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Abstract

Mixed-phase clouds greatly affect projections of future climate, with recent evaluations highlighting the influence of the ice nu-

cleation process in these clouds. Here we explore how this process affects climate sensitivity using simulations of the Community

Earth System Model version 2 (CESM2). Ice nucleation is found to influence simulated cloud feedbacks not just over extrat-

ropical low clouds but over most regions and levels of the troposphere. However, the otherwise major influence of ice nucleation

on total cloud feedback is negated when holding global mean cloud phase to observed levels. In satellite-constrained model

experiments, dissimilar ice nucleation realizations all result in a strongly positive total cloud feedback, as in the default model.

Global-scale cloud phase is hence confirmed to be the dominant link between ice nucleation and climate sensitivity. Conversely,

whether ice nucleation is treated as aerosol-sensitive is found to be of limited importance. A microphysics update from CESM1

to CESM2 had substantially weakened ice nucleation in mixed-phase clouds, in part due to a model issue. Our findings suggest

that this contributed to increased climate sensitivity primarily by reducing a global-scale cloud phase bias. Despite the issue,

CESM2’s ice nucleation appears to form more realistic mixed-phase clouds than either a corrected implementation or CESM1’s

ice nucleation scheme.
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Mixed-phase clouds greatly affect projections of future climate, with recent evaluations highlighting 
the influence of the ice nucleation process in these clouds. Here we explore how this process affects 
climate sensitivity using simulations of the Community Earth System Model version 2 (CESM2). Ice 
nucleation is found to influence simulated cloud feedbacks not just over extratropical low clouds but 
over most regions and levels of the troposphere. However, the otherwise major influence of ice 
nucleation on total cloud feedback is negated when holding global mean cloud phase to observed 
levels. In satellite-constrained model experiments, dissimilar ice nucleation realizations all result in a 
strongly positive total cloud feedback, as in the default model. Global-scale cloud phase is hence 
confirmed to be the dominant link between ice nucleation and climate sensitivity. Conversely, whether 
ice nucleation is treated as aerosol-sensitive is found to be of limited importance. A microphysics 
update from CESM1 to CESM2 had substantially weakened ice nucleation in mixed-phase clouds, in 
part due to a model issue. Our findings suggest that this contributed to increased climate sensitivity 
primarily by reducing a global-scale cloud phase bias. Despite the issue, CESM2’s ice nucleation 
appears to form more realistic mixed-phase clouds than either a corrected implementation or CESM1’s 
ice nucleation scheme.

Key points

 Simulated relationships among ice nucleation, cloud phase, and feedback strength are largely 
set by mid-level and tropical high clouds.

 Ice nucleation has only weak influence on simulated total cloud feedback when global mean 
cloud phase is maintained at observed levels.

 CESM2’s strongly positive cloud feedback is consistent with realistic mixed-phase cloud 
representation despite a known model issue.
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Introduction

Mixed-phase clouds are a key source of uncertainty in projections of future climate (Forster et al., 
2021; Storelvmo et al., 2015), yet their influence is poorly understood or constrained. These clouds 
exist at temperatures where either liquid droplets or ice crystals may form (roughly -38°C to 0°C) and 
are governed by microphysical interactions between water’s three thermodynamic phases (vapor, 
liquid, and ice) (Korolev et al., 2017). The importance of these processes has been brought to light by a
number of studies (Frey & Kay, 2018; Tan & Storelvmo, 2016; Zhu et al., 2022) that uncovered major 
changes to projected climate after altering mixed-phase clouds in global simulations. Most critically, 
these studies reported strong impacts on the global mean surface air temperature change that ultimately 
develops following a doubling of carbon dioxide in the atmosphere, a central metric in climate science 
known as equilibrium climate sensitivity (ECS). 

