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Abstract

Multi-model ensembles (MMEs) are used to improve the forecasts of thermospheric neutral densities. A variety of algorithms

for constructing the model weights for the MMEs are described and have been implemented including: performance weighting,

independence weighting and non-negative least squares. Using both empirical and physics-based models, compared against

in-situ CHAMP observations, the skill of each MME weighting approach has been tested in both solar minimum and maximum

conditions. In both cases the MME performs better than any individual model. A non-negative least squares weighting for

the MME on a set of bias corrected models provides a 68% and 50% reduction in the mean square error compared to the best

model (Jacchia-Bowman 2008) in the solar minimum and maximum cases respectively.
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Abstract12

Multi-model ensembles (MMEs) are used to improve the forecasts of thermospheric neu-13

tral densities. A variety of algorithms for constructing the model weights for the MMEs14

are described and have been implemented including: performance weighting, indepen-15

dence weighting and non-negative least squares. Using both empirical and physics-based16

models, compared against in-situ CHAMP observations, the skill of each MME weight-17

ing approach has been tested in both solar minimum and maximum conditions. In both18

cases the MME performs better than any individual model. A non-negative least squares19

weighting for the MME on a set of bias corrected models provides a 68% and 50% re-20

duction in the mean square error compared to the best model (Jacchia-Bowman 2008)21

in the solar minimum and maximum cases respectively.22

Plain Language Summary23

Combining multiple models of the neutral upper atmosphere (thermosphere) can24

lead to the cancellation of errors and improved short-term forecasts of the environment.25

In this paper a number of different methods for creating these “multi-model ensembles”26

(MMEs) are investigated, varying how the different models in the comparison are weighted27

and combined. Using both statistical and first-principles models and compared to ob-28

servations from the CHAMP satellite, the skill of each MME approach has been tested29

in both solar minimum and maximum conditions. In both cases the MME performs bet-30

ter than any individual model. The best performing combination makes a 68% reduc-31

tion in the mean square error compared to the best individual model at solar minimum32

and a 50% improvement at solar maximum.33

1 Introduction34

1.1 Background35

Accurately propagating satellite orbits requires knowledge of the forces acting on36

the satellite. For satellites in low Earth orbit (LEO) (less than 1,000 km), forces include37

terrestrial gravity, solar radiation pressure, lunar and solar gravity and drag caused by38

the atmosphere (Eshagh & Najafi Alamdari, 2007). The drag force increases dramati-39

cally as a satellite’s altitude decreases and becomes significant below approximately 60040

km (Fortescue et al., 2011). However, there are large uncertainties in modelling the mag-41

nitude of the drag acting on a satellite. To do so requires an understanding of the ther-42

mospheric mass density, winds and the satellite’s ballistic coefficient. The largest con-43

tribution to error in the forecasting of satellite positions is specification of thermospheric44

density (Mehta et al., 2018), although for tumbling or complex geometries, the errors in45

the ballistic coefficient can be a substantial contribution.46

Currently a variety of mathematical models are used to provide estimates of the47

density. Empirical models are often used by satellite operators. They are fitted to mea-48

surements of thermospheric parameters; however such measurements are sparse. In par-49

ticular, there are very few measurements between 100 km and 250 km because balloons50

cannot reach these heights and satellites re-enter too quickly for any long term study.51

Fabry-Perot Interferometers can be used to measure wind between 220 and 600 km (Titheridge,52

1995) and meteor radars can measure wind, as well as temperature and pressure, between53

80 and 100 km (John et al., 2011; Reid et al., 2018).54

Physics-based models solve the equations which describe the physical processes in55

the thermosphere. Initially the atmospheric density, wind and temperatures are gener-56

ally provided by empirical models, but a ‘spin-up’ time is used for the results to stabi-57

lize. The spin-up time can be reduced in subsequent model runs by using previous out-58

put from the model. Neutral and ion species production is then calculated via chemi-59

cal reaction equations and using solar X-rays and EUV conditions. Ion transportation60
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and recombination are also considered. The initial and boundary conditions, as well as61

proxies for solar activity, are the main drivers for the models. There are a number of ap-62

