, 1815 Monitoring, forecasting, prediction 66 

(4315) 67 

 68 

DNAPL source zone, numerical modeling, uncertainty quantification, DNAPL mass transfer, 69 

source zone architecture, contaminant mass discharge 70 

 71 

1. Introduction 72 
 73 

Remediation and long-term dissipation of contaminant source zones comprised of dense 74 

nonaqueous phase liquids (DNAPLs) in the subsurface encompasses technical challenges related 75 

to uncertainty of DNAPL spatial distribution and dissolution rates (Kueper et al., 2014; Mayer & 76 

Hassanizadeh, 2005; NRC, 2005). Entrapped DNAPL mass and saturation distributions in the 77 

porous medium, referred to as the source zone “architecture”, are key parameters controlling 78 

source-zone longevity and depletion behavior (Dekker and Abriola, 2000; DiFilippo & Brusseau, 79 

2008). Typical multistage and nonmonotonic depletion profiles observed in monitoring data reflect 80 

the gradual dissolution of NAPL accumulations with characteristic saturations (Brusseau et al., 81 

2013; Kokkinaki et al., 2014; Stewart et al., 2021). Accumulations of low-saturation ganglia 82 

allowing for groundwater flow-through account for peaks of discharge concentrations at early 83 

NAPL dissolution stages, whereas high-saturation pools with negligible hydraulic accessibility 84 

account for dissolution tailing at the final stages of a source lifespan (Christ et al., 2010; Kueper 85 

et al., 2014; Yang et al. 2018). Thus, estimating the depletion behavior and remedial timeframes 86 

of a source zone requires knowledge on NAPL architecture, which is difficult to characterize with 87 

direct observation methods (Engelmann et al., 2019), but can be estimated from field tests and 88 

monitoring data using mathematical models of NAPL dissolution (Falta et al., 2005a, 2005b; 89 

Stewart et al., 2021).  90 

 91 
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Numerical modeling methods coupling groundwater flow and contaminant transport with NAPL 92 

dissolution have been used to estimate saturation distributions and mass transfer rate coefficients 93 

from monitoring data (Frind et al., 1999; Mobile et al., 2012; Saenton & illangasekare, 2004). 94 

Researchers have focused on estimating NAPL architecture or depletion timeframes from 95 

synthetically-generated source zones and aqueous-phase concentrations using several 96 

mathematical approaches to simulating mass transfer. Several studies considered either a local 97 

equilibrium assumption (LEA) or Gilland-Sherwood models of interphase mass transfer (Kang et 98 

al., 2021a, 2021b; Marble et al., 2008; Saenton & Illangasekare, 2004). The applicability of LEA 99 

in decision-support models is questionable because heterogeneity of aquifer hydraulic properties 100 

and DNAPL architecture can induce flow bypassing and mass transfer rate limitations, resulting 101 

in nonequilibrium concentrations typically observed at field sites (Falta, 2003; Kokkinaki et al., 102 

2013; Powers et al., 1992, 1994). Similarly, Gilland-Sherwood models rely on correlations 103 

between empirical coefficients and soil particle sizes that were determined under specific bench-104 

scale conditions, which may not be applicable to field-scale problems with different hydraulic 105 

conditions (Powers et al., 1994; Saenton & Illangasekare, 2007). Additional uncertainties on LEA 106 

and Gilland-Sherwood models include grid discretization requirements, as both approaches have 107 

been validated with pore-scale experimental data (Agaoglu et al., 2015; Falta, 2003).  108 

 109 

Upscaled models have been developed to simulate NAPL dissolution kinetics over a representative 110 

elementary volume (REV) incorporating source zone metrics (Christ et al., 2010; Marble et al., 111 

2008; Parker & Park, 2004; Saenton & Illangasekare, 2007; Stewart et al., 2021; Zhu & Skyes, 112 

2004). These metrics include NAPL mass and descriptions of source zone architecture in the form 113 

of areal dimensions of NAPL accumulations or the ganglia-to-pool (GTP) mass ratio metric 114 

(Abriola et al., 2013; DiFilippo & Brusseau, 2011). Because these metrics are difficult to measure 115 

at contaminated sites, upscaled models incorporating a spatially-varying lumped-process mass 116 

transfer coefficient have also been used to interpret monitoring data and predict source depletion 117 

timeframes (Guo et al., 2020; Marble et al., 2008; Mobile et al., 2012; Park & Parker, 2005). These 118 

models simplify the heterogeneity of porous media, aqueous-phase velocities, NAPL architecture, 119 

and dispersivity, into a single lumped-process parameter at the REV scale (Falta, 2003; Imhoff et 120 

al., 1993; Luciano et al., 2018). Although scale-dependent mass transfer rate coefficients may 121 

simplify grid discretization requirements, the parameterization of NAPL source zones for inverse 122 

numerical modeling and uncertainty quantification with spatially-correlated random parameter 123 

fields is not straightforward (Arshadi et al., 2020; Kang et al., 2021a, 2021b; Kock & Nowak, 124 

2015, 2016)  125 

 126 

Given that NAPL source zones have complex spatial morphologies with sharp saturation 127 

transitions at fine scales, traditional interpolation and geostatistical methods used in groundwater 128 

flow modeling may be not suitable for parameterizing NAPL source zones (Arshadi et al., 2020; 129 

Kang et al., 2021a). Alternative methods proposed for parameterizing NAPL source zones include 130 

deep learning algorithms trained with images of saturation distributions generated with multiphase 131 

flow simulations on highly-resolved permeability fields (Arshadi et al., 2020; Kang et al., 2021a, 132 

2021b), posing additional data requirements and uncertainties on porous media characteristics and 133 

model parameters (Abriola, 1989; Agaoglu et al., 2015; Miller et al., 1998). Moreover, these 134 

parameterization methods have been tested with synthetically-generated source zones to estimate 135 

categories of NAPL saturations through inverse modeling conditioned by borehole data (Arshadi 136 

et al., 2020), or by aqueous-phase concentrations under LEA (Kang et al., 2021a, 2021b). Although 137 
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these methods can generate physically-based, spatially-correlated categorical parameters, they are 138 

computationally expensive and require further validation and verification with field data. 139 

 140 

Numerical models with parsimoniously parameterized source zones have proved useful for 141 

characterizing NAPL architecture and/or lumped-process mass transfer coefficients (Marble et al., 142 

2008; Mobile et al., 2012; Saneton & Illangasekare, 2004). Moreover, combining multilevel 143 

monitoring with recovery rates of contaminant mass (or with conventional monitoring wells) can 144 

be valuable for characterizing heterogeneous NAPL architectures, as spatially-varying 145 

contaminant fluxes may be mapped to soil horizons harboring NAPL mass within a source zone 146 

(McMillan et al., 2018). Several studies have incorporated Gilland-Sherwood or upscaled mass 147 

transfer functions in discretized NAPL zones or in dual-domain models to estimate grid-scale 148 

parameters from multilevel monitoring data and/or mass discharge/flux measurements (Christ et 149 

al., 2010; Falta, 2003; Frind et al., 1999; Guo et al., 2020; Mobile et al., 2012; Park & Parker 2005; 150 

Saenton & Illangasekare, 2004). Although previous investigations have demonstrated the utility 151 

of parameterization parsimony for characterizing NAPL source architecture and dissolution rates 152 

with inverse modeling, the uncertainty of grid-scale parameters arising from the assimilation of 153 

high-resolution monitoring data has not been investigated.  154 

 155 

A primary objective in this numerical modeling study was to evaluate the worth of aqueous-phase 156 

concentrations monitored at a multilevel sampling (MLS) transect in combination with total mass 157 

discharge (MD) rates to quantify and reduce the uncertainty of the mass, architecture, and 158 

dissolution rates of a multicomponent DNAPL source. The field experiment considered in this 159 

study involved the creation a small-scale source zone with a heterogeneous architecture at the 160 

Borden experimental site (Broholm et al., 1999). Broholm et al. (2005) quantified the initial mass 161 

of the DNAPL mixture using multicomponent NAPL dissolution theory and mass balance 162 

analyses. Mobile et al. (2012) estimated the source architecture and dissolution rates from MD 163 

profiles and from a single, incomplete MLS nest, using an inverse modeling technique. They 164 

constrained the initial NAPL mass by the known amount and the source zone dimensions by the 165 

measured post-experimental footprint (Mobile et al., 2012). Our study expanded on both previous 166 

analyses by incorporating the entire MLS transect to infer the source footprint and to quantify 167 

initial NAPL mass, saturation distribution, and mass-transfer rate coefficients, while examining 168 

causality of parameter uncertainty. A secondary objective was to investigate model limitations for 169 

reproducing the observed system behavior, further elucidating upon monitoring data assimilation 170 

for source zone characterization with inverse numerical modeling, while minimizing the 171 

propensity for biasing timeframes of source zone persistence. 172 

 173 

2. Materials and Methods 174 
 175 

2.1. Overview of Field Experiment of Multicomponent DNAPL Dissolution 176 
 177 

This study incorporated a dataset documenting the dissolution of a DNAPL mixture in a field 178 

experiment (Broholm et al., 1999). At the Borden experimental site in Canada, a 5-liter (7.7 kg) 179 

mixture of dyed solvents (10% TCM, 40% TCE, and 50% PCE by volume) was injected at 180 

approximately 0.05 m below the water table into a 55 m3 (5.5 m long x 4.5 m wide x 2.3 m deep) 181 

unconfined aquifer test cell (Figure 1) comprised of medium- to fine-grained lacustrine sand with 182 

occasional beds of coarse sand/gravel and silt. Groundwater flow through the test cell, bounded 183 
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laterally by sheet piling on four sides, was maintained by a network of five upgradient injection 184 

and five downgradient extraction wells. The network was operated at approximately 360 L/d, 185 

generating a mean groundwater velocity of 0.13 m/d and horizontal hydraulic gradient of 0.023 ± 186 

0.0024. Aqueous-phase contaminant concentrations were monitored for 220 days in a fence of 187 

MLS ports (Figure 1) located approximately 2.1 m downgradient from the DNAPL release 188 

location. After 220 days of natural dissolution monitoring, a 5.5-day pulse of methanol was 189 

injected in the test cell to evaluate dissolution enhancement processes (Broholm et al., 1999; 190 

Broholm, 2006). The horizontal spacing of MLS ports was 0.5 m with a vertical spacing of 0.1 m, 191 

with screen lengths less than 1 cm.  192 

 193 

 194 
Figure 1. Configuration of aquifer test cell and its representation in the numerical model. (a) Plan view of all MLS 195 
nests and NAPL grid blocks encompassing the entire source zone footprint in the numerical model. (b) Test cell 196 

 197 

Flow-weighted concentrations were monitored at the extraction wells with screen lengths spanning 198 

the average height (1.82 m) of the saturated zone for 291 days. The cell was excavated 291 days 199 

after the mixture release to map the DNAPL distribution over 5-cm vertical intervals (Figures S1 200 

and S2) (Broholm et al., 1999). Broholm et al. (2005) compared estimates of initial NAPL mass 201 

calculated from the post-excavation source footprint and by multicomponent NAPL dissolution 202 

theory with mass balance analysis of effluent data and area- and depth-integrated MLS 203 

concentrations. Their best mass estimates ranged from 6.7 to 7.5 kg by averaging of MLS data, 204 

and differences between theoretical NAPL dissolution rates and effluent data were attributed to 205 

pre-flushing TCM dissolution and volatilization losses. Also, dissolved concentrations below 206 
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equilibrium levels observed throughout the experiment were attributed to dilution effects (Broholm 207 

et al., 2005). These results support kinetic mass transfer modeling coupled with uncertainty 208 

analyses for indirect characterization of NAPL source zones, as detailed, pore-scale process 209 

modeling and site characterization in this context is unfeasible for remedial-decision support at 210 

hazardous waste sites.  211 

 212 

2.2. Numerical Modeling of Groundwater Flow and Contaminant Transport 213 
 214 

A steady-state groundwater flow model was developed with MODFLOW2000 (Harbaugh et al., 215 

2000). The aquifer test cell was discretized in 23 layers with uniform grid blocks measuring 10 cm 216 

along all dimensions. As shown in Figure 1, the extent of the model domain matched the size of 217 

the test cell along the vertical dimension (Z-axis) and the horizontal dimension perpendicular to 218 

the flow direction (Y-axis). The horizontal dimension parallel to flow (X-axis) was reduced from 219 

5.5 m (test cell length) to 4.9 m for computational efficiency. Constant values of hydraulic 220 

conductivity, flow boundary conditions, and transport parameters were assigned to match field 221 

conditions, which were characterized with tracer tests and soil cores by Broholm et al. (1999) and 222 

analyzed with numerical modeling in Mobile et al. (2012). Model layers 1 through 3 were 223 

inactivated because the water table fell below the elevation of layer 3 during the monitoring period. 224 

Model layer 4 encompassed MLS port 504, which showed evidence of NAPL presence at 0.4 m 225 

below the top of the aquifer test cell despite the reported average depth of the water table during 226 

the experiment at ~0.48 m (Broholm et al., 1999). 227 

 228 

Dissolution of the multicomponent DNAPL source and aqueous-phase contaminant transport were 229 

simulated with SEAM3D (Waddill & Widdowson, 2000). Interphase mass transfer [M T-1 L-3] was 230 

simulated using a linear driving force model: 231 

 232 

 𝐽 𝑘 𝐶 𝐶  (1) 
 233 

where ki
N [T-1]is a lumped mass transfer rate coefficient specific to each NAPL phase constituent 234 

i, Ci
eq [M L-3] is the equilibrium solubility calculated according to Raoult’s Law, and Ci [M L-3] is 235 

the aqueous phase concentration. Equation 1 is coupled in SEAM3D to the following relationship 236 

representing NAPL dissolution from the soil medium into the aqueous phase: 237 

 238 

 𝐽 𝜌𝑏

𝑑𝐶
𝑑𝑡

 (2) 