The established link between mixed-phase clouds and ECS is the cloud phase feedback (Mitchell et al., 
1989), wherein warming ice clouds slow global climate change by deglaciating into liquid clouds. 
Since cloud droplets tend to be smaller than ice crystals, deglaciation results in more exposed surface 
area per unit mass (i.e. optically thicker clouds), hence more reflection of sunlight and lower ECS. This
negative feedback has been most associated with near-surface clouds at high latitudes, especially over 
the Southern Ocean. Climate model estimates of ECS have been found to overestimate this feedback, 
implying underestimated global warming (Tan et al., 2016). This is linked to a deficiency of cloud 
liquid relative to total cloud condensate (supercooled liquid fraction, or SLF) in these models compared
to satellite retrievals (Komurcu et al., 2014), leaving simulated clouds with excessive ability to 
deglaciate with warming. Effort to correct this bias has been proposed as a major reason that an 
unprecedented proportion of contemporary climate models have high climate sensitivity (>4.5°C) 
(Zelinka et al., 2020).

Multiple realizations of microphysical processes may result in similar global mean SLF (Tan et al., 
2016). It is unknown which microphysical processes most account for the present-day proportion of 
ice, and to what degree each process will affect ECS by responding to warming. In mixed-phase 
clouds, ice may be locally formed through freezing of cloud droplets containing aerosol that act as ice 
nucleating particles (INPs) (Kanji et al., 2017). Alternatively, ice crystals may fall from overlying 
cirrus or be detrained from deep convective cores. Once ice crystals are present, these may grow by 
depleting surrounding liquid droplets via the Wegener-Bergeron-Findeisen (WBF) vapor deposition 
process (Storelvmo & Tan, 2015). Frequently, the WBF process makes ice crystals grow sufficiently 
heavy to initiate precipitation. The described influences of ice formation processes on cloud phase and 
occurrence are shown in Figure 1a. 

Recent publications have highlighted the influence of ice nucleation on ECS (Gettelman et al., 2019; 
Murray et al., 2021; Zhu et al., 2022). Ice nucleation is a complex process that continues to evolve 
within climate models. Laboratory experiments have consistently found ice nucleation to act strongest 
in environments with abundant aerosols capable of acting as INPs (Kanji et al., 2017), yet models do 
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not typically make ice nucleation sensitive to aerosols (aerosol-sensitive). It has been argued that 
constraining ECS will necessitate a realistic treatment of aerosol-sensitive ice nucleation (Murray et al.,
2021). Apparently supporting this hypothesis, ice nucleation developments in the Community Earth 
System Model (CESM) have been implicated in sizable ECS shifts. The CMIP6 version of this model 
(CESM2) featured updates over the earlier CESM1 that intended to make ice nucleation in the mixed-
phase cloud regime aerosol-sensitive. Concurrently, simulated ECS jumped from 4.0K to 5.3K. Adding 
confusion, a model bug identified by authors of the present study negated much of the new ice 
nucleation scheme’s influence (Shaw et al., 2022). Reversion to CESM1’s ice nucleation scheme was 
found to undo most of the feedback difference causing the ECS jump (Gettelman et al., 2019), while 
correcting the bug considerably lowered ECS in a reduced-resolution version of CESM2 (Zhu et al., 
2022). However, an update to CESM2’s microphysics that replaced the ice nucleation scheme while 
removing the bug only weakly affected ECS (Gettelman et al., 2022). The connection between ice 
nucleation and ECS remains poorly understood.

Here we assess how and to what extent ice nucleation in mixed-phase clouds influences climate 
sensitivity. Cloud feedbacks are evaluated in CESM2 simulations with varied realizations of ice 
nucleation, including both aerosol-sensitive and aerosol-independent representations. A detailed 
analysis reveals that feedbacks in mid-level and high clouds play an outsize role in setting relationships
between ice nucleation representation and feedback strength. We report little influence of ice nucleation
representation on cloud feedback strength as long as simulated cloud phase is kept consistent with 
global-scale observations. Using knowledge from our experiments, we comment on CESM2’s ice 
nucleation scheme and its role in this model’s high climate sensitivity.

