
P
os
te
d
on

27
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
21
43
01
.1
61
53
54
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Magnetic Mapping in the Inner Magnetosphere using Kamodo

Lutz Rastaetter1, Rebecca Ringuette1, Darren De Zeeuw1, and Oliver Gerland1

1Affiliation not available

December 27, 2022

1



New Abstract:
Many models require specialized access 
and interpolation schemes to effectively 
extract and interpolate their outputs. In 
particular, the Block-Adaptive Tree 
Solarwind Roe Upwind Scheme 
(BATSRUS) component of the Space 
Weather Modeling Framework (SWMF) 
requires Kamodo to take advantage of its 
block-based adaptive grid structure, and 
the Lyon-Fedder Mobarry magnetosphere 
model (or its successor GAMERA) needs 
a scheme that appreciates the distorted 
spherical arrangement of grid vertices on 
a non-orthogonal grid.
With the flythrough layer developed by 
Ringuette et al. (SH42E-2337), the 
underlying model readers have been 
adapted to use multiple time steps in a 
single Python session to perform 4-
dimensional interpolations in time and 
space. Kamodo now utilizes lazy 
interpolation that loads data only when 
needed.
We present the successful integration of 
SWMF/BATSRUS magnetosphere 
access and interpolation into the new 4D 
Kamodo framework utilizing an external 
library of C code. Through function 
composition, Kamodo facilitates the 
calculation of derived quantities and the 
transformation of positions and vectors 
into different coordinate systems.
This work is a significant step towards 
performing field line tracing in Kamodo
with SWMF magnetosphere outputs.

PyHC

Related Materials:

Posters and Papers:
• Enhanced Visualization using Kamodo

for CCMC ITM Instant Runs SA32D-
1694

• SH42E-2337: Science Workflows using 
Kamodo

• SM25C-2002: Kamodo’s Satellite 
Constellation Mission Planning Tool

• Developing an Executable Paper With 
the Python in Heliophysics
Community. 
DOI: 10.1002/essoar.10510006.1
Accepted in Frontiers in Astronomy 
and Space: Space Physics.

References (DOI):
• Kamodo (core): 10.21105/joss.04053
• CCMC’s Kamodo Flythrough: 

10.3389/fspas.2022.1005977
• CCMC’s Kamodo Model Readers: 

under review by Advances in Space 
Research.

• GITM: 10.1002/2016SW001465
• SWMF: 10.1029/2005JA011126
• GAMERA: 10.3847/1538-4365/ab3a4c
• LFM: 10.1016/j.jastp.2004.03.020
• GUMICS: 10.1016/j.jastp.2012.03.006
• SAMI3: 10.1029/2000JA000035
• SpacePy: https://spacepy.github.io/
• AstroPy: https://www.astropy.org/

Note:
If you find an issue with the Kamodo
software, please report it on GitHub. For 
collaboration, please email 
Rebecca.ringuette@nasa.gov.
Geospace Model Support:
Lutz. Rastaetter@nasa.gov

Get the CCMC’s 
Kamodo!

Get the core
Kamodo!

Links to our GitHub Repositories:

SH42E-2338: Magnetic Mapping in the Inner 
Magnetosphere using Kamodo

Lutz Rastaetter1, Rebecca Ringuette2, 1, Darren DeZeeuw3,1, and Oliver Gerland4.
1Community Coordinated Modeling Center, NASA Goddard Space Flight Center, Greenbelt, MD, USA

2ADNET Systems Inc., 6720B Rockledge Dr., Suite 504, Bethesda, MD, USA
3Catholic University of America, 620 Michigan Ave., N.E., Washington, DC, USA

4Ensemble Government Services LLC, Hyattsville, MD, USA Our Team:

Lutz Rastaetter: Internal 
cross-language 
interfaces, specialized 
interpolators, CCMC-Vis, 
team management. 

Rebecca Ringuette: Model 
interfaces, metadata, 
flythrough and other 
CCMC capabilities.

Darren De Zeeuw: GitHub 
management, 
visualization, metadata.