 239 

where ρb [M L-3] is the bulk density of the soil and Ci
N [M M-1] is the NAPL mass of compound i 240 

per unit mass of dry soil. A modified version of SEAM3D incorporates the upscaled NAPL 241 

dissolution model developed by Parker and Park (2004) to simulate transient mass transfer rates: 242 

 243 

 𝑘 𝑘 ,
𝑞
𝐾

𝑀 𝑡
𝑀 ,

 (3) 

 244 

where ki,0
N = initial mass transfer rate coefficient [T-1], 𝑞 = average Darcy velocity [L T-1], 𝐾 = 245 

average hydraulic conductivity [L T-1], M(t)/M0 = transient ratio of NAPL mass [M M-1], α and β 246 

are dimensionless empirical parameters. Previous investigations have reported a linear relationship 247 
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between ki
N and 𝑞, with α = 1 (Parker & Park, 2004; Park & Parker, 2005). The transient mass 248 

ratio raised to the empirical depletion exponent β represents a reduction of NAPL/water interfacial 249 

areas over time, regulating tailing of discharge concentrations with reducing mass transfer rates as 250 

the source mass is depleted (Parker & Park, 2004; Stewart et al., 2020). A previous modeling study 251 

of the same Borden experiment indicated model insensitivity to the β exponent, attributed to a lack 252 

of extensive monitoring of decreasing discharge concentrations (Mobile et al., 2012). In this work, 253 

both the α and β parameters were set to zero to focus the uncertainty and data-worth analyses on 254 

the spatially-variable parameters ki,0
N and C0

N. Adjusting C0
N parameters allowed to estimate the 255 

initial mass (M0
N [M]) of the entire NAPL mixture and quantify its uncertainty, as SEAM3D 256 

generates an output of remaining NAPL mass in the source zone every time step using Equation 257 

4, by adding the mass of all grid blocks where a C0
N parameter value was assigned: 258 

 259 

 𝑀 𝑉 𝐶 𝜌  (4) 

 260 

where VN [L3] = NAPL zone volume. The source zone was represented with 23 NAPL zones 261 

(Figures S1 and S2) positioned upgradient of MLS ports which showed contaminant breakthrough, 262 

suggesting the upgradient presence of NAPL mass (Figures 2, 3, and 4). Each NAPL zone was 263 

comprised of 25 grid blocks (Figures S1 and S2) and was assigned one pair of adjustable 264 

parameters, k0
N and C0

N, representing uniform mass distribution and dissolution within each NAPL 265 

zone. The areal dimensions of all NAPL zones were designed as 0.5 m x 0.5 m on the horizontal 266 

plane representing the horizontal spacing of MLS ports, whereas vertical layers of 0.1 m 267 

represented the vertical spacing between ports. The location of NAPL zones was determined by 268 

contaminant travel times analyzed from MLS breakthrough data. Overall, the source distribution 269 

in the model encompassed the observed post-excavation footprint (Figures S1 and S2), which 270 

likely developed through vertical and downward NAPL migration throughout the experiment 271 

(Broholm et al., 1999, 2005).  272 

 273 

2.3. Parameter Estimation and Uncertainty Quantification 274 
 275 

For each NAPL zone, C0
N and k0

N were simultaneously estimated from monitoring data. In 276 

addition, two global k0
N multipliers to identify compound-specific mass transfer coefficients for 277 

TCE and PCE (kTCE,0
N and kPCE,0

N) were estimated as multipliers of kTCM,0
N for a total of 48 278 

adjustable source zone parameters. History-matching targets included 1,556 measurements of 279 

dissolved TCM, TCE, and PCE concentrations monitored at the MLS transect (Figure 1), out of 280 

4,770 measurements comprising the entire MLS dataset. The 1,566 MLS targets corresponded to 281 

23 ports including concentration measurements through 130 days (Figures 2, 3, and 4), when 282 

extraction well redevelopment abruptly increased the water table by 1 m causing significant data 283 

noise through 220 days (Broholm et al., 1999; Mobile et al., 2012). These MLS targets were 284 

grouped by sampling port and a weight of 1 was assigned to each aqueous-phase concentration 285 

measurement within each port. Additional constraints included 78 measurements of mass 286 

discharge rates monitored at extraction wells for 220 days (before methanol remediation was 287 

implemented). Mass discharge measurements were grouped by contaminant (i.e., three MD 288 

groups) and assigned uniform weights, balancing the initial error contribution of each group to the 289 

objective function (Φ). Specifically, individual measurements of MD were assigned a weight of 290 

250 within the TCM and TCE MD groups, whereas individual PCE MD measurements were 291 
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assigned a weight value of 500. This weighting strategy was designed to balance the visibility of 292 

MD groups with MLS ports for Φ minimization. 293 

 294 

An initial parameter estimation with PEST_HP (Doherty, 2020), which uses a parallelizable 295 

gradient-based optimization process, only included the MLS targets. All k0
N and C0

N parameters 296 

were log-transformed to facilitate the nonlinear optimization process. Bounds for C0
N parameters 297 

were designed as a function of initial NAPL saturation (S0
N [%]) of the pore space calculated as: 298 

 299 

 𝑆
𝜌 𝐶
𝜌 𝜃

 (5) 

 300 

where ρN [M L-3] is the NAPL density and θ is the soil porosity. Bounds for C0
N parameters were 301 

set as 0.05 < S0
N (%) < 25 for most NAPL zones, and as 0.05 < S0

N (%) < 5 for NAPL zones below 302 

layer 10 and in layer 4. The prior (pre-history matching) NAPL mass value was set as ~120 % 303 

greater than the known initial mass (7.7 kg). This prior value was established to evaluate whether 304 

initial history-matching of MLS data with PEST_HP could result in a total NAPL mass estimate 305 

close to the known value. Bounds for all k0
N (k0,TCM

N) parameters were set as 0.01 < k0
N (d-1) < 7.5 306 

following an order-of-magnitude range obtained through a simplified mass transfer correlation 307 

defined in Frind et al. (1999), where the dissolution of a large-scale DNAPL mixture in the Borden 308 

aquifer was simulated using a similar grid scale. Bounds for k0
N compound-specific multipliers 309 

were kept consistent with ratios determined by Mobile et al. (2012) as 0.95 < k0,TCE
N < 1 and 0.8 < 310 

k0,PCE
N < 0.95. 311 

 312 

The posterior uncertainty of NAPL mass was quantified with the iterative ensemble smoother 313 

PESTPP-iES (White et al., 2020). PESTPP-iES undertakes Monte-Carlo sampling of parameter 314 

uncertainty bounds generating ensembles which are upgraded with the Gauss-Levenberg-315 

Marquardt (GLM) optimization algorithm. Rather than fitting simulation results to data, PESTPP-316 

iES can generate observation ensembles considering a multi-gaussian distribution of measurement 317 

noise (ε) (White, 2018). Here, σε was defined as 5% of measured values. This stochastic approach 318 

was used for history-matching of (i) MLS data only, and (ii) both MLS and MD data, quantifying 319 

the posterior uncertainty of parameters (C0
N, k0

N ) and predictions (M0
N). In the following sections, 320 

Model A = optimized with PEST_HP using MLS data only, Model B = optimized with PESTPP-321 

iES using MLS data only, and Model C = optimized with PESTPP-iES combining MLS and MD 322 

data. 323 

 324 

Parameter bounds were used to define 95% confidence intervals of multi-gaussian prior probability 325 

distributions (PDF) of model parameters, assuming statistically-uncorrelated NAPL zones. The 326 

upper C0
N bounds for NAPL zones were reduced from 25% to 15% S0

N and initial parameter values 327 

were set from PEST_HP results. Prior to parameter upgrading, PESTPP-iES undertakes a prior-328 

based Monte Carlo analysis to detect “prior-data conflicts” (PDC), which are measurements that 329 

cannot be simulated with the structural and parametrization design of the model (White et al., 330 

2020, 2021). All PDCs flagged by PESTPP-iES were removed to eliminate history-matching 331 

induced bias, which would otherwise produce erroneous parameter values compensating for model 332 

defects (Doherty, 2015). Moreover, PESTPP-iES tracks the evolution of a "base realization” 333 

during the optimization process, corresponding to the initial parameter realization upgraded 334 
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without ε ensembles. Estimates of NAPL mass removed by natural dissolution produced by Model 335 

A were compared to estimates generated with the posterior base realization of Models B and C. 336 

 337 

2.4. Data-Worth Analysis 338 
 339 

First-order second-moment (FOSM) analysis was used to evaluate data worth for reducing the 340 

uncertainty of model parameters and predictions through history-matching. The GENLINPRED 341 

and PREDUNC utilities from the PEST software suite (Watermark Numerical Computing, 2018) 342 

were used for FOSM analyses. The primary assumption in FOSM analysis is model linearization 343 

expressed as: 344 

 345 

 𝐡 𝐙𝐤 𝛆 (6) 
 346 

which states that a vector of measurements of system state h (aqueous-phase concentrations) 347 

equals the action of the model Z (Jacobian sensitivity matrix weighted by σε
-1) on a vector of 348 

parameters k plus a vector of measurement noise ε (Doherty, 2015). In this case, σε
-1 was calculated 349 

on the basis of misfit between measurements and model outputs using the PEST-based utility 350 

PWTADJ2 (Watermark Numerical Computing, 2018) after history-matching. GENLINPRED and 351 

PREDUNC calculate the posterior uncertainty variance of model parameters through covariance 352 

propagation: 353 

 354 

 C’ 𝐤   C 𝐤 – C 𝐤 𝐙𝐭 𝐙C 𝐤 𝐙𝐭 C 𝛆 𝐙C 𝐤  (7) 
 355 

where the posterior covariance matrix C’(k) is obtained through history-matching (Doherty, 2015). 356 

In this case, the prior covariance matrix C(k) is diagonal with no spatial correlations between 357 

NAPL zones. The estimated initial NAPL mass, a SEAM3D output, was treated as a linearized 358 

model prediction: 359 

 360 

 𝑠 𝐲𝐭𝐤 (8) 
 361 

where y is a vector of sensitivities of s with respect to k. The prior (σs2) and posterior (σ’s2) 362 

uncertainty variances of s were calculated as: 363 

 364 

 σ 𝐲𝐭C 𝐤 𝐲 (9) 
 365 

 σ′ 𝐲𝐭C’ 𝐤 𝐲 (10) 
 366 

The worth of individual MLS ports for reducing prior parameter uncertainties was calculated with 367 

model A, whereas the worth of compound-specific MLS and MD datasets was calculated with the 368 

posterior base realization of model C. Model C was also used to quantify the worth of individual 369 

MLS and MD measurements and to quantify the relative uncertainty variance reduction (RUVR) 370 

of each parameter (i), defined as: 371 

 372 

 𝑅𝑈𝑉𝑅 1
𝜎′
𝜎

 (11) 

 373 
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where σi
2 are prior parameter variances encapsulated in C(k) and σ’i

2 are posterior parameter 374 

variances extracted from C’(k) (Doherty, 2015).  375 

 376 

3. Results and Discussion 377 
 378 

3.1. Parameter Estimation and Uncertainty Quantification 379 
 380 

A comparison of estimated NAPL mass and k0
N multipliers is presented in Table 1. In general, the 381 

known NAPL mass (7.7 Kg) was underestimated (6.4 – 7.2 Kg) when history-matching to MLS 382 

data only, particularly with gradient-based optimization (PEST_HP). An improvement in the 383 

accuracy of mass estimation with PESTPP-iES was achieved through the removal of 206 PDC 384 

values flagged by PESTPP-iES (Figures 2, 3, and 4) comprising 13% of the MLS constraints. 385 

Likewise, 10 PDCs (Figure 5) representing 13% of the MD dataset were also flagged by PESTPP-386 

iES and removed for history-matching. Including the MD constraints resulted in an excellent 387 

agreement with the known initial source mass, which was encompassed by 95% confidence limits 388 

(Table 1). Prior-based Monte Carlo results suggested that emphasizing early peak concentrations 389 

for history-matching can result in underestimation of NAPL mass and overestimation (bias) of k0
N 390 

values, leading to underestimation of source dissipation timeframes. In this case, removing PDC 391 

values, rather than modifying the model design, was sufficient to accurately estimate NAPL mass 392 

and constrain mass transfer coefficients. 393 

 394 
Table 1. Model-estimated DNAPL mass and k0

N multipliers. 395 

Parameter/Prediction 
PEST_HP  
(A: MLS) 

PESTPP-iES  
(B: MLS) 

PESTPP-iES  
(C: MLS and MD) 

Mass (Kg) 6.367 
μ = 7.187 
σ = 0.120 

μ = 7.626 
σ = 0.110 

k0,TCE
N (d-1) 

1.00 
μ = 0.99 

σ = 0.006 
μ = 0.99 

σ = 0.005 
k0,PCE

N (d-1) 
0.95 

μ = 0.93 
σ = 0.018 

μ = 0.88 
σ = 0.017 

μ = mean estimated value. σ = standard deviation of estimated parameters (k0
N) and predictions (Mass). 396 

