
P
os
te
d
on

22
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
16
99
89
.9
40
91
53
1/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Automated nighttime cloud detection using keograms when aurora

is present

Alex English1, David J Stuart1, Donald L. Hampton2, and Seebany Datta-Barua1

1Illinois Institute of Technology
2University of Alaska Fairbanks

December 22, 2022

Abstract

We present a metric for detecting clouds in auroral all-sky images based on single-wavelength keograms made with a collocated

meridian spectrograph. The coefficient of variation, the ratio of the sample standard deviation to the sample mean taken over

viewing angle, is the metric for cloud detection. After calibrating and flat-field correcting keogram data, then excluding dark

sky intervals, the effectiveness of the coefficient of variation as a detector is tested compared to true conditions as determined

by Advanced Very High Resolution Radiometer (AVHRR) satellite imagery of cloud cover. The cloud mask, an index of cloud

cover, is selected at the corresponding nearest time and location to the site of a meridian spectrograph at Poker Flat Research

Range (PFRR). We use events that are completely cloud-free or completely cloudy according to AVHRR to compute the false

alarm and missed detection statistics for the coefficient of variation of the greenline 557.7 nm emission and of the redline 630.0

nm emission. For training data of the years 2014 and 2016, we find a greenline threshold of 0.51 maximizes the percent of events

correctly identified at 75%. When applied to testing data of the years 2015 and 2017, the 0.51 threshold yields an accuracy of

77%. There is a relatively shallow and wide minimum of mislabeled events for thresholds spanning about 0.2 to 0.8. For the

same events, the minimum is narrower for the redline, spanning roughly 0.3-0.5, with a threshold of 0.46 maximizing detector

accuracy at 78-79%.
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Key Points:7

• Keogram coefficient of variation is used to determine if the sky is cloudy or clear,8

and verified with NOAA satellite imagery from 2014-20179

• At 557.7 nm, a 0.51 threshold gives 75% accuracy but is comparable to results be-10

tween 0.2-0.811

• At 630.0 nm, 0.46 is 78% accurate and comparable within 0.3-0.512
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Abstract13

We present a metric for detecting clouds in auroral all-sky images based on single-wavelength14

keograms made with a collocated meridian spectrograph. The coefficient of variation,15

the ratio of the sample standard deviation to the sample mean taken over viewing an-16

gle, is the metric for cloud detection. After calibrating and flat-field correcting keogram17

data, then excluding dark sky intervals, the effectiveness of the coefficient of variation18

as a detector is tested compared to true conditions as determined by Advanced Very High19

Resolution Radiometer (AVHRR) satellite imagery of cloud cover. The cloud mask, an20

index of cloud cover, is selected at the corresponding nearest time and location to the21

site of a meridian spectrograph at Poker Flat Research Range (PFRR). We use events22

that are completely cloud-free or completely cloudy according to AVHRR to compute23

the false alarm and missed detection statistics for the coefficient of variation of the green-24

line 557.7 nm emission and of the redline 630.0 nm emission. For training data of the25

years 2014 and 2016, we find a greenline threshold of 0.51 maximizes the percent of events26

correctly identified at 75%. When applied to testing data of the years 2015 and 2017,27

the 0.51 threshold yields an accuracy of 77%. There is a relatively shallow and wide min-28

imum of mislabeled events for thresholds spanning about 0.2 to 0.8. For the same events,29

the minimum is narrower for the redline, spanning roughly 0.3-0.5, with a threshold of30

0.46 maximizing detector accuracy at 78-79%.31

Plain Language Summary32

Clouds in the sky are a problem for scientists trying to view space beyond. For up-33

per atmospheric scientists, clouds can obscure or scatter auroral light in all-sky images34

(ASI), making it hard to identify, locate, and track auroral shapes. This paper shows a35

way to simply and automatically detect clouds using a north-to-south line scan of a sin-36

gle color of light from the sky over time, known as a keogram. We compute the ratio of37

the variation in pixel intensity to the average pixel intensity, for each north-to-south scan.38

Excluding dark sky periods, a large ratio means that the sky is cloudless, and a small39

ratio that the sky is cloudy. We find the method works with about a 75-80% correct rate40

using red or green auroral light. With this method we can eliminate data during cloudy41

conditions for any auroral studies that require clear sky conditions.42
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1 Introduction43

Aurorae occur at the polar regions of the Earth, and are colloquially known as the44

northern and southern lights. These visual light emissions result from the interactions45

between charged particles in the Earth’s magnetosphere and upper atmospheric species.46

Because of their relationship to interactions with the magnetosphere, researchers have47

been interested in classifying types of aurorae (M. T. Syrjäsuo & Donovan, 2004) and48

correlating them with other events. Researchers have noted that the passage of aurorae49

are associated with radio frequency scintillations at high latitudes (Semeter et al., 2017;50

Mrak et al., 2018; Loucks et al., 2017; D. L. Hampton et al., 2013). The quality of ground-51

based auroral images is limited by the presence of clouds in the sky. For individual case52

studies, researchers can visually inspect and often determine by eye the presence of clouds.53

However, this is not practical for large surveys of events.54

Auroral scientists are not unique in being interested in detecting the presence or55

absence of clouds. For many practical and scientific applications, satellite imagery at var-56

ious wavelengths is a standard tool for coverage spanning continent-scale areas. Multi-57

decade clear sky (i.e., not cloudy) identification can be done by non-optical means of com-58

paring the measured irradiance to top of the atmosphere irradiance, compared to a clear-59

sky transmittance threshold (Correa et al., 2022). Such studies are longer term or gen-60

erally lower resolution than might be needed for nightly auroral studies at a single site.61

For local conditions, ground-based methods can provide measures of cloud cover for day62

or night.63

Many of the daytime methods leverage or are interested in solar illumination. Clear64

sky detection based on broadband irradiance is one avenue of cloud detection in use for65

decade-scale studies (Long & Ackerman, 2000). At optical wavelengths, low-cost cam-66

eras may be used by solar power station operators who want an automated method for67

estimating or forecasting power generation (Alonso-Montesinos, 2020). Daylight polar-68

ization can be used to determine clear sky versus cloudy sky, and the optical thickness69

of the cloud layer, if present (W. Li et al., 2022). A number of researchers have success-70

fully developed methods for sorting cloud data automatically using the red and blue in-71

tensity relationships of all sky images, total sky imagers, or whole sky cameras (Q. Li72

et al., 2011; Long et al., 2006). Other groups have developed hybrid or adaptive thresh-73

olding algorithms (F.-F. Li et al., 2022). Another method was developed using three cloud74
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features to categorize the ASC images into four cloud cover categories, rather than im-75

age threshold techniques (X. Li et al., 2022). These studies use daytime images illumi-76

nated by sunlight, and may be interested in classifying cloud types or regions of the sky77

with cloud cover. For auroral investigations, we are interested in tools usable at night78

and less interested in cloud types.79

Recent interest in machine learning has shown that aurorae can be classified with80

trained algorithms (Clausen & Nickisch, 2018). One of the classification categories in this81

process is “cloudy” (Sado et al., 2022). Astronomers have also used machine learning82

methods to determine cloud cover at night for protecting telescope equipment (Mommert,83

