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Abstract

Earth’s Critical Zone (CZ), the near-surface layer where rock is weathered and landscapes co-evolve with life, is profoundly

influenced by the type of underlying bedrock. Previous studies employing the CZ framework have focused primarily on land-

scapes dominated by silicate rocks. However, carbonate rocks crop out on approximately 15% of Earth’s ice-free continental

surface and provide important water resources and ecosystem services to ˜1.2 billion people. Unlike silicates, carbonate minerals

weather congruently and have high solubilities and rapid dissolution kinetics, enabling the development of large, interconnected

pore spaces and preferential flow paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ,

exploring parameters that produce contrasts in the CZ in different carbonate settings and identifying important open questions

about carbonate CZ processes. We introduce the concept of a carbonate-silicate CZ spectrum and examine whether current

conceptual models of the CZ, such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance

beyond site-specific understanding and develop a more general conceptual framework for the role of carbonates in the CZ, we

need integrative studies spanning both the carbonate-silicate spectrum and a range of carbonate settings.
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• Porosity developed by congruent dissolution of carbonates decouples hillslopes from 19 

stream channels, altering topographic equilibrium. 20 

• Shifts in carbonate critical zone structure from changing ecology, land use, and climate 21 

may be rapid because of fast dissolution kinetics.   22 
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Abstract 23 

Earth’s Critical Zone (CZ), the near-surface layer where rock is weathered and landscapes co-24 

evolve with life, is profoundly influenced by the type of underlying bedrock. Previous studies 25 

employing the CZ framework have focused primarily on landscapes dominated by silicate rocks. 26 

However, carbonate rocks crop out on approximately 15% of Earth’s ice-free continental surface 27 

and provide important water resources and ecosystem services to ~1.2 billion people. Unlike 28 

silicates, carbonate minerals weather congruently and have high solubilities and rapid dissolution 29 

kinetics, enabling the development of large, interconnected pore spaces and preferential flow 30 

paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ, 31 

exploring parameters that produce contrasts in the CZ in different carbonate settings and 32 

identifying important open questions about carbonate CZ processes.  We introduce the concept 33 

of a carbonate-silicate CZ spectrum and examine whether current conceptual models of the CZ, 34 

such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance 35 

beyond site-specific understanding and develop a more general conceptual framework for the 36 

role of carbonates in the CZ, we need integrative studies spanning both the carbonate-silicate 37 

spectrum and a range of carbonate settings. 38 

Plain Language Summary 39 

Carbonate landscapes, which cover ~15% of Earth’s land surface and provide critical water 40 

resources and other services to ~1.2 billion people, require focused studies to understand how 41 

life and rocks interact. Most integrated studies of this “critical zone” focus on landscapes 42 

underlain by silicate minerals instead of considering the full spectrum of the minerals that make 43 

up bedrock. Weathering extends to greater depths in carbonate landscapes compared with silicate 44 

landscapes, leading to the development of interconnected subsurface flow systems that transport 45 

both water and sediments.  As a result, the flow of water and the movement of materials left 46 

behind by weathering rock may be disconnected from streams, unlike in silicate landscapes.  47 

Furthermore, responses of the carbonate critical zone to changes in land use and climate may be 48 

rapid because carbonate rocks dissolve faster than silicate rocks.  Integrative studies of silicate, 49 

carbonate, and mixed silicate-carbonate landscapes will be required to construct a holistic 50 

understanding of Earth’s critical zone. 51 

1 Introduction 52 

The objectives of this paper are to review the state of knowledge of critical zone (CZ) 53 

processes in carbonate terrains, to advance a framework that serves to bridge the spectrum 54 

between carbonate and silicate CZ endmembers (Martin et al., 2021), and to identify key 55 

knowledge gaps in our understanding of the carbonate CZ. Earth’s CZ is the region where 56 

landscapes co-evolve with life and is loosely defined as the zone from the base of continental 57 

crust weathering to the top of the vegetation canopy (National Research Council, 2001). The CZ 58 

develops through interactions among geological, hydrological, chemical, biological, and climate 59 

processes. Understanding the scope of, and linkages between, these interactions requires 60 

interdisciplinary collaborations, to unravel how the CZ functions and responds to environmental 61 

perturbations, including human impacts on climate, land use, and global elemental cycling. The 62 

U.S. scientific community has engaged in focused research on Earth’s CZ through the 63 

development of place-based Critical Zone Observatories (CZOs) (Brantley et al., 2017b), leading 64 

to the more recent development of theme-based Critical Zone Networks (CZNs). The CZO/CZN 65 

sites span a variety of geological and climate settings across the U.S. However, the CZ 66 



manuscript submitted to Earth’s Future 

 

framework is limited by a CZO/CZN focus on landscapes underlain by silicate rocks (Martin et 67 

al., 2021). Globally, scientists are beginning to establish CZ observatories on carbonate rocks 68 

(Gaillardet et al., 2018; Jourde et al., 2018; Quine et al., 2017), but carbonates remain 69 

underrepresented among the studies employing the CZ framework. Although prior and ongoing 70 

studies provide useful information about localized carbonate terrains, more synthesis and a better 71 

predictive understanding of the carbonate CZ will require integrative studies of multiple 72 

carbonate settings with varied characteristics. Such a synthesis could also improve fundamental 73 

understanding of the silicate dominated CZ, as weathering of carbonates is also important within 74 

predominantly silicate settings (e.g. Brantley et al., 2013), and many landscapes fall on a 75 

continuum between the carbonate and silicate endmembers. 76 

A focus on terrains where the CZ is dominated by carbonate minerals is justified by their 77 

common occurrence, their influence on society and its resource base, and their role in the human 78 

experience and human culture. Approximately 15% of Earth’s ice-free continental surface 79 

contains carbonate rock (Figure 1), and approximately 1.2 billion people, 16% of the Earth’s 80 

population, reside on carbonate rock (Goldscheider et al., 2020). Landscapes developed by the 81 

dissolution of carbonate terrains, also known as karst, often appear as a central theme in cultural 82 

development among long-term communities (groups that have been residing in the same 83 

locations for generations) around the world. Karst landforms and features have influenced 84 

Indigenous creation stories, place-naming (toponymy), culturally based geological interpretation, 85 

and local language adaptation in the Greater Antilles part of the Caribbean (Alvarez Nazario 86 

1972; Dominguez-Cristobal 1989, 1992, 2007; Garcia et al., 2020; Pané 1999), as well as a form 87 

of wealth building in central Europe that goes back to the 17th century (Zorn et al., 2009).  In 88 

addition, the conservation of karst features has become a global priority because they commonly 89 

link geological, ecological, cultural, archeological, and touristic resources (Williams, 2008a). 90 

91 
Figure 1. Carbonate exposures across the surface of Earth using data from the World Karst 92 

Aquifer Map (data from Goldscheider et al., 2020). Areas with more than 65% carbonate rocks 93 

are mapped as continuous, whereas areas with between 15% and 65% carbonates are mapped 94 

as discontinuous. Areas with greater than 15% of both carbonates and evaporites are mapped 95 

as mixed. 96 
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 97 

Carbonate terrains provide a wide range of societal and ecological services and present a 98 

variety of unique hazards. Given the favorable conditions for groundwater extraction from 99 

carbonates, and the ubiquity of springs within carbonate terrains, aquifers that develop in 100 

carbonate rocks are a crucial component of the global water supply (Ford and Williams, 2007; 101 

Worthington et al., 2016). Hazards unique to carbonate terrains, such as sinkholes and 102 

groundwater flooding, cause significant economic losses in densely populated areas (De Waele 103 

et al., 2011). Carbonate aquifers are particularly susceptible to contamination due to rapid travel 104 

times and limited natural remediation within large pores and conduits (White et al., 2016). 105 

Carbonate rocks are the largest global reservoir of carbon and have a potentially important, yet 106 

uncertain, role in the global carbon cycle over timescales relevant for rapid climate change 107 

(Baldini et al., 2018; Gaillardet et al., 2019; Martin, 2017). The raw materials for cement 108 

manufacturing are produced from carbonate rocks by calcination converting CaCO3 to CaO plus 109 

CO2, thereby producing 13% of the world’s industrial CO2 emissions (Fischedick et al., 2014). 110 

Carbonate minerals provide important pH buffering capacity within aquatic systems. 111 

Subterranean habitats within carbonate terrains host a wide variety of endemic species, many of 112 

which are threatened or endangered (Culver and Pipan, 2013). The carbonate CZ provides 113 

unique opportunities for study because of the ability for humans to access it at depth within 114 

caves. Interpretation of speleothem records within caves, which are an important source of 115 

paleoclimate information, requires substantial understanding of carbonate CZ processes, as 116 

signals recorded in speleothems are first filtered through the upper portion of the CZ (Fairchild et 117 

al., 2006; Fohlmeister et al., 2020). Consequently, studies of cave drip water have provided 118 

substantial insight into carbonate CZ dynamics (e.g., Tobin et al., 2021; Treble et al., 2022). 119 

Because of rapid mineral dissolution processes within, and subsurface fluxes through, the 120 

carbonate CZ, carbonate CZ systems may act as a bellwether for CZ responses to climatic and 121 

human perturbations (Sullivan et al., 2017). Furthermore, carbonate minerals often make up an 122 

important component of other sedimentary rocks (Hartmann and Moosdorf, 2012), and their 123 

distinct weathering characteristics can control weathering of non-carbonate minerals. The many 124 

impacts of carbonate minerals underscore the need for focused studies of carbonates in Earth’s 125 

CZ. 126 

2. Exploring the carbonate endmember 127 

 We begin with a review of current understanding of carbonate CZ processes.  Within 128 

carbonate terrains, geological, hydrological, biological, geochemical, and climate variables 129 

produce a broad array of carbonate CZ characteristics.  Here, we explore the range of parameters 130 

that create important differences in the carbonate CZ in different settings. 131 

2.1 The importance of porosity distributions 132 

Where the CZ occurs in nearly pure carbonate terrains, it is often transformed through 133 

congruent dissolution into karst, a landscape formed by dissolution of rock that develops 134 

underground drainage networks (Ford and Williams, 2007). Most karst landscapes form in 135 

carbonate bedrock, because of its common occurrence, although they also develop in evaporites 136 

(Klimchouk et al., 1996; Frumkin, 2013) and occasionally, in less soluble rocks (e.g., Wray and 137 

Sauro, 2017). Dissolution integrates subsurface flow networks as water penetrates along 138 

heterogeneities in the rock until solutionally enlarged flow paths link input to outpoint points 139 

(Dreybrodt, 1990; Ford et al., 2000; Palmer, 1991). Such integrated flow paths, or karst conduits, 140 

are characterized by elevated permeability and exhibit rapid and turbulent flow that transports 141 
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large quantities of solutes and gases between the surface and subsurface. High flow rates also 142 

allow the conduits to transport sediment through the subsurface (Cooper and Covington, 2020; 143 