proaches to modelling the physics of the thermosphere, which rely on different numer-63

ical methods (Purnell, 1976; Augenbaum, 1984; Bott, 1989), and thus exhibit different64

levels of complexity and use a variety of inputs. Model developer choices about the solver65

and the selection of boundary conditions leads to differences in the outputs from mod-66

els.67

1.2 Multi-Model Ensembles68

A multi-model ensemble (MME) is a combination (usually weighted) of individ-69

ual models (Thompson, 1977; Murray, 2018). Ideally the models should have indepen-70

dent errors and the improved performance of the MME arises from the errors partially71

cancelling (Hagedorn et al., 2005). Tracton and Kalnay (1993) showed the utility of MMEs72

in one of the first operational MME weather forecasts, and also demonstrated skill in longer-73

term forecasts. Elvidge (2014) and Elvidge et al. (2016) demonstrated for the first time74

the skill from using MMEs for upper atmosphere forecasts. The result has been further75

demonstrated by combining the four Utah State University (USU) Global Assimilation76

of Ionospheric Measurements (GAIM) models (Schunk et al., 2016).77

A key question when using an MME is how the models should be combined. Elvidge78

et al. (2016) used both an equal weighting scheme and a scheme where the weights were79

the inverse of the mean square error (MSE) of the models used to create the MMEs. That80

work showed that six hour forecasted densities of the thermosphere had a 60% reduc-81

tion in the root mean square error (RMSE) when using an MME. To further investigate82

MMEs in the thermosphere Elvidge et al. (2016) recommended that:83

• A ‘training’ dataset should be used for the weighting scheme rather than the test-84

ing dataset85

• More variety of weighting methods should be included86

• Longer test scenarios should be used to reduce the uncertainties in the statistics.87

This work addresses those recommendations.88

2 Method89

2.1 Observations90

This work uses data from the Challenging Minisatellite Payload (CHAMP) satel-91

lite (Reigber et al., 2002). CHAMP was operational from July 2000 to September 2010.92

During this time the CHAMP orbit degraded from an altitude of 454 km to 296 km due93

to atmospheric drag. One of its primary missions was to precisely measure the terres-94

trial gravity field which required a very accurate accelerometer. Thermospheric total mass95

densities have been estimated from the CHAMP accelerometer data (Sutton, 2009). This96

is the dataset as was used in Elvidge et al. (2016); however, since that study, the CHAMP97

drag coefficient and surface area has been re-analysed using higher fidelity satellite ge-98

ometry models and more advanced drag coefficient estimation (Mehta et al., 2017). This99

has resulted in a 20% reduction of the estimated densities. This work uses the re-analysed100

data, but it should be noted that the empirical models JB2008 and DTM-2013 are fit-101

ted with the older data (see Section 3).102

The CHAMP data has a high sampling rate along its orbit (10 s). However, the103

local solar time varies by only a few seconds every orbit. Therefore, over the course of104

a month, CHAMP would only sample approximately 2.8 hours of local solar time (Häusler105

et al., 2010). Even so, structures in the neutral density such as travelling atmospheric106

disturbances (TADs) and the midnight density maximum (MDM) can be seen (Emmert,107
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2015). However the limit of the data coverage does impact the overall assessment of this108

method. The accelerometer-derived neutral density observations have an estimated mean109

error of 10.1% (Sutton, 2008).110

2.2 MME Weighting Methods111

In this paper the performance of six different weighting schemes that can be used112

to combine models are tested. These are equal weights (EW), performance weights (PW),113

performance weights with bias removed (PWB), Reliability Ensemble Averaging (REA),114

Independence Weighting (IW) and Non-Negative Least Squares Regression (NNLS). Each115

scheme is described in the following sections. In each case the MME is formed as a weighted116

combination of the input models:117

M(x, t) =

N∑
k=1

Rk(x, t)Zk(x, t), (1)

where M(x, t) is the MME for each point x at time t, Rk(x, t) is the weight for each model118

k which could also vary in time and space, Zk(x, t) is each model output and N is the119

number of models.120

2.2.1 Equal Weighting121

Constructing appropriate model weights can be difficult given small sample sizes122

and available data (Kharin & Zwiers, 2002). As such it has been argued that the only123

way to generate a good MME for small datasets is by taking the ensemble mean (Hagedorn124

et al., 2005). Though simple, this method has been shown to produce good results in the125

thermosphere (Elvidge et al., 2016) and more broadly in climatology (Barnston et al.,126

