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Abstract

The impact of climate change on power demand in Japan is a matter of concern for the Japanese authorities and power

companies as it may have consequences on the power grid. We trained random forest models against daily power data in ten

Japanese regions and for different types of power generation to project changes in future power production and its carbon

intensity. To do so, we used twelve predictors: six climate variables, five variables accounting for human exposure to climate,

and one variable for the level of human activities. We then used the models trained from the present-day period to estimate the

future power demand, carbon intensity, and pertaining CO2 emissions over the period 2020-2100 under three SSPs scenarios

(Shared Socioeconomic Pathways: SSP126, SSP370, and SSP585). The impact of climate change on CO2 emissions via power

generation shows seasonal and regional disparities. In cold regions, a decrease in power demand during winter under future

warming leads to an overall decrease in power demand over the year. In contrast, the decrease in winter power demand in hot

regions can be overcompensated by an increase in summer power demand because of more frequent hot days, leading to an overall

annual increase. From our regional models, the power demand should increase the most in most Japanese regions in May, June,

September, and October and not in the middle of summer, as has been found in older studies. Such an increase could result in

regular power outages during those months if not considered, as the power grid could be particularly tense. Overall, we observed

that power demand in regions with extreme climates is more sensitive to global warming than in temperate regions. The impact

of climate change on power demand induces a net annual decrease in CO2 emissions in all regions except for Okinawa, in which

power demand strongly increases during the summer, resulting in a net annual increase in CO2 emissions. However, climate

change’s impact on carbon intensity may reverse the trend in some regions (Shikoku, Tohoku). We also assessed the relative

impacts of socioeconomic factors such as population, GDP, and environmental policies on CO2 emissions. When combined with

these factors, we found that the climate change effect is more important than when considered individually and significantly

impacts total CO2 emissions under SSP585.
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Abstract 

The impact of climate change on power demand in Japan is a matter of concern for the 

Japanese authorities and power companies as it may have consequences on the power 

grid. We trained random forest models against daily power data in ten Japanese regions 

and for different types of power generation to project changes in future power production 

and its carbon intensity. To do so, we used twelve predictors: six climate variables, five 

variables accounting for human exposure to climate, and one variable for the level of 

human activities. We then used the models trained from the present-day period to estimate 

the future power demand, carbon intensity, and pertaining CO2 emissions over the period 

2020-2100 under three SSPs scenarios (Shared Socioeconomic Pathways: SSP126, 

SSP370, and SSP585). The impact of climate change on CO2 emissions via power 

generation shows seasonal and regional disparities. In cold regions, a decrease in power 

demand during winter under future warming leads to an overall decrease in power demand 

over the year. In contrast, the decrease in winter power demand in hot regions can be 

overcompensated by an increase in summer power demand because of more frequent hot 

days, leading to an overall annual increase. From our regional models, the power demand 



should increase the most in most Japanese regions in May, June, September, and October 

and not in the middle of summer, as has been found in older studies. Such an increase 

could result in regular power outages during those months if not considered, as the power 

grid could be particularly tense. Overall, we observed that power demand in regions with 

extreme climates is more sensitive to global warming than in temperate regions. The impact 

of climate change on power demand induces a net annual decrease in CO2 emissions in all 

regions except for Okinawa, in which power demand strongly increases during the summer, 

resulting in a net annual increase in CO2 emissions. However, climate change's impact on 

carbon intensity may reverse the trend in some regions (Shikoku, Tohoku). We also 

assessed the relative impacts of socioeconomic factors such as population, GDP, and 

environmental policies on CO2 emissions. When combined with these factors, we found that 

the climate change effect is more important than when considered individually and 

significantly impacts total CO2 emissions under SSP585.





Context and Scale 

After the adoption of the Paris Agreements in 2015, aiming at limiting warming under 2°C by 

reducing greenhouse gas emissions, decarbonizing the energy mix became a major issue. As the 

third largest economy in the world, Japan has made ambitious commitments: -26% of greenhouse 

gas emissions between 2030 and 2013 and reach net zero by 2050. However, 80% of Japan’s 

power generation still comes from fossil fuels. This study explores the impact of climate change on 

Japan’s power grid and CO2 emissions from power generation through data-driven models that 

project power demand and carbon intensity with climate change. We also account for the impact 

of population, GDP, and environmental policies aiming to decarbonize the energy mix. Japan 

provides a good case study, offering insights into what could happen at the global scale, as it has 

ten regions covering a wide range of climates. 



1. Introduction 

Many studies have investigated the impact of climate change on energy systems. 

According to the review of Yalew et al. (2020), a slight decrease in hydropower and thermal 

energy capacity at a global scale is expected. However, the impact of climate on power 

demand strongly varies across regions (Auffhammer, M., Baylis, P., & Hausman, C.H. 

(2016); Van Ruijven, De Cian, and Wing, 2019; Gurriaran et al., 2022). Van Ruijven, De Cian, 

and Wing (2019) found that the energy demand could increase by 25% in the tropics by 

2050 due to increasing hot days, whereas higher latitudes are more prone to a decline in 

energy demand. 


This study focuses on power demand, which comprises a significant percentage of the total 

energy demand. Power demand is closely related to meteorological conditions, and there is 

an increasing concern over how it will respond to changing climate. According to Yalew et 

al. (2020), a global increase in cooling demand and a decrease in heating demand are 

expected. For example, heat waves are becoming more frequent and intense in hot regions 

(Zittis et al., 2021), causing increased peak demand during those events. The potential 

power outages that may result from increased peak demand are a matter of concern for 

health systems (Patel et al., 2022). Depending on the scenario of socioeconomic 

development, 2 to 5 billion people are at risk of facing deadly heat and are unable to afford 

air conditioning systems (Mora et al., 2017; Andrijevic et al., 2021). CO2 emissions from 

power generation constitute a further consequence of climate-induced changes in power 

demand. An increase in demand for air conditioning and, thus, power generation in 

subtropical latitudes will subsequently increase the amount of CO2 emissions from these 

regions. However, this effect may be counterbalanced at a global scale by a decrease in 

heating demand in high latitudes leading to lower CO2 emissions. Our study addresses this 

phenomenon specifically in Japan.