Farrant and Smart, 2011; Herman et al., 2012). Once the capacity of the subsurface conduit 144 

network is sufficient to carry available surface runoff and sediment, closed basins develop on the 145 

land surface that route water and sediment into the subsurface. Conduit systems exit at springs, 146 

which frequently develop near the local hydrological base level. Together, these processes lead 147 

to the dolines, caves, and springs that characterize karst landscapes.  148 

Karst aquifers are commonly conceptualized as a triple-porosity system, in which 149 

porosity is divided into a matrix component, a fracture component, and a conduit component 150 

(Quinlan et al., 1996; White, 2002; Worthington, 1999). The matrix component represents the 151 

primary porosity of the bedrock. The fracture component represents secondary porosity as a 152 

result of fractures and bedding partings. The conduit component represents dissolutionally 153 

enlarged flow paths that have increased connectivity as a result of positive feedback between 154 

dissolution and flow focusing (Worthington et al., 2016). While the dividing line between 155 

conduits and fractures is somewhat arbitrary, often the conduits are defined as the flow paths that 156 

carry turbulent flow (White, 2002). The three porosity components differ in their ability to store 157 

and transmit water. Primary porosity provides much more storage than the conduit network, 158 

because of its large total volume, whereas conduits transmit the most water, because of their high 159 

permeability (Worthington, 1999).  These different hydrologic characteristics create a strong 160 

scale-dependent hydraulic conductivity in karst aquifers. Hydraulic conductivity over short 161 

distances is controlled by the primary porosity and is thus relatively low. Hydraulic conductivity 162 

increases over intermediate distances as fractures become important and is greatest at aquifer 163 

scales where flow through conduits dominates (Halihan et al., 2000; Király, 1975; Worthington, 164 

2009). In general, heterogenous media exhibit an increase of hydraulic conductivity with 165 

measurement scale, up to some cutoff scale where the medium is well-represented by an 166 

equivalent porous medium (Schulze-Makuch et al., 1999). However, the range of variation in 167 

hydraulic conductivity is largest in karstified media, as karst exhibits the largest cutoff scale 168 

(Schulze-Makuch et al., 1999), with individual aquifers having measured values of hydraulic 169 

conductivity ranging over more than eight orders of magnitude (Worthington, 2009). 170 

The primary porosity within a carbonate rock is a function of its diagenetic history and 171 

whether the rock has undergone burial diagenesis, which reduces primary porosity. The terms 172 

eogenetic karst and telogenetic karst are used to distinguish karst that is developed within 173 

relatively young carbonates that have primarily undergone meteoric (eogenetic) diagenesis from 174 

karst developed in older carbonates that have experienced burial diagenesis (telogenetic) and re-175 

exposure to the surface via erosion (Vacher and Mylroie, 2002; Choquette and Pray, 1970). 176 

Integrated karst flow networks develop most easily in rocks with relatively low primary porosity 177 

and relatively high fracture porosity (Palmer, 1991; White, 1969; Worthington, 2014). Such 178 

conditions focus flow through higher permeability fractures, increasing flow velocities and the 179 

depth to which undersaturated water can penetrate the rock, ultimately leading to breakthrough 180 

of dissolutionally enlarged pathways that connect inlets to outlets (Dreybrodt, 1990). Positive 181 

feedback further focuses the flow, whereby the most efficient flow paths receive the most flow 182 

and therefore grow most rapidly, diverting even more flow into these pathways and further 183 

accelerating their growth (Ewers, 1982; Palmer, 1991; Siemers and Dreybrodt, 1998). The 184 

largest developing flow paths create troughs in the potentiometric surface, such that other 185 

competing pathways are drawn toward them, frequently producing a dendritic pattern like that 186 

found in surface stream networks. The overall conduit network geometry is strongly influenced 187 
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by the nature of recharge to the aquifer and the locations of recharge and outlet points (Figure 2) 188 

(Palmer, 1991).  189 

 190 

 191 
Figure 2. Relationship between recharge, dominant porosity, and the patterns of karst networks 192 

that develop (from Palmer, 1991). 193 

 194 

 195 

Rocks with high primary porosity, as found in eogenetic karst, preferentially develop 196 

spongework caves (Palmer, 1991), which are often isolated voids that are not connected into an 197 

integrated conduit flow system (Vacher and Mylroie, 2002). Examples of such dissolutional 198 

voids include flank margin caves and “banana holes” that develop in carbonate island karst 199 

(Breithaupt et al., 2021; Mylroie and Carew, 1990; Vacher and Mylroie, 2002). In such settings, 200 

the locations of dissolutional voids may be controlled by zones of mixing (Mylroie and Carew, 201 

1990) or by biological CO2 production (Gulley et al., 2016, 2015). Consequently, voids 202 

frequently develop near the water table, where vadose zone CO2 can boost dissolution rates 203 

(Gulley et al., 2014), or in zones of freshwater-saltwater mixing (Mylroie and Carew, 1990). 204 

While evolution of such voids produced by local mixing or CO2 production may enhance local 205 

hydraulic conductivity and focus porous media flow toward enlarging voids (Mylroie and Carew, 206 

1990; Vacher and Mylroie, 2002), it is less common for these processes to develop regionally 207 

integrated conduit systems (Palmer, 1991). However, long-range conduit connectivity that does 208 

develop in eogenetic karst is commonly associated with sinking streams (Martin and Dean, 2001; 209 

Monroe, 1976), reversing springs (Gulley et al., 2011; Moore et al., 2010), or large recharge 210 
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areas, as found in the Yucatan Peninsula of Mexico (Back et al., 1986) and on large carbonate 211 

islands (Larson and Mylroie, 2018). 212 

The primary porosity of carbonate rocks also impacts the magnitude of water exchange 213 

between conduits and the porous matrix. The matrix component is often considered negligible in 214 

models of flow and transport in telogenetic karst aquifers (Peterson and Wicks, 2005). However, 215 

in eogenetic karst, with high matrix porosity, transient head conditions within conduits, 216 

combined with the relatively high permeability of the matrix, can produce substantial exchange 217 

flows between the conduits and matrix, analogous to hyporheic exchange within rivers (Martin 218 

and Dean, 2001). Such exchange flows may dampen the hydraulic response of karst aquifers, 219 

which are typically flashy (Florea and Vacher, 2006; Spellman et al., 2019). The loss of water 220 

from conduits into small intergranular matrix porosity increases surface areas available for 221 

dissolution reactions. In some cases, dissolution by exchange flow may be the primary factor 222 

driving evolution of connectivity within a karst aquifer (Gulley et al., 2011; Moore et al., 2010). 223 

Exchange flows are also important drivers of a variety of other biogeochemical reactions, in 224 

large part because of their control of redox conditions as water equilibrated with atmospheric 225 

oxygen and elevated in dissolved organic carbon is injected into reducing water stored in matrix 226 

porosity (Brown et al., 2014; 2019; Flint et al., 2021). Such exchange flows can occur both 227 

between conduits and matrix and between rivers and the surrounding aquifer. 228 

2.2 Sources of undersaturation and dissolution 229 

In the classic conceptual model of karst development, calcite dissolution is driven by 230 

carbonic acid. Meteoric water dissolves CO2 within the atmosphere and soil and carries this CO2 231 

downward into the rock, dissolving carbonate minerals along its way (Adams and Swinnerton, 232 

1937). Karst developed by such processes is often referred to as epigene karst, indicating its 233 

close relationship to surface processes, in contrast to hypogene karst, which develops at depth. 234 

This classic conceptual model has been expanded in several ways, particularly as it relates to the 235 

sources of CO2. In some karst settings, CO2 concentrations are higher at depth than within the 236 

soil, suggesting CO2 production deep within the vadose zone, perhaps as the result of the 237 

remineralization of particulate organic matter that has infiltrated to depth (Atkinson, 1977b; 238 

Mattey et al., 2016; Noronha et al., 2015; Wood, 1985) or the influence of deeply rooted 239 

vegetation (Breecker et al., 2012).  240 

In addition to carbonic acid, carbonate dissolution can be driven by a variety of other 241 

acids, with sulfuric and nitric acids being the most common. Sulfuric acid is widely cited as a 242 

source of dissolution in hypogenic speleogenesis (Egemeier, 1988; Engel et al., 2004), in marine 243 

carbonate sediments (Beaulieu et al., 2011; Torres et al., 2014), and in landscapes affected by 244 

acid rain (Shaughnessy et al., 2021).  Sulfuric acid can be produced through fossil fuel 245 

combustion, especially coal (Irwin and Williams, 1988). Sulfuric acid is also produced where 246 

oxygen-rich air or water encounters reduced sulfur species such as pyrite in sedimentary rocks or 247 

H2S produced by coupled microbial organic carbon oxidation and sulfate reduction. Carbonate 248 

dissolution can also occur by nitric acid produced during microbial nitrification or industrial 249 

processes. Nitric acid production has been enhanced by anthropogenic production of reactive 250 

nitrogen species (Galloway, 1998; Galloway et al., 2008), for example by chemical fertilizer use 251 

in intensive agriculture and partial oxidation of atmospheric N2 in internal combustion engines 252 

(Gandois et al., 2011; Perrin et al., 2008).  Organic acids may also be important drivers of 253 

dissolution in some carbonate settings, although their concentrations are commonly lower than 254 

concentrations of sulfuric or nitric acids (Jones et al., 2015). High concentrations of organic 255 
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acids have been suggested to cause rapid carbonate dissolution in a temperate rainforest setting 256 

(Allred, 2004; Groves and Hendrikson, 2011).  257 

The source and type of acid causing carbonate dissolution is critical to global carbon 258 

cycling (Martin, 2017). Carbonate dissolution by carbonic acid is neutral with respect to long-259 

term atmospheric CO2 concentrations, because CO2 consumed during weathering, CO2 + H2O + 260 

CaCO3 → Ca2+  + 2HCO3
-, 261 

is balanced by CO2 released during marine carbonate precipitation,  262 

 Ca2+  + 2HCO3
- → CaCO3 + CO2 + H2O. 263 

In contrast, dissolution of carbonates by sulfuric or nitric acids results in a net flux of 264 

CO2 to the atmosphere (Martin, 2017), with 265 

 266 

H2SO4 + 2CaCO3 + H2O → CaCO3 + CaSO4 * 2H2O + CO2. 267 

2HNO3 + CaCO3 → Ca2+ + 2NO3
- + CO2 + H2O 268 

 269 

Considerable work over the last two decades has focused on hypogene speleogenesis, in which 270 

water undersaturated with respect to bedrock minerals forms at depth and is carried to the surface 271 

with regional groundwater flow (e.g., Klimchouk, 2007; Palmer, 1991; Klimchouk et al., 2017). 272 