Methods

Here we perform two groups of model experiments with the CESM2 global climate model 
(Danabasoglu et al., 2020). The experimental setup is visualized in Fig. 1b. In the first experiments 
(hereafter Group A), we alter simulated ice nucleation only, which results in lower SLF for schemes 
with stronger ice nucleation. In the second (Group B), we alter ice nucleation while adjusting the WBF 
process to maintain constant global mean cloud phase at observed levels. Group A experiments allow 
us to assess the role of cloud phase bias in models with strong uncompensated ice nucleation, while 
Group B represents distinct plausible realizations of mixed-phase clouds. Except for the differences 
described herein, simulations are carried out with the model version used in CMIP6 at its 1.25°x0.9° 
resolution. Within CESM2, microphysical processes pertaining to the formation and development of 
stratiform mixed-phase clouds – including ice nucleation and WBF – are treated by the (Gettelman & 
Morrison (2015) microphysics scheme. The physical parameterizations in the atmospheric component 
of CESM2, the Community Atmosphere Model version 6 (CAM6) are described by (Gettelman et al., 
2019). For each experiment, we ran two 10-year simulations having fixed sea surface temperatures 
(SSTs). One simulation has present-day climatology while the other has SSTs uniformly raised by 4°C 
(Cess et al., 1989). Cloud feedbacks were then evaluated using a kernel method described later in this 
section. 
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In the first set of experiments (Group A), we tested the default model (hereafter referred to as Default) 
as well as three alternative ice nucleation realizations (listed in Table 1). In CESM2, an aerosol-
sensitive ice nucleation scheme (Hoose et al., 2010) is enabled by default. However, an overlooked 
limit on ice number negates this ice number source to zero, reducing the Hoose scheme’s influence to 
small ice mass sources. For our second experiment, we correct the problematic limit to avoid negating 
the Hoose scheme’s direct impact on ice number (experiment Hoose (A)). We additionally test the 
model with all local ice nucleation terms set to zero (No INPs (A)). Lastly, we test the aerosol-
independent strong ice nucleation source of CESM1 (Meyers et al., 1992) (hereafter Meyers (A)).

For the SLF-constrained experiments (Group B), ice nucleation is again altered but we negate the 
global impact on cloud phase. Specifically, we adjust the WBF process to bring global mean SLF 
within ±1°C of the -20°C isotherm to that observed by the CALIOP satellite (Tan et al., 2016). This 
method is based on the two SLF-constrained experiments in Tan et al., (2016), which had different INP 
concentrations with the same ice nucleation scheme yet similar global mean SLF. To improve SLF 
agreement for warmer isotherms, we also reduce the proportion of ice phase detrained from convective 
cores as in Tan & Storelvmo (2016), here simultaneously doubling detrained liquid radius to offset 
impacts on cloud radiative effects. For each experiment, the WBF process is then adjusted by a 
constant efficiency multiplier to keep cloud phase within the observed range (see simulated cloud phase
at -20°C in Table 1, and other isotherms in Figure S2). To ensure SLF from the model and retrievals are
comparable, we use custom model output that considers only the clouds observable to CALIOP, as in 
Komurcu et al. (2014). We repeat experiments No INPs (A) and Meyers (A) through this methodology. 
The Hoose (A) experiment reveals that the Hoose scheme with no further modification directs an 
overabundance of ice crystals to latitudes around major mineral dust INP sources (i.e. Saharan and 
Middle-Eastern deserts) compared to DARDAR-Nice satellite retrievals (Sourdeval et al., 2018) (see 
experiment Hoose (A) in Figure S1a). Since Group B experiments are intended to be plausible mixed-
phase cloud representations, we here reduce this scheme’s efficiency to improve ice nucleation spatial 
variability agreement. We simulate the Hoose scheme in two Group B experiments, having dust INPs 
capped to 5% and 20% of total mineral dust concentrations (Hoose-cap1 (B) and Hoose-cap2 (B), 
respectively). That these experiments represent a relatively weak and strong aerosol-sensitive ice 
nucleation makes them the Group B equivalents of Default and Hoose (A). Note that we do not attempt 
to correct for disagreement between simulated and retrieved global mean ice number. Ice number is 
overall lower than retrievals for both cirrus and mixed-phase cloud isotherms (see Fig. S1b), suggesting
this may relate to biases in cirrus formation and sedimentation rather than ice nucleation in mixed-
phase clouds.