Japan is one of the largest economies in the world, with the third-largest Gross Domestic 

Product (GDP) internationally (IMF, 2022). In 2020, power generation reached 987 TWh, i.e., 

7.9 MWh per capita (IEA, 2020), ranking the country in the top 20 largest consumers of 

electricity per capita in the world. The residential sector is the third largest sector for power 

demand in Japan, after commercial and public services and industry. Japan comprises a 

territory ranging from 46° to 20° north (2200 km long from northeast to southwest), and de 

facto includes a wide range of climates, from humid continental to subtropical. The country 

is divided into ten distinct geographical areas administered by designated power 

companies. Each region is characterized by a specific climate, population density, 

urbanization rate, GDP per capita, etc., all factors determining power demand. For 

example, the adoption rate of household air conditioning is around 90% on a national scale 

(De Cian et al., 2019), but it varies across regions from north to south. Whereas fewer 

homes are equipped with cooling systems in Hokkaido, where heating needs are more 

important, the tropical climate in Okinawa induces a strong demand for air conditioning. 

Although 80% of the nation’s power is produced with fossil fuels (IEA, 2022), some regions 

use more renewables than others. Each region thus has a specific carbon intensity for 

power generation depending on the energy mix used by the local power company.


We use Japan as a case study to investigate how climate change can influence CO2 

emissions by changing power demand and influencing the carbon intensity of the energy 

mix. We analyze climate change impacts at national and regional scales and develop 

regional statistical models to derive monthly and seasonal trends and annual net changes in 

CO2 emissions until 2100. These models incorporate the effects of climate change and 

specific regional socioeconomic factors (population, GDP, and environmental policies 

aiming to decarbonize the energy mix) to project power demand, carbon intensity, and CO2 

emissions. Detailed energy mix and climate data are available homogeneously for all ten 

regions. Hiruta et al. (2022a) used similar data to develop a method that acquires regional 

temperature response functions (TRFs) for power demand and investigates the effect of 

climate change on power demand. Although our method to obtain regional models 

projecting power demand is similar to Hiruta et al. (2022a), we use more up-to-date climate 



data for the projections: our climate variables are from the last phase of the CMIP project, 

CMIP6, instead of CMIP5 for the Hiruta study. Unlike the Hiruta study, we further explore 

long-term changes in CO2 emissions that can be caused by changes in power demand and 

carbon intensity under future climate and socioeconomic scenarios.


Section 2 details the data used and the algorithms tested to develop models that simulate 

power demand and carbon intensity. It also describes the method to calculate CO2 

emissions under three future scenarios: SSP1-2.6, SSP3-7.0, and SSP5-8.5. Section 3 

presents the results; it describes the regional relationships between predictive variables and 

power demand and carbon intensity, details the regional and temporal impact of climate on 

power demand, carbon intensity, and CO2 emissions, compares our results to those of 

Hiruta et al. (2022b) and discusses the relative importance of climate and socioeconomic 

factors in determining the power demand, carbon intensity, and CO2 emissions. Section 4 

discusses the results under a broader context, including caveats of our study. Section 5 

concludes the paper.


2. Data and methods 

The work presented in this article is built around three main steps (Figure 1): i) model 

development and selection, ii) projections of power demand and carbon intensity under 

future climate scenarios, and iii) projections of CO2 emissions under future climate and 

socioeconomic scenarios. This section details the datasets needed for the different steps 

(Table 1), the model development, and the projection stage.




Figure 1. Flowchart of the methodological procedures used in this study. 


Variable and description

ERA5 ISIMIP3b

name unit name unit

Near surface atmospheric temperature (2m 
above the surface) T2M TAS

Relative Humidity (water vapor pressure as 
a percentage of the value at which the air 

becomes saturated)
RH HURS

Surface solar radiation downward (amount 
of shortwave radiation that reaches a 

horizontal plane at the surface)
SSRD RSDS

Surface thermal radiation downward 
(amount of longwave radiation emitted by 
the atmosphere and clouds that reaches a 

horizontal plane at the surface)
STRD RLDS

Wind (speed of horizontal wind 10 m above 
the surface) SFCWIND

%

m . s−1 m . s−1

J . m−2

U = 

u2
10 + v2

10

W . m−2

K

W . m−2

J . m−2

%

K






2.1 Training data


We trained a statistical model on climate reanalysis data from the ERA5 project (Muñoz 

Sabater, 2019) to reproduce the observed daily power demand and carbon intensity for all 

ten regions. Six raw climate variables were used as predictors: temperature, relative 

humidity, solar and thermal radiation, wind, and precipitation (Table 1). Those data were 

downloaded from the Climate Data Store website (CDS 2022) at an hourly time resolution 

over the period 2016 - 2020 and a spatial resolution of 0.08° and then aggregated as daily 

and regionally averaged values. Five human exposure indices were calculated from these 

climate variables and also used as predictors: the dew point temperature at which the air is 

saturated with water vapor , the wet bulb temperature ( ), which is the lowest 

temperature to which air can be cooled by water evaporation, the discomfort index, which 

is often used to calibrate air conditioner ( , the Humidex ( , which explains what the 

temperature feels like for the human body and the Heat Index ( , which represents what 

the combination of temperature and relative humidity feels like for the human body. 