2020). While these methods hold promise, they can be computationally expensive and84

time consuming for training and validating at a single site for multiyear studies, neces-85

sitating a method that provides sorting of a multitude of night-time images in an effi-86

cient and consistent manner. One such method was used as part of an auroral detection87

and tracking method, in which aurorae were detected using the ratio of maximum to mean88

brightness of an all-sky image, after using synoptic cloud index measurements to elim-89

inate cloudy periods (M. Syrjäsuo & Donovan, 2002). In this work we are interested in90

leveraging the nighttime single-wavelength one-dimensional images themselves to detect91

and discard thex cloudy intervals in the night sky, without need for separate cloud mea-92

surement.93

In image processing, blurring and other distortions in a received image are mod-94

eled as convolution of a kernel with an original signal. The distortions of a camera it-95

self may be characterized as a convolution of a point-spread function defining the cam-96

era’s characteristics. In astronomy, the point spread function of the camera can often97

be determined using known stars. If the point-spread function is known, the image can98

be deconvolved to recover the original signal. For example, a theoretical determination99

of the point spread function due to clouds and fog for imaging objects 20 km from the100

imager was conducted by (Jaruwatanadilok et al., 2003) based on radiative transfer the-101

ory. In some disciplines, the point spread function may be recovered via blind deconvo-102

lution techniques. In this work, the presence of a filtering function due to atmospheric103

scattering is the focus, rather than defining the precise form of it. The concept of atmo-104

spheric filtering is mentioned by Guo et al. (2022) who investigated neural network-based105

restoration of images distorted by atmospheric turbulence. We do not need to go so far106

as to restore images blurred by clouds in a large multi-year database of auroral imagery,107
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but we can leverage the effect of clouds on one-dimensional single-wavelength images over108

time to determine their presence.109

In this work, we present a simple metric for efficiently and automatically detect-110

ing clouds if auroral light is present. This method is intended for subsequent automa-111

tion of auroral all-sky image analysis. Section 2 motivates and introduces our proposed112

detection metric. Section 3 describes the method and data sets used to test and validate113

our proposed detection technique, with details on pre-processing in Appendix A. Sec-114

tion 4 shows the key results, and conclusions are summarized in Section 5.115

2 Conceptual approach116

Meridian Spectrograph
Side View

Zenith

North

Night Sky
South

Night Sky
North

South

Camera 
Scan Line

Camera Point of View

Figure 1. Schematic of keogram imaging system. The left shows a side view of a meridian

spectrograph looking up local zenith and the right shows a view of the night sky from the per-

spective of a camera as the meridian spectrograph takes a one-pixel-wide scan from horizon to

horizon through local zenith.

A keogram is a time sequence of one-dimensional images taken over the course of117

a night. A keogram may be taken with a meridian spectrograph or constructed from the118

field-of-view of an all-sky imager by extracting one subset of pixels. The diagram in Fig-119

ure 1 illustrates a side view of an imaging system (left) and a sky view of an all-sky im-120

ager’s field of view (right). The meridian spectrograph takes one-pixel-wide images of121
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the sky at intervals throughout the course of the night. The pixel intensities are recorded122

as a function of the elevation angle from the northern to southern horizon passing through123

local zenith. At auroral latitudes a north-to-south scan is most likely to sample any au-124

roral light because of the orientation of the auroral oval generally gives aurorae that are125

oriented east-west.126

A sample keogram (calibrated and corrected, as described in later sections) taken127

at one wavelength is shown in Figure 2a. The x axis is time, and each column is a line-128

scan image from north (0 deg) to south (180 deg) of light intensity (Rayleighs, shown129

by color) taken at one instant. Our objective is to use the keogram to detect whether130

clouds are present or not at each moment. By inspection we observe that Interval 1 iden-131

tified in Figure 2a corresponds to a dark sky with no aurora. A plot of the intensity as132

a function of elevation at the example instant identified with a red vertical line is shown133

in Figure 2b. The intensities are uniformly low at 04:00 UT. A histogram of these in-134

tensities over all angles at this instant is then shown in Figure 2c. The histogram of this135

snapshot taken over all viewing angles has a small both sample mean µ and standard136

deviation σ.137

Interval 2 identified in Figure 2a contains a segment of an auroral band in the north-138

ern part of the sky. For this example time, the intensity as a function of viewing angle139

is shown in Figure 2d, consisting of one narrow region of high intensity at the viewing140

angle to the aurora. The sky is clear because we can see the narrow angular extent of141

the band of the aurora, and is verified by manually viewing an all-sky image. The his-142

togram is shown in Figure 2e, and there is a spread of intensities due to distinctly brighter143

or dimmer auroral features.144

Interval 3 of Figure 2a corresponds to a period during which there are aurorae, but145

the presence of clouds has dimmed and scattered the auroral light (again, apparent by146

manually viewing the all-sky image). Clouds smear the light intensities spatially to give147

a more uniform brightness at all viewing angles, as shown in Figure 2f. As a result, the148

distribution of keogram intensities is narrowly clustered around a non-zero mean.149

Cloud cover has the effect of blurring the auroral light in the keogram. A commonly150

used image processing concept is useful here. Images taken are often post-processed to151

reduce noise or smooth out other unwanted effects by filtering. Comparing Figures 2d152

and 2f, we note that clouds between the auroral source and the imager have the effect153
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Interval 1

Interval 2

Interval 3

Figure 2. (a) Keogram for 01 Jan 2014 for 557.7 nm wavelength with three sky conditions

highlighted: (1) Dark sky (2) Cloud-free time with aurora, and (3) Cloudy aurora time. The

red lines in each interval mark example timestamps for the remaining plots. (b) Intensity versus

viewing angle and (c) histogram of keogram intensity for the dark sky example time. (d) Inten-

sity versus viewing angle and (e) histogram of the intensities at the cloud-free aurora time. (f)