Undersaturated water may form through many mechanisms, including cooling of rising thermal 273 

waters, oxidation of reduced sulfur species, deep sources of CO2, and mixing of waters with 274 

different salinity or pCO2. Dissolution deep within a karst aquifer may develop porosity that is 275 

disconnected from points of surface recharge, forming isolated porosity rather than regionally 276 

integrated flow networks. Alternatively, dissolution where deep and meteoric water mix may 277 

develop integrated flow networks if the pore spaces become linked. Karst conduit networks 278 

formed by hypogene processes typically develop complex mazes or ramiform passages, with less 279 

tendency toward the dendritic flow patterns common in epigene karst settings (Palmer, 1991). 280 

Porosity that develops in the deep subsurface may serve as a template for epigenetic karst 281 

processes when exhumation due to erosion brings that porosity closer to the surface (e.g., 282 

Tennyson et al., 2017; Klimchouk et al., 2023). 283 

2.3 Climate 284 

Climatic factors impact the rate and forms of karst development (Lehmann, 1936). A 285 

theoretical relationship for the maximum possible rate of karst denudation (Dmax), based on 286 

equilibrium carbonate chemistry (White, 1984), provides a first order estimate of the impact of 287 

climate factors on rates of carbonate denudation, 288 

 289 

 290 

𝐷max   =
𝑀

𝜌
[Ca]𝑒𝑞(𝑃 − 𝐸) =

𝑀

𝜌
(

𝐾𝑐𝐾1𝐾𝐶𝑂2
4𝐾2𝛾𝐶𝑎𝛾𝐻𝐶𝑂3

2 )

1

3
𝑝𝐶𝑂2

1

3(𝑃 − 𝐸)                 (1) 291 

 292 

where Dmax is in units of mm/kyr, ρ is rock density in g/cm3, [Ca]eq is the equilibrium 293 

concentration of calcium in mol/L, Kc, K1, KCO2 and K2 are temperature-dependent equilibrium 294 

constants of the carbonate system in units of mol/L and atm, pCO2 is the partial pressure of CO2 295 
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in atm, Ca and CO3 are the activity coefficients of calcium and bicarbonate, respectively, which 296 

are often approximated as one, M is the molar mass of CaCO3 (100 g/mol), and P – E is 297 

precipitation minus evapotranspiration in mm/yr. Equation 1 shows the three main contributors 298 

to climate-driven differences in carbonate denudation rates: 1) changes in the equilibrium 299 

constants with changing temperature, 2) differences in pCO2, which are strongly related to 300 

temperature, and 3) water availability. Among these three factors, water availability plays the 301 

strongest role in producing global variation in chemical denudation rates (Ryb et al., 2014; Smith 302 

and Atkinson, 1976). Well-developed karst surface features are less common within hot and arid 303 

settings or cold settings where water is rarely present in a liquid state (Ford and Williams, 2007). 304 

When karst surface features are present in such settings, they are sometimes inherited from 305 

landscapes that developed in past conditions that were wetter. 306 

As temperature increases, solubility of calcite decreases, largely because of the decreased 307 

solubility of CO2. However, carbonate mineral dissolution rates increase with warmer 308 

temperatures (Plummer et al., 1978). Elevated dissolution rates decrease the time required to 309 

reach equilibrium within the CZ, and thus faster kinetics lead to more dissolution within the near 310 

subsurface (Gabrovšek, 2009). In addition, soil pCO2 increases with increased temperature as 311 

biological activity increases (Drake, 1980). These two competing effects, of decreasing solubility 312 

and increasing pCO2 with increasing temperature, are thought to produce the observed 313 

boomerang shape between Ca2+ + Mg2+ concentrations and temperature within world rivers, with 314 

a peak in carbonate weathering intensity around a temperature of 10° C (Gaillardet et al., 2019). 315 

While a substantial body of work examines fluxes of solutes from carbonate basins and uses 316 

these to estimate average denudation rates (e.g., Erlanger et al., 2021; Gunn, 1981; Lauritzen, 317 

1990) the role of kinetics in partitioning dissolution within the subsurface remains an area for 318 

further study. 319 

While, broadly speaking, the impacts of climate on karst processes are well-understood, 320 

many open questions remain. For example, polygonal or cockpit karst develops preferentially in 321 

the humid tropics, whereas doline karst is more typical of humid temperate regions, and the 322 

reason for this difference is unclear (Ford and Williams, 2007). Interactions between climate and 323 

biological processes may be an important driver in the evolution of these landscapes. 324 

2.4 Vadose zone gases and open vs. closed system weathering 325 

Vadose zone gases, particularly CO2 and O2, play an important role in weathering 326 

processes (e.g., Brantley et al., 2013; Kim et al., 2017). These gases are derived from Earth’s 327 

atmosphere as a primary source, although CO2 concentrations can be elevated in the vadose zone 328 

due to root respiration and oxidation of organic matter (Kim et al., 2017; Wood and Petraitis, 329 

1984). Gases are often assumed to be transported by diffusion in the vadose zone. However, 330 

connectivity among solutionally enlarged fractures and larger conduits in karst systems enables 331 

advective gas flows. Advection is forced by density contrasts between surface and subsurface air, 332 

largely through temperature variations at daily and seasonal time scales (Covington, 2016; 333 

Covington and Perne, 2015; Sanchez-Cañete et al., 2011), that drive seasonal and diurnal 334 

changes in subsurface gas concentrations (Benavente et al., 2010; Gulley et al., 2014; Kowalczk 335 

and Froelich, 2010; Lang et al., 2017; Mattey et al., 2016; Milanolo and Gabrovšek, 2009; 336 

Sekhon et al., 2021; Spötl et al., 2005; Wong et al., 2011). These variations are likely to extend 337 

throughout the vadose zone, even where it may be thick because of deep groundwater tables 338 

(Benavente et al., 2010; Covington, 2016; Mattey et al., 2016).  In some cases, soil and the 339 

shallow subsurface may be aerated from below rather than directly from the atmosphere (Faimon 340 

et al., 2020). The ventilation through conduit systems, and the linked changes in vadose water 341 
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chemical compositions and compositions at the water table, can thus provide controls on the 342 

spatial and temporal patterns of dissolution and precipitation of calcite (Covington et al., 2021; 343 

Covington and Vaughn, 2019; Gulley et al., 2014; Houillon et al., 2017; Spötl et al., 2005; Wong 344 

et al., 2011). Similar processes can impact CO2 gas fluxes from, and carbonate weathering 345 

patterns within, the soil (Roland et al. 2013).  346 

Weathering of carbonate minerals is often approximated as proceeding under open or 347 

closed system conditions with respect to a CO2 gas phase. Under open system conditions, the 348 

solution is in contact with a large reservoir of CO2 and evolves at fixed pCO2, dissolving more 349 

CO2 from the gas phase as CO2 is consumed by carbonate dissolution. Under closed system 350 

conditions, the solution is isolated from the gas phase, and pCO2 decreases as carbonate 351 

dissolution proceeds. Open and closed conditions are partly dictated by the water saturation state 352 

of the pore spaces, with complete water saturation producing closed conditions. Whether 353 

carbonate dissolution proceeds under open or closed conditions impacts both the rate of 354 

weathering processes (Buhmann & Dreybrodt, 1985a; Buhmann & Dreybrodt, 1985b) and trace 355 

element concentrations and isotopic compositions of dissolved species (Hendy, 1971; Stoll et al., 356 

2022). A global study of spring water chemistry suggests that, on average, spring chemistry in 357 

carbonate regions is well-explained by weathering under conditions that are open to soil CO2 358 

(Romero-Mujalli et al., 2019).  359 

The impact of carbonate weathering processes on the isotopic composition of 360 

speleothems was first investigated in the seminal work of Hendy (1971). Subsequent studies built 361 

on this model to discern the effects of prior calcite precipitation, which impacts trace element 362 

concentrations, and kinetic fractionation, which impacts stable isotope ratios, to confidently 363 

isolate climate signals from speleothems (e.g., Fohlmeister et al. 2011; Fohlmeister et al., 2020). 364 

The primary goal of these models is to illustrate the potential of speleothems to track changes in 365 

the climate. However, such studies also help us to better understand local hydrological processes 366 

within the epikarst that are sensitive to open and closed system conditions and pore spaces in the 367 

CZ (Stoll et al., 2012). Recent work goes beyond the open/closed system framework and 368 

employs a reactive transport model to simulate carbonate weathering processes and gas transport 369 

in the carbonate CZ (Druhan et al. 2021; Oster et al., 2021). Such approaches provide a 370 

promising new avenue for future research on carbonate CZ processes. Lastly, to investigate the 371 

open versus closed system paradigm, variation in dead carbon fraction, the fraction of old, 372 

radiocarbon dead C derived from bedrock, and Li isotopes of speleothems provide additional 373 

constraints on the relationship between climate and weathering. Dead carbon fraction in 374 

speleothems is primarily controlled by rates of limestone dissolution. High dead carbon fraction 375 

is typically indicative of closed system conditions during periods of increased hydrological 376 

activity (Griffiths et al., 2012; Bajo et al., 2017), though enhanced decomposition of old, 377 

recalcitrant carbon is another important source of dead carbon (Rudzka et al., 2012; Noronha et 378 

al., 2015). Likewise, recent studies of Li isotopes within cave drip waters and analog 379 

experiments highlight the possibility of studying silicate weathering intensity using speleothem 380 

records (Day et al., 2021; Wilson et al., 2021). 381 

2.5 Tectonic setting and base level 382 

Tectonic uplift, sea level change, and other drivers of changes in base level provide 383 

important boundary conditions for the development of karst flow networks and the resulting 384 

landscapes. Karst conduit development is often focused near, or driven toward, the water table 385 
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(Ford and Ewers, 1979). During periods of stable base level, karst conduit networks can 386 

preferentially develop within specific elevation ranges (Figures 3). Such cave levels are used to 387 

date phases of river incision using cosmogenic burial dating (Granger et al., 2001; Stock et al., 388 

2005). Similarly, flat corrosion plains develop when the land surface approaches base level (Ford 389 

and Williams, 2007). In contrast, where rapid uplift occurs, the resulting high relief promotes the 390 

development of thick vadose zones, sometimes in excess of 2 km. In these cases, conduit 391 

development may be primarily vertical, along structural features such as faults, until water 392 

collects within subhorizontal conduits that drain the water laterally out of massifs into springs 393 

near base level (Audra et al., 2006; Turk et al., 2014; Klimchouk, 2019).  394 

 395 
Figure 3. The development of horizontal cave levels in Crystal Cave, California, in response to 396 

stream incision (from Stock et al., 2005). As the surface stream incised, new levels of cave 397 

passage were developed (A), rather than steepening of the existing channel, as would occur 398 

during a pulse of incision in a surface stream. Locations (A) and ages (B) of cave deposits are 399 

shown, including speleothem U-Th (white triangles), paleomagnetic (gray squares), and 400 

cosmogenic burial (black circles) samples. The cosmogenic burial ages of coarse sand and 401 

gravel are most indicative of the time when a cave passage was occupied by an active stream. 402 