 397 
 398 

 399 
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 400 
Figure 2. Comparison of measured (circles) and simulated (lines) aqueous-phase TCM concentrations at the MLS 401 
fence. Simulation results correspond to the posterior base realization of model C, including MLS and MD constraints. 402 
Empty circles correspond to concentrations ignored for history-matching because of significant measurement noise 403 
induced by water table fluctuations after 130 days of monitoring. The dashed lines correspond to simulated values 404 
beyond 130 days, informed by MD data exclusively. Black-filled circles are prior-data conflicts removed from the 405 
history-matching process to avoid parameter bias.   406 
 407 
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 408 
Figure 3. Comparison of measured (circles) and simulated (lines) aqueous-phase TCE concentrations at the MLS 409 
fence. Simulation results correspond to the posterior base realization of model C, including MLS and MD constraints. 410 
Empty circles correspond to concentrations ignored for history-matching because of significant measurement noise 411 
induced by water table fluctuations after 130 days of monitoring. The dashed lines correspond to simulated values 412 
beyond 130 days, informed by MD data exclusively. Red-filled circles are prior-data conflicts removed from the 413 
history-matching process to avoid parameter bias.   414 

 415 
 416 
 417 
 418 
 419 
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 420 
Figure 4. Comparison of measured (circles) and simulated (lines) aqueous-phase PCE concentrations at the MLS 421 
fence. Simulation results correspond to the posterior base realization of model C, including MLS and MD constraints. 422 
Empty circles correspond to concentrations ignored for history-matching because of significant measurement noise 423 
induced by water table fluctuations after 130 days of monitoring. The dashed lines correspond to simulated values 424 
beyond 130 days, informed by MD data exclusively. Green-filled circles are prior-data conflicts removed from the 425 
history-matching process to avoid parameter bias.   426 
 427 

Prior-data conflicts pertaining to each dissolved NAPL component were detected at similar 428 

locations along the MLS and MD profiles (Figures 2 through 5). Most PDCs corresponded to initial 429 

TCM concentration peaks, some were detected along TCE breakthrough, and a few before PCE 430 

breakthrough. This may have been associated to propagation rates of component-specific mass 431 
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transfer zones in the NAPL as the source architecture developed. In theory, the dissolution process 432 

of NAPL mixtures has been described as a chromatographic process, where component-specific 433 

mass transfer zones propagate at different velocities through NAPL accumulations as a function 434 

of their local solubilities and their length along the principal flow direction (Geller & Hunt, 1993; 435 

Soerens et al., 1998). In practice, the numerical discretization of NAPL zones along the flow 436 

direction may influence the estimation of k0
N values, as grid-scale concentration gradients 437 

(Equation 1) would also regulate the sequential mass transfer process for any prescribed q (Darcy 438 

velocity) and αL,T (dispersivity) values (Falta, 2003; Frind et al., 1999; Hunt & Sitar, 1988). In this 439 

work, the unknown source zone architecture along the flow direction may have placed additional 440 

uncertainties on q, αL,T, and ki,0
N parameters, which regulate overall NAPL mass transfer at the grid 441 

scale (Rivett & Feenstra, 2005). 442 

 443 

 444 
Figure 5. Posterior ensembles of MD profiles generated with model C. 445 
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 446 

Table 1 indicates that both ki,0
N multipliers estimated with Model A showed a tendency to reach 447 

their upper bounds. Only the values of kPCE,0
N estimated with PESTPP-iES were constrained within 448 

their prior uncertainty bounds (Table 1). In addition to the uncertain effects of grid scale on 449 

potential parameter bias, multistage NAPL dissolution below the MLS scale may have impacted 450 

posterior results. For example, inspecting the TCM signature of ports 506 and 507 in Figure 2 451 

suggested two slopes of declining concentrations before 130 days. An initially steep slope between 452 

the concentration peaks through day 50, followed by a more gradual slope through day 130, 453 

suggested heterogeneity of NAPL architecture and dissolution below the MLS scale. Despite 454 

removing PDCs, sub-grid-scale multistage NAPL dissolution cannot be adequately simulated with 455 

a single parameter set (C0
N, k0

N) per NAPL zone. This explained why model A produced lower 456 

mass estimates with an increased propensity for biasing (overestimating) kTCM,0
N parameters (e.g., 457 

port 608 in Table 2), whereas model B (PDC targets removed) produced kTCM,0
N values consistent 458 

with model C (Table 2). Although these results suggested that a dual-domain approach may have 459 

better captured TCM profiles at MLS ports, removing PDCs to estimate a single-domain 460 

parameters accurately constrained NAPL mass and a consistent range of k0,TCM
N values.   461 

 462 
Table 2. Distribution of estimated DNAPL mass and mass transfer coefficients 463 

NAPL MLS kTCM,0
N (day-1) NAPL Mass (Kg) 

Zone Port A B C A B C 
4 404 0.037 0.041 0.041 0.14 0.14 0.15 

5.1 605 0.038 0.029 0.037 0.02 0.02 0.01 
5.2 505 0.102 0.104 0.106 0.59 0.59 0.64 

5.3 405 0.050 0.061 0.067 0.12 0.13 0.13 

6.1 606 0.174 0.171 0.175 1.23 1.63 1.79 
6.2 506 0.252 0.226 0.236 1.16 1.32 1.43 
6.3 406 0.147 0.138 0.131 0.10 0.11 0.13 
7.1 607 0.735 0.282 0.303 0.79 0.93 0.96 
7.2 507 0.183 0.231 0.251 0.79 0.81 0.85 
7.3 407 0.303 0.255 0.245 0.11 0.11 0.11 
8.1 608 3.259 0.220 0.202 0.33 0.35 0.36 
8.2 508 0.227 0.254 0.204 0.15 0.17 0.20 
8.3 408 0.108 0.115 0.082 0.07 0.07 0.09 
9.1 609 0.385 0.019 0.048 0.00 0.00 0.00 
9.2 509 0.248 0.196 0.216 0.29 0.30 0.31 
9.3 409 0.314 0.184 0.171 0.35 0.38 0.40 
9.4 309 0.010 0.010 0.066 0.01 0.00 0.00 

10.1 510 0.024 0.033 0.016 0.03 0.02 0.04 
10.2 410 0.015 0.068 0.534 0.01 0.01 0.01 
10.3 310 0.010 0.015 0.049 0.01 0.00 0.00 
11.1 411 0.056 0.097 0.081 0.02 0.03 0.02 
11.2 311 0.010 0.017 0.084 0.02 0.01 0.00 
12 412 0.077 0.109 0.083 0.02 0.03 0.02 

Total NAPL Mass (Kg) 6.4 7.2 7.6 
A (PEST_HP, MLS only), B (PESTPP-iES, MLS only), C (PESTPP-iES, MLS and MD) 464 
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 465 

Long-term projections of MD using the posterior base realization of Model C (Table 2) are 466 

compared to the model calibrated by Mobile et al. (2012) in Figure 6. In both cases, multistage 467 

dissolution profiles emerged from the spatial distribution of NAPL mass and dissolution rates, as 468 

MD projections were produced with β = 0 (Equation 3). The mass transfer rates shown in Table 2 469 

encompassed the same order-of-magnitude range reported in Mobile et al. (2012), although the 470 

values determined in this study were lower by ~50% on average, reflecting the grid-scale 471 

dependence of estimated k0
N values. Specifically, the grid-block size in Mobile et al. (2012) of 500 472 

cm3 was also 50% smaller than the 1000 cm3 scale used in this study. Furthermore, stochastic 473 

model optimizations with more adjustable NAPL zones than available MLS ports, using 5-cm 474 

thick layers, resulted in mass overestimation by orders of magnitude and inconsistent k0
N and C0

N 475 

distributions (results not shown).  476 
 477 

3.2. FOSM-Analysis Results 478 
 479 

The worth of monitoring datasets for reducing prior uncertainty variance of NAPL mass is shown 480 

in Figure 7. This figure highlights the importance of TCM data for constraining NAPL mass in 481 

contrast to the negligible worth in the monitoring profiles of other dissolved components. 482 

Likewise, Figure 7 shows the increase in data worth for reducing prior uncertainty of NAPL mass 483 

by removing PDCs. Although the short-term TCM MLS signatures (< 130 days) alone constrained 484 

the prior uncertainty of NAPL mass by ~100%, adding the complete TCM MD signature (220 485 

days) improved mass estimates by spreading ε induced by water table fluctuations across all NAPL 486 

zones. Furthermore, Table 3 indicates a decrease in the worth of MLS ports commensurate with 487 

the S0
N of their corresponding upgradient NAPL zones. This apparent correlation reflected the 488 

similarity between the TCM dissolution profile of each MLS port and the TCM MD profile, 489 

emphasizing the indirect value of multilevel monitoring for characterizing NAPL distribution and 490 

reducing the uncertainty of source depletion rates.  491 

 492 
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 493 
Figure 6. Comparisons of long-term projections of MD profiles generated with the base parameter realization of 494 
model C (continuous lines) and the modeling results of Mobile et al. (2012) (dashed lines). All projections were 495 
generated with β = 0. In both cases, multistage behavior of NAPL depletion emerged from the NAPL architecture, 496 
which was constrained by the known mass and the post-experiment source footprint in Mobile et al. (2012). Small 497 
differences in long-term projections of source depletion emphasized the importance of constraining the source mass. 498 
 499 

 500 
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 501 
Figure 7. Percent worth of monitoring datasets for reducing the prior uncertainty of initial source mass. 502 

 503 
Table 3. Distribution of S0

N and worth of MLS ports for reducing prior uncertainty of NAPL mass. 504 
NAPL MLS Prior Uncertainty S0

N (%) S0
N (%) S0

N (%) 

Zone Port Variance Decrease A B C 
6.1 606 54.0% 9.7% 12.8% 14.0% 
6.2 506 42.6% 9.1% 10.4% 11.2% 
7.2 507 19.0% 6.2% 6.4% 6.7% 
7.1 607 15.7% 6.2% 7.3% 7.5% 
5.2 505 5.1% 4.6% 4.6% 5.1% 
8.1 608 4.0% 2.6% 2.8% 2.8% 
6.3 406 3.2% 0.8% 0.9% 1.0% 
7.3 407 2.7% 0.9% 0.9% 0.9% 
8.2 508 2.6% 1.2% 1.3% 1.6% 
9.3 409 2.4% 2.8% 3.0% 3.1% 
9.2 509 1.8% 2.3% 2.4% 2.4% 
5.1 605 1.5% 0.1% 0.1% 0.1% 
9.1 609 0.7% 0.0% 0.0% 0.0% 
9.4 309 0.6% 0.1% 0.0% 0.0% 
5.3 405 0.6% 1.0% 1.0% 1.0% 
8.3 408 0.3% 0.5% 0.5% 0.7% 

10.2 410 0.0% 0.1% 0.1% 0.1% 
10.1 510 0.0% 0.2% 0.2% 0.3% 
12 412 0.0% 0.1% 0.3% 0.2% 

11.1 411 0.0% 0.1% 0.2% 0.2% 
11.2 311 0.0% 0.1% 0.1% 0.0% 
10.3 310 0.0% 0.1% 0.0% 0.0% 

4 404 0.0% 1.1% 1.1% 1.1% 
A (PEST_HP, MLS only), B (PESTPP-iES, MLS only), C (PESTPP-iES, MLS and MD) 505 

 506 

An example of the worth of individual MLS and MD measurements for reducing the prior 507 

uncertainty of NAPL-zone parameters is presented in Figure 8. These results indicated opposite 508 

trends in the worth of aqueous-phase concentrations for estimating C0
N and k0

N. Maximum 509 
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concentrations constrained k0
N parameters, while declining concentrations constrained C0

N 510 

parameters accounting for NAPL mass. This explained why only TCM data significantly reduced 511 

the prior uncertainty of NAPL mass, as all MLS ports showed declining TCM concentrations 512 

(Figure 2). Similarly, ~30% (with PDCs) and ~40% (without PDCs) reductions in the prior 513 

uncertainty of NAPL mass by TCE MLS data (Figure 7) was attributed to MLS ports with 514 

approximately more than 100 g of NAPL mass (e.g., port 508 in Table 2 and Figure 3) and 515 

declining TCE concentrations. Conversely, Table 4 indicates parameters with a low RUVR 516 

corresponding to deeper NAPL zones accounting for less than 1% of total NAPL mass. The low 517 

RUVR values in Table 4 were also caused by narrower prior uncertainty bounds compared to those 518 

of other NAPL-zone parameters. As shown in Figure 8, NAPL zones harboring most of the NAPL 519 

mass (e.g., 6.1 and 6.2 in Table 3) also benefited from additional C0
N uncertainty reductions by 520 

TCM MD data, highlighting the contribution of those zones to the overall source depletion rates. 521 

 522 
Table 4. Source zone parameters with lower than 80% prior uncertainty variance reduction. 523 

MLS NAPL RUVR (with PDC) RUVR (without PDC) 

Port Zone C0
N kTCM,0

N C0
N kTCM,0

N 
605 5.1 65% > 80% 79% > 80% 
609 9.1 11% 13% 18% 22% 
309 9.4 11% 5% 17% 8% 
510 10.1 50% > 80% 67% > 80% 
410 10.2 > 80% 17% > 80% 18% 
310 10.3 12% 15% 18% 15% 
311 11.2 7% 1% 28% 1% 
NA kTCE,0