2003; Palmer et al., 2004; Weisheimer et al., 2009). The MME weights are given by;127

Rk =
1

N
. (2)

2.2.2 Performance Weights128

A performance weighting scheme uses a measure of model skill to weight the mod-129

els so that the best performing model (against a representative dataset) has the high-130

est weight. The performance weighting used in this work is a modified version of that131

described by Rozante et al. (2014). It uses the mean square error (MSE) as the skill mea-132

sure to weight the models. The weights then have the value:133

Rk =

∑N
k=1 MSEk

MSEk
, (3)

where134

MSEk =

∑Np
i=1

(
Y i
k −Xi

)2
Np

, (4)

where Y i
k is a model prediction in the training period, Xi is a data point in the train-135

ing period and Np is the number of points.136

2.2.3 Performance Weights with Bias removed137

Some models show a good amount of skill in terms of the correlation, showing that138

they model the thermospheric response well. However, the MSE may still be large, and139

a reason for this can be model biases. The bias is the difference of the average density140

of each model in the training period and the average density of the dataset:141
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Bk =

∑Np
i=1 Y

i
k −Xi

Np
, (5)

so that142

Y
′i
k = Y i

k −Bk (6)

and143

Rk =

∑N
k=1 MSE′

k

MSE′
k

, (7)

where144

MSE′
k =

∑Np
i=1

(
Y

′i
k −Xi

)2

Np
, (8)

If the bias from the training data is removed before MSEs are taken, a potentially145

better representation of model skill can be achieved. The MSE of an unbiased model is146

equal to the variance, so this is effectively a variance weighting. The bias is then pre-147

removed from the validation dataset before averaging the models. This assumes the bias148

does not change between testing and validation, which for a short time should be a rea-149

sonable approximation.150

2.2.4 Reliability Ensemble Averaging151

Elvidge et al. (2016) suggested the use of Reliability Ensemble Averaging (REA)152

to estimate the ensemble weights. REA is used in terrestrial weather climatology to in-153

fer the unknown future performance of the model from its previous performance and in154

comparison to the other model’s predictions (Giorgi & Mearns, 2002). The weighting pro-155

cess involves calculating the following quantity:156

Rj
k = min

1,


[

ϵ

abs (Bk)

]m  ϵ

abs
(
Dj

i

)
n

[ 1
mn ]

 . (9)

The Rj
k are weights per model k and validation point j, the ϵ are estimations of157

the dataset’s variability which could be the range or the standard deviation of the data158

(a constant value of 1x10−12 was used in this work as an estimation), Bk is the bias of159

the model calculated against previous data, Dj
k are distances from the models to the weighted160

multi-model average, Ỹ j , given by161

Ỹ j =
ΣkR

j
kY

j
k

ΣkR
j
k

, (10)

and m and n allow for separate weightings of the bias and the distances (usually162

m = n = 1 (Giorgi & Mearns, 2002)). This is a circular definition since Rk is defined163

in terms of the distance from Ỹ j in Equation 9 so an iterative procedure is used to find164

the weights and is usually complete within a few cycles. The weights are calculated us-165

ing Equation 9 then a new average is calculated using Equation 10 until a weight reaches166

a value of one (Giorgi & Mearns, 2002). This could be useful in storm time when little167

is known about the storm. It relies on the model average which, a better estimate of a168

model’s reliability than its prestorm bias.169

–5–



manuscript submitted to Space Weather

2.2.5 Independence Weighting170

Model independence is a critical requirement for an MME to work (Elvidge, 2014).171

It may be the case that a set of models are not independent and share a lot of their struc-172

ture with each other. The ‘independence weighting’ approach aims to take this into ac-173

count. To determine the level of independence between models first each has its bias re-174

moved. Ideally this de-biased time series should have Gaussian errors and the covariance175

between different independent model errors would be zero. In practice often these er-176

rors do have some covariance. A covariance matrix of these errors, for each of the dif-177

ferent bias corrected models is constructed, and weights are produced based on the vari-178

ance between model and data, and the amount of covariance between the models (Bishop179