Intensity versus viewing angle and (g) histogram of the intensities at the cloudy aurora time.

of smoothing out the intensities spatially, and effectively act as an imaging filter that blurs154

the image. The mathematical process of filtering is given by convolution of a filter that155

modifies an original signal. Clouds in the sky act as a filter that, convolved with light156

sources that would otherwise be present in a keogram at a cloud-free instant, produces157

a smoothed set of intensities received at the ground. In the case of the example shown158

in Figures 2f-2g, the filtered signal results in a histogram whose distribution is narrowed,159

as all viewing angles have similar intensity.160

At each instant t the keogram Y is a one-dimensional image of received intensities161

at a single wavelength over N discrete spatial coordinate elements θn. Assuming the keogram162

instrument is calibrated for uniform gain in all directions and undesired broadband and163

noise sources (e.g., from light pollution) have largely been removed, the residuals ϵ in164

the corrected keogram Y may be assumed to be zero-mean with a standard deviation165
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of σϵ. The intensity Y at a given wavelength in this case may be written as:166

Y (t, θn) = (a ∗ g)(t, θn) + ϵ (1)

=

N∑
m=−N

a[n−m]g[m] + ϵn (2)

where a represents any light sources behind the clouds, i.e., aurorae; g the filtering func-167

tion (sometimes called the kernel or point-spread function) of the clouds that scatters168

the light source, the symbol * represents the convolution operation, and ϵ is a random169

variable representing the residuals and noise after calibration. Equation 2 defines con-170

volution for discrete signals over viewing angle at time t. The signal a at N discrete an-171

gles can be zero-padded for the convolution operation.172

For a cloud-free sky (subscript “cf”) we can represent the cloud kernel as a Kro-173

necker delta function gcf [m] = δ0m, which does no spreading of the intensity, so the sum-174

mation simplifies as:175

Ycf (t, θn) =

N∑
m=−N

a[n−m]gcf [m] + ϵn (3)

= a[n] + ϵn (4)

For zero-mean noise, the mean intensity Ȳ over all viewing angles θn at time t is the mean176

intensity ā of a over all elevations:177

Ȳcf (t) =
1

N

N∑
n=1

a[n] + ϵn (5)

= ā(t) (6)

The sample variance would be the sum of the variance σ2
a of a over all elevations and of178

the noise, assuming the light sources and noise to be independent, which can be seen by179

substituting Eqs. 4 and 6 into Eq. 7:180

σ2
cf =

1

N − 1

N∑
n=1

(
Y (t, θn)− Ȳ (t)

)2
(7)

=
1

N − 1

N∑
n=1

(a[n] + ϵn − ā)
2

(8)

= σ2
a + σ2

ϵ (9)

While a specific cloud kernel is not known and might depend on the type of cloud,181

we can imagine the extreme case of a cloud that spreads the intensity evenly across all182

N elevations, whose filter would be gc[n] = 1/N . In this case, the intensity would be:183

Yc(t, θn) =

N∑
m=1

a[n−m]gc[n] + ϵn (10)

= ā(t) + ϵn (11)
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The angle-averaged intensity would be Ȳ = ā as in the cloud-free case. However, the184

variance with angle would be given by:185

σ2
c =

1

N − 1

N∑
n=1

(
Y (t, θn)− Ȳ (t)

)2
(12)

=
1

N − 1

N∑
n=1

(��ā(t) + ϵn −��ā(t))
2

(13)

= σ2
ϵ (14)

leaving only the variance of the noise.186

However, if the sky is dark, there is no light source to be blurred, meaning a = 0,187

the cloud kernel whether gc or gcf has little effect on the intensity Yd of a dark sky.188

Yd(t, θn) = (0 ∗ g)(t, θn) + ϵ (15)

= ϵn (16)

Ȳd(t) = ϵ̄(t) = 0 (17)

σ2
d =

1

N − 1

N∑
n=1

(
Y (t, θn)− Ȳ (t)

)2
(18)

=
1

N − 1

N∑
n=1

(ϵn − ϵ̄(t))
2

(19)

= σ2
ϵ (20)

The mean and variance of a dark clear sky would be indistinguishable from that of a dark189

cloudy sky. On the other hand, they are not of interest for auroral studies. For this rea-190

son we exclude dark sky intervals such as Interval 1 from consideration, by setting a min-191

imum mean value Ȳ of the samples that must be exceeded.192

Given that there is auroral light in the keogram at time t, our objective is to de-193

termine whether the image at that time is cloudy or not. The coefficient of variation c(t)194

is the sample standard deviation σ of Y (t) normalized by the mean Ȳ , shown in Eq. 21.195

It is a measure of how much variation there is at each time over all elevation angles θ196

of the keogram.197

c(t) ≡ σ(t)

Ȳ (t)
(21)

The example relationship between (a) a keogram, (b) its standard deviation, (c) mean,198

and (d) coefficient of variation can be seen in Figure 3. In the cloud-free aurora-present199

case (Interval 2), c = σcf/ā ∼ 1, but for the cloudy sky case (Interval 3) c ≈ σc/ā <<200

1. The dark sky case (Interval 1) also has c ≈ σϵ/ϵ̄ ∼ 1, but is artificially large be-201
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cause Ȳ is so low. After filtering out dark-sky intervals, for which a small Ȳ would ar-202

tificially inflate c, we propose the coefficient of variation as a metric for detecting cloudy203

auroral-lit intervals in keograms (i.e., distinguishing Interval 2 from 3 in Figure 2.204

1 2 3

Figure 3. (a) Keogram Y of 1 January 2014 pre-processed as described in Appendix A with

the corresponding sample (b) standard deviation, (c) mean, and (d) coefficient of variation c with

specific times highlighted to explain what the keogram looks like in various sky conditions: 1)

Dark sky 2) cloud-free with aurora 3) cloudy with aurora.