N NA 5% NA 8% 
NA kPCE,0

N NA 18% NA 30% 
 524 

 525 
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 526 
Figure 8. Percent worth of individual aqueous-phase concentrations (MLS port 606 and TCM MD) for reducing the 527 
prior uncertainty variance of C0

N and kTCM,0
N of NAPL zone 6.1. Although the same trend of added value by individual 528 

measurements was determined for all ports, only NAPL zones containing most of the source mass benefited from 529 
additional uncertainty reductions by TCM MD data. In turn, the correspondence between the TCM MD profile with 530 
individual MLS ports emphasized the value of multilevel monitoring for estimating NAPL architecture. 531 

 532 

Except for parameters listed in Table 4, history-matching reduced the prior uncertainty of all 533 

NAPL parameters by up to 100%. In contrast to C0
N parameters constrained by TCM data 534 

exclusively, maximum TCE and PCE concentrations also constrained k0,TCM
N parameters (Figure 535 

7). However, as indicated in Table 4, the prior uncertainty of k0,TCE
N and k0,PCE

N (global k0,TCM
N 536 

multipliers) was not reduced, partially because of their narrow prior uncertainty bounds. Yet the 537 

small RUVR of these mass transfer parameters was driven by their corresponding MLS datasets 538 

(results not shown). Moreover, while the mean values of both multipliers (Table 1) were in close 539 

agreement with those estimated by Mobile et al. (2012), as kTCE,0
N = 0.96 and k0,PCE

N = 0.85, FOSM 540 

analysis with Models A, B, and C suggested that kTCE,0
N could take a value greater than 1, which 541 

would not be consistent with previous findings (Mobile et al. 2012) or with mass transfer 542 

correlations with component diffusivities (Imhoff et al., 1993; Powers et al., 1992, 1994). As 543 

previously discussed, possible explanations for remaining uncertainties on kTCE,0
N and kPCE,0

N could 544 

include sub-grid-scale NAPL dissolution behavior, noticeable primarily in TCM MLS data, and/or 545 

the influence of grid scale on concentration gradients and αL,T (transverse and longitudinal). 546 

Transverse dispersion has been shown to regulate mass transfer rates from DNAPL pools (Hunt & 547 

Sitar, 1988, Stewart et al., 2021), requiring an ultrafine grid scale for accurate numerical 548 

simulations of DNAPL dissolution (Falta, 2003).  549 

 550 

3.3. Analysis of DNAPL Mass Depletion 551 
 552 

Table 5 presents mass balance results of NAPL mass removed by natural dissolution calculated 553 

using all models. The percent reductions of initial mass were calculated using the known initial 554 
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composition values. Despite differences in the estimated source zone architectures, Model C 555 

produced nearly identical results as Mobile et al. (2012), emphasizing the importance of 556 

constraining NAPL mass for estimating source depletion rates. Conversely, Model A resulted in a 557 

40% reduction of initial NAPL mass, almost doubling Model C results. Model C also indicated a 558 

source persistence at the end of the natural dissolution period ~4 and ~2 times lower than indicated 559 

by Models A and B, respectively, using PCE as reference. These results reflected the advantage of 560 

implementing prior Monte Carlo analyses to understand model deficiencies in relation to the 561 

observed system behavior. Additionally, Table 2 indicates the amount of NAPL mass eliminated 562 

by methanol remediation, calculated by subtracting the NAPL mass remaining in the soil estimated 563 

by Broholm et al. (1999) after conclusion of the experiment, from the remaining mass after 220 564 

days estimated with Model C. Differences in the methanol calculations were linked to post-565 

experiment mass estimated by Broholm et al. (1999) from Ci
N values assuming different SN values. 566 

The obvious impact that such differences would have on remedial designs at hazardous waste sites 567 

highlighted difficulties in measuring SN directly, even by soil confirmatory sampling. These results 568 

suggested value in the indirect source characterization method undertaken in this study to estimate 569 

and reduce the uncertainty of site-specific mass-transfer parameters, which is critical for effective, 570 

risk-based remedial optimizations.   571 

 572 
Table 5. Mass of NAPL removed.  573 

Data NAPL Mass Removed (kg) Initial NAPL Mass Reduction (%) 

Source TCM TCE PCE Total TCM TCE PCE Total 
Initial (injected) 0.74 2.92 4.04 7.70 0 0 0 0 

Model A 0.67 1.46 0.97 3.10 91 50 24 40 
Model B 0.63 1.10 0.55 2.28 85 38 14 30 
Model C 0.61 0.92 0.25 1.78 82 32 6 23 

Mobile et al. (2012) 0.59 0.91 0.24 1.74 80 31 6 23 
Methanol flush (1) 0.13 1.47 1.88 3.49 17 50 47 45 
Methanol flush (2) 0.13 1.18 0.80 2.11 17 40 20 27 

Mass removed by methanol flushing was calculated by subtracting post-experimental NAPL mass remaining in soil 574 
estimated by Broholm et al. (1999) with Ci

N values assuming (1) a homogeneous 3.6% SN in all excavation layers 575 
(Figure S1) and (2) assuming 20% SN in excavation layer 2 (where a DNAPL pool was observed), from the remaining 576 
NAPL mass on day 220 estimated with the posterior base realization of Model C. The percent reductions of initial 577 
NAPL mass were calculated with respect to the known initial composition of the mixture. 578 
 579 

4. Conclusions 580 
 581 

This study demonstrated the worth of high-resolution monitoring and inverse numerical modeling 582 

for characterizing a DNAPL source zone. The accuracy of estimated NAPL mass was tied to the 583 

depleting signature of MLS and MD aqueous-phase concentrations of the most soluble NAPL 584 

component and least by volume (TCM). At contaminated sites, decreasing concentrations may not 585 

reflect final NAPL dissolution stages, which could bias estimated parameters and long-term 586 

projections of source depletion. The impact of multiscale heterogeneity of NAPL architecture and 587 

dissolution on the uncertainty of model parameters was investigated with prior-based Monte Carlo 588 

analyses, where PDCs highlighted model limitations for representing sub-grid-scale mass transfer 589 

processes. Hence, multiscale heterogeneity of NAPL architecture and dissolution not captured in 590 

available monitoring profiles could limit model confidence for remedial-decision making at sites 591 

with large and architecturally complex source zones. These situations may benefit from the field 592 
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test proposed by Mobile et al. (2016) to determine mass transfer rate coefficients in situ. This test 593 

would induce breakthrough of nonequilibrium concentrations through forced hydraulic gradients 594 

and flushing in the source zone, generating monitoring profiles suitable for the inverse modeling 595 

techniques applied in this study. 596 

 597 

Breakthrough data collected from the mass transfer test described in Mobile et al. (2016) would 598 

also be useful for allocating grid-scale NAPL zones, similar to the model parameterization guided 599 

by MLS data in this study. In contrast to the simplified aquifer parameters in this work, spatially-600 

correlated hydraulic and transport properties can be characterized by geostatistical methods 601 

coupled with numerical modeling for management support of source zones in heterogeneous 602 

aquifers. Also, high-resolution NAPL delineation with MIP and LIF tools may further reduce 603 

uncertainties on source architecture, including residual saturations estimated with inverse 604 

numerical modeling. Furthermore, sites where natural attenuation mechanisms are significant may 605 

benefit from several monitoring transects along the flow direction to distinguish attenuation 606 

capacity from NAPL dissolution rates.  607 

 608 

Uncertainty analyses confirmed an inability to estimate the β depletion exponent for any NAPL 609 

zone despite declining TCM concentrations measured at all MLS ports. Thus, predictive 610 

timeframes of source mass depletion should include a variability range for β parameters with 611 

ensemble realizations, representing the transient nature of NAPL mass transfer rates in a stochastic 612 

manner. Several advantages of parameter optimization and uncertainty quantification with model 613 

ensembles were also demonstrated in this investigation. For example, while single parameter sets 614 

per each NAPL zone could not represent sub-grid-scale multistage dissolution profiles, removing 615 

early-stage TCM peak concentrations reduced the propensity for biasing mass transfer rates and 616 

improved the accuracy of NAPL mass estimation. Accuracy of mass estimation was also attained 617 

through parameter parsimony, as estimating NAPL-zone parameters without directly upgradient 618 

MLS ports produced inconsistent and erroneous results.  The importance of accurately constraining 619 

the source mass was emphasized in a similar projection of source depletion compared to Mobile 620 

et al. (2012), where multistage NAPL dissolution behavior in both models emerged from MLS 621 

constraints.  622 

 623 

Prior-based Monte Carlo and FOSM analyses suggested that simulating interphase mass transfer 624 

from NAPL mixtures may be influenced by grid scale, despite incorporating adjustable compound-625 

specific mass transfer rate coefficients. Specifically, FOSM results indicated no prior uncertainty 626 

reductions on the global multipliers of mass transfer rate coefficients, while kTCE,0
N showed a 627 

tendency to exceed its upper uncertainty limit in all models, potentially biasing source dissipation 628 

timeframes. Although these results did not prevent a reasonable estimation of initial source mass 629 

and consistent ranges of mass transfer rates, further research is required to investigate the impact 630 

of grid scale on dispersivity and mass transfer rate coefficients describing multicomponent NAPL 631 

dissolution of source zones with heterogeneous architectures (i.e., comprised by ganglia- and pool-632 

dominated accumulations of NAPL mass). As demonstrated, combining mass discharge/flux rates 633 

with high-resolution monitoring can improve history-matching of noisy data, where ensemble-634 

based parameter estimation considering measurement noise can reduce parameter bias without 635 

resorting to a more complex simulation of multiple subsurface processes, supporting the indirect 636 

characterization of NAPL source zones.  637 

 638 
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Key Points 13 
 14 

 Aqueous-phase concentrations monitored in a field experiment were simulated to quantify 15 

NAPL distribution and dissolution rates  16 

 Depletion profiles of the most soluble DNAPL component accurately constrained the source 17 

zone architecture 18 

 Multiscale heterogeneity of source zone architecture controlled the uncertainty of estimated 19 

mass transfer coefficients 20 

 21 

Abstract 22 
 23 

A numerical solute transport model was history matched to a high-resolution monitoring dataset 24 

to characterize a multicomponent source of nonaqueous phase liquids (NAPLs) and evaluate the 25 

uncertainty of estimated parameters. The dissolution of NAPL mass was simulated using the 26 

SEAM3D solute transport model with spatially-varying NAPL saturations and mass transfer rate 27 

coefficients, representing the heterogenous architecture of the source zone. Source zone 28 

parameters were simultaneously estimated using PEST from aqueous-phase concentrations 29 

measured in a multilevel monitoring transect and from mass recovery rates measured at extraction 30 

wells during a controlled field experiment. Data-worth analyses, facilitated by PEST ancillary 31 

software, linked maximum aqueous-phase concentrations of all compounds to reductions in prior 32 

uncertainty of mass transfer coefficients. In turn, transient concentrations of the most soluble 33 

NAPL fraction constrained the source mass estimation. Accurately estimating the source mass and 34 

reducing prior uncertainties was possible by removing concentrations measured during early 35 

NAPL dissolution stages, identified as prior-data conflicts using the iterative ensemble smoother 36 

PESTPP-iES. Prior-based Monte Carlo analyses highlighted model limitations for representing 37 

sub-grid-scale heterogeneity of source zone architecture and NAPL dissolution, yet history-38 

matching of final dissolution stages measured at multilevel ports eliminated parameter bias and 39 

produced long-term projections of source depletion with multistage behavior. Including mass 40 

discharge constraints further improved the accuracy of source mass estimation, complementing 41 

multilevel monitoring constraints on the source architecture and mass transfer coefficients. 42 

 43 

 44 

 45 

 46 
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Plain Language Summary 47 
 48 

Quantifying dissipation timeframes of DNAPL source zones and contaminant discharge rates is 49 

fundamental for environmental-management support. Both variables depend on the distribution of 50 

DNAPL mass (architecture) within the source zone, and cannot be quantified by direct observation 51 

methods. We elucidated upon the worth of multilevel monitoring for characterizing the source 52 

zone architecture of a field experiment with inverse numerical modeling of contaminant transport 53 

and DNAPL dissolution. Uncertainties on estimated DNAPL distribution and dissolution rates 54 

were primarily associated to variability in dissolved concentration trends at multiple scales. 55 

Dissolved concentration peaks measured during early DNAPL dissolution stages were found 56 

responsible for inducing model parameter and predictive errors. Yet the depleting signature of the 57 

least soluble component accurately constrained the source zone architecture, combining mass 58 

recovery rates with multilevel monitoring to reduce model uncertainties. Hence, our approach and 59 

results have beneficial implications for management support of aged source zones undergoing final 60 

depletion stages. 61 

 62 

Index Terms and Keywords 63 
 64 

1831 Groundwater Quality, 1846 Model calibration (3333), 1873 Uncertainty quantification 65 

(3275), 4314 Mathematical and computer modeling, 1815 Monitoring, forecasting, prediction 66 

(4315) 67 

 68 

DNAPL source zone, numerical modeling, uncertainty quantification, DNAPL mass transfer, 69 

source zone architecture, contaminant mass discharge 70 

 71 

1. Introduction 72 
 73 

Remediation and long-term dissipation of contaminant source zones comprised of dense 74 

nonaqueous phase liquids (DNAPLs) in the subsurface encompasses technical challenges related 75 

to uncertainty of DNAPL spatial distribution and dissolution rates (Kueper et al., 2014; Mayer & 76 