Equations used to calculate these indices (Thom, 1959; Sohar et al., 1963; Stathopoulou et 

al., 2005; Epstein et al., 2006; Buzan et al., 2014; Maia-Silva et al., 2020) are detailed in 

supplementary materials (Section S1). We also used the days of the week (DOW) as a proxy 

for human activity. Each day is assigned a numerical value to quantify its effect in our 

models: Monday is 0, Tuesday 1,..., and Sunday 6.


Precipitation (total amount of water that fall 
at the surface) TP PR

Table 1. Current (ERA5 for training) and future (ISIMIP3b for projections) climate data 
used in our analysis.

Variable and description

ERA5 ISIMIP3b

name unit name unit

Near surface atmospheric temperature (2m 
above the surface) T2M TAS

Relative Humidity (water vapor pressure as 
a percentage of the value at which the air 

becomes saturated)
RH HURS

kg . m−2 . s−1

KK

% %

m

(Td) TW

DI ) Hx)

HI )






Figure 2. Current and future projections under climate change of average daily temperature 

(a), DI (b), power demand (c), and carbon intensity (d) for the ten regions of Japan. The color 

scale on the maps indicates the level for the period 2016-2020. Projections for the period 

2020-2100 are shown in solid bands. Lines give mean values from five models; shaded 

areas show standard deviations. Future projections in panels c and d are shown in 

percentage (relative changes to present levels).




Hourly data for power demand and the energy mix was obtained directly from the website 

of the ten power utilities (supplementary materials, Section S2). Data have been available 

since April 2016 and provided for eight types of power supply: fossil, nuclear, photovoltaic, 

wind, hydroelectricity, geothermal, biomass, and pumped-storage hydroelectricity. The 

energy mix of each region is detailed in supplementary materials (Section S2). Further 

details on the types of fossil fuel (coal, gas, and oil share) are unavailable at the hourly 

scale. Still, the Japanese agency for natural resources and energy from the Ministry of 

Economy, Trade, and Industry (METI) provides monthly fractions of coal, gas, and oil used 

in the regional energy mixes from 2017 to 2020. The fossil energy mix is relatively constant 

over these four years, with approximately 50% of gas, 40% of coal, and 10% of oil. The 

regional daily carbon intensity of power generation was calculated assuming this ratio 

constant.


2.2 Model development and selection


We tested three non-parametric models of daily power demand and carbon intensity; 

random forest classifier (Ho, 1995; Breiman, 2001), histogram-based gradient boosting 

(Friedman, 1999), and Multivariate Adaptive Regression Spline (MARS) (Friedman, 1991). 

We trained the algorithms for all ten regions with twelve predictors: six climate variables, 

five human exposure indices, and human activity proxy (DOW), all twelve described in 

section 2.1. The training dataset represented 75% of the data, and the test dataset 

accounted for 25%. We evaluated the performances of the algorithms on both datasets 

using three metrics: the coefficient of determination (R2), the Mean Absolute Percentage 

Error (MAPE), and the Root Mean Square Error (RMSE).  

Results are very similar between random forest and gradient boosting, and both algorithms 

perform better than the MARS algorithm (Table S2 and Figure S1, Section S3, 

supplementary materials). As random forests have fewer hyper-parameters to optimize, we 

decided to proceed with this algorithm for the projection stage. Although the methodology 

used for the model development and selection stage is the same as Hiruta et al. (2022a), 



we developed our models with a different algorithm and used different evaluation metrics. 

We used partial dependence plots (PDPs) and Shapley values to interpret the regional 

models obtained with random forests and to show how each predictor affects the model 

outputs. PDPs were calculated from a subsample of fifty observations, and Shapley values 

were calculated for each observation of each predictor. 


2.3 Projections


Once the regional models were calibrated for current climate conditions (i.e., the period 

2016-2020), we employed them to project the evolution of power demand and carbon 

intensity under different climate scenarios over 2020-2100 (Figures 2c and 2d). We worked 

with three scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) and used bias-corrected and 

statistically downscaled climate projections from the ISIMIP3b simulation round (Lange, 

2021) at a daily timescale as predictors. Those data come from five different Earth System 

Models from the 6th phase of the CMIP project (CMIP6); GFDL-ESM4, IPSL-CM6A-LR, 

MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. Figure 2a shows the projected 

temperatures for all ten regions and three scenarios as an example of the projected climate 

predictors. We calculated human exposure indices (DI (Figure 2b), Hx, HI, Td, and Tw) from 

the projected climate predictors. Finally, we simulated daily climate-induced CO2 emission 

projections by multiplying daily power demand and carbon intensity projections.




2.4 Socioeconomic scenarios


Figure 3. Socioeconomic projections of (a) population, (b) GDP, and (c) environmental 

policies aiming to decarbonize the energy mix used for power generation for the region of 

Tokyo. 

The last step of our study was to include the impacts of socioeconomic factors on CO2 

emissions for all three SSPs. The Climate Change Adaptation Information Platform from the 

National Institute for Environmental Studies (NIES), Japan (A-PLAT, 2022), provides 

population projections at the prefecture scale. We aggregated such projections at the 

regional scale. Those data predict a decrease in Japan's population in all SSPs (Figure 3a). 

We obtained regional GDP projections (Figure 3b) by scaling Japan's GDP projections 

provided by the OECD (Riahi et al., 2017; Dellink et al., 2017) with current ratios between 

Japan's total GDP and regional GDP. Given the absence of regional GDP projections, we 

assumed that all regional GDP projections follow the same trend. We calculated Japan's 

carbon intensity projections (Figure 3c) based on national projections of the IMAGE3.2 

model (Van Vuuren et al., 2021). We downscaled the national carbon intensity projection to 

regional levels with the same methodology as for GDP. Further details can be found in the 

supplementary material (Section S4). We quantified the individual influence of each factor 

(climate change, population, GDP, and environmental policies aiming to decarbonize the 

energy mix) on total CO2 emissions by varying one factor at a time.




