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Abstract 8 

Storm erosivity in the Universal Soil Loss Equation is given by the product storm kinetic energy 9 

and the maximum intensity measured using a 30-minute window. In some locations short term 10 

rainfall data are not available to determine these two parameters well. Here it is shown that the 11 

estimated  energy per unit quantity of rain for the rain that falls during the time the maximum 30-12 

min rainfall amount is measured can be used to predict event erosivity at many locations in 13 

Australia. There may be merit in using this approach elsewhere where a lack of short-term rainfall 14 

data prevent event erosivity from being predicted accurately.   15 

 16 

Keywords:  soil erosion; soil loss prediction; Universal Soil Loss Equation; storm erosion  17 
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1. Introduction 19 

The Universal Soil Loss Equation (USLE (Wischmeier and Smith, 1965; Wischmeier and 20 

Smith, 1978) ) is an empirical model (Alewell et al., 2019) that was originally designed to predict 21 

long term average annual soil losses (mass/area/time) from field sized areas. It was later revised 22 

(Revised Universal Soil Loss (RUSLE (Renard et al., 1997)) to take advantage of new knowledge 23 

gained after the USLE was developed in the 1960s and 1970s. Later RUSLE2 (USDA, 2008) was 24 

developed to enable USLE technology to apply to complex land management systems that are 25 

beyond the capacity of the USLE and the RUSLE.  26 
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USLE based models operate mathematically in two steps. In the first step, the average 27 

annual soil loss on the “unit” plot (A1) is predicted by the product of the rainfall runoff factor (R) 28 

and the soil “erodibility” factor (K) 29 

 30 

 31 

The unit plot is defined as a 22.1 m long bare fallow area on a 9 % slope with cultivation up and 32 

down the slope. In the second step, A1 is multiplied by factors related to slope length (L), slope 33 

gradient (S), crops and crop management (C) and soil conservation practice (P) to predict the soil 34 

loss for an area which differs from the unit plot situation (A), 35 

 36 

 37 

 R is defined at the average annual sum of the product of storm kinetic energy (Es) and the 38 

maximum 30-minute intensity observed during the rainstorm (I30).  39 

 40 

 41 

where Ns is the number of effective rainstorms in Y years. In the USLE, rain showers of less than 42 

12.5 mm (0.5 in) were omitted in the calculation of R unless at least 6.25 mm (0.25 in) of rain fell in 43 

15 min. A period of 6 hours with less than 1.27 mm (0.05 in) was used as a storm separator. This 44 

rule is applied in RUSLE2 but all events were considered in the RUSLE.  45 

 When R is determined using Eq. 3, I30 (mm h-1) is usually a measured value and is given by 46 

twice the maximum amount of rain that falls in a 30-minute window. Es (MJ ha-1) is seldom 47 

determined directly but is calculated from the relationship between kinetic energy per unit quantity 48 

of rain () and rainfall intensity (I). The equation adopted in RUSLE2 is 49 

 50 

 51 

 �� = � �  (1) 

 � = �� � �  	 
       (2) 
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where  has units of MJ mm-1 ha-1 and I has units of mm hr-1 and k is a period of time during the 52 

rain storm. Storm energy is then computed using 53 

 54 

 55 

where Nt is the total number of periods in the rainstorm and Vk is the amount (mm) of rainfall in the 56 

kth period. Other equations have been observed to exist in many geographic locations but Eq. 4 has 57 

been used outside the USA including Australia. Rainfall data collected over short time intervals 58 

ensure the accurate determinations of Es (Tu et al., 2023; Zhu et al., 2019). Rainfall data collected 59 

over a 6 min time interval at many locations in Australia are considered suitable. Once Es has been 60 

determined, EI30 for a rainfall event can be calculated by 61 

 62 

 63 

 The procedure for determining EI30 for a rainfall event using Eqs 3 to 6 requires high 64 

resolution rainfall data in order to predict EI30 and R values with high precision. In many locations 65 

in the world, appropriate data is not available to do this. In this technical note, an approach to 66 

estimating event erosivity in Australia focussing on I30 is considered as a means of estimating 67 

spatial variations in R in Australia when only data on storm rainfall amount and I30 exists.  68 

2. Theory 69 

It follows from Eq. 6 that a linear relationship exists between EI30 and I30 if Es is constant at a 70 

location. However, Es is known to vary in space and time. Even so, it has been observed (Lal, 1976; 71 

Mannaerts and Gabriels, 2000) that, at some locations, Es varies directly with event rainfall amount 72 