& Abramowitz, 2013):.180

Rk =
A−11

1TA−11
, (11)

where 1 is a vector of all 1’s and A is the model difference covariance matrix. This181

system can produce negative weights which is meaningless. So the method is adjusted182

to give only positive weights (Bishop & Abramowitz, 2013):183

R̃k =
RT

k − 1T min (Rk)

1− kmin (Rk)
. (12)

A consequence of this is that one model always has zero weight, and is therefore184

excluded from the weighting. This method allows the use of different versions of the same185

model since independence is no longer a concern, potentially allowing similar models of186

the different versions/generations and formulations to be used.187

2.2.6 Non-Negative Least Squares188

Non-Negative Least Squares is a simple constrained regression which does not al-189

low the coefficients to become negative. Specifically it finds the coefficients Rk such that190

argmin
Rk

||ZkRk −M ||22 subject to Rk ≥ 0 (13)

where ||·||2 is the Euclidean norm (Bro & De Jong, 1997). The regression is per-191

formed on the training dataset.192

3 Models193

In this paper six models have been used to create the multi-model ensemble (MME).194

Three of the models: NRLMSISE-00 (Picone et al., 2002), the Thermosphere Ionosphere195

Electrodynamic General Circulation Model (TIE-GCM) (Qian et al., 2014) (version 1.95196

was used in Elvidge et al. (2016) whilst version 2.0 is used here) and the Global Ionopshere-197

Thermosphere Model (GITM) (Ridley et al., 2006) (updated since then) were used in198

Elvidge et al. (2016) (refer to that paper for a brief description of the models, or to the199

references for a detailed description). GITM and TIE-GCM were both run in 5o × 5o200

resolution. Additionally the Coupled Thermosphere-Ionosphere Plasmasphere Electro-201

dynamics (CTIPe) (Millward et al., 1996; Codrescu et al., 2012), Jacchia-Bowman 2008202

(JB2008) (Bowman et al., 2008) and the Drag Temperature Model 2013 (DTM-2013)203

(S. Bruinsma, 2015) are used in this paper. A summary of the differences between the204

empirical models used in this work are shown in Table 1 of Emmert (2015) whilst Ta-205

ble 2 of the same paper highlights the difference between the physics-based models.206
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3.1 CTIPe207

The Coupled Thermosphere-Ionosphere-Plasmasphere-electrodyanmics model (CTIPe)208

has been developed at the National Oceanic and Atmospheric Administration (NOAA).209

It is a physics-based model with a fixed resolution of 18 cells in longitude, 90 in latitude210

and 15 vertical pressure levels. These values are due to the smaller scales of spatial vari-211

ation in latitude compared to longitude. The model assumes hydrostatic equilibrium (as212

TIE-GCM from Elvidge et al. (2016) does). As well as F10.7, CTIP uses hemispheric213

power in 12 minute intervals. The model was run on request at the CCMC website and214

automatically interpolated to CHAMP paths on the website (Codrescu et al., 2012)215

3.2 JB2008216

Jacchia-Bowman 2008 (JB2008) has been developed by Space Environment Tech-217

nologies (SET) and is an empirical thermospheric density model (Bowman et al., 2008).218

It is based on the previous JB2006 and the original Jacchia diffusion equations (Bowman219

et al., 2008; Jacchia, 1977). The model uses four solar proxies (computed from in-orbit220

sensors) as well as disturbance storm time index (Dst) data (a measure of geomagnetic221

activity) (Tobiska et al., 2009). The model has been validated using derived density data222

from satellite drag on a range of satellites been 175 and 1,000 km.223

3.3 DTM-2013224

The Drag Thermosphere Model 2013 (DTM-2013) is a semi-empirical model which225

describes thermospheric temperature, density and composition. The model has been de-226

veloped by the Centre National d’Etudes Spatiales (CNES) and has a long development227

history starting with DTM-78 (Barlier et al., 1978). DTM derives its densities and tem-228