 403 

Uplift of carbonate platforms can also result from isostatic rebound caused by dissolution 404 

and the resulting reduction in platform density (Adams et al., 2010; Opdyke et al.,1984). In fold 405 

and thrust belts, the tendency for evaporites to act as planes of detachment frequently results in 406 

the formation of anticlines with evaporite cores (Davis and Engelder, 1985), and the buoyant 407 

effect of the evaporites may be an additional force contributing to uplift of the anticline (Lucha et 408 

al., 2012). The juxtaposition of evaporites below uplifted, fractured carbonate-rich rocks creates 409 

ideal conditions for hypogene, sulfidic karst development, as in the Central Apennines, Italy 410 

(D’Angeli et al., 2019). In this setting, base level is controlled by river incision of the anticline, 411 

resulting in sulfidic springs that discharge in or near river valleys. Cycles of sea level rise and 412 

fall are important drivers of karst development in coastal settings, which are typical of most 413 

eogenetic karst. Voids that develop at sea-level low stands are subsequently flooded during sea 414 

level rise (Myroie and Carew, 1990; Smart et al., 2006; Gulley et al., 2013). Patterns of sea level 415 

change can often be tracked within speleothem records (Bard et al. 2002; Roy & Mathews, 1972; 416 

Surić et al., 2009). 417 
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2.6 Relative importance of chemical vs. mechanical weathering and erosion processes 418 

Landscapes that develop on carbonate bedrock are also impacted by the types and rates of 419 

mechanical weathering and erosion. In landscapes where mechanical processes are more efficient 420 

than chemical processes, karst features will be less pronounced, even if subsurface karst flow 421 

networks are well-developed. The instantaneous rate of chemical erosion tends to be slower than 422 

the instantaneous rates of mechanical erosion processes such as fluvial incision, hillslope mass 423 

wasting, and glacial erosion. However, chemical erosion processes, both chemical denudation 424 

and dissolution-driven channel incision/conduit growth, are often relatively continuous, with 425 

chemical denudation rates depending primarily on climate (White, 1984) and dissolution rates 426 

within streams showing relatively low variability over time (Covington et al., 2015). In contrast, 427 

mechanical erosion and mass transport processes are frequently episodic. Consequently, the most 428 

extensive karst landscapes develop in humid environments where nearly continuous chemical 429 

weathering outpaces episodic mechanical processes – a tortoise and hare analogy (Simms, 2004). 430 

In environments where mechanical weathering processes are particularly effective, karst surface 431 

features may fail to develop because of the rapid breakup and accumulation of weathered rock. 432 

One such example is alpine karst settings, where frost cracking can erase surface expressions of 433 

karst (Ford, 1971). 434 

In mixed carbonate and non-carbonate terrains, carbonates can behave either as weaker 435 

rock layers, forming topographic lows, or as strong layers that form topographic highs (Simms, 436 

2004; Ott et al., 2019). When chemical weathering rates outpace tectonic uplift, as might be the 437 

case in either humid environments or tectonically passive settings, then carbonates tend to erode 438 

more quickly and develop lows in the topography. However, when tectonic uplift outpaces 439 

chemical weathering, as in arid or rapidly uplifting environments, then the mechanical strength 440 

of carbonates may result in the formation of topographic highs (Ott et al., 2019). 441 

The diversion of surface water, and therefore geomorphic work, into the subsurface in 442 

sinking streams can decrease the efficiency of fluvial erosion processes. For example, karst sink 443 

points can stall the propagation of knickpoints, reducing rates at which stream profiles adjust to 444 

changes in tectonic forcing (Fabel et al., 1996). Ott et al. (2019) quantified both chemical and 445 

mechanical denudation rates in carbonates and non-carbonates in Crete, showing that mechanical 446 

processes dominate, even in the carbonates, where chemical denudation accounts for ~40% of 447 

total erosion. Their results suggest that the much greater relief that develops in the carbonates 448 

results from loss of water into the subsurface and subsequent steepening of stream channels to 449 

enable mechanical erosion rates to keep pace with uplift.  450 

Chemical and physical processes can also interact, potentially enhancing or inhibiting 451 

each other. Experiments in subcritical cracking demonstrate unique fracture propagation 452 

behaviors in carbonates, which may relate to dissolution processes at fracture tips (Atkinson, 453 

1984; Henry, 1978). In general, models and experiments suggest that acids can enhance fracture 454 

propagation rates in carbonate rocks (e.g., Hu & Hueckel, 2019). Roots are an important agent in 455 

mechanical breakup of rock, particularly in areas with thin regolith (Brantley et al., 2017). In 456 

carbonates, roots can take advantage of subsurface porosity generated by dissolution processes 457 

(Estrada-Medina et al., 2013), and they can also generate subsurface porosity through dissolution 458 

by root exudates or CO2 generated by root respiration (Klappa, 1980; Rossinsky and Wanless, 459 

1992), potentially enhancing root-driven rock fracturing. It has also been hypothesized that 460 

chemical and mechanical erosion may enhance each other within stream channels (Covington, 461 

2014; Covington & Perne, 2015), with chemical erosion potentially loosening grains that are 462 

then removed by mechanical processes (Emmanuel & Levenson, 2014), or with mechanical 463 
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abrasion removing surface impurities to expose fresh weatherable carbonate minerals. 464 

Mechanical weathering processes can also inhibit chemical weathering processes. For example, 465 

buildup of fractured rock material on the surface, with high surface areas for reaction, may lead 466 

to saturation of meteoric water before it reaches unweathered bedrock. Similarly, high sediment 467 

loads within streams could armor the beds and inhibit dissolution except during periods of 468 

sediment mobility. 469 

2.7 Biota 470 

As in the CZ more generally, the activity and spatial architecture of carbonate CZ 471 

biological communities have important feedbacks to other CZ processes. Thanks to networks of 472 

large voids, the carbonate CZ is distinguished by the potential for macroscopic biota including 473 

fish, amphibians, and invertebrates to penetrate up to several km below the photic zone (Figure 474 

4). Because both locomotion and passive transport in karst conduit networks are more 475 

constrained than at the surface, carbonate CZ biological communities often show a high degree 476 

of endemism. The resulting small population sizes leave carbonate CZ fauna especially 477 

vulnerable to extinction (Culver & Pipan, 2013). 478 

Animal communities in the subsurface can be fed either by in situ microbial primary 479 

production or detrital dissolved and particulate organic carbon percolating downward from the 480 

surface soil. In some cases, sedimentation of particulate organic carbon in conduits creates a 481 

biological hot spot where CO2 production from decomposition drives further carbonate 482 

dissolution (Covington et al., 2013; Gulley et al.,2016). In coastal karst landscapes where 483 

aquifers are density stratified and partially filled by anoxic seawater (i.e. anchialine), organic 484 

matter hot spots also facilitate H2S production from microbial sulfate reduction. As water flows 485 

over the hot spot, H2S is transported away and oxidized at redox interfaces elsewhere in the 486 

network, producing sulfuric acid that drives more carbonate dissolution. A striking example of 487 

this process can be observed in the Bahamian eogenetic karst. “Blue holes” (sinkholes) are 488 

extremely common in the landscape and collect surface vegetation, which is deposited at the 489 

bottom of the conduit in anoxic or dysoxic seawater. Tidal pumping exchanges low pH water 490 

between the blue hole and matrix porosity of these eogenetic karst features, enhancing 491 

dissolution reactions (Martin et al., 2012). Decomposition of the detrital plant material fuels 492 

intense H2S production and, where the H2S diffuses into the photic zone, associated blooms of 493 

sulfide-dependent photosynthetic bacteria thrive and fix additional carbon in the subsurface 494 

(Gonzalez et al., 2011, Haas et al., 2018). 495 

 496 
Figure 4. a) Proteus anguinus, an aquatic salamander found in the karst of the Dinaric Alps that 497 

is one of the largest cave adapted animals in the world (reaching up to 40 cm in length). Photo 498 

Gergő Balázs. b) A terrestrial amphipod (Androniscus sp.) scavenges among biovermiculations 499 
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(dark ridges) ~300 m below land surface in the Frasassi cave system, Italy. Sulfidic water 500 

degassing into the cave air creates enough chemical energy to support a rich food web based 501 

on microbial lithoautotrophy. Photo J. L. Macalady.  502 

Vegetation on karst landscapes is affected by (1) rapid drainage and associated nutrient 503 

leaching due to thin soils and large bedrock pores, (2) phosphorous scarcity due to the low P 504 

content of carbonate bedrock and high phosphate complexation with abundant Ca2+ ions, (3) 505 

strong decimeter- to meter-scale spatial heterogeneity in topography, soil and hydrologic factors, 506 

and (4) limited silicate minerals, incongruent weathering, and soil formation. The plant ecology 507 

of tropical and subtropical karst ecosystems has recently been reviewed in depth (Geekiyanage et 508 

al., 2019). Because water in thin karst soils is in short supply, plants growing on carbonate-509 

dominated landscapes have adaptations for using alternative reservoirs of water, especially in dry 510 

seasons (Figure 5). Non-tree species often have particularly dense and extensive shallow root 511 

systems because they depend on soil water year-round (Ellsworth et al., 2015). Due to high 512 

bedrock porosity, water stored in the vadose zone (epikarst) represents a significant alternative to 513 

soil water for woody species that can penetrate into carbonate bedrock (e.g., Querejeta et al., 514 

2007). Some woody species also have specialized, long roots that reach the water table (Deng et 515 

al., 2012; Swaffer et al., 2014). Adaptations for obtaining fog water (Fu et al., 2016), and a 516 

drought-deciduous strategy in which leaves are shed during dry seasons (Reich and Borchert, 517 

1984; Wolfe and Jursar, 2015), have also been documented in plants growing in carbonate 518 

terrains.  519 

Plant adaptations to obtain water resources in the carbonate CZ significantly alter the 520 

hydrologic balance at depths far below the soil zone and therefore have feedbacks on weathering 521 

rates and nutrient and organic carbon transport out of the system that are different than in the 522 

silicate-dominated CZ (Huang et al., 2009; Dammeyer et al., 2016). Karst plant nutrient 523 

acquisition strategies may also differ significantly, with potential feedback to weathering rates. 524 

Plants growing on calcareous soils release organic acids from their roots in order to obtain 525 

phosphate from metal complexes in the soil (Ström et al., 2005). Subsequent microbial 526 

degradation of the organics further enhances CO2 production near roots. In the presence of strong 527 

topographic heterogeneity leading to soil pockets in epikarst depressions, vegetation can 528 

reinforce CO2-induced weathering hot spots in the landscape and thereby amplify dissolution 529 

along certain water flow paths. A well-studied example of vegetation-mediated positive 530 

weathering feedbacks can be seen in Big Cypress National Preserve, South Florida, which is 531 

characterized by extensive spatial patterning (Dong et al., 2019a,b). 532 
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 533 