(Vs , mm). When this occurs, EI30 can be predicted at a location by 73 

 74 

 75 

where b1 is an empirical coefficient that varies between locations because of geographic differences 76 

in the synoptic conditions that dominate the production of rain. Figure 1 shows how Eq. 7 can 77 

predict EI30 values at two widely spaced locations in Australia. The data presented in Figure 1 was 78 
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 �� &�
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obtained using historic 6-minute rainfall data collected by Australian Bureau of Meteorology. It is 79 

clear from the fact that b1 for Darwin is 1.22 times the b1 for Adelaide, that b1 is influenced by 80 

climate. Adelaide has a Mediterranean Climate while Darwin is in the Tropics.  81 

 82 

 83 

Figure 1: Relationships between EI30 and Vs I30 at Adelaide and Darwin  obtained from 6-84 

minute rainfall data collected by Australian Bureau Meteorology from 1967-2004 at Adelaide 85 

and 1953-1995 at Darwin. 86 

Although b1 can be considered to be a regression coefficient, using regression analysis to 87 

determine b1 does not guarantee to predict the same average annual R value as observed at a 88 

location. b1 can be calibrated to predict the same average annual R value as observed at a location 89 

by 90 

 91 

where Nem is the number of erosive storms where Vs  > 12.6 mm. Figure 2 illustrates how b1 92 

determined using Eq.8 varied for 42 Australian locations where the Australian Bureau of 93 

Meteorology has collected 6-miute rainfall data for over 70 years up to 2010. The locations are 94 

listed by latitude so that the most northern location is first and the most southern location is last. As 95 

to be expected from the influence of high intensity rainfall, the highest values of b1 occur in the 96 

tropics. The ratio for the highest b1 to the lowest b1 is 1.42. 97 

 
(� =  ∑ �&� ���� ����

�*+���
∑ �&� ���� ��

�*+
���

  (8) 
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 98 

Figure 2. Values of the ratio of b1 to its average at a number of locations in Australia where 6-99 

min rainfall data is recorded by the Australian Bureau of Meteorology. 100 

 101 

In addition to Eq. 6, EI30 can be calculated by  102 

 103 

 104 

where s is the kinetic energy per unit quantity of rain for the storm. s is given by 105 

 106 

 107 

Consequently, variations in b1 between geographic locations occur because Eq. 7 does not include 108 

direct consideration of the kinetic energy per unit quantity of the rain falling during the event. 109 

Given that I30 is a measure of rainfall intensities sustained over a period of 30 minutes where 110 

a large proportion of the rainfall for an event tends to occur in some cases, arguably,s may be well 111 

correlated with I30 in some way.  Figure 3 shows that s is non-linearly related to I30. A power 112 

relationship is apparent for Adelaide but not for Darwin. In both cases, values of k  were 113 

determined using Eq. 4 and  there is a tendency for many storms to have values of s close to 0.29 114 

MJ ha-1 mm-1 at Darwin because of the dominant influence of high intensity rainfall on s at that 115 

location. Consequently, if only data on Vs and I30 are available, it is apparent that a simple empirical 116 

equation involving I30 cannot  account for the effect of climate on b1. 117 

 118 

 ���� =  &� ��� ��        (9) 

 �� = �� &���       (10) 
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 119 

Figure 3. Relationships between storm rainfall energy per unit quantity of rain and I30 for 120 

rains producing more than 12.5 mm at Adelaide and Darwin  121 

 122 

 123 

Figure 4. Relationships between storm rainfall energy per unit quantity of rain and rainfall 124 

energy per unit quantity of rain when  I30 is recorded for rains producing more than 12.5 mm 125 

at Adelaide and Darwin.  126 

 127 

The total amount of rainfall kinetic for a storm energy includes the amount of rainfall kinetic 128 

energy that occurs during the 30 minutes when the maximum amount of rain in 30 mins occurs. 129 

Consequently, it is possible that s is directly related to the kinetic energy per unit quantity of the 130 

rain that falls during the period when I30 is measured (I30) at some locations when I30 is calculated 131 

using the equation 132 

  133 

 134 

 �,�� = 0.29 � 1 − 0.72 exp�−0.082 ����     (11) 
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Figure 4 show that this is the case at both Adelaide and Darwin. Regression analysis confirmed this 135 

finding at all the 42 locations considered here.  It follows from this, that  136 

 137 

 138 

Regression analysis was undertaken to determine β values for all the 42 locations considered here 139 

3 Results 140 

Although β can be considered to be a regression coefficient, like b1, using regression analysis to 141 

determine β does not guarantee to predict the same average annual R value as observed at a 142 

location. β can be calibrated to predict the same average annual R value as observed at a location by 143 

 144 

 145 

where Nem is the number of erosive storms where Vs  > 12.6 mm. Fig. 5 illustrates how β determined 146 

using Eq.13 varied for the 42 Australian locations being considered. The spatial variation  in β is 147 

much smaller than that for b1. Consequently, β is much less influenced by the climate variations in 148 