Hassanizadeh, 2005; NRC, 2005). Entrapped DNAPL mass and saturation distributions in the 77 

porous medium, referred to as the source zone “architecture”, are key parameters controlling 78 

source-zone longevity and depletion behavior (Dekker and Abriola, 2000; DiFilippo & Brusseau, 79 

2008). Typical multistage and nonmonotonic depletion profiles observed in monitoring data reflect 80 

the gradual dissolution of NAPL accumulations with characteristic saturations (Brusseau et al., 81 

2013; Kokkinaki et al., 2014; Stewart et al., 2021). Accumulations of low-saturation ganglia 82 

allowing for groundwater flow-through account for peaks of discharge concentrations at early 83 

NAPL dissolution stages, whereas high-saturation pools with negligible hydraulic accessibility 84 

account for dissolution tailing at the final stages of a source lifespan (Christ et al., 2010; Kueper 85 

et al., 2014; Yang et al. 2018). Thus, estimating the depletion behavior and remedial timeframes 86 

of a source zone requires knowledge on NAPL architecture, which is difficult to characterize with 87 

direct observation methods (Engelmann et al., 2019), but can be estimated from field tests and 88 

monitoring data using mathematical models of NAPL dissolution (Falta et al., 2005a, 2005b; 89 

Stewart et al., 2021).  90 

 91 
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Numerical modeling methods coupling groundwater flow and contaminant transport with NAPL 92 

dissolution have been used to estimate saturation distributions and mass transfer rate coefficients 93 

from monitoring data (Frind et al., 1999; Mobile et al., 2012; Saenton & illangasekare, 2004). 94 

Researchers have focused on estimating NAPL architecture or depletion timeframes from 95 

synthetically-generated source zones and aqueous-phase concentrations using several 96 

mathematical approaches to simulating mass transfer. Several studies considered either a local 97 

equilibrium assumption (LEA) or Gilland-Sherwood models of interphase mass transfer (Kang et 98 

al., 2021a, 2021b; Marble et al., 2008; Saenton & Illangasekare, 2004). The applicability of LEA 99 

in decision-support models is questionable because heterogeneity of aquifer hydraulic properties 100 

and DNAPL architecture can induce flow bypassing and mass transfer rate limitations, resulting 101 

in nonequilibrium concentrations typically observed at field sites (Falta, 2003; Kokkinaki et al., 102 

2013; Powers et al., 1992, 1994). Similarly, Gilland-Sherwood models rely on correlations 103 

between empirical coefficients and soil particle sizes that were determined under specific bench-104 

scale conditions, which may not be applicable to field-scale problems with different hydraulic 105 

conditions (Powers et al., 1994; Saenton & Illangasekare, 2007). Additional uncertainties on LEA 106 

and Gilland-Sherwood models include grid discretization requirements, as both approaches have 107 

been validated with pore-scale experimental data (Agaoglu et al., 2015; Falta, 2003).  108 

 109 

Upscaled models have been developed to simulate NAPL dissolution kinetics over a representative 110 

elementary volume (REV) incorporating source zone metrics (Christ et al., 2010; Marble et al., 111 

2008; Parker & Park, 2004; Saenton & Illangasekare, 2007; Stewart et al., 2021; Zhu & Skyes, 112 

2004). These metrics include NAPL mass and descriptions of source zone architecture in the form 113 

of areal dimensions of NAPL accumulations or the ganglia-to-pool (GTP) mass ratio metric 114 

(Abriola et al., 2013; DiFilippo & Brusseau, 2011). Because these metrics are difficult to measure 115 

at contaminated sites, upscaled models incorporating a spatially-varying lumped-process mass 116 

transfer coefficient have also been used to interpret monitoring data and predict source depletion 117 

timeframes (Guo et al., 2020; Marble et al., 2008; Mobile et al., 2012; Park & Parker, 2005). These 118 

models simplify the heterogeneity of porous media, aqueous-phase velocities, NAPL architecture, 119 

and dispersivity, into a single lumped-process parameter at the REV scale (Falta, 2003; Imhoff et 120 

al., 1993; Luciano et al., 2018). Although scale-dependent mass transfer rate coefficients may 121 

simplify grid discretization requirements, the parameterization of NAPL source zones for inverse 122 

numerical modeling and uncertainty quantification with spatially-correlated random parameter 123 

fields is not straightforward (Arshadi et al., 2020; Kang et al., 2021a, 2021b; Kock & Nowak, 124 

2015, 2016)  125 

 126 

Given that NAPL source zones have complex spatial morphologies with sharp saturation 127 

transitions at fine scales, traditional interpolation and geostatistical methods used in groundwater 128 

flow modeling may be not suitable for parameterizing NAPL source zones (Arshadi et al., 2020; 129 

Kang et al., 2021a). Alternative methods proposed for parameterizing NAPL source zones include 130 

deep learning algorithms trained with images of saturation distributions generated with multiphase 131 

flow simulations on highly-resolved permeability fields (Arshadi et al., 2020; Kang et al., 2021a, 132 

2021b), posing additional data requirements and uncertainties on porous media characteristics and 133 

model parameters (Abriola, 1989; Agaoglu et al., 2015; Miller et al., 1998). Moreover, these 134 

parameterization methods have been tested with synthetically-generated source zones to estimate 135 

categories of NAPL saturations through inverse modeling conditioned by borehole data (Arshadi 136 

et al., 2020), or by aqueous-phase concentrations under LEA (Kang et al., 2021a, 2021b). Although 137 
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these methods can generate physically-based, spatially-correlated categorical parameters, they are 138 

computationally expensive and require further validation and verification with field data. 139 

 140 

Numerical models with parsimoniously parameterized source zones have proved useful for 141 

characterizing NAPL architecture and/or lumped-process mass transfer coefficients (Marble et al., 142 

2008; Mobile et al., 2012; Saneton & Illangasekare, 2004). Moreover, combining multilevel 143 

monitoring with recovery rates of contaminant mass (or with conventional monitoring wells) can 144 

be valuable for characterizing heterogeneous NAPL architectures, as spatially-varying 145 

contaminant fluxes may be mapped to soil horizons harboring NAPL mass within a source zone 146 

(McMillan et al., 2018). Several studies have incorporated Gilland-Sherwood or upscaled mass 147 

transfer functions in discretized NAPL zones or in dual-domain models to estimate grid-scale 148 

parameters from multilevel monitoring data and/or mass discharge/flux measurements (Christ et 149 

al., 2010; Falta, 2003; Frind et al., 1999; Guo et al., 2020; Mobile et al., 2012; Park & Parker 2005; 150 

Saenton & Illangasekare, 2004). Although previous investigations have demonstrated the utility 151 

of parameterization parsimony for characterizing NAPL source architecture and dissolution rates 152 

with inverse modeling, the uncertainty of grid-scale parameters arising from the assimilation of 153 

high-resolution monitoring data has not been investigated.  154 

 155 

A primary objective in this numerical modeling study was to evaluate the worth of aqueous-phase 156 

concentrations monitored at a multilevel sampling (MLS) transect in combination with total mass 157 

discharge (MD) rates to quantify and reduce the uncertainty of the mass, architecture, and 158 

dissolution rates of a multicomponent DNAPL source. The field experiment considered in this 159 

study involved the creation a small-scale source zone with a heterogeneous architecture at the 160 

Borden experimental site (Broholm et al., 1999). Broholm et al. (2005) quantified the initial mass 161 

of the DNAPL mixture using multicomponent NAPL dissolution theory and mass balance 162 

analyses. Mobile et al. (2012) estimated the source architecture and dissolution rates from MD 163 

profiles and from a single, incomplete MLS nest, using an inverse modeling technique. They 164 

constrained the initial NAPL mass by the known amount and the source zone dimensions by the 165 

measured post-experimental footprint (Mobile et al., 2012). Our study expanded on both previous 166 

analyses by incorporating the entire MLS transect to infer the source footprint and to quantify 167 

initial NAPL mass, saturation distribution, and mass-transfer rate coefficients, while examining 168 

causality of parameter uncertainty. A secondary objective was to investigate model limitations for 169 

reproducing the observed system behavior, further elucidating upon monitoring data assimilation 170 

for source zone characterization with inverse numerical modeling, while minimizing the 171 

propensity for biasing timeframes of source zone persistence. 172 

 173 

2. Materials and Methods 174 
 175 

2.1. Overview of Field Experiment of Multicomponent DNAPL Dissolution 176 
 177 

This study incorporated a dataset documenting the dissolution of a DNAPL mixture in a field 178 

experiment (Broholm et al., 1999). At the Borden experimental site in Canada, a 5-liter (7.7 kg) 179 

mixture of dyed solvents (10% TCM, 40% TCE, and 50% PCE by volume) was injected at 180 

approximately 0.05 m below the water table into a 55 m3 (5.5 m long x 4.5 m wide x 2.3 m deep) 181 

unconfined aquifer test cell (Figure 1) comprised of medium- to fine-grained lacustrine sand with 182 

occasional beds of coarse sand/gravel and silt. Groundwater flow through the test cell, bounded 183 
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laterally by sheet piling on four sides, was maintained by a network of five upgradient injection 184 

and five downgradient extraction wells. The network was operated at approximately 360 L/d, 185 

generating a mean groundwater velocity of 0.13 m/d and horizontal hydraulic gradient of 0.023 ± 186 

0.0024. Aqueous-phase contaminant concentrations were monitored for 220 days in a fence of 187 

MLS ports (Figure 1) located approximately 2.1 m downgradient from the DNAPL release 188 

location. After 220 days of natural dissolution monitoring, a 5.5-day pulse of methanol was 189 

injected in the test cell to evaluate dissolution enhancement processes (Broholm et al., 1999; 190 

Broholm, 2006). The horizontal spacing of MLS ports was 0.5 m with a vertical spacing of 0.1 m, 191 

with screen lengths less than 1 cm.  192 

 193 

 194 
Figure 1. Configuration of aquifer test cell and its representation in the numerical model. (a) Plan view of all MLS 195 
nests and NAPL grid blocks encompassing the entire source zone footprint in the numerical model. (b) Test cell 196 

 197 

Flow-weighted concentrations were monitored at the extraction wells with screen lengths spanning 198 

the average height (1.82 m) of the saturated zone for 291 days. The cell was excavated 291 days 199 

after the mixture release to map the DNAPL distribution over 5-cm vertical intervals (Figures S1 200 

and S2) (Broholm et al., 1999). Broholm et al. (2005) compared estimates of initial NAPL mass 201 

calculated from the post-excavation source footprint and by multicomponent NAPL dissolution 202 

theory with mass balance analysis of effluent data and area- and depth-integrated MLS 203 

concentrations. Their best mass estimates ranged from 6.7 to 7.5 kg by averaging of MLS data, 204 

and differences between theoretical NAPL dissolution rates and effluent data were attributed to 205 

pre-flushing TCM dissolution and volatilization losses. Also, dissolved concentrations below 206 
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equilibrium levels observed throughout the experiment were attributed to dilution effects (Broholm 207 

et al., 2005). These results support kinetic mass transfer modeling coupled with uncertainty 208 

analyses for indirect characterization of NAPL source zones, as detailed, pore-scale process 209 

modeling and site characterization in this context is unfeasible for remedial-decision support at 210 

hazardous waste sites.  211 

 212 

2.2. Numerical Modeling of Groundwater Flow and Contaminant Transport 213 
 214 

A steady-state groundwater flow model was developed with MODFLOW2000 (Harbaugh et al., 215 

2000). The aquifer test cell was discretized in 23 layers with uniform grid blocks measuring 10 cm 216 

along all dimensions. As shown in Figure 1, the extent of the model domain matched the size of 217 

the test cell along the vertical dimension (Z-axis) and the horizontal dimension perpendicular to 218 

the flow direction (Y-axis). The horizontal dimension parallel to flow (X-axis) was reduced from 219 

5.5 m (test cell length) to 4.9 m for computational efficiency. Constant values of hydraulic 220 

conductivity, flow boundary conditions, and transport parameters were assigned to match field 221 

conditions, which were characterized with tracer tests and soil cores by Broholm et al. (1999) and 222 

analyzed with numerical modeling in Mobile et al. (2012). Model layers 1 through 3 were 223 

inactivated because the water table fell below the elevation of layer 3 during the monitoring period. 224 

Model layer 4 encompassed MLS port 504, which showed evidence of NAPL presence at 0.4 m 225 

below the top of the aquifer test cell despite the reported average depth of the water table during 226 

the experiment at ~0.48 m (Broholm et al., 1999). 227 

 228 

Dissolution of the multicomponent DNAPL source and aqueous-phase contaminant transport were 229 

simulated with SEAM3D (Waddill & Widdowson, 2000). Interphase mass transfer [M T-1 L-3] was 230 

simulated using a linear driving force model: 231 

 232 

 𝐽 𝑘 𝐶 𝐶  (1) 
 233 

where ki
N [T-1]is a lumped mass transfer rate coefficient specific to each NAPL phase constituent 234 

i, Ci
eq [M L-3] is the equilibrium solubility calculated according to Raoult’s Law, and Ci [M L-3] is 235 

the aqueous phase concentration. Equation 1 is coupled in SEAM3D to the following relationship 236 

representing NAPL dissolution from the soil medium into the aqueous phase: 237 

 238 

 𝐽 𝜌𝑏

𝑑𝐶
𝑑𝑡

 (2) 