Figure 5. Water use strategies of karst plant species in a typical karst ecosystem during the dry 534 

season; (i) soil water dependent (species that predominantly take up soil water in both the dry 535 

and wet season), (ii) epikarst water dependent (species that use both soil and water stored in 536 

epikarst in both seasons and show a major shift to epikarst water when soil water is depleted 537 

during the dry season), and (iii) groundwater dependent (species that use groundwater in 538 

addition to soil and epikarst water and show a major shift to epikarst and groundwater when 539 

soil water is depleted during the dry season). Not illustrated here are (iv) fog water dependent 540 

plants, which use fog-derived water in addition to any of the above water sources, and (v) 541 

drought-deciduous, which remain dormant by leaf shedding during the dry season. From 542 

Geekiyanage et al. (2019). 543 

Plant roots and the microbial communities they support, including mycorrhizae, 544 

saprotrophic fungi, bacteria, and archaea have long been recognized as drivers of chemical 545 

weathering and the global carbon cycle (Beerling, 1998; Berner, 1992; Brantley et al., 2017a). 546 

Plant growth elevates soil pCO2 and increases dissolved inorganic carbon (DIC) fluxes (Andrews 547 

and Schlesinger, 2001; Berner, 1997). Rooting systems (e.g., grass-, shrub- and woodlands)  548 

govern the distribution of soil carbon (both organic and inorganic), microbial biomass, and soil 549 

respiration (Billings et al., 2018; Drever, 1994; Jackson et al., 1996). For example, relatively 550 

deep root distributions in shrublands compared to grasslands lead to deeper soil carbon profiles 551 

(Jackson et al., 1996; Jobbágy and Jackson, 2000), which elevate CO2 and therefore weathering 552 

at depth. The work described here was carried out almost exclusively at sites where the CZ is 553 
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dominated by silicate minerals. Only recently have similar ideas been applied to carbonate 554 

terrains, particularly in connection with studies of land-use changes. 555 

Changing land cover has been invoked to explain changes in carbonate weathering 556 

processes. In carbonate terrains, carbon weathering fluxes have been found to be maximized in 557 

grasslands as compared to shrub, managed crop, soil denuded of vegetation, or bare rock 558 

dominated landscapes (Zeng et al., 2017). This optimization results from greater pCO2 and 559 

greater depths of water penetration in grasslands as compared to other land cover types. Woody 560 

vegetation encroachment into grasslands underlain by carbonate systems causes shifts in flow 561 

paths, groundwater solute concentration, and the timing of solute delivery to streams as inferred 562 

from reactive transport models and observed changes in stream and groundwater chemical 563 

compositions (Sullivan et al., 2019), with deep root systems regulating how much CO2 is 564 

transported downward to the deeper carbonate-rich zone (Wen et al., 2020). Changes in pCO2 as 565 

a response to shifts in vegetation can also be discerned through 13C variability in speleothems. 566 

Lechleitner et al. (2021) show that an increase in soil gas pCO2 is recorded in speleothem carbon 567 

isotope (δ13Cspel), which may retain information on soil respiration. Similarly, Stoll et al. (2022), 568 

attribute trends in δ13Cspel to soil gas and bedrock dissolution. They propose that higher 569 

temperatures increase vegetation productivity, thereby increasing soil CO2 production, which 570 

leads to more negative δ13C in speleothems.  571 

Bedrock type can control plant productivity through influencing the available nutrients 572 

and physical regolith structure (Hahm et al., 2014). Data from carbonate settings suggest that 573 

silicate percentage is negatively correlated with the rate of water drainage from regolith and 574 

positively correlated with primary productivity (Jiang et al., 2020). It is hypothesized that 575 

preferential drainage features are better developed within carbonate-rich rocks and that this leads 576 

to both water and soil loss into the subsurface, reducing water availability during dry periods. 577 

Similarly, a global study of relationships between rock type and biodiversity in erosional 578 

landscapes demonstrates that regions rich in carbonates have less vegetation and lower animal 579 

richness (Ott 2020). 580 

 581 

2.8 Humans and the carbonate CZ 582 

Human activity over millennia is intimately tied to use of karst landscapes for agricultural 583 

purposes, water resources, and cultural traditions (Quine et al., 2017; Stevanović, 2018; Moyes et 584 

al., 2009). The study of human evolution is rooted in investigating hominin bearing fossils 585 

discovered in caves (Mijares et al., 2010; Zanoli et al., 2022; Pickering et al., 2011; Sutikna et 586 

al., 2016) as well as cave art (Brumm et al., 2021; Valladas et al., 2001). Excavations of fossils 587 

in cave deposits continue to be a crucial tool in piecing together the history of human evolution. 588 

However, destruction of cave sites through cave infilling because of construction, and visitors 589 

destroying artifacts, threaten these prehistoric records. Interdisciplinary research between social 590 

scientists, geographers, archaeologists, and earth scientists is required to better constrain the 591 

relationships between humans and karst landscapes. Human activity through the Anthropocene is 592 

negatively impacting the karst landscape (Long et al., 2021; Beach et al., 2015). This delicate 593 

environment is susceptible to soil degradation, sinkhole development, groundwater 594 

contamination, and depletion in groundwater levels. Globally, many regions with carbonate 595 

aquifers are predicted to experience lower precipitation and higher temperatures, reducing 596 

recharge and stressing available water resources (Hartmann et al., 2014). Similar to geochemical 597 

processes, environmental impacts can occur more rapidly in karst and carbonate systems. The 598 
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consequences of human activities in the carbonate CZ are highlighted below to draw attention to 599 

the vulnerability of karst.   600 

Karst uplands are vulnerable to runaway degradation if trees are removed. In the absence 601 

of forest vegetation protecting thin soils, rapid erosion into exposed karst fissures culminates in 602 

the creation of rocky deserts where forest vegetation can no longer gain a foothold. Rocky 603 

desertification has occurred in significant areas of Mediterranean Europe (e.g., the Dinaric 604 

Karst), on islands such as Haiti and Barbados in the Caribbean, and especially and most recently 605 

in southwestern China (Jiang et al., 2014; Green et al., 2019). Over the past 50 years, a variety of 606 

human activities have played a substantial role in the expansion of rocky deserts in China 607 

including fuelwood collection, development of housing and tourism, slope cultivation, and 608 

animal grazing (Zhao and Hou, 2019). Populations are impacted as farmable land can switch 609 

from soil covered to denuded relatively rapidly (Zhao et al., 2020).  610 

Sinkholes are one of the costliest hazards in karst regions, when collapse of underground 611 

voids intersects with human land use (Gutiérrez et al., 2014). Anthropogenic activities can 612 

accelerate sinkhole development, through lowering of the water table, diversion of recharge into 613 

karst depressions, or creation of water table fluctuations (e.g., Newton, 1987; Parise et al., 2015; 614 

Waltham, 2008; Yizhaq et al., 2017). Consequently, sinkhole hazards are closely linked to 615 

human activities through both water extraction and land development. These hazards may be 616 

exacerbated with future climate change as carbonate regions experience lower precipitation and 617 

more extreme precipitation events, further stressing water resources and creating higher runoff 618 

and larger water table variation. 619 

Carbonate aquifers are particularly vulnerable to contamination (e.g., Hartmann et al., 620 

2021; White et al., 2016), and because of enlarged passages a wider range of contaminants need 621 

to be considered, including pathogens, contaminants sorbed to sediment particles, and trash 622 

(Ford and Williams, 2007; Vesper and White, 2003). Microplastics have recently been identified 623 

in karst systems, but little is known of their sources, fate and impacts (Panno et al., 2019; 624 

Balestra and Bellopede, 2022). Predicting contaminant transport pathways is complicated by 625 

mixing of fast and slow flow paths, reflecting a need for an improved understanding of flow 626 

components and storage (Tobin et al., 2021).  Furthermore, karst systems are more vulnerable to 627 

changing climate regimes, which increase or decrease precipitation inputs, and may require 628 

special protection measures such as larger stormwater control structures (Veni et al., 2001). The 629 

heterogeneity found in karst influences the sensitivity of recharge to climate change (Hartmann 630 

et al., 2017). Therefore, water management strategies designed to cope with climate change need 631 

to explicitly account for the impact of heterogeneity in karst settings. 632 

 633 

3 The carbonate-silicate spectrum 634 

 Due to fundamental differences in the properties of silicate and carbonate mineral 635 

groups, the percentage and spatial distribution of carbonate minerals within parent rocks drive 636 

important differences in the processes and architectures that develop as the CZ evolves. As a 637 

conceptual framework, we will consider a silicate-carbonate spectrum (Figure 6), with 638 

endmember landscapes completely dominated by either carbonate or silicate minerals. This 639 

framework provides a link between prior CZ studies and synthesis studies yet to be carried out in 640 

both carbonate and silicate-dominated sites along the spectrum. Understanding how CZ 641 

dynamics and processes change along this spectrum is a crucial next step towards integrating 642 
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carbonate landscapes into existing knowledge of the CZ. We argue that studying the carbonate 643 

CZ will also contribute to new understanding of silicate settings by comparison. 644 

3.1 Silicate-carbonate mineral mixtures and distributions in the CZ 645 

Within Earth’s CZ, silicate and carbonate minerals occur in mixtures across a range of 646 

scales, from the grain scale to stratigraphic scales (Figure 6). At the grain scale, all carbonate 647 

rocks contain some percentage of non-carbonate minerals, with common constituents including 648 

clays and slowly weathering silicate minerals such as quartz and feldspars (Ford and Williams, 649 

2007). Silicate mineral fractions of carbonate rocks often take the form of sand- or silt-size 650 

quartz grains, or nodules or beds of authigenic chert (Figure 7a). These minerals may remain as 651 

lag deposits as the carbonate minerals are dissolved (Figure 7b-c). Similarly, many siliciclastic 652 

rocks contain some fraction of carbonate minerals, often in the form of a cement between grains. 653 

Carbonate-cemented sandstones, or impure carbonates, can form caves and karst landforms 654 

through the process of phantomization (Dubois et al., 2014; Häuselmann and Tognini, 2005; 655 

Kůrková et al., 2019), whereby preferential dissolution of the cement disintegrates the rock and 656 

then the remaining loose sand grains are removed physically by piping (Figure 7d). 657 