Australia than b1. The spatial variation is small enough for the average value of β to be used to 149 

estimate EI30 values at most of the locations considered.  Consequently, using a single value of β in 150 

Eq. 12 may have a place in predicting spatial variations in R in Australia when only data on I30  and 151 

storm rainfall amount  exists.  152 

  153 

 154 

 ���� =  - &� ��� . 0.29 − 0.72 exp�−0.082 ���� /                &� = 0 12.6 22  (12) 

 - =  ∑ �&� ���� ����
�*+���

∑ �&� ���� �,����
�*+
���

  (13) 
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Figure 5. Values of the ratio of - to its average at a number of locations in Australia where 6-155 

min rainfall data is recorded by the Australian Bureau of Meteorology 156 

.  157 

4. Discussion 158 

 Spatial variations in R are important when USLE based technology is applied at a country or 159 

regional scale. It is common to use R values obtained at a number of different locations to map 160 

spatial variations in R at a country or regional scale using GIS techniques. One technique used 161 

involves a power relationship between daily EI30 (EI30d) and daily rainfall (Yu and Rosewell, 1996), 162 

 163 

 164 

where Vd  is daily rainfall, α, b2, η and ω are model parameters. The primary parameters for a 165 

location are α and b2 and they are inversely related to each other. The term with the squared 166 

brackets deals with seasonal changes in erosivity on a monthly basis assuming it follows a 167 

sinusoidal form. j represents the month as a number from 1 (Jan) to 12 (Dec). ω is a number 168 

between 1 and 12 divided by 12 and is set to determine the month when EI30d  is most affected by a 169 

value of daily rainfall. α and b2 can be spatially mapped (Yang and Yu, 2015). It follows from 170 

Eq.12 and the data presented in Figure 5 that, if data on both Vs and I30 are available, reasonably 171 

good estimates of EI30 for erosive events can be obtained assuming that the average value of β (0. 172 

833) observed for the locations examined is applied at all locations in Australia. Not only can R be 173 

predicted for a location using Eq 12 to obtain the storm EI30 values, Eq. 12 can also be used to 174 

predict seasonal variations in erosivity required for accounting for the interaction with cropping and 175 

crop management on the C factor in Eq. 2. Short term values of R in the RUSLE and RUSLE2 176 

involve disaggregation of monthly R values. In this respect, Figure 6 shows monthly values of 177 

erosivity (Rm) for erosive events predicted using Eq. 12 with β =  0. 833 in comparison with the 178 

observed values at 4 widely separated locations in Australia. These 4 locations have different 179 

climates. Perth in western Australia and Adelaide in southern Australia have a Mediterranean 180 

climate. Perth receives considerably more rain than Adelaide. Darwin in northern Australia has a 181 

tropical climate while Sydney in eastern Australia has a humid subtropical climate. 182 

 ����3 =  4 . 1 +  6 cos�2 : ; −  <� /&3=>                                       (14) 
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 183 

Figure 6. Relationships between monthly R values (Rm) and observed monthly R values 184 

obtained using Eq.12 with β = 0.833 at 4 widely spaced locations in Australia.  185 

Obviously, where the temporal resolution of rainfall data at a sub 30-minute level exists, 186 

storm EI30 values can be determined with Es values calculated using Eqs. 4 and 5. However, there 187 

are situations where data on rainfall amount and I30 are available without sub 30-minute data 188 

(Panagos et al., 2015) where determining EI30 values using Eq.12 may be practical. Also, rainfall 189 

data can be produced using climate generators. For example, Yu (2002) developed a method for 190 

predicting both I30 and storm energy for CLIGEN generated rainfalls. CLIGEN is able to reproduce 191 

daily rainfall and related storm patterns representing monthly statistics of historical records (Baffaut 192 

et al., 1996). The algorithms used by Yu over predicted R values in the USA by a relatively constant 193 

factor so that EI30 values predicted by those algorithms could, in general, be multiplied by 0.576 to 194 

predict R at locations in the USA. Arguably, Eq. 12 can be used as an alternative to the approach 195 

adopted by Yu. Assuming that β = 0. 833 can be used as a first approximation in the USA, 196 

 197 

 198 

where Vs.CG   is event rainfall amount predicted by CLIGEN, I30.Yu is I30 for the event generated by 199 

Yu method, and b3 is an empirical coefficient used to match R to the value of R allocated for 200 

RUSLE2. With values of b3 varying from 0.601 to 0.788 (Table 1), applying Eq. 15 at 9 locations in 201 

the USA where Kinnell (2019) applied CLIGEN as a weather generator for RUSLE2 indicated that 202 

 ���� = (� - &�.?@  ���.AB . 0.29 �1.0.72 exp�−0.082 ���.AB �/    , &�.?@ 0 12.6 22     (15) 
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I30 values predicted by the Yu method were too high. b3 tends to increase slightly with the value of 203 