In order to calculate total cloud feedback and its decomposition into cloud optical depth, amount, and 
altitude feedback mechanisms, we use a radiative kernel method (Zelinka et al., 2012a; Zelinka et al., 
2012b). This kernel method estimates the radiative impact of changes across two climate states among 
49 cloud categories, as shown in Figure S3. Individual mechanisms are distinguished based on patterns 
of cloud changes in a warmer future. The Zelinka kernel uses as input 2D cloud fractions standardized 
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by the International Satellite Cloud Climatology Project (ISCCP) (Rossow & Schiffer, 1999), which 
divides clouds into 7 cloud top pressure and 7 cloud optical depth categories. A residual term exists 
between the total feedback and sum of feedback mechanisms, which includes interactions among 
feedback mechanisms. We further separate feedbacks between those operating in low (cloud top 
pressure >680 hPa), mid-level (440-680 hPa), and high clouds (<440 hPa) through a refined 
decomposition method (Zelinka et al., 2016). Note that this partitioning of cloud feedbacks alters their 
attribution by mechanism, such that the sum of a feedback mechanism across all cloud levels is 
different than its unpartitioned magnitude. ISCCP cloud histograms were output from the model using 
the CFMIP Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), then analyzed with 
the kernel method. 

Figure 1 | Ice formation processes, their influence on cloud properties and ECS, and our experimental setup. Shown 
are conceptual diagrams linking microphysical processes with mixed-phase cloud properties (a) and climate sensitivity (b). 
Strengthening of ice nucleation could represent either more INPs in individual locations or increased INP prevalence across 
locations.

5

125

130

135



  Table 1 | Experimental setup and relevant cloud properties from simulations and observations of
  present-day climate. All values are global averages except where noted.

   experiment group & name                   experimental setup
_______________________________

                                   Present-day cloud properties
_______________________________________________________________

  

Ice nucleation in
mixed-phase clouds

   WBF 
efficiency

           SLF at -20°C

 global  40-70°S  15°S-15°N
   (%)       (%)          (%)

Cloud radiative effects
 shortwave   longwave

  (W/m2)         (W/m2)

Cloud ice
water path

  (g/m2)

 Cloud liquid
  water path 

     (g/m2)

     Group A
  altered INPs only

  No INPs  none   100%   23.7  37.5 12.6    -47.9 23.9    12.7      67.5

  Default  Hoose et al 2010
  ice number sources suppressed

  100%

    more INPs

  21.6  34.6 11.5    -47.7 23.8    13.0      65.9

  Hoose  Hoose et al 2010 
   corrected ice limit

  100%   14.7  26.8   9.6    -48.8 24.9    15.7      61.8

  Meyers  Meyers et al 1991   100%     4.3    8.3   1.9    -45.9 22.7    14.3      54.4

     Group B
 phase-constrained

  No INPs  none   100%   31.1  48.4 18.6    -48.7 24.3    10.8      74.5

  Hoose-cap1  Hoose et al 2010
  corrected ice limit,  max 5% dust

    65%
   more INPs,
   weaker WBF

  28.7  49.7 19.3    -48.2 24.2    11.7      69.5

  Hoose-cap2  Hoose et al 2010
  corrected ice limit,  max 20% dust

    50%   30.3  52.0 21.7    -48.9 24.7    12.8      69.4

  Meyers  Meyers et al 1991     25%   31.3  47.6 23.6    -51.2 26.1    15.3      70.0

 observations  27–32*    -46 ** 28 **  12 –140 †    15 –102 †

 

    *    (Tan et al., 2016)
    **  (Loeb et al., 2018)
    †    (Jiang et al., 2012) 

Results

How INPs influence cloud feedback strength 

In the absence of further adjustments, adding INPs reduces present-day SLF (see Group A averages in 
Table 1). Comparing experiments reveals a strong correlation between global mean SLF and cloud 
feedback strength. This is evident in Fig. 2a, where Group A simulations are represented as triangles. 
We here assess the mechanisms that drive this link and to what extent ice nucleation’s sensitivity to 
aerosols influences cloud feedback strength.