3 Method205

In order to test the effectiveness of the coefficient of variation as a detection met-206

ric for clouds, we use a database of keograms collected at Poker Flat Research Range (PFRR),207

Alaska, from 2014-2017 (source listed in Open Research Section). After calibrating and208

correcting the keograms, we compute the coefficient of variation for each over time and209

compare them to NOAA satellite image-derived cloud mask data over PFRR. The satel-210

lite imagery provides a truth reference for whether clouds were present or not. We use211

standard detection theory to identify the distributions of coefficient of variation for two212

populations (cloudy and cloud-free). We test different thresholds of the detection met-213

ric to compute the number of events that are correctly identified or mislabeled. We use214

the events in years 2014 and 2016 as the training data, to find a threshold that produces215
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the fewest mislabeled events (missed detections and false alarms), which is maximizes216

the accuracy (correct detections and true negatives). Then we apply the same thresh-217

old for keogram data for the years 2015 and 2017, to test whether the threshold found218

yields reproducible results on different data.219

At PFRR, a meridian spectrograph operates with filters at 6 wavelengths to record220

keograms from sunset to sunrise nightly, except during the summer months which have221

near-continuous daylight. The keogram image intensities are given in camera counts at222

6 different wavelengths: 427.8 nm, 486.1 nm, 520 nm, 557.7 nm, 630.0 nm, and 670 nm.223

Intensities at each wavelength are accumulated over approximately 12.5-second intervals.224

The wavelengths used in this study for computing the coefficient of variation are 557.7225

nm (green) and, separately, 630.0 nm (red). The processing of the raw data, conversion226

to intensity in Rayleighs, removal of background light, and flat-field correction to pro-227

duce Y (t, θn) are described in Appendix A.228

Figure 3a represents the flat-field corrected keogram Y (identical to Figure 2a). By229

inspection Interval 1 has dark sky with no aurora present. Dark sky times are defined230

using the mean intensity of the keogram Ȳ (t) at that time point, shown in Figure 3c.231

The average intensity is very low when there is no aurora in the sky in Interval 1 in Fig-232

ure 3c, and increases as aurora becomes present. We choose 500 R in the 557.7 nm keogram233

(marked with a red line in Figure 3c) as the threshold to automatically determine dark-234

ness. If Ȳ (t) < 500 R, then the sky is determined to be dark and thus cannot be used235

to determine cloud presence. The dark sky test based on the green emission is used whether236

the red or green cloud detection metric is used.237

The National Oceanic and Atmospheric Association (NOAA) Advanced Very High238

Resolution Radiometer (AVHRR) and High-resolution Infra-Red Sounder (HIRS) Pathfinder239

Atmospheres Extended (PATMOS-x) Climate Data Record (CDR) database is used as240

the reference true cloud condition. The AVHRR+HIRS Cloud Properties in the PATMOS-241

x CDR provides data for cloud properties, brightness, and temperatures collected by the242

AVHRR and HIRS instruments on board the NASA Polar Operational Environmental243

Satellites (POES) NOAA-15, NOAA-18, and NOAA-19, and European MetOp-2 plat-244

forms (Oceanic & Administration, n.d.).245

Within the PATMOS-x CDR, the cloud mask is an index describing how cloudy246

the sky is at a given geographic latitude, longitude, and time. The cloud mask is on a247
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scale of 0-3 as follows: 0 for clear, 1 for probably clear, 2 for probably cloudy, 3 for cloudy.248

An example of the cloud mask data over Alaska is shown in Figure 4. These data are249

used as the truth reference, to train and test the keogram cloud detection method.250

Figure 4. NOAA cloud mask data over Alaska with Poker Flat Research Range marked with

a red square.

Provisional cloud mask files, available daily for 2014 through the first half of 2017,251

are used. From each cloud mask file, the times, cloud mask, and latitude and longitude252

of points within 8 km of PFRR are saved.253

For each NOAA data point, we determine the keogram 557.7 nm snapshot that is254

closest in time and at least within 20 s of the time the keogram data was taken. Because255

satellite data are recorded imaging over a swath, if there is more than one NOAA data256

point within 20 s of the same keogram timestamp, the NOAA pixel that is geographi-257

cally closest to PFRR is used, so that there is only one NOAA cloud mask associated258

with one keogram timestamp.259
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The true condition is determined from the NOAA cloud mask, corresponding to260

0 when cloud-free, and 3 when cloudy. The cloud masks of 1 and 2 are not considered261

in this work. The keogram cloud categorization is determined from the coefficient of vari-262

ation c being either less than the threshold (cloudy) or greater than or equal to the thresh-263

old (cloud-free). Each coefficient of variation and cloud mask pair are categorized into264

one of four groups: 1) the keogram-derived coefficient of variation c and NOAA cloud265

mask both indicate cloud-free conditions; 2) the keogram and NOAA cloud mask both266

indicate cloudy; 3) the keogram categorization predicts cloud-free but the NOAA cat-267

egorization shows that the sky is cloudy (missed detection); and 4) the keogram cate-268

gorization predicts cloudy and the NOAA categorization cloud-free (false alarm).269

The training data for keogram-based cloud detection are all cloud masks over PFRR270

that have a 557.7 nm keogram measurement present at the corresponding time, in 2014271

and 2016. We find a threshold with the lowest percent of mislabeled events (both missed272

detections and false alarms), starting from a threshold of c = 0.01 incrementing by 0.01273

to c = 1. We then apply the best threshold found to the testing data of 2015 and 2017,274

and compute the mislabeling rates for that set of events. The accuracy of the detector275

is defined as 100 percent minus the mislabeled percent.276

4 Results277

In the training data of 2014 and 2016, there are a total of 794 events for which there278

are cloud mask and keogram data at the corresponding times and location. Of these, 434279

of the events have cloud mask of 0 or 3 (cloudy or clear). Among these 434 events, 295280

of the events are bright enough to exceed the dark sky threshold. The percentage of events281

mislabeled (the sum of false alarms and missed detections) as a function of the 557.7 nm282

keogram coefficient of variation threshold is shown in Figure 5a. The plot shows that the283

threshold with the lowest percent of events that are mislabeled is 0.51, with about 21%284

of events mislabeled. For about 13% of the events, NOAA cloud mask indicates clear sky285

but the keogram coefficient of variation indicates cloudy. For 8% of the events the keogram286

is cloud-free but the cloud mask indicates cloudy. The percent for which both the cloud287

mask and keogram agree the sky is cloud-free is 26%. For about 53% of the events they288

both indicate cloudy conditions. Histograms plotted in Figure 5b show the distribution289

of the coefficient of variation for cloudy events (blue) and for clear sky events (red). A290

vertical red line marks the threshold of 0.51. The blue bars exceeding that threshold are291
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the ones that are missed detections of clouds. The red bars below the threshold line are292

the false alarms, in which using the detector c value indicates cloudy sky but the true293