Counterintuitively, the effectiveness of the phantomization process is only weakly dependent on 658 

carbonate percentage, and instead disintegration is largely controlled by the grain-size and 659 

texture of the silicate component (Kůrková et al., 2019). This observation suggests that the 660 

change of landforms and CZ architecture along the carbonate-silicate spectrum depends on 661 

variables other than just the carbonate fraction of the lithology, such as how the mineral groups 662 

are distributed at the grain scale. 663 

In addition to mixtures at the grain scale, silicate and carbonate rocks occur as relatively 664 

pure beds in layered stratigraphy (Figure 6). Terrains composed largely of carbonates may 665 

contain continuous beds of non-carbonates such as chert or shale. The layering creates 666 

heterogeneities in porosity and permeability, with silicate mineral layers often less permeable 667 

than carbonate layers. The contrasts in permeability can create perched water tables and zones of 668 

focused conduit development in the carbonate layers (Figure 7e), while the impermeable silicate 669 

mineral layers tend to impede vertical flow of water. Sometimes carbonates are thinly 670 

interbedded with impure carbonates, shales, or other non-carbonate rocks, creating a landscape 671 

referred to as merokarst (Cvijic, 1925). Merokarst typically displays little surface topographical 672 
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expression of karst but may still behave hydrologically as a karst system (Brookfield et al., 2017; 673 

Macpherson and Sullivan, 2019a; Sullivan et al. 2020). 674 

 675 

676 
Figure 6. The carbonate-silicate spectrum. In addition to endmember cases of pure carbonate 677 

and silicate rocks, carbonates and silicates commonly occur as mixtures. Both the carbonate 678 

percentage and the scale over which the two mineral types mix are crucial parameters that will 679 

influence critical zone structure and evolution. 680 

 681 
 682 
 683 
 684 
 685 
 686 
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 687 

 688 
 689 

Figure 7. Features illustrating aspects of the carbonate-silicate spectrum. a) Differential 690 

weathering of chert nodules within micritic limestone in Grotta Sulfurea, Frasassi, Italy. The 691 

cave walls are colonized by microbial biofilms (biovermiculations) that prefer the carbonate to 692 

the silicate surface. b) A thick regolith layer of chert and clay left behind after dissolution of the 693 

Boone Limestone, Arkansas. c) Weathering residuum drapes crystalline dolomite of the 694 

Cambrian Ledger Formation in Pennsylvania. d) Ghost-rock karstification (phantomization), 695 

whereby weathering residuum is left behind within solutionally altered preferential flow paths, 696 

near Soignies, Belgium (from Dubois et al., 2014). e) Water emerges from a bedding plane on 697 

top of a chert layer within a carbonate rock, Arkansas. f) The Reka River in the classical karst 698 

region of Slovenia sinks after flowing from flysch onto limestone, creating two large 160-m deep 699 

collapse dolines and the upper entrance to Škocjan Caves. g) A perched spring creates a 700 

waterfall at the contact where a limestone unit overlies a sandstone, Indian Creek, Arkansas. h) 701 

Madison Blue Spring, Florida, an estavelle, which functions as a spring in baseflow conditions 702 

(left) and reverses flow direction to receive organic-rich water from the Withlacoochee River 703 

during flood events (right). 704 

Thick carbonate layers may be juxtaposed laterally with non-carbonate rocks. Contacts 705 

between carbonates and non-carbonates that are exposed at the surface typically form regions of 706 

focused interaction between surface and subsurface hydrological, geomorphological, and 707 

biological processes (Atkinson, 1977a; Brucker et al., 1972; Gulley et al., 2013; Khadka et al., 708 
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2014; Martin and Dean, 1999; Palmer, 2001). When surface water flows from non-carbonate 709 

onto carbonate rocks, sinking streams, blind valleys, sinkholes, and open cave shafts often 710 

develop (Figure 7f). These vertical conduits capture surface runoff and route it into the 711 

subsurface. Likewise, springs are common features at contacts where confining non-carbonate 712 

rocks underlie carbonate rocks (Figure 7g). Such underlying confining units may produce a 713 

stratigraphically determined base level for the development of karst flow systems. Springs are 714 

also common where the water table intersects the land surface because erosion has removed non-715 

carbonate rocks and exposed high permeability zones in the underlying carbonates. Contact 716 

zones can also host estavelles (Figure 7h), features that alternate between acting as springs and 717 

sinks depending on the relative elevations of the water table and the surface water that receives 718 

spring discharge. When the surface water level at the spring rises above the hydraulic head at an 719 

estavelle, surface water may intrude into the spring, which can aid dissolution (Gulley et al., 720 

2011) and alter concentrations of redox sensitive solutes (Brown et al., 2019). 721 

3.2 Differences between carbonate and silicate settings 722 

CZ architecture and dynamics differ substantially between settings that are dominated by 723 

either carbonates or silicates. Here we examine these differences, contrasting the endmember 724 

cases. Less is known about how these differences emerge along the carbonate-silicate spectrum, 725 

the parameters that control these changes, and whether changes occur smoothly with these 726 

parameters or exhibit non-linear, threshold responses. Understanding how the CZ varies along 727 

the entire carbonate-silicate spectrum is an important area for future research. 728 

3.2.1 How deep is the carbonate CZ? 729 

The dissolutional enhancement of permeability, and the resulting high flow velocities 730 

(Worthington et al., 2016), produce rapid advection of solutes into the subsurface. After 731 

development of preferential flow paths, substantial changes in flow and chemistry can be 732 

expected deep within and throughout the carbonate CZ over short time periods, such as 733 

individual storm events. Such variability is expected both within larger dissolutional conduits 734 

(e.g., Ashton, 1966; Birk et al., 2006; Brown et al., 2014; Covington et al., 2012; Groves and 735 

Meiman, 2005; Gulley et al., 2011; Liu et al., 2004; Vesper and White, 2004) and within smaller 736 

dissolutionally enlarged fractures and the epikarst (Kogovšek and Petrič, 2012; Liu et al., 2007; 737 

Miorandi et al., 2010; Musgrove and Banner, 2004; Tooth and Fairchild, 2003). Consequently, 738 

within the carbonate CZ, surface-like geochemical conditions can occur at substantial depth and 739 

at long distances from locations of point recharge. These changes deep within the carbonate CZ 740 

differ from the commonly assumed base of the silicate CZ as the depth where regolith formation 741 

begins (Figure 8). Thus, an important consideration in contrasting Earth’s CZ in endmember 742 

carbonate and silicate settings lies in the definition of the CZ itself, specifically, its lower 743 

boundary, and the lower boundary’s relationship with the mineralogical makeup of the CZ and 744 

active circulation of water (Condon et al., 2020).  745 

Riebe et al. (2017) review possible criteria for defining the base of the CZ. Ultimately, 746 

they settle on an equilibrium-based definition; that is, the base of the CZ is the depth in the 747 

subsurface at which meteoric water and Earth materials are at chemical equilibrium. Although 748 

they do not explain why, they also note that a different definition may be needed for carbonate 749 

settings. We see two ways in which the equilibrium definition might be problematic in 750 

carbonates. First, given that active dissolution of calcite by meteoric water can occur at great 751 

depths, up to thousands of meters (Klimchouk, 2019), the lower boundary using this definition 752 

can be quite deep, leading to a picture of the CZ that differs substantially from the typical 753 
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hillslope catena (Figure 8). However, given that deep karst conduits can provide important 754 

controls on the fluxes of water, gas, and sediment through the CZ, it seems that a holistic 755 

understanding of the carbonate CZ requires an incorporation of coupling between the near and 756 

deep subsurface. Therefore, the extreme depth of carbonate dissolution illustrates a meaningful 757 

difference in the dynamics and processes that occur in carbonate and silicate settings. 758 

Perhaps ironically, the second potential problem that we can see with the equilibrium 759 

definition of the base of the carbonate CZ is that, due to rapid kinetics, meteoric water 760 

equilibrates quickly with carbonates. Consequently, water may be effectively saturated with 761 

calcite in the near subsurface, ending further chemical weathering. That is, the equilibrium 762 

definition may specify too shallow a depth of the CZ, with a bottom boundary that is above 763 

depths in which additional CZ processes occur. In fact, these two problems can be seen as 764 

opposite sides of the same coin. They both result from the non-planar nature of the weathering 765 

front within carbonates (Phillips et al., 2019). Although meteoric water often comes close to 766 

equilibrium with calcite in the near subsurface, non-linear kinetics reduce dissolution rates as 767 

water nears equilibrium with carbonate minerals, enabling undersaturated water to penetrate deep 768 

into the subsurface (Dreybrodt, 1990; Palmer, 1991). Even in the absence of such non-linear 769 

kinetics, flow fingering or “wormhole” development can drive undersaturated water deep into 770 

dissolving fractures (Szymczak and Ladd, 2011, 2012).  771 

An additional complexity is that many processes add dissolutional capacity by altering 772 

equilibrium conditions in the deep subsurface.  These processes include CO2 production 773 

(Atkinson, 1977b; Benavente et al., 2010; Gulley et al., 2015; Mattey et al., 2016), rising thermal 774 

water that is often charged with CO2 or other volcanically derived acids (Dublyanski, 1995; 775 

Andre and Rajaram, 2005; Gary and Sharp, 2006; Klimchouk et al., 2023), mixing of surface-776 

derived meteoric water with water containing H2S (Davis, 1980; Egemeier, 1987; Hill, 1990; 777 

Jagnow et al., 2000; Palmer, 1991; Martin, 2017), mixing of water with different partial 778 

pressures of CO2 (Bögli, 1964; Wigley and Plummer, 1976), or mixing with salt water (Back et 779 

al., 1986; Mylroie and Carew, 1990; Plummer, 1975). Each of these processes may alter 780 

equilibrium to produce undersaturated conditions deep within the CZ. Therefore, if using an 781 

equilibrium definition of the CZ, we must determine which of these equilibrium-altering 782 

processes are meaningfully classified as CZ processes. 783 

Despite potential difficulties outlined above, we think that an equilibrium-based 784 

definition of the lower boundary of the CZ in carbonates is a reasonable starting point. A 785 

working definition of the base of the CZ in carbonate settings would then be, “The depth below 786 

which there is no measurable dissolution of carbonate minerals by meteoric water.” This 787 

definition comes with the understanding that: 1) much of the water between the surface and the 788 

base of the CZ will be at or near equilibrium with respect to carbonate minerals, even though it is 789 

within the CZ, and 2) some of the dissolution will be driven by subsurface acid production 790 

and/or mixing of meteoric water with deeper water. When separating CZ and non-CZ processes, 791 

perhaps the most difficult delineation to make is between dissolution processes that are driven by 792 

proximity to Earth’s surface and those which can occur at great depth from rising thermal waters, 793 

H2S-rich fluids, or volcanic production of CO2. While many of these deeper processes may 794 

create a template for further permeability development by near-surface processes as rocks are 795 

exhumed, they can be considered as initial conditions for CZ development, much like the initial 796 

mineralogy, fabric, and structures of the exhumed rock layers, rather than as an integral 797 

component of CZ dynamics. Here, we propose that the bottom boundary of the carbonate CZ is 798 

defined by feedback between dissolution and the near-surface hydrological, geomorphological 799 

and biogeochemical processes. Specifically, CZ dissolution processes are those that are both 800 
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influenced by meteoric water and produce changes in porosity that influence the flow of meteoric 801 

water. 802 

3.2.2 The Conveyor model and CZ architecture 803 

We use a conceptual model central to understanding CZ evolution within silicate terrains 804 