Contrary to expectations, differences in cloud feedback cannot be explained merely by simulated 
impacts on low clouds. In fact, among our CESM2 simulations, most differences in total cloud 
feedback are attributable to mid-level and high clouds. This is shown in Figure 2b. Accordingly, 
experiments with strong ice nucleation and no compensating change (Meyers (A) and Hoose (A), 
represented as red and green triangles, respectively) have the lowest total cloud feedback strengths 
among experiments yet unremarkable low cloud feedback strengths. One explanation is that a portion 
of the simulated cloud phase feedback operates in mid-level clouds. Both INPs and warming are found 
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to alter cloud optical depth up to pressure levels of approximately 440mb (see Figs. S4 and S6 for 
ISCCP cloud type histogram comparisons). Consequently, while low cloud optical depth is more 
negative in both Hoose (A) and Meyers (A) than in No INPs (A), the especially prevalent Meyers (A) ice
nucleation also results in a more negative mid-level cloud optical depth feedback (compare red bars in 
Fig. 3a). Additionally, INPs are found to enhance the positive cloud amount feedback in low clouds – 
negating INPs’ influence on low cloud optical depth feedback – yet have an opposite impact on mid-
level clouds (see blue bars in Fig. 3a). These amount feedback effects cancel when considering both 
cloud levels together, yet strongly enhance the attribution of cloud feedback differences to mid-level 
clouds. INPs enhance the simulated occurrence of low clouds yet reduce mid-level cloud occurrence 
(compare sums over rows in Fig. S4), affecting the potential for the amount feedback to operate at each
level.  This contrast may result from INP-induced precipitation having an amplified influence in 
vertically developed liquid clouds compared to shallow near-surface clouds. INPs can generate 
precipitation in clouds that are otherwise too ice-starved to undergo the WBF process, yet in other cases
may prevent ice crystals from falling by distributing condensate mass among many crystals. Both INP 
impacts mentioned so far primarily operate over extratropical clouds (compare dashed lines in Fig. 3b, 
and see Fig. S8 for feedbacks divided by both latitude and mechanism). 

The aerosol-sensitive Hoose (A) ice nucleation does not reduce low and mid-level cloud feedbacks to 
the extent of Meyers (A), yet this difference is partly offset by a feedback in high clouds (compare red 
and green triangles in Fig. 2b). Though influence of mixed-phase microphysics on high cloud 
feedbacks has not previously been examined, the cold isotherms where ice nucleation acts strongest are
typically above 440 hPa in the tropics and sub-tropics. The Hoose (A) experiment creates greater 
present-day high cloud occurrence than in any other experiment (see second to last row of Fig. S4). 
This is likely a result of heavily concentrated INPs around the sub-tropical dust belt, which stabilize ice
cloud occurrence more than they diminish liquid cloud occurrence. This generates a regional negative 
cloud amount feedback (see the green dashed line in Fig. 3b, bottom row). That warming reduces these 
clouds more than in other experiments (compare central columns of Fig. S6) may result from these 
clouds precipitating out as ice nucleation weakens with warming, resulting in fewer, heavier ice 
crystals. This may either be a novel feedback mechanism or an issue in models having unrealistically 
concentrated INPs. Overall, our simulations reveal INP influence on cloud feedback strength to operate
through more mechanisms and cloud types than have previously been considered. These are 
summarized in Table 2.

Negligible influence of INPs when controlling for cloud phase

Now we turn to the influence of ice nucleation when controlling for global cloud phase (Group B 
experiments). Feedback differences are noticeably more modest than Group A experiments in all cloud 
top pressure groupings (compare circles to triangles in Fig. 2). There are multiple reasons for this. First,
none of the Group B experiments show INPs to affect mid-level cloud optical depth feedback like in 
the Meyers (A) experiment (compare red bars in Fig. 3a, third row). This suggests that ice nucleation’s 
impacts are most pervasive when operating in tandem with a strong WBF process. Second, the WBF 
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adjustment to maintain global mean SLF causes a counterbalancing feedback in high clouds. In 
experiments with abundant INPs (Meyers (B) and Hoose-cap2 (B)), high cloud optical depth feedback 
is less negative than in other Group B experiments (see red bars in Fig. 3a, bottom panel). This appears 
to reflect that the WBF adjustment increases SLF near the equator (see in Table 1 that this is evident 
only in Group B experiments) to compensate for SLF decreases elsewhere (see SLFs by latitude in Fig. 
S2b). Differences in optical depth feedback among these experiments are thus opposite in high tropical 
clouds as in lower polar clouds. See Table 2 for a summary of mechanisms resulting in the balanced 
impact of INPs on cloud feedback strength in these experiments.