 239 

where ρb [M L-3] is the bulk density of the soil and Ci
N [M M-1] is the NAPL mass of compound i 240 

per unit mass of dry soil. A modified version of SEAM3D incorporates the upscaled NAPL 241 

dissolution model developed by Parker and Park (2004) to simulate transient mass transfer rates: 242 

 243 

 𝑘 𝑘 ,
𝑞
𝐾

𝑀 𝑡
𝑀 ,

 (3) 

 244 

where ki,0
N = initial mass transfer rate coefficient [T-1], 𝑞 = average Darcy velocity [L T-1], 𝐾 = 245 

average hydraulic conductivity [L T-1], M(t)/M0 = transient ratio of NAPL mass [M M-1], α and β 246 

are dimensionless empirical parameters. Previous investigations have reported a linear relationship 247 
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between ki
N and 𝑞, with α = 1 (Parker & Park, 2004; Park & Parker, 2005). The transient mass 248 

ratio raised to the empirical depletion exponent β represents a reduction of NAPL/water interfacial 249 

areas over time, regulating tailing of discharge concentrations with reducing mass transfer rates as 250 

the source mass is depleted (Parker & Park, 2004; Stewart et al., 2020). A previous modeling study 251 

of the same Borden experiment indicated model insensitivity to the β exponent, attributed to a lack 252 

of extensive monitoring of decreasing discharge concentrations (Mobile et al., 2012). In this work, 253 

both the α and β parameters were set to zero to focus the uncertainty and data-worth analyses on 254 

the spatially-variable parameters ki,0
N and C0

N. Adjusting C0
N parameters allowed to estimate the 255 

initial mass (M0
N [M]) of the entire NAPL mixture and quantify its uncertainty, as SEAM3D 256 

generates an output of remaining NAPL mass in the source zone every time step using Equation 257 

4, by adding the mass of all grid blocks where a C0
N parameter value was assigned: 258 

 259 

 𝑀 𝑉 𝐶 𝜌  (4) 

 260 

where VN [L3] = NAPL zone volume. The source zone was represented with 23 NAPL zones 261 

(Figures S1 and S2) positioned upgradient of MLS ports which showed contaminant breakthrough, 262 

suggesting the upgradient presence of NAPL mass (Figures 2, 3, and 4). Each NAPL zone was 263 

comprised of 25 grid blocks (Figures S1 and S2) and was assigned one pair of adjustable 264 

parameters, k0
N and C0

N, representing uniform mass distribution and dissolution within each NAPL 265 

zone. The areal dimensions of all NAPL zones were designed as 0.5 m x 0.5 m on the horizontal 266 

plane representing the horizontal spacing of MLS ports, whereas vertical layers of 0.1 m 267 

represented the vertical spacing between ports. The location of NAPL zones was determined by 268 

contaminant travel times analyzed from MLS breakthrough data. Overall, the source distribution 269 

in the model encompassed the observed post-excavation footprint (Figures S1 and S2), which 270 

likely developed through vertical and downward NAPL migration throughout the experiment 271 

(Broholm et al., 1999, 2005).  272 

 273 

2.3. Parameter Estimation and Uncertainty Quantification 274 
 275 

For each NAPL zone, C0
N and k0

N were simultaneously estimated from monitoring data. In 276 

addition, two global k0
N multipliers to identify compound-specific mass transfer coefficients for 277 

TCE and PCE (kTCE,0
N and kPCE,0

N) were estimated as multipliers of kTCM,0
N for a total of 48 278 

adjustable source zone parameters. History-matching targets included 1,556 measurements of 279 

dissolved TCM, TCE, and PCE concentrations monitored at the MLS transect (Figure 1), out of 280 

4,770 measurements comprising the entire MLS dataset. The 1,566 MLS targets corresponded to 281 

23 ports including concentration measurements through 130 days (Figures 2, 3, and 4), when 282 

extraction well redevelopment abruptly increased the water table by 1 m causing significant data 283 

noise through 220 days (Broholm et al., 1999; Mobile et al., 2012). These MLS targets were 284 

grouped by sampling port and a weight of 1 was assigned to each aqueous-phase concentration 285 

measurement within each port. Additional constraints included 78 measurements of mass 286 

discharge rates monitored at extraction wells for 220 days (before methanol remediation was 287 

implemented). Mass discharge measurements were grouped by contaminant (i.e., three MD 288 

groups) and assigned uniform weights, balancing the initial error contribution of each group to the 289 

objective function (Φ). Specifically, individual measurements of MD were assigned a weight of 290 

250 within the TCM and TCE MD groups, whereas individual PCE MD measurements were 291 
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assigned a weight value of 500. This weighting strategy was designed to balance the visibility of 292 

MD groups with MLS ports for Φ minimization. 293 

 294 

An initial parameter estimation with PEST_HP (Doherty, 2020), which uses a parallelizable 295 

gradient-based optimization process, only included the MLS targets. All k0
N and C0

N parameters 296 

were log-transformed to facilitate the nonlinear optimization process. Bounds for C0
N parameters 297 

were designed as a function of initial NAPL saturation (S0
N [%]) of the pore space calculated as: 298 

 299 

 𝑆
𝜌 𝐶
𝜌 𝜃

 (5) 

 300 

where ρN [M L-3] is the NAPL density and θ is the soil porosity. Bounds for C0
N parameters were 301 

set as 0.05 < S0
N (%) < 25 for most NAPL zones, and as 0.05 < S0

N (%) < 5 for NAPL zones below 302 

layer 10 and in layer 4. The prior (pre-history matching) NAPL mass value was set as ~120 % 303 

greater than the known initial mass (7.7 kg). This prior value was established to evaluate whether 304 

initial history-matching of MLS data with PEST_HP could result in a total NAPL mass estimate 305 

close to the known value. Bounds for all k0
N (k0,TCM

N) parameters were set as 0.01 < k0
N (d-1) < 7.5 306 

following an order-of-magnitude range obtained through a simplified mass transfer correlation 307 

defined in Frind et al. (1999), where the dissolution of a large-scale DNAPL mixture in the Borden 308 

aquifer was simulated using a similar grid scale. Bounds for k0
N compound-specific multipliers 309 

were kept consistent with ratios determined by Mobile et al. (2012) as 0.95 < k0,TCE
N < 1 and 0.8 < 310 

k0,PCE
N < 0.95. 311 

 312 

The posterior uncertainty of NAPL mass was quantified with the iterative ensemble smoother 313 

PESTPP-iES (White et al., 2020). PESTPP-iES undertakes Monte-Carlo sampling of parameter 314 

uncertainty bounds generating ensembles which are upgraded with the Gauss-Levenberg-315 

Marquardt (GLM) optimization algorithm. Rather than fitting simulation results to data, PESTPP-316 

iES can generate observation ensembles considering a multi-gaussian distribution of measurement 317 

noise (ε) (White, 2018). Here, σε was defined as 5% of measured values. This stochastic approach 318 

was used for history-matching of (i) MLS data only, and (ii) both MLS and MD data, quantifying 319 

the posterior uncertainty of parameters (C0
N, k0

N ) and predictions (M0
N). In the following sections, 320 

Model A = optimized with PEST_HP using MLS data only, Model B = optimized with PESTPP-321 

iES using MLS data only, and Model C = optimized with PESTPP-iES combining MLS and MD 322 

data. 323 

 324 

Parameter bounds were used to define 95% confidence intervals of multi-gaussian prior probability 325 

distributions (PDF) of model parameters, assuming statistically-uncorrelated NAPL zones. The 326 

upper C0
N bounds for NAPL zones were reduced from 25% to 15% S0

N and initial parameter values 327 

were set from PEST_HP results. Prior to parameter upgrading, PESTPP-iES undertakes a prior-328 

based Monte Carlo analysis to detect “prior-data conflicts” (PDC), which are measurements that 329 

cannot be simulated with the structural and parametrization design of the model (White et al., 330 

2020, 2021). All PDCs flagged by PESTPP-iES were removed to eliminate history-matching 331 

induced bias, which would otherwise produce erroneous parameter values compensating for model 332 

defects (Doherty, 2015). Moreover, PESTPP-iES tracks the evolution of a "base realization” 333 

during the optimization process, corresponding to the initial parameter realization upgraded 334 
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without ε ensembles. Estimates of NAPL mass removed by natural dissolution produced by Model 335 

A were compared to estimates generated with the posterior base realization of Models B and C. 336 

 337 

2.4. Data-Worth Analysis 338 
 339 

First-order second-moment (FOSM) analysis was used to evaluate data worth for reducing the 340 

uncertainty of model parameters and predictions through history-matching. The GENLINPRED 341 

and PREDUNC utilities from the PEST software suite (Watermark Numerical Computing, 2018) 342 

were used for FOSM analyses. The primary assumption in FOSM analysis is model linearization 343 

expressed as: 344 

 345 

 𝐡 𝐙𝐤 𝛆 (6) 
 346 

which states that a vector of measurements of system state h (aqueous-phase concentrations) 347 

equals the action of the model Z (Jacobian sensitivity matrix weighted by σε
-1) on a vector of 348 

parameters k plus a vector of measurement noise ε (Doherty, 2015). In this case, σε
-1 was calculated 349 

on the basis of misfit between measurements and model outputs using the PEST-based utility 350 

PWTADJ2 (Watermark Numerical Computing, 2018) after history-matching. GENLINPRED and 351 

PREDUNC calculate the posterior uncertainty variance of model parameters through covariance 352 

propagation: 353 

 354 

 C’ 𝐤   C 𝐤 – C 𝐤 𝐙𝐭 𝐙C 𝐤 𝐙𝐭 C 𝛆 𝐙C 𝐤  (7) 
 355 

where the posterior covariance matrix C’(k) is obtained through history-matching (Doherty, 2015). 356 

In this case, the prior covariance matrix C(k) is diagonal with no spatial correlations between 357 

NAPL zones. The estimated initial NAPL mass, a SEAM3D output, was treated as a linearized 358 

model prediction: 359 

 360 

 𝑠 𝐲𝐭𝐤 (8) 
 361 

where y is a vector of sensitivities of s with respect to k. The prior (σs2) and posterior (σ’s2) 362 

uncertainty variances of s were calculated as: 363 

 364 

 σ 𝐲𝐭C 𝐤 𝐲 (9) 
 365 

 σ′ 𝐲𝐭C’ 𝐤 𝐲 (10) 
 366 

The worth of individual MLS ports for reducing prior parameter uncertainties was calculated with 367 

model A, whereas the worth of compound-specific MLS and MD datasets was calculated with the 368 

posterior base realization of model C. Model C was also used to quantify the worth of individual 369 

MLS and MD measurements and to quantify the relative uncertainty variance reduction (RUVR) 370 

of each parameter (i), defined as: 371 

 372 

 𝑅𝑈𝑉𝑅 1
𝜎′
𝜎

 (11) 

 373 
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where σi
2 are prior parameter variances encapsulated in C(k) and σ’i

2 are posterior parameter 374 

variances extracted from C’(k) (Doherty, 2015).  375 

 376 

3. Results and Discussion 377 
 378 

3.1. Parameter Estimation and Uncertainty Quantification 379 
 380 

A comparison of estimated NAPL mass and k0
N multipliers is presented in Table 1. In general, the 381 

known NAPL mass (7.7 Kg) was underestimated (6.4 – 7.2 Kg) when history-matching to MLS 382 

data only, particularly with gradient-based optimization (PEST_HP). An improvement in the 383 

accuracy of mass estimation with PESTPP-iES was achieved through the removal of 206 PDC 384 

values flagged by PESTPP-iES (Figures 2, 3, and 4) comprising 13% of the MLS constraints. 385 

Likewise, 10 PDCs (Figure 5) representing 13% of the MD dataset were also flagged by PESTPP-386 

iES and removed for history-matching. Including the MD constraints resulted in an excellent 387 

agreement with the known initial source mass, which was encompassed by 95% confidence limits 388 

(Table 1). Prior-based Monte Carlo results suggested that emphasizing early peak concentrations 389 

for history-matching can result in underestimation of NAPL mass and overestimation (bias) of k0
N 390 

values, leading to underestimation of source dissipation timeframes. In this case, removing PDC 391 

values, rather than modifying the model design, was sufficient to accurately estimate NAPL mass 392 

and constrain mass transfer coefficients. 393 

 394 
Table 1. Model-estimated DNAPL mass and k0

N multipliers. 395 

Parameter/Prediction 
PEST_HP  
(A: MLS) 

PESTPP-iES  
(B: MLS) 

PESTPP-iES  
(C: MLS and MD) 

Mass (Kg) 6.367 
μ = 7.187 
σ = 0.120 

μ = 7.626 
σ = 0.110 

k0,TCE
N (d-1) 

1.00 
μ = 0.99 

σ = 0.006 
μ = 0.99 

σ = 0.005 
k0,PCE

N (d-1) 
0.95 

μ = 0.93 
σ = 0.018 

μ = 0.88 
σ = 0.017 

μ = mean estimated value. σ = standard deviation of estimated parameters (k0
N) and predictions (Mass). 396 