3. Results 

3.1 Regional models: important features explaining daily power demand and carbon 

intensity variations in each region


Figure 4. Radar plot showing the relative importance of the main predictors explaining 

power demand across regions (T2M, DOW, SSRD, DI, and Hx - see Table 1), obtained from 

the normalized mean absolute Shapley values of all observations for each predictor. The 

relative importance of the predictor is calculated for each region by normalizing the mean 

absolute Shapley value of every predictor.


We used global and local model-agnostic interpretability methods to analyze the effect of 

predictors on our model predictions. Such methods can be distinguished into global and 

local diagnostics. Global diagnostics allow understanding of the average behavior of a 

machine learning model, thus giving hints on the mechanisms that influence the prediction. 

PDPs are part of these diagnostics. Such plots show the marginal effect of one predictor on 

the model outputs (here, power demand or carbon intensity). PDPs are obtained by taking 



the average of the Individual Conditional Expectation plots (ICE plots) lines. ICE plots 

represent one line per observation showing a change in the prediction when a predictor 

changes. Local diagnostics, such as Shapley values, explain individual predictions of a 

machine learning model. The interpretation of the Shapley values is that “Given the current 

set of feature values, the contribution of a feature value to the difference between the actual 

prediction and the mean prediction is the estimated Shapley value” (Molnar C., 2022). One 

can interpret Shapley values as a way to represent the probability of an impact of a predictor 

in the projection; a negative Shapley value shifts the predicted value in a negative direction, 

whereas a positive Shapley value shifts it in a positive direction. 

We calculated Shapley values for all predictors in all ten regions. Of twelve predictors, five 

consistently appear among the most important to explain the power demand (Figure 4): the 

temperature (T2M), the day of the week (DOW), the solar radiation (SSRD), the discomfort 

index (DI) and the Humidex (Hx). T2M is the most important predictor in all regions except 

Chubu and Okinawa, followed by DOW. The order between T2M and DOW is reversed in 

Chubu. DI is the second most important predictor instead of DOW in Okinawa (Figure 4). 

The third most important predictor varies by region, but in general, it is DI (for six regions). 




Figure 5. Partial dependence plot (thick line) and Individual Conditional Expectation plots 

(thin lines) for 100 model realizations for three main predictors explaining the power demand 

for the Tokyo region: air temperature at two meters above ground T2M (a), day of week 

DOW (b - the letters on the x-axis indicate the days of the week) and discomfort index DI (c). 

The vertical red bars show the predictor values distribution. The lower panels represent the 

Shapley values for each predictor for power demand (d) and carbon intensity (e). The figures 

for the other regions can be found in the supplementary material.


We looked at the PDPs of the main predictors and the Shapley values (Figure 5 and S2 in 

the supplementary materials) to better understand the non-linear influence of the predictors 

in our regional models. For example, with the Tokyo region, the PDP for T2M shows a U-

shaped dependency of power demand to temperature (Figure 5a). Two temperature 

thresholds can be identified: power demand is increasing under 10 °C for heating purposes 

and above 18 °C for cooling purposes. The power demand is more or less constant 

between those two temperatures. Shapley values (Figure 5d) show that when temperature 



values are either high or low (red and blue tones), power demand shifts in a positive 

direction, thus confirming the behavior observed with the partial dependence plot. The 

same relationship between temperature and power demand is also observed in several 

other regions (Figure S2, Section S5, supplementary materials). However, Hokkaido and 

Okinawa show different relationships. Power demand decreases when the temperature 

increases in Hokkaido and remains constant above 10°C, suggesting that power demand is 

controlled only by heating demand. The opposite effect is observed in Okinawa; power 

demand is constant under 24°C and increases once this temperature is exceeded. The 

specific regional thresholds triggering power demand for heating or cooling reflect 

households' structure and population behavior. 


We also analyzed the dependency of power demand on the days of the week (DOW) with 

PDP and Shapley Values (Figures 5b and 5d). Power demand is constant from zero to four 

(Monday to Friday) and decreases above four, reflecting a lower demand during weekends. 

Figure 5d highlights the clear separation between weekends and working days. The same 

relationship is observed for all regions, although the impact of weekends on power demand 

is larger in Chubu (Figure S2e and Figure 4). 


Finally, we analyzed the relationship between the DI and power demand (Figures 5c and 

5d). Power demand increases when the threshold of 21 is exceeded. This behavior is 

observed for all regions having the DI as one of the three most influential predictors (Figure 

S2, supplementary material). Previous studies identified 21 as the threshold above which 

people start to feel heat stress (Thom, 1959; Stathopoulos et al., 2005), and DI is often used 

to calibrate air conditioners (Sohar et al., 1963; Epstein et al., 2006; Buzan et al., 2014; 

Maia-Silva et al., 2020), explaining such behavior.


We analyzed the relationships between carbon intensity and all 12 predictors with Shapley 

values (Figure 5e). In the example of Tokyo, DI is the most important predictor. It positively 

shifts carbon intensity predictions when the predictor values are low, meaning that more 



fossil fuels are used for power generation when DI is low. Surface solar radiation downward 

(SSRD) is the second most important predictor. SSRD negatively shifts carbon intensity 

predictions when the SSRD value is high, probably because solar panels more easily exploit 

solar energy under a clear sky with much incoming solar radiation than under a cloudy 

condition. It should be noted that too strong solar radiation can inhibit the efficiency of 

power production from solar panels. Precipitation (TP) has the opposite effect. Carbon 

intensity predictions are shifted positively when TP is important, meaning less use is made 

of renewable energies. The order of importance of predictors for carbon intensity 

predictions varies more across regions than for power demand. However, more climate 

predictors are among the most important predictors, reflecting the dependency of the daily 

variability of the renewable energy capacity on the daily weather.