Ice nucleation’s sensitivity to aerosol concentrations has only weak influence on feedback strength in 
these SLF-constrained experiments. A key aim for modeling this process as aerosol-sensitive is to 
represent impacts of Southern Ocean INP-scarcity on regional cloud phase and its associated feedback 
(Murray et al., 2021). Surprisingly, in our simulations this region’s SLF is much higher than other 
regions even with no INPs (see similar values in Table 1 among No INPs (B) and Hoose-cap2 (B)). 
This is likely because ice crystal sources from cirrus and convective detrainment are similarly lacking 
in this region. As explained in Methods, strong aerosol-sensitive ice nucleation appears incompatible 
with satellite retrievals. Hence ice nucleation within mixed-phase clouds may be modest relative to 
other ice crystal sources, limiting the influence of INP representation. 

Impact of ice nucleation error in CESM2

Due to the ice nucleation error in CESM2, the default model (Default experiment here) has a relatively 
modest – yet non-negligible – ice nucleation source. Consequently, the default cloud properties (see 
Table 1) and cloud feedbacks (see Figs. 2 & 3) are between those with no INPs (No INPs (A)) and with 
the error corrected (Hoose (A)). By comparison, the intended strong aerosol-sensitive ice nucleation 
scheme would have resulted in more heavily biased SLF (see Fig. S2a) and an above-described issue 
with ice number spatial variability.

We found that global-scale cloud phase is the dominant link between INPs and feedback strength, while
CESM2’s ice nucleation scheme reduces the cloud phase bias present with the CESM1 scheme. These 
results imply that, despite the error, mixed-phase cloud influence on ECS is more realistic in CESM2 
than with the earlier ice nucleation treatment. In fact, all of our observation-constrained (Group B) 
experiments have a total cloud feedback that is even more positive than in default CESM2. Further, we 
find the error to only directly affect global cloud feedback strength by +0.02 W/m2/K (comparing No 
INPs (A) to Hoose (A)). Ice nucleation appears only capable of substantially reducing simulated ECS if 
represented as so strong that it generates a large bias in cloud phase. This was the case with CESM1’s 
ice nucleation scheme (Tan et al., 2016) (Meyers (A) experiment here).
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Figure 2 | Relationships among cloud phase, total cloud feedback, and feedbacks grouped by cloud top pressure. 
Shown is the relationship between supercooled liquid fraction (SLF) at -20 °C and cloud feedback strength (a), as well as 
the relationships between feedbacks operating in low, mid-level, and high clouds to their total (b). All values are global 
averages. In (a), the SLF range from CALIOP satellite retrievals is shown for comparison.
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Figure 3 | Cloud feedback strength by location and mechanism, showing cloud feedbacks in all model experiments, both
split by individual mechanisms (a) and by latitude (b). All data in (a) are global means, aside for the red hatches showing 
contributions of optical depth feedback over 40-70°S (mean feedback over this region multiplied by its 14.8% share of 
global surface area). Black hollow bars show sums of all mechanisms, with values in W/m2/K included as black text. 

  Table 2 | Simulated links between INPs and cloud feedbacks reported in this study
 

  Feedback type Cloud type Region Sign of  
feedback

Impact of increasing INPs
among unadjusted experiments (Group A)

Impact of increasing INPs
among SLF-constrained experiments (Group B)

   optical depth   low extratropics   - stronger moderately stronger

  mid-level extratropics   - stronger (Meyers nucleation only)  negligible

  high equatorial   -  negligible/unclear moderately weaker

    amount   low extratropics   + stronger* moderately stronger*

  mid-level extratropics   + weaker* moderately weaker*

  high Dust Belt region   + moderately weaker (Hoose nucleation only)  negligible

    total cloud feedback   + weaker negligible

* Differences in low and mid-level cloud amount feedback closely cancel, and hence have little influence on total cloud feedback.

10



Discussion

The dominant link between mixed-phase cloud microphysics and climate sensitivity in CESM2 is 
shown to be cloud phase, with independent differences in ice nucleation strength and variability having 
far less influence. Ice nucleation model treatment is found to noticeably affect simulated cloud phase 
feedback over the Southern Ocean, as suggested in Murray et al 2021. However, our CESM2 
experiments reveal only weak differences in total cloud feedback strength when controlling for present-
day global mean cloud phase. Note that we did not run simulations coupled to an interactive ocean 
model. We hence did not directly estimate ECS, which may be affected by interactions between cloud 
and non-cloud feedback mechanisms  (Lohmann & Neubauer, 2018).