condition is clear. On Figure 5a, we can see that above a threshold of about 0.2, there294

is a wide shallow minimum area up to about 0.8. This indicates that the greenline de-295

tection statistics may not be very sensitive to the specific choice of threshold within this296

range.297

For the testing data set of 2015 and the first half of 2017, there are a total of 529298

events, 266 of which have a cloud mask of 0 or 3 (cloudy or clear, respectively). Of these299

events, 196 of them are above the dark sky threshold. We compute the percent of events300

mislabeled as either false alarms or missed detections for a range of thresholds, as shown301

in Figure 5c. The threshold of 0.51, which was found to yield the lowest mislabeling rate302

with the training data, is marked with a red circle. For this data set, while 0.51 is near303

a local minimum, it is not the global minimum. For the testing data, 25% of the events304

are mislabeled (with 10% identified as cloudy with the cloud mask but detected cloud-305

free with our method, and 15% cloud-free but determined to be cloudy by our method).306

The histograms of the coefficient of variation for cloud-free events (red) and cloudy events307

(blue) are shown in Figure 5d, with the 0.51 threshold marked with a vertical line. There308

are fewer events in this data set than the training data, and this appears in the histograms309

with fewer counts in the modal intervals than in the training data, as well as some bins,310

e.g., in the clear distribution at c = 1.2 that are completely unpopulated. This sam-311

pling likely accounts for the appearance of multiple local minima in Figure 5c. For this312

data set the global minimum occurs at c = 0.37 with a 23% mislabeled event rate. This313

is comparable to the mislabeled rate for the 0.51 threshold. The testing data set has one-314

third fewer events for assessment than the training set. We expect that with more com-315

plete sampling, e.g., including the second half of 2017 for which at this time provisional316

cloud mask data are not yet available, we would likely again find a wide region of min-317

imum mislabeling error spanning from around 0.2 to 0.8.318

For the same set of training and testing events, in which the dark sky has been elim-319

inated using the requirement that the average green emission exceed 500 R, we test the320

effectiveness of using the 630.0 nm emission coefficient of variation. The training mis-321

labeling percentage results and histograms are shown in Figures 6a and b. The testing322

results are shown in Figures 6c and d. The threshold yielding the minimum combined323

rate of false alarms and missed detections of about 21% using 630.0 nm is 0.46. Apply-324
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ing the same threshold to the testing data yields a comparable 22% mislabeled rate. In325

the case of the redline mislabeling statistics (Figures 6a and c), the minimum percent-326

age mislabeled region does not appear to be quite as wide and shallow as for the green327

emission, only dropping below 25% above a threshold of about 0.3, and increasing close328

to monotonically for thresholds higher than about 0.5. It is possible that for a given set329

of events, the redline emission has the potential to improve accuracy by a few percent330

relative to the greenline emission, but may be more sensitive to choice of threshold.331

An effective detector metric is one that separates the distributions between two dif-332

ferent populations most widely. We demonstrated the coefficient of variation metric us-333

ing the greenline emission, which are associated with discrete aurora at a range of higher334

energy precipitation populations. It will likely perform less well for diffuse aurora which335

are spatially more widespread. We also tested the coefficient of variation on the redline336

emission, and we found it performed a few percent better for the same sets of training337

and testing events. On the other hand, to ensure the same set of events, we relied on the338

greenline emission to define “dark,” so the results may differ for a darkness threshold based339

on only the redline emissions, which would need to be chosen.340

This method’s reliance on a one-dimensional line scan across the sky also does not341

indicate cloud conditions in different regions of the sky. The keogram line scan should342

ideally be oriented orthogonally to the typical orientation of aurorae at a given location,343

if possible. It could in principle be extended to all-sky images with a sequence of 1D bands344

or as an all-sky distribution of intensity. This method has been tested for fully clear and345

fully cloudy events, which as events, likely provide the best separation between the pop-346

ulations. For partly cloudy or mostly cloudy events (cloud masks 1-2), we expect the mis-347

labeled rate to be higher than the 25% found in this work. Our processing did not test348

for or eliminate moonlight because we assume that is eliminated in the background re-349

moval described in the Appendix.350

Whether this method might be useful for airglow observations is an open question.351

In particular uniform airglow might be mistaken for cloud cover, but for studies inves-352

tigating atmospheric waves or traveling disturbances as they manifest in airglow e.g., (Ramkumar353

et al., 2021), the variation in the airglow intensities might be sufficient to be able to dis-354

tinguish a “wavy” from a uniform sky intensity, which could filter out a stratus-type cloud355

layer. The coefficient of variation would tend to mislabel waves whose wavefronts are aligned356
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with the 1D linescan direction chosen. In principle the point spread function might be357

derived for different cloud types based on radiative transfer modeling, such that cloudy358

data might someday be recoverable.359

While detection theory with traditional metrics and thresholds does not have the360

recent popularity of some machine learning methods applied to all-sky images (Zhong361

et al., 2020; Clausen & Nickisch, 2018; Sado et al., 2022), its advantages are simplicity362

and computational ease. For a few percent accuracy penalty, the coefficient of variation363

metric could potentially be implemented in real-time at remote observing sites with lim-364

ited computational power. In addition, while beyond the scope of this work, theoreti-365

cal or empirical fits to the sample histogram distributions could be used to demonstrate366

a probability of false alarm or missed detection, should an application have a “not-to-367

exceed” requirement on the probability of either.368

5 Conclusion369

The method of using a keogram-based coefficient of variation to determine whether370

a timestamp is cloudy or not during nighttime while aurora is present has been devel-371

oped and verified. A coefficient of variation threshold for the 557.7 nm wavelength of 0.51372

was shown based on cloud mask truth data from 2014 and 2016 to give the lowest per-373

cent of mislabeled events by the keogram method when referenced to NOAA cloud mask374

data, at 21% in the training data and 25% in the validation data. After using the 557.7375

nm greenline emission to omit dark sky periods, the 630.0 nm coefficient of variation thresh-376

old of 0.46 was found to give a 21% mislabeled (79% accuracy) in the 2014 and 2016 train-377

ing data set and 78% accuracy in the validation data set.378

This method is computationally efficient and useful working with multi-year sur-379

veys of imaging data. Future work includes testing this method on air glow keograms,380

and how well the coefficient of variation test statistic could also be used on all-sky im-381

ages to determine which portions of the images are cloudy and cloud free.382

Appendix A Keogram Processing383

This section describes the method of obtaining, calibrating, and flat-field correct-384

ing the keograms before cloud detection analysis. Raw keogram netcdf files at 557.7 nm385

and 630.0 nm wavelengths are first downloaded for every night in 2014-2017 from the386
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Geophysical Institute and PFRR optics data archive website (Geophysical Institute and387