3.2 Impact of future climate change on power demand, carbon intensity, and CO2 emissions


Power demand projections for all ten regions and three scenarios (Figure 2c, Section 2) 

show that climate change's impact on power demand differs between regions throughout 

the century. Such projections show a warming-induced decrease in power demand under 

SSP3-7.0 and SSP5-8.5 in most regions (up to -3.2% in Hokkaido and Hokuriku). However, 

the projections reveal a net increase in the daily power demand in Okinawa and Kyushu, the 

two hottest regions (Figure 2a, Section 2). This increase is up to 1.6% in Kyushu and is 

even more pronounced in Okinawa (+1.6% for SSP1-2.6 and +11.1% for SSP5-8.5). 

Changes in the power demand across regions (except Okinawa) under SSP1-2.6 are small, 

ranging from -0.1 to 0.5%. Such results indicate that a decrease in the power demand in 

winter under future warming leads to an annual decrease in power demand in cold regions 

like Hokkaido. However, this possible decrease in winter power demand is 

overcompensated by a summer increase in hot regions such as Okinawa or Kyushu, 

leading to an annual increase. 


Climate change's impact on carbon intensity also varies across regions (Figure 2d), but 

results are less significant than for power demand. Carbon intensity projections are less 

accurately simulated by our models (higher RMSE and lower R2). Nevertheless, the 



projections show that most regions see their carbon intensity negatively affected by climate 

change. Tohoku and Shikoku, the regions with the highest average carbon intensity (roughly 

600 gCO2eq/kWh), are the only regions showing a climate-induced increase in carbon 

intensity under SSP3-7.0 and SSP5-8.5 (+1.3% and +2.3%, respectively). For Chugoku, 

Hokuriku, and Okinawa, the projected changes in carbon intensity are small and within the 

models' error range.


Figure 6. Annual CO2 emissions from power generation under SSP1-2.6, SSP3-7.0, and 

SSP5-8.5, after considering socioeconomic impacts with (dashed line) and without (solid 

line) climate change impact for four regions: Hokkaido (a), Tokyo (b), Kansai (c) and Okinawa 

(d). The shaded area represents the 1-sigma standard deviation from the five climate models 

for the scenario considering climate change impact (dashed line). 




Figure 6 shows how the influence of climate change on power demand and carbon intensity 

translates into carbon emissions. This figure shows the CO2 projections considering 

socioeconomic factors (population, GDP, and environmental policies). The difference 

between the solid and dashed lines for each region and scenario represents the difference 

in emissions due to climate change alone. In Figure 6, we show the results of four regions. 

Results for the other regions are displayed in Figure S3 (Section S6, supplementary 

material). The regions with the most extreme temperatures (Hokkaido and Okinawa) 

indicate the largest differences. Climate change leads to a decrease in CO2 emissions in 

Hokkaido but an increase in Okinawa. Okinawa and Shikoku are the only regions with 

higher emissions from climate change. The power demand is projected to increase strongly 

in Okinawa, especially under SSP5-8.5, which explains an increase in CO2 emissions. On 

the other hand, the CO2 emissions increase in Shikoku is due to an increase in carbon 

intensity simulated by the model. In all other regions, climate change leads to an increase in 

CO2 emissions. In Kyushu, the CO2 emissions decrease with climate change because the 

decline in carbon intensity takes over the increase in power demand. Such an effect can 

also be found in the Tokyo region, albeit to a lesser extent.


3.3 Attribution of the changes in power demand and CO2 emissions


This section analyzes the effect of seasons and hot and cold periods on power demand and 

their respective contributions to the total annual change in power demand between 

2020-2030 and 2090-2100. We divided days into four categories (cold, cool, warm, and hot) 

based on temperature distributions during 2016-2020. We calculated the number of days in 

each category under the three SSPs during 2020-2030 and 2090-2100. We attributed the 

contribution of the change in power demand in each category to the total change in power 

demand (Figure S4, section S7, supplementary material). The number of hot days increases 

in all ten regions. Increasing power demand during hot days is associated with cooling 

demand. However, such an increase is counterbalanced by a decrease in power demand in 



other categories of days. Okinawa is an exception; power demand increases in all 

categories of days. 





Figure 7. Monthly and regional changes (in percentage) in CO2 emissions between the 

decade 2020-2030 and 2090-2100 due to climate impacts on future power demand. The 

mean results of the five models for SSP5-8.5 are shown. 

Figure 7 shows the changes in CO2 emissions between 2020-2030 and 2090-2100 due to 

changes in power demand and carbon intensity under SSP5-8.5 at monthly and regional 

levels. This figure allows for comparing our results with those of Hiruta et al. (2022b) (see 

Section 4 for the comparison). Most regions are projected to see a decrease in annual CO2 

emissions from power generation due to climate change, ranging from -0.3% to -5.1%. 