R allocated for RUSLE2 (Figure 7A) with Presque Isle appearing to be an exception to the rule. 204 

Figure 7B shows the relationship between EI30 values predicted using the algorithms for Es and I30 205 

presented by Yu (2002) and the values of EI30 predicted using Eq. 15 at Holly Springs where b3 = 206 

0.689 and EI30 values predicted by the Yu method when adjusted by a factor of 0.600 rather than 207 

0.576 as suggested by Yu.  208 

 Table 1 209 

location state county 

R (MJ 

mm/(ha 

hr)) 

b3 

Bethany MO Brooke 3330 0.655 

Castana IA Monona 2650 0.635 

Geneva NY Ontario 1380 0.601 

Guthrie OK Logan 3800 0.656 

Holly Springs MS Marshall 6360 0.689 

Madison SD Lake 1330 0.601 

Presque Isle ME Aroostook 1230 0.738 

Tifton GA Tilt 7110 0.788 

Watkinsville GA Oconee  5050 0.684 

Average       0.672 

 210 

 211 

Figure 7: (A) The relationship between b2 values obtained for the 9 locations in the USA and 212 

R factor values allocated by RUSLE2. (B) The relationship between EI30 values predicted at 213 
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Holly Springs by Eq.15 using b3 = 0.689 and EI30 value predicted by the Yu method using an 214 

adjustment factor of 0.600 as opposed to 0.576 suggested by Yu.  215 

 216 

The data presented here using Eq. 15 with CLIGEN is qualitative because β = 0.833 has not 217 

been verified for the USA. An analysis for the values of β in the USA is not possible using the 218 

rainfall data in the USLE database because the EI30 values given in the USLE database were 219 

calculated using  220 

 221 

 222 

 223 

not Eq.4. The original rainfall data used to determine EI30 values using Eq. 16 in the USLE database 224 

are not available. 225 

 226 

Concerns have been raised about that validity of using I30 as an independent variable in 227 

determining  erosivity in USLE based models for storms across a wide geographical and climatic 228 

range, where rainfall events may last from less than an hour to more than a day (Dunkerley, pers 229 

comm, Sept 2022). While the relative duration of the rain in the 30 minutes when I30 is determined 230 

may be small for large duration storms and large for short duration storms, the amount of rain 231 

kinetic energy when the maximum amount of rain in 30 minutes is recorded relative to amount rain 232 

kinetic energy for the storm is the factor being considered in the development of Eq.12. Eq.12 233 

works well in Australia because there is a strong correlation between the amount of rain kinetic 234 

energy when the maximum amount of rain in 30 minutes is recorded relative to amount rain kinetic 235 

energy for the storm in rainstorms at locations in Australia. It is probably that a strong correlation 236 

between the amount of rain kinetic energy when the maximum amount of rain in 30 minutes is 237 

recorded relative to amount rain kinetic energy for the storm in rainstorms exists at locations in 238 

other parts of the world. 239 

1. Conclusion 240 

 Generally, in order to predict EI30 values well, values of storm rainfall amount, I30 and the 241 

storm energy per unit quantity of rain need to be known (Eq.8). There can be situations where storm 242 

 �� = 0.119 + 0.0873 log10 �G��                                    , G� < 76 22/ℎK��  (16a) 

 �� = 0.288                                                                          , G�  ≥ 76 22 ℎK��  (16b) 
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rainfall and I30 data are available but not data to determine storm kinetic energies. However, it has 243 

been shown here that when I30 is known, the storm energy per unit of rainfall that occurs when I30 is 244 

measured can be estimated using Eq.10. This enables variations in the storm energy per unit 245 

quantity of rain at a location to be estimated using the equation 246 

 247 

 248 

where β is an empirical factor that is determined by  249 

 250 

 251 

Although β varies between locations, the spatial variation in Australia is not great so that the β = 252 

0.833 enables monthly values of R to be predicted reasonably well in many places in Australia.  Eq. 253 

12 works well in Australia because there is a strong correlation between the amount of rain kinetic 254 

energy when the maximum amount of rain in 30 minutes is recorded and the  amount of rain kinetic 255 

energy for the storm in rainstorms at locations in Australia. It is probably that a strong correlation 256 

between the amount of rain kinetic energy when the maximum amount of rain in 30 minutes is 257 

recorded and the amount of rain kinetic energy for the storm in rainstorms exists at locations in 258 

other parts of the world. There may be merit in using the approach elsewhere where there is a lack 259 

of short-term rainfall data to determine EI30 values more accurately. How useful Eq.12 might be in 260 

determining the effects temporal variations in climate at a given location is a matter for future 261 

study. 262 
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