– the CZ conveyor (see e.g., Riebe et al., 2017) – to explore differences between the CZ in 805 

carbonate and silicate endmembers. Within the CZ conveyor model (Figure 8a), minerals are 806 

brought upward toward Earth’s surface via erosion, exposing them to physical, chemical, and 807 

biological gradients. These gradients drive incongruent weathering that transforms bedrock into 808 

regolith that is transported down hillslopes toward stream channels. Through the migration of 809 

knickpoints, the stream channel network communicates erosion rate changes driven by tectonics 810 

or isostasy upward to the hillslopes. As channels at the base of hillslopes experience a change in 811 

erosion rate, hillslope topography and downslope transport of regolith adjust to accommodate the 812 

change. This system reaches topographic equilibrium when fluxes of fresh rock into the CZ are 813 

balanced by fluxes of solutes and sediments out of the channel network, resulting in a steady soil 814 

and regolith thickness. This conceptual model, in various forms, is ubiquitous throughout CZ 815 

studies (Amundson et al., 2007; Anderson et al., 2013, 2002; Brantley et al., 2017a; Heimsath et 816 

al., 2020; Hilley et al., 2010; Lebedeva et al., 2010; Patton et al., 2018; Rempe and Dietrich, 817 

2014; Riebe et al., 2017).  818 

Arguably the most fundamental difference between the weathering of silicates and 819 

carbonates is that carbonate minerals weather congruently, while silicate minerals weather 820 

incongruently. Incongruent weathering produces a key aspect of the conveyor model, whereby 821 

only a portion of the rock is removed in solution and the remaining sediment is transported to 822 

channels via hillslopes (Figure 8a). This model thus predicts dynamic adjustment of soil and 823 

regolith thickness, producing negative feedback that drives soil production and rock lowering 824 

toward the average landscape erosion rate. When erosion rates increase, the down cutting of 825 

channels steepens the hillslopes and thins the soils, accelerating soil production. When erosion 826 

rates decrease, reduction in the rate of stream incision leads to reduction in hillslope relief, 827 

accumulation of soil, and reduction of weathering rates as soil thickens (Heimsath et al., 1997). 828 
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 829 
Figure 8. Carbonates and the conveyor model of the CZ. a) The conveyor model of the CZ, 830 

whereby uplift brings unweathered bedrock toward the surface. Weathering processes convert 831 

the bedrock into regolith and soil. Gravity transports sediment down the hillslopes, and stream 832 

channels carry away the solutes and sediments that are the byproducts of weathering. 833 

Communication between the hillslopes and channel network enables equilibration of the 834 

landscape to a rate of steady base level fall. b) Conceptual model of a well-developed karst in a 835 

carbonate setting. Surface drainage is limited. Congruent weathering of the carbonate rock 836 

leaves behind a thin soil. Much of the residuum from carbonate weathering may be routed 837 

through internally drained basins into the karst conduit network, potentially disconnecting 838 

hillslope response from changes in the rate of base level fall. Karst systems often respond to 839 

base level fall through the development of additional levels of conduits. Rapid carbonate 840 

weathering can occur deep within the subsurface in the vicinity of conduits and fractures. 841 
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 Unlike silicate minerals, however, congruent weathering of carbonate minerals leaves 843 

only minor amounts of insoluble residue and therefore little soil or regolith (Figure 8b). Soils in 844 

carbonate terrains may develop largely from aeolian dust deposition (Macpherson and Sullivan, 845 

2019b), and soil thickness may depend on the carbonate purity or dust delivery rate rather than 846 

erosion rates such as in silicate terrains (Green et al., 2019; Moore et al., 2017). Additional 847 

differences result from the greater solubility and faster reaction kinetics of carbonate than silicate 848 

minerals (Plummer et al., 1979; Svensson and Dreybrodt, 1992). In actively eroding landscapes 849 

that are dominated by silicates, chemical weathering fluxes are typically an order of magnitude 850 

less than physical erosion fluxes (Riebe et al., 2001; West et al., 2005).  At low erosion rates (≲ 851 

40 mm/ka), silicate weathering is supply limited, and therefore linearly proportional to physical 852 

erosion rates, whereas at high erosion rates (≳ 400 mm/ka), silicate weathering is kinetically 853 

limited and non-linearly related to erosion rate (West et al., 2005; Gabet and Mudd, 2009). Due 854 

to the rapid kinetics of carbonate dissolution, carbonate weathering is unlikely to be kinetically 855 

limited. Instead, in rapidly eroding landscapes carbonate weathering is expected to be limited by 856 

acid availability (Bufe et al., 2021; Gaillardet et al. 2018), also called the equilibrium limit. 857 

Silicate weathering fluxes are only occasionally comparable to or larger than physical erosion 858 

fluxes, primarily in low relief settings (Bouchez et al., 2014; Dellinger et al., 2017). In contrast, 859 

the congruent weathering and rapid dissolution kinetics of carbonates should produce higher 860 

fractions of total denudation fluxes that are in dissolved form. While few studies have attempted 861 

to quantify physical erosion fluxes in carbonate landscapes (Erlanger et al., 2021; Newson, 1971; 862 

Ott et al., 2019), available data suggest that chemical weathering fluxes can be comparable to 863 

physical erosion fluxes, even in high relief terrain (Ott et al., 2019).   864 

Feedback mechanisms between soil development and denudation may be weakened, or 865 

even decoupled, within pure carbonate settings, particularly if the rate of soil development is 866 

controlled by allochthonous dust input. Carbonate denudation also may be controlled more by 867 

water availability and pH, rather than by topography or soil thickness as in silicate terrains 868 

(Gabrovšek, 2009; Gombert, 2002; Ryb et al., 2014; White, 1984). The weakening of feedback 869 

between soil formation rates and denudation rates may inhibit the approach to topographic 870 

equilibrium or increase the equilibration timescale. However, equilibrium landscape 871 

configurations that are entirely internal (autogenic) are also possible. For example, 872 

biogeomorphic feedbacks between soil thickness, CO2 production, and weathering rates can 873 

produce equilibrium landscapes within low relief carbonate settings where the water table is near 874 

the surface, such as Big Cypress Swamp in southern Florida (Cohen et al., 2011; Dong et al., 875 

2019a, 2019b). Here, modeling and field data suggest that initial development of a karst 876 

depression leads to the accumulation of soil and colonization by rooting plants. As soil thickens, 877 

water becomes more available, and root respiration increases, increasing the pCO2 at the rock 878 

surface and accelerating rates of rock weathering and depression growth. However, once 879 

sufficiently thick, soil cover inhibits the delivery of CO2 to the rock surface. Ultimately, these 880 

feedbacks can produce a patterned equilibrium landscape that depends on internal controls rather 881 

than external erosional or tectonic forcing.   882 

Within the conveyor belt conceptual model for the silicate CZ, weathering occurs along 883 

planar fronts that are subparallel to the land surface (Figure 8a). In karstic carbonate terrains, 884 

weathering is focused along high permeability zones that create heterogeneous and irregular 885 

weathering patterns (Figure 8b) that are rarely subparallel to the surface (Phillips et al., 2019; 886 

Williams, 1985). Active weathering thus spans a range of depths, from exposed rock at the 887 

surface to rock that is hundreds, or even thousands, of meters below the surface (Audra et al., 888 
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2007; Klimchouk, 2019). The upper zone of weathering, often called the epikarst, typically has a 889 

higher degree of irregularity than the surface topography (Figure 9). This irregularity can grow 890 

over time through positive feedback resulting from flow-focusing (Klimchouk, 2004; Williams, 891 

2008a, 1985) and generation of soil CO2 that enhances shallow dissolution (Dong et al., 2019a; 892 

Gulley et al., 2015). The control of spatial weathering patterns in the subsurface of karst by 893 

geological structures and hydrological boundary conditions (Palmer, 1991), rather than soil 894 

properties or topography, indicates that models of carbonate CZ evolution will need to 895 

incorporate heterogeneity explicitly, as has been done in models of cave development 896 

(Dreybrodt, 1990; Gabrovšek and Dreybrodt, 2001; Groves and Howard, 1994; Hanna and 897 

Rajaram, 1998).  These heterogeneities are missing from the lateral homogeneity of the conveyor 898 

belt model of the silicate CZ (Figure 8a). 899 

 900 

901 
Figure 9. Weathering surfaces in carbonate terrains. a) Weathering along orthogonal joints in 902 

the St Joe Limestone in northern Arkansas. Floodwaters from a dam spillway have eroded the 903 

soil and exposed the weathering epikarst. b) Karren and epikarst surface on Dachstein 904 

Limestone on Mt. Kanin, Slovenia. c) Intense solutional weathering on an exposed piece of 905 

young, porous carbonate in Zanzibar. d) Thin soil and vegetation drape the weathering surface 906 

of young carbonates on San Salvador Island, Bahamas. In the center of the photo is the 907 

entrance of a 7-meter-deep solution shaft. 908 

 909 

 910 



manuscript submitted to Earth’s Future 

 

 The focus of dissolution along high permeability zones in carbonate terrains causes an 911 

additional breakdown of the coupling between tectonic uplift and erosion rates found in the 912 

conveyor model. In the conveyor model, surface streams transport the sediment and solutes 913 

delivered to them by hillslopes (Figure 8a), enabling landscape-wide equilibration of erosion to 914 

uplift. However, surface streams are largely absent within a mature karst terrain, as all runoff and 915 

sediment generated near the land surface is diverted into the karst conduit system through closed 916 

basins (dolines or sinkholes) (Figures 8b, 10) (Ford and Williams, 2007). Thus, if the conveyor 917 

model of the CZ is transposed from silicate to carbonate terrains, dolines would represent 918 

hillslopes, and conduits would represent stream channels (Figure 8b). Even with relatively little 919 

relief (tens of meters), the hillslopes of dolines may be decoupled from base level, as dolines 920 

typically feed water and sediment vertically into the subsurface along solutionally enlarged 921 

fractures and conduits (Brucker et al., 1972; Klimchouk, 2004; Palmer, 1991; Williams, 1985). 922 

Therefore, many of the “hillslopes” of karst terrains terminate at the tops of vertical subsurface 923 

channels.  924 

Even in the case of dolines feeding into subhorizontal conduits, changes at base level 925 

may not propagate through karst conduit networks as they do through surface channel networks. 926 

First, the geometry of karst conduits, including the profiles of the streams within them, are often 927 

controlled by structural heterogeneities in the rock, such as bedding partings and fractures 928 

(Filipponi et al., 2009; Lowe and Gunn, 1997; Palmer, 1991). Therefore, the initial profiles of 929 

streams within karst conduits may be far from the equivalent equilibrium channel morphologies 930 