Shikoku and Okinawa are exceptions; their CO2 emissions are projected to increase by 2.5 



and 10%, respectively. Larger differences emerge at the monthly scale; the largest 

increases in CO2 emissions (up to 23% increase in Okinawa) occur during a few transition 

months before and after the hottest months (i.e., May, June, September, and October) for all 

regions except Hokkaido and Tohoku. The largest increases occur during the warmest 

months in these two relatively cold regions. Such results indicate that the "next-warmest 

months" (May, June, September, and October) are most susceptible to future climate. A 

threshold temperature above which the demand for air conditioning starts was identified for 

each region in section 3.1 with partial dependence plots. Building on that, we formulate a 

possible explanation for the observed monthly changes; during July and August, the 

threshold temperatures triggering cooling demand are already exceeded for most days in all 

regions (except in Hokkaido and Tohoku). Thus, a further increase in power demand for 

cooling demand is not expected. However, with future warming, the temperature thresholds 

could be exceeded earlier in the year (in May or June) and longer (until September or 

October), explaining why the largest increase in power demand is projected to occur in the 

"next-warmest months". Similar monthly changes are observed for power demand but not 

for carbon intensity (Figures S5a and S5b, Section S8, supplementary material), indicating 

that monthly changes in regional CO2 emissions are driven more by power demand than 

carbon intensity.


3.4 Comparison of different factors influencing CO2 emissions of power generation 


Figure 8 compares the impact of climate change on CO2 emissions from power generation 

with those of socioeconomic factors (population, GDP, and carbon intensity). We quantified 

the amount of CO2 emitted by each factor individually by varying one factor at a time. Note 

that the total in Figure 8 is the arithmetic sum of the individual changes from each factor, 

which is different from the total (with climate change) in Figure 6, calculated from the 

compounded change from all factors. With such a method, the results show that climate 

change plays a minor role in determining future changes in CO2 emissions (Figure 8). The 

decreasing population under all scenarios negatively affects CO2 emissions in all ten 

regions. GDP influences emissions in different directions according to scenarios; the GDP 



effect is negative under SSP3-7.0 due to projected GDP decrease, whereas it is positive 

under SSP1-2.6 and SSP5-8.5 as GDP grows. Under SSP5-8.5, GDP is by far the most 

important factor determining CO2 emissions in all ten regions. The effect of carbon intensity 

on CO2 emissions is small under SSP5-8.5 and SSP3-7.0, as carbon intensity is not 

projected to decrease much in these scenarios. However, carbon intensity is the most 

important factor under SSP1-2.6, leading to a decrease in CO2 emissions in most regions. 





Figure 8. Individual contributions of changes in climate, population, GDP, and environmental 

policies to the changes in total CO2 emissions of power generation over the period 

2020-2100. The figure shows the change in CO2 emissions due to each factor relative to the 

level with all other factors kept at current values. The figure shows the results for four 

representative regions from north to south: Hokkaido (a), Tokyo (b), Kansai (c), and Okinawa 

(d).




To summarize, when individual effects of climate, population, GDP, and carbon intensity on 

CO2 emissions are considered separately, as in Figure 8, the climatic factor is 

overshadowed by the other factors. However, Figure 6 shows that climate change may 

have a significant impact when all factors are combined to project CO2 emissions in certain 

regions under SSP5-8.5. The importance of the climate change impact on CO2 emissions 

depends on the type of climate of the region and future climate scenarios; it also depends 

on the month of the year, as indicated in Figure 7.


4. Discussion 

Our methodology allows for establishing regional statistical models that adequately 

reproduce the observations of daily power demand and carbon intensity. Seasonal cycles 

are well captured by the models for power demand, just as intra-weekly cycles (i.e., the 

distinction between working days and weekends). Interpretation methods such as partial 

dependence plots and Shapley values gave insights into understanding underlying 

mechanisms that control the dependency of power demand and carbon intensity on the 

predictors. As we are able to understand the impact of predictors on the outputs based on 

underlying mechanisms, such methods give us confidence in the projections of power 

demand and carbon intensity obtained using these models. Nevertheless, the models' 

inherent error is important for carbon intensity. 


A well-known default of machine learning models is their bad performance outside their 

calibration range. For the projection, we calculated the percentage of days that have an 

average daily temperature outside the training temperature range period: 0.8% for 

SSP1-2.6, 3.6% for SSP3-7.0, and 5.2% for SSP5-8.5. For the projection period, we argue 

that the percentage of days with an average temperature outside the training range is small 

enough to avoid overfitting.


Hiruta et al. used a comparable methodology (Hiruta et al., 2022a) and also projected 

regional power demand in Japan with statistical models (Hiruta et al., 2022b). However, we 



went one step further by modeling the influence of climate on carbon intensity and, 

eventually, CO2 emissions. We obtained similar results for regional power demand; a 

decrease in power demand in cold regions and an increase in hot regions. However, we 

found a maximal increase in power demand during "next-warmest months" (May, June, 

September, and October). In contrast, the Hiruta study found it during the warmest months 

(July and August). This difference between the two studies has important implications for 

the power grid infrastructure in the future. Projecting the future power demand for air 

conditioning under changing climate is a critical issue in Japan, as revealed by the power 

supply situation in the summer of 2022. At the end of June 2022, Japan experienced a 

serious power deficit during weeks unusually hot for this month but not during equally hot 

weeks in July or August. The power deficit occurred in June as some thermal power plants 

were under periodic inspection before the high season and were not being operated (METI 

2022). With climate change, there will be an increased risk of having peak demand earlier in 

the season. Power companies will have to consider it to avoid the problems of June 2022 

happening again.


Here we discuss factors that can influence power demand but are not considered in our 

study. Firstly, the Urban Heat Island effect (UHI) is known to influence power demand. UHI 

amplifies power demand for air conditioning in densely populated cities in hot regions while 

it translates into a decrease in the demand for heating in colder regions (Xiaoma et al., 

2019; Roxon, Ulm, and Pellenq, 2020). Xiaoma et al. (2019) showed that the UHI effect 

could increase the need for cooling energy by 19% and decrease the need for heating by 

18.7% on average. According to the World Bank, 90% of the population lives in urban areas 

in Japan, with 60% of the country's 126 million inhabitants concentrated in the metropolitan 

areas of Tokyo, Nagoya, and Osaka. Hence, the UHI effect is probably not negligible and 

translates into a warming that is already a few degrees higher in cities than in rural areas 

(Takane et al., 2014; Takaya et al., 2014). The earth system models that generated the 

climate data we used for projection do not resolve UHI, implying that the future power 

demand in our projections may be underestimated in densely populated regions.