 397 
 398 

 399 
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 400 
Figure 2. Comparison of measured (circles) and simulated (lines) aqueous-phase TCM concentrations at the MLS 401 
fence. Simulation results correspond to the posterior base realization of model C, including MLS and MD constraints. 402 
Empty circles correspond to concentrations ignored for history-matching because of significant measurement noise 403 
induced by water table fluctuations after 130 days of monitoring. The dashed lines correspond to simulated values 404 
beyond 130 days, informed by MD data exclusively. Black-filled circles are prior-data conflicts removed from the 405 
history-matching process to avoid parameter bias.   406 
 407 
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 408 
Figure 3. Comparison of measured (circles) and simulated (lines) aqueous-phase TCE concentrations at the MLS 409 
fence. Simulation results correspond to the posterior base realization of model C, including MLS and MD constraints. 410 
Empty circles correspond to concentrations ignored for history-matching because of significant measurement noise 411 
induced by water table fluctuations after 130 days of monitoring. The dashed lines correspond to simulated values 412 
beyond 130 days, informed by MD data exclusively. Red-filled circles are prior-data conflicts removed from the 413 
history-matching process to avoid parameter bias.   414 

 415 
 416 
 417 
 418 
 419 
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 420 
Figure 4. Comparison of measured (circles) and simulated (lines) aqueous-phase PCE concentrations at the MLS 421 
fence. Simulation results correspond to the posterior base realization of model C, including MLS and MD constraints. 422 
Empty circles correspond to concentrations ignored for history-matching because of significant measurement noise 423 
induced by water table fluctuations after 130 days of monitoring. The dashed lines correspond to simulated values 424 
beyond 130 days, informed by MD data exclusively. Green-filled circles are prior-data conflicts removed from the 425 
history-matching process to avoid parameter bias.   426 
 427 

Prior-data conflicts pertaining to each dissolved NAPL component were detected at similar 428 

locations along the MLS and MD profiles (Figures 2 through 5). Most PDCs corresponded to initial 429 

TCM concentration peaks, some were detected along TCE breakthrough, and a few before PCE 430 

breakthrough. This may have been associated to propagation rates of component-specific mass 431 
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transfer zones in the NAPL as the source architecture developed. In theory, the dissolution process 432 

of NAPL mixtures has been described as a chromatographic process, where component-specific 433 

mass transfer zones propagate at different velocities through NAPL accumulations as a function 434 

of their local solubilities and their length along the principal flow direction (Geller & Hunt, 1993; 435 

Soerens et al., 1998). In practice, the numerical discretization of NAPL zones along the flow 436 

direction may influence the estimation of k0
N values, as grid-scale concentration gradients 437 

(Equation 1) would also regulate the sequential mass transfer process for any prescribed q (Darcy 438 

velocity) and αL,T (dispersivity) values (Falta, 2003; Frind et al., 1999; Hunt & Sitar, 1988). In this 439 

work, the unknown source zone architecture along the flow direction may have placed additional 440 

uncertainties on q, αL,T, and ki,0
N parameters, which regulate overall NAPL mass transfer at the grid 441 

scale (Rivett & Feenstra, 2005). 442 

 443 

 444 
Figure 5. Posterior ensembles of MD profiles generated with model C. 445 
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 446 

Table 1 indicates that both ki,0
N multipliers estimated with Model A showed a tendency to reach 447 

their upper bounds. Only the values of kPCE,0
N estimated with PESTPP-iES were constrained within 448 

their prior uncertainty bounds (Table 1). In addition to the uncertain effects of grid scale on 449 

potential parameter bias, multistage NAPL dissolution below the MLS scale may have impacted 450 

posterior results. For example, inspecting the TCM signature of ports 506 and 507 in Figure 2 451 

suggested two slopes of declining concentrations before 130 days. An initially steep slope between 452 

the concentration peaks through day 50, followed by a more gradual slope through day 130, 453 

suggested heterogeneity of NAPL architecture and dissolution below the MLS scale. Despite 454 

removing PDCs, sub-grid-scale multistage NAPL dissolution cannot be adequately simulated with 455 

a single parameter set (C0
N, k0

N) per NAPL zone. This explained why model A produced lower 456 

mass estimates with an increased propensity for biasing (overestimating) kTCM,0
N parameters (e.g., 457 

port 608 in Table 2), whereas model B (PDC targets removed) produced kTCM,0
N values consistent 458 

with model C (Table 2). Although these results suggested that a dual-domain approach may have 459 

better captured TCM profiles at MLS ports, removing PDCs to estimate a single-domain 460 

parameters accurately constrained NAPL mass and a consistent range of k0,TCM
N values.   461 

 462 
Table 2. Distribution of estimated DNAPL mass and mass transfer coefficients 463 

NAPL MLS kTCM,0
N (day-1) NAPL Mass (Kg) 

Zone Port A B C A B C 
4 404 0.037 0.041 0.041 0.14 0.14 0.15 

5.1 605 0.038 0.029 0.037 0.02 0.02 0.01 
5.2 505 0.102 0.104 0.106 0.59 0.59 0.64 

5.3 405 0.050 0.061 0.067 0.12 0.13 0.13 

6.1 606 0.174 0.171 0.175 1.23 1.63 1.79 
6.2 506 0.252 0.226 0.236 1.16 1.32 1.43 
6.3 406 0.147 0.138 0.131 0.10 0.11 0.13 
7.1 607 0.735 0.282 0.303 0.79 0.93 0.96 
7.2 507 0.183 0.231 0.251 0.79 0.81 0.85 
7.3 407 0.303 0.255 0.245 0.11 0.11 0.11 
8.1 608 3.259 0.220 0.202 0.33 0.35 0.36 
8.2 508 0.227 0.254 0.204 0.15 0.17 0.20 
8.3 408 0.108 0.115 0.082 0.07 0.07 0.09 
9.1 609 0.385 0.019 0.048 0.00 0.00 0.00 
9.2 509 0.248 0.196 0.216 0.29 0.30 0.31 
9.3 409 0.314 0.184 0.171 0.35 0.38 0.40 
9.4 309 0.010 0.010 0.066 0.01 0.00 0.00 

10.1 510 0.024 0.033 0.016 0.03 0.02 0.04 
10.2 410 0.015 0.068 0.534 0.01 0.01 0.01 
10.3 310 0.010 0.015 0.049 0.01 0.00 0.00 
11.1 411 0.056 0.097 0.081 0.02 0.03 0.02 
11.2 311 0.010 0.017 0.084 0.02 0.01 0.00 
12 412 0.077 0.109 0.083 0.02 0.03 0.02 

Total NAPL Mass (Kg) 6.4 7.2 7.6 
A (PEST_HP, MLS only), B (PESTPP-iES, MLS only), C (PESTPP-iES, MLS and MD) 464 
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 465 

Long-term projections of MD using the posterior base realization of Model C (Table 2) are 466 

compared to the model calibrated by Mobile et al. (2012) in Figure 6. In both cases, multistage 467 

dissolution profiles emerged from the spatial distribution of NAPL mass and dissolution rates, as 468 

MD projections were produced with β = 0 (Equation 3). The mass transfer rates shown in Table 2 469 

encompassed the same order-of-magnitude range reported in Mobile et al. (2012), although the 470 

values determined in this study were lower by ~50% on average, reflecting the grid-scale 471 

dependence of estimated k0
N values. Specifically, the grid-block size in Mobile et al. (2012) of 500 472 

cm3 was also 50% smaller than the 1000 cm3 scale used in this study. Furthermore, stochastic 473 

model optimizations with more adjustable NAPL zones than available MLS ports, using 5-cm 474 

thick layers, resulted in mass overestimation by orders of magnitude and inconsistent k0
N and C0

N 475 

distributions (results not shown).  476 
 477 

3.2. FOSM-Analysis Results 478 
 479 

The worth of monitoring datasets for reducing prior uncertainty variance of NAPL mass is shown 480 

in Figure 7. This figure highlights the importance of TCM data for constraining NAPL mass in 481 

contrast to the negligible worth in the monitoring profiles of other dissolved components. 482 

Likewise, Figure 7 shows the increase in data worth for reducing prior uncertainty of NAPL mass 483 

by removing PDCs. Although the short-term TCM MLS signatures (< 130 days) alone constrained 484 

the prior uncertainty of NAPL mass by ~100%, adding the complete TCM MD signature (220 485 

days) improved mass estimates by spreading ε induced by water table fluctuations across all NAPL 486 

zones. Furthermore, Table 3 indicates a decrease in the worth of MLS ports commensurate with 487 

the S0
N of their corresponding upgradient NAPL zones. This apparent correlation reflected the 488 

similarity between the TCM dissolution profile of each MLS port and the TCM MD profile, 489 

emphasizing the indirect value of multilevel monitoring for characterizing NAPL distribution and 490 

reducing the uncertainty of source depletion rates.  491 

 492 
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 493 
Figure 6. Comparisons of long-term projections of MD profiles generated with the base parameter realization of 494 
model C (continuous lines) and the modeling results of Mobile et al. (2012) (dashed lines). All projections were 495 
generated with β = 0. In both cases, multistage behavior of NAPL depletion emerged from the NAPL architecture, 496 
which was constrained by the known mass and the post-experiment source footprint in Mobile et al. (2012). Small 497 
differences in long-term projections of source depletion emphasized the importance of constraining the source mass. 498 
 499 

 500 
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 501 
Figure 7. Percent worth of monitoring datasets for reducing the prior uncertainty of initial source mass. 502 

 503 
Table 3. Distribution of S0

N and worth of MLS ports for reducing prior uncertainty of NAPL mass. 504 
NAPL MLS Prior Uncertainty S0

N (%) S0
N (%) S0

N (%) 

Zone Port Variance Decrease A B C 
6.1 606 54.0% 9.7% 12.8% 14.0% 
6.2 506 42.6% 9.1% 10.4% 11.2% 
7.2 507 19.0% 6.2% 6.4% 6.7% 
7.1 607 15.7% 6.2% 7.3% 7.5% 
5.2 505 5.1% 4.6% 4.6% 5.1% 
8.1 608 4.0% 2.6% 2.8% 2.8% 
6.3 406 3.2% 0.8% 0.9% 1.0% 
7.3 407 2.7% 0.9% 0.9% 0.9% 
8.2 508 2.6% 1.2% 1.3% 1.6% 
9.3 409 2.4% 2.8% 3.0% 3.1% 
9.2 509 1.8% 2.3% 2.4% 2.4% 
5.1 605 1.5% 0.1% 0.1% 0.1% 
9.1 609 0.7% 0.0% 0.0% 0.0% 
9.4 309 0.6% 0.1% 0.0% 0.0% 
5.3 405 0.6% 1.0% 1.0% 1.0% 
8.3 408 0.3% 0.5% 0.5% 0.7% 

10.2 410 0.0% 0.1% 0.1% 0.1% 
10.1 510 0.0% 0.2% 0.2% 0.3% 
12 412 0.0% 0.1% 0.3% 0.2% 

11.1 411 0.0% 0.1% 0.2% 0.2% 
11.2 311 0.0% 0.1% 0.1% 0.0% 
10.3 310 0.0% 0.1% 0.0% 0.0% 

4 404 0.0% 1.1% 1.1% 1.1% 
A (PEST_HP, MLS only), B (PESTPP-iES, MLS only), C (PESTPP-iES, MLS and MD) 505 

 506 

An example of the worth of individual MLS and MD measurements for reducing the prior 507 

uncertainty of NAPL-zone parameters is presented in Figure 8. These results indicated opposite 508 

trends in the worth of aqueous-phase concentrations for estimating C0
N and k0

N. Maximum 509 



19 
 

concentrations constrained k0
N parameters, while declining concentrations constrained C0

N 510 

parameters accounting for NAPL mass. This explained why only TCM data significantly reduced 511 

the prior uncertainty of NAPL mass, as all MLS ports showed declining TCM concentrations 512 

(Figure 2). Similarly, ~30% (with PDCs) and ~40% (without PDCs) reductions in the prior 513 

uncertainty of NAPL mass by TCE MLS data (Figure 7) was attributed to MLS ports with 514 

approximately more than 100 g of NAPL mass (e.g., port 508 in Table 2 and Figure 3) and 515 

declining TCE concentrations. Conversely, Table 4 indicates parameters with a low RUVR 516 

corresponding to deeper NAPL zones accounting for less than 1% of total NAPL mass. The low 517 

RUVR values in Table 4 were also caused by narrower prior uncertainty bounds compared to those 518 

of other NAPL-zone parameters. As shown in Figure 8, NAPL zones harboring most of the NAPL 519 

mass (e.g., 6.1 and 6.2 in Table 3) also benefited from additional C0
N uncertainty reductions by 520 

TCM MD data, highlighting the contribution of those zones to the overall source depletion rates. 521 

 522 
Table 4. Source zone parameters with lower than 80% prior uncertainty variance reduction. 523 

MLS NAPL RUVR (with PDC) RUVR (without PDC) 

Port Zone C0
N kTCM,0

N C0
N kTCM,0

N 
605 5.1 65% > 80% 79% > 80% 
609 9.1 11% 13% 18% 22% 
309 9.4 11% 5% 17% 8% 
510 10.1 50% > 80% 67% > 80% 
410 10.2 > 80% 17% > 80% 18% 
310 10.3 12% 15% 18% 15% 
311 11.2 7% 1% 28% 1% 
NA kTCE,0

N NA 5% NA 8% 
NA kPCE,0

N NA 18% NA 30% 
 524 

 525 
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 526 
Figure 8. Percent worth of individual aqueous-phase concentrations (MLS port 606 and TCM MD) for reducing the 527 
prior uncertainty variance of C0