CCMC Staff:
https://ccmc.gsfc.nasa.gov/staff/

Ensemble Government 
Services partners:
https://www.ensembleconsultancy.com
/government-services

Oliver Gerland and 
company: Core Kamodo
capabilities, expert bug 
squashers.

4D Model Access:

Kamodo has a generic Model object that 
takes the name of one of the supported 
models to load the appropriate reader code.

The Model object then functionalizes all 
available variables, 4D (time, space) or 1D 
(timeline) contained in a model output 
directory. At this time nothing beyond some 
metadata has been read.

Test of Interpolation

Time = 1.2 hours (1:12 UT) is between 1:10 UT (index=6) and 1:20 UT 
(index=7), the nearest output times in the sample directory. The time is 
measured from midnight of the first day of the dataset. Data are read 
only as needed.
The gridded interpolator (Bzijk) will return an array with default sets of 
positions in the unspecified ranks (here: formed by 448 unique positions 
in Y and 416 positions in Z throughout the BATSRUS grid).

4D Model Access (continued): Function Composition:
Functionalization for Specific Variables

Z-Time plot of Bz
at X = -15.2 and 
Y = 15.7 R_E.

Time plot of 𝛳

X-Y plot of Bz at 
Time = 1.2 hrs
and Z = 15.7 R_E

Multiple time 
steps were read.

Coordinate systems available to Kamodo via SpacePy (above) and 
AstroPy (not shown).
Coordinate type ‘car’ indicates cartesian and ‘sph’ spherical 
coordinates (valid ranges for type ‘sph’ are shown above). 

𝐵𝐺𝑆𝐸() converts magnetic field 
from GSM to GSE coordinates.

Visualizations

Functionalizing the Data

𝛳, the dipole axis tilt angle in GSM, is a single value for each 
time step. Kamodo creates a 1D time function.

A list of requested 
output variables 
reduces the 
variables being 
functionalized

Define vector-valued 
function 𝐵
and B magnitude 
variable and add to 
object.

Single interpolation triggers 
reading of data for 2 time steps 
for each of the 3 components.

Examples of computed variables:
Vector-valued magnetic field B , B magnitude (above) and B 
converted to GSE (below). These functions are to be added to 
reader layer for all vectors: (B1, J, V, E).

We plan to add coordinate 
transformation capabilities to 
reader utilities to be available 
for all outputs with vectors.

𝐵𝐺𝑆𝐸() at the same position.

Interpolator Insertion:

Kamodo uses SpacePy to read the SWMF model data.
The _read_idl_bin() method in spacepy/pybats/__init__.py always sorts 
“unstructured” data. To support Kamodo the responsible block of code 
was commented out (below in green starting at the highlighted line) in 
a modified local installation of SpacePy version 0.4.1.

Standard case with regularly gridded data:

The function func() in 
register_variable() in the 
model reader retrieves the
data for a variable for use
by the 
RegularGridInterpolator() supplied by scipy.

Custom interpolator for BATSRUS:

func() now defines and returns an interpolator instance for each 
requested variable.
The entities ffi and lib are part of an external library,  
_interpolate_amrdata (imported earlier), that combine several 
functions compiled from C code: 
setup_octree() in Kamodo (not shown) uses a function of the same 
name in the library to obtain the block size in X, Y, Z directions (≥ 4x4x4 
cell, typically 6x6x6 or 8x8x8 at the CCMC) and returns an octree
dictionary that is stored in the Kamodo object for each time step.
setup_octree_pointers() sets the proper positions in the octree 
dictionary for a selected time step.
interpolate_amrdata_multipos() performs the actual interpolation of 
the data using the octree grid.

Code to add a keyword 
sort_unstructured_data
to IdlFile() while 
preserving the original 
behavior by default has 
been submitted via Pull 
Request.

Setting the keyword to 
False then turns off 
sorting and preserves 
block structure that is 
needed by the Kamodo
reader.

We plan to apply the 
same custom 
interpolator approach 
to support other 
models with complex 
grids, such as 
GAMERA, LFM, 
GUMICS and SAMI3.
C code performing 
such interpolations 
already exists at CCMC 
and may be ported.