Secondly, a study by De Cian et al. (2019) predicts that almost 100% of Japanese homes 

will adopt air conditioning by mid-century for all scenarios. Even though Japan is already 

among the countries with the highest air conditioning adoption rate per household, about 

90% nationwide in 2011 (De Cian et al., 2019), the effect of increased access to air 

conditioning was not taken into account in our model. Such an increase could boost power 

demand if all other factors, such as the efficiency of air conditioning and the housing 

insulation, are kept the same. Specifically, it could significantly change the climate response 

functions for power demand in cold regions like Hokkaido as, for now, these regions have 

fewer houses equipped with cooling systems compared to the rest of the country. However, 

our methodology lacks enough data to model the power demand linked to air conditioner 

usage in such regions.


Thirdly, human exposure indices use thresholds to account for the level of heat stress felt 

by the population. For the DI, there is no discomfort below 21; between 21 and 24, less 

than 50% of the population feels discomfort; between 24 and 27, more than 50% of the 

population feels discomfort; between 27 and 29, most of the population suffers discomfort; 

between 29 and 32, everyone feels severe stress; above 32, the state of medical emergency 

is reached (Stathopoulou et al., 2005). Figure 2b shows the projection for the annual 

maximal DI. The threshold of 24 has never been exceeded in Hokkaido for now. By the end 

of the century, DI could reach 27 in Hokkaido (Figure 2b). The maximal DI was 28 in 

Okinawa in 2020. At the end of the century, it could reach the dangerous threshold of 32. 

Exceeding such thresholds may lead to an underestimation of the power demand for air 

conditioning in all regions because there is no data to calibrate human behavior regarding 

the use of air conditioning when these thresholds are exceeded. 


Finally, while our machine learning models developed to simulate the response of power 

demand to future climate are elaborated, how power demand responds to the future 

evolution of socioeconomic variables is modeled in a simpler way. Similarly, while we used 



projections of climate variables with a rather high spatial resolution (CMIP6 data, widely 

used in the scientific community), the projections used for the socioeconomic variables 

were only at the national scale for GDP and carbon intensity. Given the data availability, 

there are differences in the spatial and temporal resolutions of climate and socioeconomic 

data used in our analysis, which might have affected the accuracy of power demand 

projections from our model.
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Supplementary Materials 

S1. Human climate exposure indices (Thom 1959, Sohar et al. 1963, Epstein et al. 2006, 
Buzan et al. 2014, Maia-Silva et al. 2020) 

● Dew point temperature: where  is the ambient air tempera-

ture and  the relative humidity

● Wet bulb temperature : 

	



● Discomfort Index with T in degrees Celsius: 


● Humidex : 


● Heat Index : 







 Where  is the ambient air 

temperature in Fahrenheit degrees


S2. Table referencing power companies in Japan 

Td = T − (
100 − RH

5
), T

RH

Tw = T × arctan(0.151977 × (RH + 8.313659)1/2) + arctan(T + RH )
−arctan(RH − 1.676331) + 0.00391838 × j3/2 × arctan(0.023101 × j ) − 4.686035

DI = 0.5Tw + 0.5T

Hx = T +
5
9

(
eRH

100
− 10)

−42.379 + 2.04901523 × Tf + 10.14333127 × RH − 0.22475541 × Tf × RH
−6.83783 × 10−3 × T 2

f − 5.481717 × 10−2 × RH2 + 1.22874 × 10−3 × T 2
f × RH

+8.5282 × 10−4 × Tf × RH2 − 1.99 × 10−6 × T 2
f × RH2 Tf

Region Company Website Type of energy supply

Hokkaido Hokkaido Electric 
Power Co., Inc.

http://www.hepco.co.jp/
english/

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity, Geothermal, 
PSH

Tohoku Tohoku Electric Power 
Co., Inc

https://www.tohoku-
epco.co.jp/english/

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity, Geothermal, 
PSH

Tokyo Tokyo Electric Power 
Company Holdings

https://www.tepco.co.jp/
en/hd/index-e.html

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity, PSH

Hokuriku Hokuriku Electric 
Power Company

https://www.rikuden.co.jp/
english/

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity, PSH

Kansai Kansai Electric Power 
Co., Inc.

https://www.kepco.co.jp/
english/

Fossil fuel, Photovoltaic, Wind 
Hydroelectricity, PSH, Nuclear

http://www.hepco.co.jp/english/
https://www.tohoku-epco.co.jp/english/
https://www.tepco.co.jp/en/hd/index-e.html
https://www.rikuden.co.jp/english/
https://www.kepco.co.jp/english/


Table S1. List of power companies in Japan and their website. PSH = Pumped Storaged Hy-
droelectricity 

S2. Model development and selection 

Chubu CHUBU Electric 
Power, Inc.

https://
www.chuden.co.jp/
english/

Fossil fuel, Photovoltaic, Wind 
Hydroelectricity, PSH

Shikoku
YONDEN Shikoku 
Electric Power 
CO.,Inc.

https://www.yonden.co.jp/
english/index.html

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelecitricty, PSH, Nuclear

Chugoku The Chugoku Electric 
Power co.,inc

https://www.energia.co.jp/
e/

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity, PSH

Kyushu KYUSHU ELECTRIC 
POWER CO., INC.