N and kTCM,0
N of NAPL zone 6.1. Although the same trend of added value by individual 528 

measurements was determined for all ports, only NAPL zones containing most of the source mass benefited from 529 
additional uncertainty reductions by TCM MD data. In turn, the correspondence between the TCM MD profile with 530 
individual MLS ports emphasized the value of multilevel monitoring for estimating NAPL architecture. 531 

 532 

Except for parameters listed in Table 4, history-matching reduced the prior uncertainty of all 533 

NAPL parameters by up to 100%. In contrast to C0
N parameters constrained by TCM data 534 

exclusively, maximum TCE and PCE concentrations also constrained k0,TCM
N parameters (Figure 535 

7). However, as indicated in Table 4, the prior uncertainty of k0,TCE
N and k0,PCE

N (global k0,TCM
N 536 

multipliers) was not reduced, partially because of their narrow prior uncertainty bounds. Yet the 537 

small RUVR of these mass transfer parameters was driven by their corresponding MLS datasets 538 

(results not shown). Moreover, while the mean values of both multipliers (Table 1) were in close 539 

agreement with those estimated by Mobile et al. (2012), as kTCE,0
N = 0.96 and k0,PCE

N = 0.85, FOSM 540 

analysis with Models A, B, and C suggested that kTCE,0
N could take a value greater than 1, which 541 

would not be consistent with previous findings (Mobile et al. 2012) or with mass transfer 542 

correlations with component diffusivities (Imhoff et al., 1993; Powers et al., 1992, 1994). As 543 

previously discussed, possible explanations for remaining uncertainties on kTCE,0
N and kPCE,0

N could 544 

include sub-grid-scale NAPL dissolution behavior, noticeable primarily in TCM MLS data, and/or 545 

the influence of grid scale on concentration gradients and αL,T (transverse and longitudinal). 546 

Transverse dispersion has been shown to regulate mass transfer rates from DNAPL pools (Hunt & 547 

Sitar, 1988, Stewart et al., 2021), requiring an ultrafine grid scale for accurate numerical 548 

simulations of DNAPL dissolution (Falta, 2003).  549 

 550 

3.3. Analysis of DNAPL Mass Depletion 551 
 552 

Table 5 presents mass balance results of NAPL mass removed by natural dissolution calculated 553 

using all models. The percent reductions of initial mass were calculated using the known initial 554 
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composition values. Despite differences in the estimated source zone architectures, Model C 555 

produced nearly identical results as Mobile et al. (2012), emphasizing the importance of 556 

constraining NAPL mass for estimating source depletion rates. Conversely, Model A resulted in a 557 

40% reduction of initial NAPL mass, almost doubling Model C results. Model C also indicated a 558 

source persistence at the end of the natural dissolution period ~4 and ~2 times lower than indicated 559 

by Models A and B, respectively, using PCE as reference. These results reflected the advantage of 560 

implementing prior Monte Carlo analyses to understand model deficiencies in relation to the 561 

observed system behavior. Additionally, Table 2 indicates the amount of NAPL mass eliminated 562 

by methanol remediation, calculated by subtracting the NAPL mass remaining in the soil estimated 563 

by Broholm et al. (1999) after conclusion of the experiment, from the remaining mass after 220 564 

days estimated with Model C. Differences in the methanol calculations were linked to post-565 

experiment mass estimated by Broholm et al. (1999) from Ci
N values assuming different SN values. 566 

The obvious impact that such differences would have on remedial designs at hazardous waste sites 567 

highlighted difficulties in measuring SN directly, even by soil confirmatory sampling. These results 568 

suggested value in the indirect source characterization method undertaken in this study to estimate 569 

and reduce the uncertainty of site-specific mass-transfer parameters, which is critical for effective, 570 

risk-based remedial optimizations.   571 

 572 
Table 5. Mass of NAPL removed.  573 

Data NAPL Mass Removed (kg) Initial NAPL Mass Reduction (%) 

Source TCM TCE PCE Total TCM TCE PCE Total 
Initial (injected) 0.74 2.92 4.04 7.70 0 0 0 0 

Model A 0.67 1.46 0.97 3.10 91 50 24 40 
Model B 0.63 1.10 0.55 2.28 85 38 14 30 
Model C 0.61 0.92 0.25 1.78 82 32 6 23 

Mobile et al. (2012) 0.59 0.91 0.24 1.74 80 31 6 23 
Methanol flush (1) 0.13 1.47 1.88 3.49 17 50 47 45 
Methanol flush (2) 0.13 1.18 0.80 2.11 17 40 20 27 

Mass removed by methanol flushing was calculated by subtracting post-experimental NAPL mass remaining in soil 574 
estimated by Broholm et al. (1999) with Ci

N values assuming (1) a homogeneous 3.6% SN in all excavation layers 575 
(Figure S1) and (2) assuming 20% SN in excavation layer 2 (where a DNAPL pool was observed), from the remaining 576 
NAPL mass on day 220 estimated with the posterior base realization of Model C. The percent reductions of initial 577 
NAPL mass were calculated with respect to the known initial composition of the mixture. 578 
 579 

4. Conclusions 580 
 581 

This study demonstrated the worth of high-resolution monitoring and inverse numerical modeling 582 

for characterizing a DNAPL source zone. The accuracy of estimated NAPL mass was tied to the 583 

depleting signature of MLS and MD aqueous-phase concentrations of the most soluble NAPL 584 

component and least by volume (TCM). At contaminated sites, decreasing concentrations may not 585 

reflect final NAPL dissolution stages, which could bias estimated parameters and long-term 586 

projections of source depletion. The impact of multiscale heterogeneity of NAPL architecture and 587 

dissolution on the uncertainty of model parameters was investigated with prior-based Monte Carlo 588 

analyses, where PDCs highlighted model limitations for representing sub-grid-scale mass transfer 589 

processes. Hence, multiscale heterogeneity of NAPL architecture and dissolution not captured in 590 

available monitoring profiles could limit model confidence for remedial-decision making at sites 591 

with large and architecturally complex source zones. These situations may benefit from the field 592 
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test proposed by Mobile et al. (2016) to determine mass transfer rate coefficients in situ. This test 593 

would induce breakthrough of nonequilibrium concentrations through forced hydraulic gradients 594 

and flushing in the source zone, generating monitoring profiles suitable for the inverse modeling 595 

techniques applied in this study. 596 

 597 

Breakthrough data collected from the mass transfer test described in Mobile et al. (2016) would 598 

also be useful for allocating grid-scale NAPL zones, similar to the model parameterization guided 599 

by MLS data in this study. In contrast to the simplified aquifer parameters in this work, spatially-600 

correlated hydraulic and transport properties can be characterized by geostatistical methods 601 

coupled with numerical modeling for management support of source zones in heterogeneous 602 

aquifers. Also, high-resolution NAPL delineation with MIP and LIF tools may further reduce 603 

uncertainties on source architecture, including residual saturations estimated with inverse 604 

numerical modeling. Furthermore, sites where natural attenuation mechanisms are significant may 605 

benefit from several monitoring transects along the flow direction to distinguish attenuation 606 

capacity from NAPL dissolution rates.  607 

 608 

Uncertainty analyses confirmed an inability to estimate the β depletion exponent for any NAPL 609 

zone despite declining TCM concentrations measured at all MLS ports. Thus, predictive 610 

timeframes of source mass depletion should include a variability range for β parameters with 611 

ensemble realizations, representing the transient nature of NAPL mass transfer rates in a stochastic 612 

manner. Several advantages of parameter optimization and uncertainty quantification with model 613 

ensembles were also demonstrated in this investigation. For example, while single parameter sets 614 

per each NAPL zone could not represent sub-grid-scale multistage dissolution profiles, removing 615 

early-stage TCM peak concentrations reduced the propensity for biasing mass transfer rates and 616 

improved the accuracy of NAPL mass estimation. Accuracy of mass estimation was also attained 617 

through parameter parsimony, as estimating NAPL-zone parameters without directly upgradient 618 

MLS ports produced inconsistent and erroneous results.  The importance of accurately constraining 619 

the source mass was emphasized in a similar projection of source depletion compared to Mobile 620 

et al. (2012), where multistage NAPL dissolution behavior in both models emerged from MLS 621 

constraints.  622 

 623 

Prior-based Monte Carlo and FOSM analyses suggested that simulating interphase mass transfer 624 

from NAPL mixtures may be influenced by grid scale, despite incorporating adjustable compound-625 

specific mass transfer rate coefficients. Specifically, FOSM results indicated no prior uncertainty 626 

reductions on the global multipliers of mass transfer rate coefficients, while kTCE,0
N showed a 627 

tendency to exceed its upper uncertainty limit in all models, potentially biasing source dissipation 628 

timeframes. Although these results did not prevent a reasonable estimation of initial source mass 629 

and consistent ranges of mass transfer rates, further research is required to investigate the impact 630 

of grid scale on dispersivity and mass transfer rate coefficients describing multicomponent NAPL 631 

dissolution of source zones with heterogeneous architectures (i.e., comprised by ganglia- and pool-632 

dominated accumulations of NAPL mass). As demonstrated, combining mass discharge/flux rates 633 

with high-resolution monitoring can improve history-matching of noisy data, where ensemble-634 

based parameter estimation considering measurement noise can reduce parameter bias without 635 

resorting to a more complex simulation of multiple subsurface processes, supporting the indirect 636 

characterization of NAPL source zones.  637 

 638 
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𝐶  M L-3 Aqueous phase concentration of species k 
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Figure S1. Plan and cross-sectional views of aquifer test cell (adapted from Broholm et al. 1999). 
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Figure S2. Grid-scale NAPL zones in model layers 4 through 7. All NAPL zones measured 0.5 m x 0.5 m on the 
horizontal plane, encompassing 25 grid blocks. Model layers measured 0.1 m along the Z-axis representing the vertical 
spacing between MLS ports. The post-experimental NAPL footprint mapped in 0.05-m vertical increments 
(excavation layers) by Broholm et al. (1999) was included for reference. 
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Figure S3. Grid-scale NAPL zones in model layers 8 through 12. 
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Table S1. Input parameters of groundwater flow and solute transport model including NAPL properties 

Model Parameter Value Data Source 
Hydraulic conductivity (m/d) 2.0 Broholm et al. 1999 
Porosity (%) 33.0 Broholm et al. 1999 
Longitudinal dispersivity (cm) 5.0 Mobile et al. 2012 
Transverse horizontal dispersivity (cm) 0.5 Mobile et al. 2012 
Transverse vertical dispersivity (cm) 0.05 Mobile et al. 2012 
TCM sorption coefficient (m3/g) 3.0 x 10-8 Mobile et al. 2012 
TCE sorption coefficient (m3/g) 5.0 x 10-8 Mobile et al. 2012 
PCE sorption coefficient (m3/g) 1.3 x 10-7 Mobile et al. 2012 
Soil bulk density (g/m3) 1.65 x 106 Mobile et al. 2012 
TCM initial NAPL mass fraction (%) 9.60 Broholm et al. 1999 
TCE initial NAPL mass fraction (%) 37.9 Broholm et al. 1999 
PCE initial NAPL mass fraction (%) 52.5 Broholm et al. 1999 
TCM ideal solubility (mg/L) 8700 Broholm et al. 1999 
TCE ideal solubility (mg/L) 1400 Broholm et al. 1999 
PCE ideal solubility (mg/L) 240 Broholm et al. 1999 
TCM molecular weight (g/mol) 119.4 Rivett et al. 2001 
TCE molecular weight (g/mol) 131.4 Rivett et al. 2001 
PCE molecular weight (g/mol) 165.8 Rivett et al. 2001 
TCM density (g/cm3) 1.48 Broholm et al. 1999 
TCE density (g/cm3) 1.46 Broholm et al. 1999 
PCE density (g/cm3) 1.62 Broholm et al. 1999 

 
Table S2. Parameter values used to calculate percentages of initial NAPL mass removed by natural dissolution and 

methanol flushing presented in Table 5. 

Parameter TCM TCE PCE Total Source 
Initial NAPL (L) 0.48 1.895 2.625 5 Mobile et al. (2012) 
Initial NAPL (g) 739.2 2918.3 4042.5 7700 Mobile et al. (2012) 

Remaining NAPL (L) (1) 0.001 0.34 1.24 1.58 
Broholm et al. 
(1999) 

Remaining/Initial NAPL (1) 0.002 0.179 0.472 0.32 Calculated 
Remaining NAPL (g) (1) 1.54 523.6 1909.6 2434.74 Calculated 
Remaining NAPL Fractions (1) 0.0006 0.2151 0.7843 1 Calculated 

Remaining NAPL (L) (2) 0.002 0.532 1.940 2.47^ 

Calculated / 
Broholm et al. 
(1999) 

Remaining/Initial NAPL (2) 0.0033 0.2807 0.7390 0.49 Calculated 
Remaining NAPL (g) (2) 2.4 819.1 2987.3 3808.8 Calculated 

(1) Post-excavation volumes (L) of each NAPL component provided by Broholm et al. (1999) assuming a homogeneous 
3.6% NAPL saturation of the pore space in all excavation layers. ^Total post-excavation NAPL volume (L) provided 
by Broholm et al. (1999) assuming a 20% NAPL saturation in excavation layer 2 and a 3.6% saturation in other soil 
layers. (2) Remaining volume (L) and mass (g) calculated for each NAPL component using the individual remaining 
fractions in (1) reported by Broholm et al. (1999), applied to the total remaining NAPL volume of ^2.47 L also reported 
by Broholm et al. (1999). 