peratures from satellite drag data and was the first model to include the high-accuracy229

accelerometer data from the CHAMP and GRACE satellite missions (S. L. Bruinsma230

et al., 2004). Recent developments of the model include GOCE satellite data from 270231

km to improve specification of the lower thermosphere and use of F30 (30 cm radio flux)232

instead of the F10.7. These updates have shown to increase the performance of the model233

with regards to specifying thermospheric density (S. Bruinsma, 2015). It uses am instead234

of ap for modeling geomagnetic storm modelling.235

4 Test Scenarios236

4.1 Solar Minimum Scenario237

The test scenario used in this work is an extension of the first test scenario in Elvidge238

et al. (2016), a 20 day long run from 18th August 2009 (Elvidge et al. (2016)’s test sce-239

nario started on 28th August 2009). The MME weighting schemes which require train-240

ing, are trained on the 20 day period before this (from July 29th). The test scenario time241

period contains one geomagnetic storm, Figure 1, and during the rest of the month the242

geomagnetic conditions are quiet.243

The F10.7 only varies between 67 and 76 flux units. The extremely low solar min-244

imum of 2008-2009 presents a significant modelling challenge since the F10.7 values have245

been shown to not represent the correct thermospheric conditions (Solomon et al., 2010;246

Bilitza et al., 2017). However at solar minimum, internal and and external dynamics,247

rather than solar drivers, dominate the evolution of the thermospheric densities. It is ex-248

pected that the greatest differences between the tested models will be evident at these249

times (Elvidge et al., 2016). A sample timeseries of a physics-based and empirical model250

and the data for this period is shown in Figure 2. Recall that the average mean error251

of the observations is approximately 10.6% (Sutton, 2008), which is shown as error bars252

around the CHAMP data points. Whilst the errors are not insignificant they are smaller253
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Figure 1. ap (blue) and F10.7 (red) for the test scenario and training period which runs from

July 29th to September 8th 2009. Training period is before August 18th (black line), values after

this are used for validation. The large spike in ap is associated to a geomagnetic storm.

than the differences between the models. The fast periodicity of the data is due to the254

CHAMP satellite completing one orbit every 90 minutes and each point being 15 min-255

utes apart.256

4.2 Solar Maximum Scenario257

The second test scenario is a typical 30 day solar maximum period from 2002, us-258

ing a 30 day training window. The F10.7 varies between 135 and 240, with some signif-259

icant spikes in ap (Figure 3).260

5 Results261

5.1 Introduction262

The various upper atmosphere models, and the different MME approaches (whose263

weights are calculated on the training periods) have been run for the test scenarios. These264

forecasts are compared to the derived CHAMP neutral densities, it should be noted how-265

ever that the CHAMP data has an estimated mean error of 10.1% (Sutton, 2008), and266

whilst these results cover month long scenarios that only represents approximately 2.8267

hours of local solar time coverage (Häusler et al., 2010). The models are compared us-268

ing modified Taylor diagrams (Elvidge et al., 2014). To read such a diagram (e.g. Fig-269

ure 4): the radial distance of a data point from the origin is the models normalized stan-270

dard deviation (here they are normalized by the standard deviation of the observation),271

and the azimuthal angle corresponds to the correlation between the model and obser-272

vation. The dashed line (marked with a star) shows the normalized standard deviation273

of the observation (i.e., unity). The dotted lined semicircles, originating from the inter-274

section of the observed standard deviation (dashed line) and the horizontal axis, show275

contours of the standard deviation of the model error. Finally, the (normalized) mean276

square error between the model and observation time series can be found by adding, in277

quadrature, the standard deviation of the model error and model bias (model minus ob-278
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Figure 2. Sample timeseries of neutral density from the solar minimum scenario for CHAMP

(blue, with error bars shown in black), TIE-GCM (orange) and JB2008 (green).