https://www.kyuden.co.jp/
english_index.html

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity, Geothermal, 
PSH, Nuclear

Okinawa The Okinawa Electric 
Power Company, Inc.

http://www.okiden.co.jp/
en/

Fossil fuel, Biothermal, 
Photovoltaic, Wind 
Hydroelectricity

Region Company Website Type of energy supply

In-R2 Out-R2 In-MAPE Out-
MAPE

In-RMSE Out-
RMSE

Power Demand (MWh)

Random Forest 0.98 0.83 0.01 0.04 5041 13762

Gradient Boost-
ing

0.79 0.76 0.05 0.05 15648 16773

MARS 0.97 0.84 0.01 0.04 5264 13579

Carbon Intensity (gCO2eq/kWh)

Random Forest 0.91 0.32 0.03 0.07 17 45

Gradient Boost-
ing

0.38 0.31 0.07 0.07 44 45

MARS 0.91 0.26 0.03 0.07 17 46

Table S2. Algorithm evaluation metric, average of the ten regions. “In” are for the training 
dataset and “Out” for the test dataset.

https://www.chuden.co.jp/english/
https://www.yonden.co.jp/english/index.html
https://www.energia.co.jp/e/
https://www.kyuden.co.jp/english_index.html
http://www.okiden.co.jp/en/


Note that the average daily power demand per inhabitant varies from 10 to 50 kWh across 
months and regions, and the carbon intensity from 400 to 700 gCO2eq/kWh.

 

Figure S1. Scatter plots of power demand (a) and carbon intensity (b) modeled as a function of 
the demand observed for the test sample. Blue circles represent the results obtained with the 
random forest method, orange with the MARS, and green with the gradient boosting. The re-
sults shown here are for the Tokyo region. 

S4. Calculation of carbon intensity projection 

The carbon intensity of power generation was calculated by dividing the CO2 emissions from 
power generation by the power generation from the IMAGE 3.2 model (Van Vuuren et al. 2021). 
The regional carbon intensity projections were also obtained, assuming the current ratios will 
hold over this century. For SSP370 and SSP585, we use the projections for the baseline sce-
narios since the forcing reaches a very high level at the end of this century. For SSP1, we use 
the average of four scenarios from the IMAGE 3.2 model: SSP1_SPA1_26l_D, SSP1_S-
PA1_26l_LI, SSP1_SPA1_26l__RE, and SSP1_SPA1_26l_LIRE. These four scenarios integrate 
negative emissions from carbon sequestration with BECCS (BioEnergy with Carbon Capture 
and Storage). As we do not assume BECCS implementation in our SSP126 scenario, we calcu-
late the carbon intensity of power generation without considering the negative emissions. As-
suming linear relationships between power demand and population and between power de-
mand and GDP, we independently calculated the evolution of demand related to the evolution 
of these two factors.




S5. Partial dependence plots and Shapley Values for all regions 
 





S2a. Hokkaido S2b. Tohoku

S2c. Hokuriku S2d. Tokyo










S2e. Chubu S2f. Kansai

S2g. Chugoku S2h. Shikoku








Figure S2a-j. Partial dependence plot (thick line) and Individual Conditional Expectation plots 
(thin lines) for 100 observations for the three main predictors explaining the power demand in 
the ten studied regions. For the predictor DOW, the letters indicate the days of the week. The 
vertical red bars show the dataset's predictor values distribution. The lower panels represent 
the Shapley values for each predictor and each observation for power demand (d) and carbon 
intensity (e) for all regions.


S2i. Kyushu S2j. Okinawa



S6. CO2 emissions with and without climate change effect 

Figure S3. Annual CO2 emissions from power production under SSP126, SSP370, and SSP585, 
after taking into account the effect of socio-economic factors with (dashed line) and without 
(direct line) the effect of climate change for six regions: Tohoku (a), Hokuriku (b), Chubu (c), 
Chugoku (d), Shikoku (e) and Kyushu (f). The shaded area represents the 1-sigma standard de-
viation from the five climate models for the climate-change effect curves.  






Figure S4. Annual CO2 emissions from power production under SSP126, SSP370, and SSP585, 
after taking into account the effect of socio-economic factors with the effect of climate change 
only on power (dashed line) and without climate change (direct line). The shaded area repre-
sents the 1-sigma standard deviation from the five climate models for the climate-change effect 
curves. 



S7. Effect of hot and cold periods on the demand 

Figure S5. Contribution of cold, cool, warm, and hot days to the change in power demand per 
capita between the years 2020-2030 and 2090-2100 in four regions (a.) Hokkaido, (b.) Tokyo, 
(c.) Kansai, and (d.) Okinawa. We represent here the annual average. Cold days are when the 
temperature is below the 5th percentile. Cool days are when it is between the 5th and the 50th 
percentile. Warm days are between the 50th and the 95th percentile. Hot days are when it is 
above the 95th percentile. The percentiles are calculated for each region with their 2016-2020 
temperature distribution. The x-axis is the change in the number of days in the four categories, 
and the y-axis represents the daily change in power demand per capita between the two peri-
ods. The area of each rectangle is the average absolute contribution of each category of days to 
the change in demand. The black dotted line represents the total change in power demand be-
tween the two periods.




S8. Monthly change in power demand and carbon intensity 

Figure S6a. Monthly and regional changes (in percentage) in power demand between 
2020-2030 and 2090-2100 due to climate impacts on future power generation. The mean re-
sults of the five models for SSP585 are shown. 



Figure S6b. Monthly and regional changes (in percentage) in carbon intensity between 
2020-2030 and 2090-2100 due to climate impacts on future power generation. The mean re-
sults of the five models for SSP585 are shown.
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