Poker Flat Research Range, n.d.) (D. Hampton, n.d.) and then processed using the method388

outlined in Figure A1.389

The downloaded keograms are the raw sensor data Sλ in camera counts for λ =390

557.7, 630.0 nm wavelengths. For a given wavelength λ, a measurement model of the pho-391

ton flux measurement S in camera counts as a function of time t and elevation angle θ392

is shown in Eq. A1.393

Sλ(t, θn) = G(θn) [(a ∗ g)(t, θn) + b(t, θn)] + β(t, θn) + ν (A1)

The sources of photons in a keogram measurement S are auroral light a, which may be394

scattered by clouds, represented as kernel g, undesired broadband emissions from light395

pollution b (which may also be reflected and scattered by the bottomside of the clouds396

but is absorbed into b), keogram sensor bias β, and noise ν. The spectrograph sensor re-397

sponse to received light at each viewing angle is represented as a gain function G and398

multiplied element-wise to the quantity in brackets.399

We remove error sources b and β by subtracting a background keogram of base in-400

tensity from the measured keogram. The keogram spectrograph makes a second mea-401

surement S̃λ, the background keogram, by filtering at a nearby wavelength, whose com-402

ponents are shown in Eq. A2. Broadband emissions b are still present at the same strength,403

but the narrow auroral emissions a drop. The same sensor gain G and bias b are present,404

and random noise ν̂ remains.405

S̃λ(t, θn) = G(θn) [b(t, θn)] + β(t, θn) + ν̃ (A2)

The background keogram S̃λ is then subtracted from the measured keogram S, giv-406

ing a baseline keogram ∆Sλ in Eq. A3. Broadband light b and common bias β are re-407

moved, leaving direct auroral light a, cloud scattering g, and differenced noise (ν - ν̃).408

∆Sλ(t, θn) = Sλ(t, θn)− S̃λ(t, θn) = G(θn) [(a ∗ g)(t, θn)] + ν − ν̃ (A3)

Then each keogram is cropped to remove excess sunlight from the times near dusk409

or dawn, and near the horizons. Sunlight intensity during twilight is a function of the410
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sun’s angle below the horizon. To crop the keogram in time to remove light saturation,411

a sun elevation angle cutoff of 12◦ below the horizon (solar zenith angle of 102◦) is used.412

Sunlight also appears at the horizon first. The regions within 10◦ of the northern and413

southern horizons are discarded, leaving a keogram spanning θ = [10◦, 170◦].414

The unbiased cropped keogram ∆Sλ in camera units is converted to photon flux

Mλ in Rayleighs (R) using the camera calibration factor kλ, by Eq. A4.

Mλ(t, θn) = kλ∆Sλ(t, θn) (A4)

where kλ is the wavelength-specific calibration factor. The calibration factor is k557.7 =415

6.2 R/count, and k630.0 = 7.8 R/count for 13 s exposures.416

The calibrated keogram Mλ for a specific date each year is used to estimate the flat417

field gain G, one for each year. The gain can vary over time due to aging of the instru-418

ment and changes to the enclosure through which the instrument views the sky. When419

processing images, variations G(θ) in a sensor response as a function of viewing angle420

must be taken into account. Sometimes both a dark field (unlit) image and a flat-field421

(i.e., uniformly lit) image are captured before data collection, to be used later to cali-422

brate the image for the sensor response. For this meridian spectrograph, the dark field423

is effectively the background keogram at the nearby wavelength S̃λ. A flat field image424

is typically taken by uniformly lighting a camera and taking an image. However, uniformly-425

lit images were not separately collected with the meridian spectrograph and, in any case,426

the gain response changes over the years.427

Therefore, to estimate G(θ), we select time intervals during which the camera is428

naturally as uniformly lit as possible. These occur when there is heavy cloud cover over429

auroral light. Figure A2a shows the calibrated keogram at 557.7 nm before flat-field cor-430

rection for 1 Jan 2014. Between 12:00 and 14:00 UT, we note by inspection that there431

is heavy cloud cover over auroral light. During this time, variations in intensity with el-432

evation angle are continuous over time, and the variations appear as faint horizontal streaks433

of dimming/brightening. To remove the sensor’s direction-dependent response, we can434

use this type of time interval (cloudy and uniformly lit) as a period of flat-field imag-435

ing. We identify this time interval by using the coefficient of variation of the calibrated436

keogram (see Figure A2b), because the lower the coefficient of variation is, the more uni-437

formly lit the keogram is. We identify times with a coefficient of variation c <= 0.15438

(black dashed line in Figure A2b) as uniformly lit enough to be used in reconstruction439
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of the flat field. The flat-field timestamps ti meeting this criterion on 1 Jan 2014 are iden-440

tified in Figure A2b with orange dots.441

At each time ti for which the coefficient of variation is below 0.15, the individual

keogram snapshot measurement in units of R after calibration is

Mλ(ti, θn) = Gλ(ti, θn) [(a ∗ g)(ti, θn)] + ϵ (A5)

where ϵ = ν−ν̃ is random and zero-mean with some standard deviation σϵ. The mean442

intensity over all N elevation angles will be:443

M̄λ(ti) =
1

N

N∑
n=1

Mλ(ti, θn) (A6)

=
1

N

N∑
n=1

Gλ(ti, θn)[(a ∗ g)(ti, θn)] (A7)

The sensor gain Gλ at time ti is found by dividing each keogram intensity at viewing an-444

gle θn by the average intensity M̄ of the keogram over angle.445

Gλ(ti, θn) =
Mλ(ti, θn)

M̄λ(ti)
(A8)

where the average appearing in the denominator is taken over all angles θn. The time446

series of Gλ(ti, θn) is then averaged for each viewing angle θn, by summing over time and447

dividing by the number of uniformly lit time points Nt, to make an estimate Ĝλ of the448

flat-field gain as the time-averaged mean Ḡλ.449

Ĝλ(θn) = Ḡλ(θn) =
1

Nt

Nt∑
i=1

G(ti, θn) (A9)

In this work, the flat field gain is determined by averaging over all cloudy intervals in450

one date chosen for flat-field correction per year: 1 Jan 2014, 11 Jan 2015, 1 Jan 2016,451