Figure 3. ap (blue) and F10.7 (red) for the test scenario and training period which runs

from August 1st to September 30th 2002. The training period is before August 31st (black line),

values after this are used for validation. The large spikes in ap are associated to geomagnetic

storms.
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Figure 4. Modified Taylor Diagram for 20 days from 18th August 2009 with 20 days training

period. Data from the CHAMP satellite. This diagram shows in one plot the correlation to the

data, normalised standard deviation and bias. The label expansions are shown in Table 1

servations) which is shown by the colour bar. The normalization factors have been in-279

cluded in the top right of the diagram and can be used to revert any factor to its orig-280

inal value.281

5.2 Solar Minimum Scenario282

Figure 4 shows a modified Taylor diagram of the solar minimum test scenario. It283

can be seen that TIE-GCM and CTIPe have large positive biases and normalised stan-284

dard deviations greater than 1 compared to the CHAMP observations. Whilst the other285

physics-based model, GITM, underestimates the range of observations (normalised stan-286

dard deviation significantly less than 1) and is negatively biased.287

TIE-GCM and GITM have a lower correlation to the data than the empirical mod-288

els, whilst CTIPe is similar. NRLMSISE-00 has a very high bias and variance although289

with a moderately better correlation than TIE-GCM. DTM performs similarly to NRLM-290

SISE, but with a slightly smaller bias. Overall JB2008 performs the best of any individ-291

ual model. Of the MME approaches, the simple equally weighted ensemble leads to a292

greater correlation with the data compared to any individual model and accurate vari-293

ance. It is a common theme for thermospheric models to overestimate the neutral den-294

sity, but GITM here has a low bias which improves the bias of the equally weighted en-295

semble. REA and PWB have near-zero biases due to the bias correction, this shows that296

the biases in these models varies over timescales longer than a month. The non-negative297
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Table 1. Labels in the Modified Taylor Diagrams.

MME Abbreviation

Equal EW
Performance Weighting PW
Performance Weighting with bias subtracted PWB
Reliability Ensemble Averaging REA
Non-Negative Least Squares NNLS
Independence Weighting IW

Table 2. Weighting of the different models in 2009.

NRLMSISE-
00

JB2008 DTM2013 TIE-
GCM

GITM CTIPe

Equal Weighting 0.17 0.17 0.17 0.17 0.17 0.17
Performance Weighting 0.12 0.47 0.19 0.08 0.10 0.04
Performance Weighting
with bias subtracted

0.24 0.25 0.21 0.07 0.11 0.12

Reliability Ensemble Aver-
aging*

- - - - - -

Non Negative Least
Squares

0.10 0.10 0.35 0.11 0.21 0.13

Independence Weighting 0.00 0.00 0.59 0.04 0.28 0.09

*weights vary over time

least squares and independence ensembles perform similarly to the others but with a lower298

variance. The model with the highest MSE is TIE-GCM at 2.80x10−24, and the lowest299

is JB2008 with an MSE of 5.35x10−25, significantly lower than all the others in this regime.300

Of the MMEs the highest MSE is equal weighting with an MSE of 1.03x10−24 and the301

lowest is the non-negative least squares with an MSE of 1.73x10−25. The maximum drop302

in MSE therefore is 94%, and a 68% from the best model.303

The weightings of each model, for the different schemes used here, are shown in Ta-304

ble 2. After removing the bias the weights allocated to NRLMSISE-00 become higher305

and the weights for JB2008 become lower. The regression and independence weightings306

both favour the physical models more heavily at the expense of JB2008.307

5.3 Solar Maximum Scenario308

Figure 5 shows a modified Taylor diagram for the individual models and MME re-309

sults for the solar maximum test scenario. The empirical model performance is superior.310

GITM again has a high bias and variance along with CTIPe.311

The MSE of JB2008 is 4.53x10−25 and the worst model is GITM with an MSE of312

2.62x10−23. The physics models generally performed worse here than in the 2009 solar313

minimum test. GITM has a positive bias and a greater than 1 normalised standard de-314

viation in contrast to the solar minimum test scenario when it is less than 1 and neg-315

atively biased. In this case TIE-GCM has a negative bias, again in contrast to 2009. TIE-316

GCM also has a small correlation, implying it had trouble producing the correct features317

in the neutral density field, whereas GITM produced a very high correlation. The best318

MME was again a non-negative least squares with an MSE of 2.35x10−25, while the equally319

weighted ensemble had an MSE of 3.28x10−24. The highest improvement is 99%, and320
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Figure 5. Modified Taylor Diagram for 30 days validation from 31th August with 30 days

training period. Data from the CHAMP satellite. This diagram shows in one plot the correlation

to the data, normalised standard deviation and bias. The timeseries have not been binned.
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Table 3. Weighting of the different models in 2002.