Our findings suggest that CESM2’s ice nucleation updates raised ECS primarily by correcting – 
partially inadvertently – much of the cloud phase bias present in CESM1 (Tan et al., 2016).  Our 
findings are consistent with results from a new version of CESM2’s microphysics with revised ice 
nucleation (Gettelman et al., 2022), which did not lead to substantial change in ECS. Correcting the ice 
limit issue in a reduced-resolution CESM2 version had reduced cloud feedback strength (Zhu et al., 
2022), yet we find this does not occur in the standard-resolution model. In fact, our observationally-
constrained simulations produced higher total cloud feedback than default CESM2 regardless of ice 
nucleation scheme. A caveat is that CESM2’s ECS is already stronger than evidence suggests is likely 
(Sherwood et al., 2020), which may relate to biases in other cloud types. 

A key result of this study is that microphysical processes in mixed-phase clouds influence climate 
sensitivity not just through low cloud optical depth feedback, but through mechanisms operating 
wherever clouds exist in the relevant temperature range. Mid-level and high clouds are found to largely 
drive the global influence of INPs on cloud feedback strength, yet controlling for cloud phase alters 
these clouds in ways that negate this influence. Future research should assess whether these 
mechanisms are robust or are model artifacts that problematically influence climate projections.
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Figure S1 | Ice number density in present-day simulations and DARDAR-Nice satellite retrievals, showing spatial 
variability of in-cloud ice crystal number near -30°C (a) and global mean values across isotherms (b). Data in (a) is 
normalized by each simulation’s global mean value to emphasize differences in spatial structure. This data includes only ice 
crystals >5μm diameter within ±1°C of each isotherm with gaps of 5°C. To reduce noise in (a), polynomial smoothing was 
applied using a window of 20° latitude.
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Figure S2 |  Supercooled liquid fraction in present-day simulations and CALIOP retrievals, shown by isotherm (a) and
also by latitude for the -20°C isotherm (b). Only clouds visible to CALIOP are shown, such that clouds under optically thick
cloud layers (optical depth τ>3) are ignored. Global mean values are in Table 1. As in Fig. S1a, polynomial smoothing was 
applied to (b) using a window of 20° latitude.
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Figure S3 | Radiative kernels used in this study, showing impacts of % changes of each cloud type on shortwave (SW), 
longwave (LW), and net (SW+LW) radiation. This is as in Fig. 1 of Zelinka et al. (2012a), but here SW influence is 
averaged over surface albedo data from default CESM2.
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Figure S4 | Cloud types identified in ISCCP cloud histograms, showing changes to prevalence of 49 cloud types. Cloud 
types are separated by cloud top pressure and optical depth and are shown as standard output for comparison with ISCCP. 
Output from No INPs (A) is shown directly, while the other unadjusted experiments are shown as difference from these 
cases for clarity. Note that the difference plots have a color bar ten times stronger than those for No INPs (A). Group B 
experiments are shown separately in Fig. S5.

16



Figure S5 | as in Figure S4 but among the Group B simulations, with experiments here compared to No INPs (B).
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Figure S6 | Cloud changes as warming occurs as identified in ISCCP cloud histograms. Aside for the top row (No INPs
(A, SST+4K) – No INPs (B, present-day)), the data is shown as four-way differences, i.e. (experiment(A, SST+4K) –
experiment(A, present-day)) – (No INPs (B, SST+4K) – No INPs (B, present-day)). Also included on the plots in green text 
are cloud feedbacks calculated by the kernel method (showing feedback differences compared to No INPs (A) below the 
first row), with low and mid-level clouds grouped together to conserve space. Note that the four-way difference plots have a
colorbar twice as strong as the top row. For differences in present-day clouds among the same simulations, see Fig. S4.
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Figure S7 | as in Figure S6 but among the Group B simulations, with experiments being compared to No INPs (B). For 
differences in present-day clouds among the same experiments, see Fig. S5.
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Figure S8 | Cloud feedbacks separated by mechanism in all CESM2 simulations, as in Fig. 3b but further partitioned by 
mechanism. Global mean feedback values are included in each legend. Note that some mismatch exists between the sum of 
feedbacks between levels and each unseparated feedback (Zelinka et al., 2016), shown here in the top row.
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