1 Jan 2017. The flat field gains Ḡ557.7 for 557.7 nm for each year 2014-2017 are plotted452

as a function of elevation in Figure A2c. Flat-field gains are similarly constructed for the453

630.0 nm keograms as well. From this figure, we note that the camera sensor gain is chang-454

ing over the years. For this reason taking a flat field image in the present day is not likely455

to work as well for correcting images dating back to 2014, and that constructing a flat456

field gain for each year analyzed is useful.457

The flat field gain Ḡλ is used to modify the calibrated keogram images Mλ from458

Eq. A5 to be the corrected images Yλ using Eq. A10, where “/” represents element-wise459

division along the viewing angle θn dimension.460
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Yλ(t, θn) =
∆M(t, θn)

Ḡ(θn)
(A10)

The flat-field-corrected keogram Y557.7 for 1 Jan 2014 is shown in Figure A2d, as well461

as Figures 2 and 3. Notice that the horizontal stripes of brightness variation are greatly462

reduced compared to Figure A2a. This flat-field-corrected form of keogram Y is then used463

for detecting cloudy intervals, as given in Eqs. 1-21.464

Once used in those equations for detecting cloudy intervals (also via the coefficient465

of variation), the coefficient of variation computed from Y differs slightly from that of466

M , as shown in Figure A2e with blue (c before flat-field correction) and red (c after flat-467

field correction). The blue curve is identical to that shown in Figure A2b, and the red468

curve is identical to the curve shown in Figure 3d. The effect of flat-field correcting the469

keogram is to enhance the contrast in the coefficient of variation between clear sky in-470

tervals (e.g., 08:00-10:00 UT) and cloudy intervals (e.g., 12:00-14:00 UT).471

Open Research Section472

The keogram data used in this effort are publicly available at http://optics.gi473

.alaska.edu/amisrarchive/PKR/DMSP/NCDF/. The National Oceanic and Atmospheric474

Administration cloud mask data are publicly available at https://www.ncei.noaa.gov/475

products/climate-data552-records/avhrr-hirs-cloud-properties-patmos. The476

source code used to process the data and produce the plots shown in this paper will be477

made publicly available upon acceptance for publication.478
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Figure 5. (a) Results from comparing 2014 and 2016 events using greenline coefficient of

variation thresholds from 0.01 to 1 with steps of 0.01. The threshold that produces the lowest

percent of mislabeled events is marked with a red circle. (b) Histogram of the cloudy (blue)

and cloud free (red) NOAA categorized events and their respective keogram coefficients of vari-

ation for 2014 and 2016. The vertical line marks the threshold coefficient of variation of 0.51.

(c) Results from comparing 2015 and 2017 events using thresholds starting from 0.01 to 1 with

steps of 0.01. The best threshold found with the training data of 0.51 is marked with a red cir-

cle. (d) Histogram of the cloudy (blue) and cloud free (red) NOAA categorized events and their

respective keogram coefficients of variation. The vertical line marks the threshold coefficient of

variation of 0.51.
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Figure 6. (a) Results from comparing 2014 and 2016 events using redline coefficient of varia-

tion thresholds from 0.01 to 1 with steps of 0.01. The threshold that produces the lowest percent

of mislabeled events is marked with a red circle. (b) Histogram of the cloudy (blue) and cloud

free (red) NOAA categorized events and their respective keogram coefficients of variation for 2014

and 2016. The vertical line marks the threshold coefficient of variation of 0.46. (c) Results from

comparing 2015 and 2017 events using thresholds starting from 0.01 to 1 with steps of 0.01. The

best threshold found with the training data of 0.46 is marked with a red circle. (d) Histogram

of the cloudy (blue) and cloud free (red) NOAA categorized events and their respective keogram

coefficients of variation. The vertical line marks the threshold coefficient of variation of 0.46.
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Download keograms for nights of interest

Convert from camera counts to physical units (Rayleighs)

Crop the dusk dawn times and the regions near the 
horizons from the keogram

Determine flat field gain for each year

Flat field correction like step for each keogram

Subtract background keogram

Designate cloud-free times c557nm  ≥ 0.51

Figure A1. Method of processing raw keograms.
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Figure A2. (a) Calibrated but not flat-field-corrected keogram M of Jan 1 2014 with the

corresponding sample (b) coefficient of variation with the time points where the c is less than or

equal to 0.15, (c) annual flat field gains for 557.7 nm for years 2014-2017, (d) flat-field-corrected

keogram for 2014 using the 2014 flat-field gain, and (e) the coefficient of variation before and

after flat field correction.
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Key Points:7

• Keogram coefficient of variation is used to determine if the sky is cloudy or clear,8

and verified with NOAA satellite imagery from 2014-20179
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Abstract13

We present a metric for detecting clouds in auroral all-sky images based on single-wavelength14

keograms made with a collocated meridian spectrograph. The coefficient of variation,15

the ratio of the sample standard deviation to the sample mean taken over viewing an-16

gle, is the metric for cloud detection. After calibrating and flat-field correcting keogram17

data, then excluding dark sky intervals, the effectiveness of the coefficient of variation18

as a detector is tested compared to true conditions as determined by Advanced Very High19

Resolution Radiometer (AVHRR) satellite imagery of cloud cover. The cloud mask, an20

index of cloud cover, is selected at the corresponding nearest time and location to the21

site of a meridian spectrograph at Poker Flat Research Range (PFRR). We use events22

that are completely cloud-free or completely cloudy according to AVHRR to compute23

the false alarm and missed detection statistics for the coefficient of variation of the green-24

line 557.7 nm emission and of the redline 630.0 nm emission. For training data of the25

years 2014 and 2016, we find a greenline threshold of 0.51 maximizes the percent of events26

correctly identified at 75%. When applied to testing data of the years 2015 and 2017,27

the 0.51 threshold yields an accuracy of 77%. There is a relatively shallow and wide min-28

imum of mislabeled events for thresholds spanning about 0.2 to 0.8. For the same events,29

the minimum is narrower for the redline, spanning roughly 0.3-0.5, with a threshold of30

0.46 maximizing detector accuracy at 78-79%.31

Plain Language Summary32

Clouds in the sky are a problem for scientists trying to view space beyond. For up-33

per atmospheric scientists, clouds can obscure or scatter auroral light in all-sky images34