NRLMSISE-
00

JB2008 DTM2013 TIE-
GCM

GITM CTIPe

Equal Weighting 0.17 0.17 0.17 0.17 0.17 0.17
Performance Weighting 0.11 0.52 0.30 0.06 0.01 0.01
Performance Weighting
with bias subtracted

0.28 0.29 0.27 0.03 0.06 0.07

Reliability Ensemble Aver-
aging*

- - - - - -

Non Negative Least
Squares

0.35 0.44 0.16 0.00 0.04 0.00

Independence Weighting 0.29 0.46 0.15 0.00 0.07 0.04

*weights vary over time

the improvement from JB2008 is 49%. The weightings are shown in Table 3. It can be321

seen that the physics-based models are weighted less heavily than the empirical mod-322

els. NRLMSISE-00 is weighted more heavily than in the non-negative least squares. The323

equally weighted MME did not have a lower MSE than the best performing model in ei-324

ther circumstance.325

6 Conclusions326

Multi-model ensembles (MMEs) have been shown to improve the mean square er-327

ror (MSE) of upper atmosphere forecasts. They rely on a spread of values around the328

true value to approximate it. Upper atmosphere models tend to be biased and for satel-329

lite predictions this is the most important statistical parameter, since the bias leads to330

a consistent deviation away from the true satellite track. Models (and MMEs) therefore331

need some kind of bias correction. Efforts like HASDM (Storz et al., 2005) where the332

biases of a thermospheric model are corrected by data assimilation can reduce them to333

near zero, and lead to vastly improved satellite prediction capabilities. However MMEs334

offer an opportunity to de-bias the model output simply, without the need for a com-335

putationally expensive data assimilation system, and can be used during forecasts where336

data is unavailable. A number of different MME methodologies have been described and337

compared here which can broadly be used throughout space weather (not just in the con-338

text of thermospheric density specification). If deploying such a system in an operational339

setting we would recommend that weights are calculated on a “rolling” one-month ba-340

sis (if not using Reliability Ensemble Averaging which, by definition, varies over time).341

This paper has investigated the recommendations of Elvidge et al. (2016) to im-342

prove our understanding of the use of MMEs in the thermosphere. Training datasets have343

been used to calculate the individual model weights, and a greater variety of weighting344

schemes have been used. The testing scenarios have also been extended to reduce the345

uncertainties in the statistics. In both the solar maximum and minimum test scenarios346

the MME performs better than any individual model compared in this study, within the347

confines of only using CHAMP data. Whilst many of the MME weighting methods per-348

form similarly, overall a non-negative least squares weighting on bias corrected models349

gives the largest reduction in error. In the solar minimum case this is a 68% reduction350

in the mean square error from the best individual model (Jacchia-Bowman 2008 [JB2008])351

and a 50% reduction in the solar maximum case, again compared to JB2008.352
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The CHAMP data for were collected from http://tinyurl.com/densitysets as354

provided by Mehta et al. (2017). TIE-GCM is developed by NCAR and is available at355

http://www.hao.ucar.edu/modeling/tgcm/tie.php. NRLMSISE-00 was developed356

by NRL and is available via the Community Coordinated Modeling Center (CCMC) at357

https://kauai.ccmc.gsfc.nasa.gov/instantrun/msis/. GITM was developed by Aaron358

Ridley at the University of Michigan and is available at https://github.com/aaronjridley/359

GITM. CTIPe was developed at NOAA and was run via the ”runs-on-request” system on360

CCMC https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=CTIPe. JB2008361

is provided by Space Environment Technologies from https://sol.spacenvironment362

.net/jb2008/code.html and finally DTM-2013 was provided by Dr. Sean Bruinsma,363

CNES, Space Geodesy Office. DTM-2020 is avaialble from https://github.com/swami364

-h2020-eu/mcm.365
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