(e.g., slope-discharge relationships) that would be expected within surface stream channels. 931 

Second, under conditions of rapid base level change, karst systems often respond by the 932 

development of new levels and abandonment of old cave channels (Figures 3 and 8b) (Audra et 933 

al., 2007; Gabrovšek et al., 2014; Granger et al., 2001; Stock et al., 2005; Wagner et al., 2011), 934 

rather than through the propagation of knickpoints. Similar shifts in cave development in coastal 935 

carbonate settings result from variations in sea level (Florea et al., 2007; Gulley et al., 2013). The 936 

development of new levels within karst systems may often be sufficiently fast that stream 937 

profiles within karst conduits do not have time to adjust their long profiles and erosion rates to 938 

accommodate changes in the rate of base level rise and fall. 939 

4 A dissolving and leaky conveyor 940 

The most basic concepts within the conveyor model remain intact within carbonate 941 

settings – rock is uplifted toward Earth’s surface, it undergoes weathering, and the products of 942 

weathering are transported seaward. However, the details of the conceptual model need revision 943 

because of two fundamental ways in which carbonate settings diverge from the standard 944 

conveyor model. First, congruent weathering causes a large fraction of the total weathering flux 945 

to be exported from the system in a dissolved form. Second, the development of integrated 946 

subsurface drainage networks with high permeability and rapid, often turbulent, flow, allow solid 947 

weathering products to be transmitted to base level via subsurface conduits rather than along 948 

hillslopes and surface streams. Each of these two factors can be quantified using a dimensionless 949 

weathering flux fraction that varies between zero and one. The first factor, the importance of 950 

dissolved flux is quantified by the W/D ratio, which has been studied in many silicate terrains 951 

(e.g., Bouchez et al., 2014; Dellinger et al., 2017; Riebe et al., 2001; West et al., 2005), with 952 

           𝐹𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑  =
𝑊

𝐷
=

𝑊

𝑊+𝐸
,                           (2) 953 
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where W is the dissolved weathering flux, E is the physical erosion flux, D is the total denudation 954 

flux (dissolved and solid), and Fdissolved is the fraction of dissolved flux, and where all fluxes have 955 

dimensions of M L-2 T-1. The second factor, related to subsurface transfer of the solid erosion 956 

flux, is quantified by 957 

                 𝐹𝑠𝑜𝑙𝑖𝑑,𝑠𝑢𝑏 = 
𝐸𝑠𝑢𝑏

𝐸𝑠𝑢𝑏 + 𝐸𝑠𝑢𝑟𝑓
,                                (3) 958 

where Esub is the physical erosion (solid) flux that transits through subsurface conduits, Esurf is 959 

the physical erosion flux that remains near the surface and is transmitted to base level via 960 

hillslopes and surface channels, and Fsolid,sub is the fraction of the solid erosion flux that transits 961 

through subsurface conduits.  962 

We consider two modified versions of the conveyor model, which we call the “dissolving 963 

conveyor” (where Fdissolved is large) and the “leaky conveyor” (where Fsolid,sub is large). Both 964 

modifications of the original conveyor model result in a weakening of the negative feedback 965 

mechanisms that drive weathering rates toward uplift rates and produce equilibrium landscapes. 966 

The dissolving conveyor describes settings where the dissolved fraction of the total seaward flux 967 

of weathering products is close to one, meaning that most weathered materials exit the system as 968 

solutes. While in silicate terrains Fdissolved ~ 1 can result from low relief and very low rates of 969 

physical evacuation of weathering byproducts, in pure carbonates this can result from congruent 970 

weathering and consequent lack of solid weathering byproducts. In this case, the buildup of soil 971 

and regolith is insufficient to retard denudation. If tectonic uplift is rapid, topography may 972 

become extremely steep, until mechanical weathering and erosion processes match uplift (Ott et 973 

al., 2019).  In this case, the system would be driven away from the dissolving conveyor state as 974 

solid material export increases due to steepened terrain. In contrast, where uplift rate is low, the 975 

lack of negative feedback enables the development of karst planation surfaces (e.g., Krklec et al. 976 

2022; Simms, 2004; Smart et al. 1986).  Here, surface denudation is not arrested until the land 977 

surface approaches base level and the water table. 978 

The leaky conveyor describes settings where the fraction of solid weathering products 979 

transported through the karst conduit network is high (Fsolid,sub ~ 1), meaning that both solid and 980 

dissolved weathering materials transit through the subsurface to base level rather than down 981 

hillslopes and stream channels. This fraction should govern the ability of karst landscapes to 982 

develop, with high subsurface flux fractions producing landscapes dominated by dolines (Figure 983 

10) and lacking integrated surface drainage networks. Again, this subsurface transport weakens 984 

feedback between uplift, weathering, and erosion, as base level changes may not communicate 985 

through the subsurface as they would in a surface stream network. In such cases, autogenic 986 

processes may drive patterns in topography and regolith thickness (e.g., Dong et al., 2018) rather 987 

than external forcing by tectonics.  988 

While each of these modified models can be considered separately, there is likely a 989 

strong correlation between the two governing dimensionless fractions in real landscapes. Settings 990 

with a higher fraction of dissolved weathering fluxes will tend to have a higher percentage of 991 

weathering fluxes transiting through the conduit network. In these settings, karst conduit 992 

networks will be better developed than in settings where solid weathering products dominate, 993 

because the buildup of solid weathering products can plug conduits and impede conduit growth. 994 

Importantly, both weathering flux fractions could be quantified via field studies. While there are 995 

some studies that quantify the relative importance of chemical and physical denudation fluxes 996 
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from carbonate landscapes (e.g. Erlander et al., 2021; Ott et al., 2019), we are not aware of any 997 

studies that have quantified surface vs. subsurface fluxes. The controls on both flux fractions are 998 

currently poorly constrained in carbonate settings. While position on the carbonate-silicate 999 

spectrum is undoubtedly important, other factors, such as climate and tectonics, should also 1000 

impact these flux fractions. Further work is also needed to elucidate the impacts that these 1001 

weathering flux fractions, and their external controls, have on CZ architecture, dynamics, and 1002 

resilience. 1003 

 1004 
Figure 10. Dolines/sinkholes and shafts in karst terrains. a) A lidar hillshade of solution dolines, 1005 

and a collapse doline, on Logaška Planota, Slovenia. b) Vegetation hangs into a collapse doline 1006 

in a cave system on the island of Zanzibar. c) A stream channel within a blind valley sinks into a 1007 

doline near the contact with carbonate rocks in Wulong County, China. d) A 60-meter-deep 1008 
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vertical shaft breaches a hillslope in the Andes of northern Peru (note cavers for scale). e) Small 1009 

solutional dolines developed in a calcite-cemented conglomerate near Pokhara, Nepal. 1010 

5 Conclusions 1011 

Carbonates underlie a substantial portion of Earth’s surface and represent an important 1012 

fraction of Earth’s CZ, providing crucial water resources and ecosystem services to more than a 1013 

billion people. Our current state of knowledge suggests that the congruent weathering, high 1014 

solubility, and fast kinetics of carbonate dissolution lead to altered rates and patterns of CZ 1015 

evolution in carbonates compared to silicate settings. When landscapes develop in relatively pure 1016 

carbonate rocks, karst systems typically form, producing large contrasts in subsurface 1017 

permeability and long-range subsurface connectivity that enable rapid fluxes of water, solutes, 1018 

sediment, and gases through the CZ along routes of preferential flow. Direct relationships 1019 

between biological CO2 production and carbonate weathering by carbonic acid mean that 1020 

production of porosity in the subsurface may be tied to biological processes in carbonates, 1021 

potentially enabling carbonate-specific feedback loops between CZ development and ecosystem 1022 

form and function. Because of the rapid kinetics of calcite dissolution, shifts in system dynamics 1023 

and structure due to changes in ecology, land use, or climate may also be rapid. 1024 

These differences show that conceptual models developed to understand CZ architecture 1025 

and evolution within silicate-rich rocks, such as the conveyor model, may require rethinking in 1026 

their application to carbonates. We present the initial ideas of a “dissolving conveyor” and a 1027 

“leaky conveyor” as starting points to incorporate carbonate CZ processes. The ability of karst 1028 

conduits to transport mobile regolith can lead to decoupling of hillslopes from stream channels, 1029 

potentially weakening or eliminating feedback mechanisms that drive landscapes underlain by 1030 

silicate-rich rocks toward equilibrium topography and regolith thickness. The fast reaction 1031 

kinetics and elevated solubility of carbonate minerals lead to distinct differences in the 1032 

relationships between tectonism and carbonate and silicate CZ development, including in the 1033 

interactions between base level and the depths of weathering processes. Because of the deep 1034 

circulation of meteoric water in karst settings, the lower boundary of the CZ needs to be 1035 

expanded, and the definition of the CZ may need modification to include carbonate terrains. 1036 

A better understanding of carbonate CZ development may inspire broader conceptual 1037 

frameworks that incorporate roles for preferential flow and heterogeneity, which are present to 1038 

some extent in all CZ settings. The triple porosity system of matrix, fractures, and karst provides 1039 

opportunities to study a spectrum of flow-through timescales and weathering rates and depths in 1040 

one setting. Scaling questions are also amplified when there are large contrasts in permeability 1041 

that vary with the scale considered. The controlling processes in the conveyor model for 1042 

weathering might be better understood by measuring rates in a faster transport system, 1043 

particularly under anthropogenic stresses, harking back to the concept of carbonate rocks as a 1044 

bellwether. Constraining the transport of gases through the subsurface may enhance our 1045 

understanding of the global carbon cycle and how it is affected by biological and geochemical 1046 

processes. 1047 

Understanding how the CZ evolves along the carbonate-silicate spectrum requires a 1048 

broader conceptual framework than we currently have. Many questions arise. What controls the 1049 

distribution of CO2 in the subsurface? How do advective processes influence this distribution? 1050 

How do pCO2, water availability, plant growth, and rock structure interact to determine patterns 1051 

of porosity development? Under what conditions do acids other than carbonic acid drive porosity 1052 

development? How are feedbacks between biological, hydrological, and geological processes 1053 
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reflected at the landscape scale? What factors control the partitioning of denudation fluxes 1054 

between dissolved vs. solid and subsurface vs. surface? How does this partitioning impact the 1055 

dynamics and structure of the CZ? There is a need to integrate knowledge across sites rather than 1056 

focusing on the idiosyncratic or distinctive nature of individual sites. In addition to pure 1057 

carbonates and pure silicates, there is an entire spectrum of mixtures that lie between these 1058 

endmembers. What are the most important parameters along that spectrum that produce 1059 

differences in CZ processes and architecture? Answers to these questions will require 1060 

transdisciplinary study teams that are integrated into the CZ research community going forward. 1061 
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