(ASI), making it hard to identify, locate, and track auroral shapes. This paper shows a35

way to simply and automatically detect clouds using a north-to-south line scan of a sin-36

gle color of light from the sky over time, known as a keogram. We compute the ratio of37

the variation in pixel intensity to the average pixel intensity, for each north-to-south scan.38

Excluding dark sky periods, a large ratio means that the sky is cloudless, and a small39

ratio that the sky is cloudy. We find the method works with about a 75-80% correct rate40

using red or green auroral light. With this method we can eliminate data during cloudy41

conditions for any auroral studies that require clear sky conditions.42
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1 Introduction43

Aurorae occur at the polar regions of the Earth, and are colloquially known as the44

northern and southern lights. These visual light emissions result from the interactions45

between charged particles in the Earth’s magnetosphere and upper atmospheric species.46

Because of their relationship to interactions with the magnetosphere, researchers have47

been interested in classifying types of aurorae (M. T. Syrjäsuo & Donovan, 2004) and48

correlating them with other events. Researchers have noted that the passage of aurorae49

are associated with radio frequency scintillations at high latitudes (Semeter et al., 2017;50

Mrak et al., 2018; Loucks et al., 2017; D. L. Hampton et al., 2013). The quality of ground-51

based auroral images is limited by the presence of clouds in the sky. For individual case52

studies, researchers can visually inspect and often determine by eye the presence of clouds.53

However, this is not practical for large surveys of events.54

Auroral scientists are not unique in being interested in detecting the presence or55

absence of clouds. For many practical and scientific applications, satellite imagery at var-56

ious wavelengths is a standard tool for coverage spanning continent-scale areas. Multi-57

decade clear sky (i.e., not cloudy) identification can be done by non-optical means of com-58

paring the measured irradiance to top of the atmosphere irradiance, compared to a clear-59

sky transmittance threshold (Correa et al., 2022). Such studies are longer term or gen-60

erally lower resolution than might be needed for nightly auroral studies at a single site.61

For local conditions, ground-based methods can provide measures of cloud cover for day62

or night.63

Many of the daytime methods leverage or are interested in solar illumination. Clear64

sky detection based on broadband irradiance is one avenue of cloud detection in use for65

decade-scale studies (Long & Ackerman, 2000). At optical wavelengths, low-cost cam-66

eras may be used by solar power station operators who want an automated method for67

estimating or forecasting power generation (Alonso-Montesinos, 2020). Daylight polar-68

ization can be used to determine clear sky versus cloudy sky, and the optical thickness69

of the cloud layer, if present (W. Li et al., 2022). A number of researchers have success-70

fully developed methods for sorting cloud data automatically using the red and blue in-71

tensity relationships of all sky images, total sky imagers, or whole sky cameras (Q. Li72

et al., 2011; Long et al., 2006). Other groups have developed hybrid or adaptive thresh-73

olding algorithms (F.-F. Li et al., 2022). Another method was developed using three cloud74
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features to categorize the ASC images into four cloud cover categories, rather than im-75

age threshold techniques (X. Li et al., 2022). These studies use daytime images illumi-76

nated by sunlight, and may be interested in classifying cloud types or regions of the sky77

with cloud cover. For auroral investigations, we are interested in tools usable at night78

and less interested in cloud types.79

Recent interest in machine learning has shown that aurorae can be classified with80

trained algorithms (Clausen & Nickisch, 2018). One of the classification categories in this81

process is “cloudy” (Sado et al., 2022). Astronomers have also used machine learning82

methods to determine cloud cover at night for protecting telescope equipment (Mommert,83

2020). While these methods hold promise, they can be computationally expensive and84

time consuming for training and validating at a single site for multiyear studies, neces-85

sitating a method that provides sorting of a multitude of night-time images in an effi-86

cient and consistent manner. One such method was used as part of an auroral detection87

and tracking method, in which aurorae were detected using the ratio of maximum to mean88

brightness of an all-sky image, after using synoptic cloud index measurements to elim-89

inate cloudy periods (M. Syrjäsuo & Donovan, 2002). In this work we are interested in90

leveraging the nighttime single-wavelength one-dimensional images themselves to detect91

and discard thex cloudy intervals in the night sky, without need for separate cloud mea-92

surement.93

In image processing, blurring and other distortions in a received image are mod-94

eled as convolution of a kernel with an original signal. The distortions of a camera it-95

self may be characterized as a convolution of a point-spread function defining the cam-96

era’s characteristics. In astronomy, the point spread function of the camera can often97

be determined using known stars. If the point-spread function is known, the image can98

be deconvolved to recover the original signal. For example, a theoretical determination99

of the point spread function due to clouds and fog for imaging objects 20 km from the100

imager was conducted by (Jaruwatanadilok et al., 2003) based on radiative transfer the-101

ory. In some disciplines, the point spread function may be recovered via blind deconvo-102

lution techniques. In this work, the presence of a filtering function due to atmospheric103

scattering is the focus, rather than defining the precise form of it. The concept of atmo-104

spheric filtering is mentioned by Guo et al. (2022) who investigated neural network-based105

restoration of images distorted by atmospheric turbulence. We do not need to go so far106

as to restore images blurred by clouds in a large multi-year database of auroral imagery,107
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but we can leverage the effect of clouds on one-dimensional single-wavelength images over108

time to determine their presence.109

In this work, we present a simple metric for efficiently and automatically detect-110

ing clouds if auroral light is present. This method is intended for subsequent automa-111

tion of auroral all-sky image analysis. Section 2 motivates and introduces our proposed112

detection metric. Section 3 describes the method and data sets used to test and validate113

our proposed detection technique, with details on pre-processing in Appendix A. Sec-114

tion 4 shows the key results, and conclusions are summarized in Section 5.115

2 Conceptual approach116

Meridian Spectrograph
Side View

Zenith

North

Night Sky
South

Night Sky
North

South

Camera 
Scan Line

Camera Point of View

Figure 1. Schematic of keogram imaging system. The left shows a side view of a meridian

spectrograph looking up local zenith and the right shows a view of the night sky from the per-

spective of a camera as the meridian spectrograph takes a one-pixel-wide scan from horizon to

horizon through local zenith.

A keogram is a time sequence of one-dimensional images taken over the course of117

a night. A keogram may be taken with a meridian spectrograph or constructed from the118

field-of-view of an all-sky imager by extracting one subset of pixels. The diagram in Fig-119

ure 1 illustrates a side view of an imaging system (left) and a sky view of an all-sky im-120

ager’s field of view (right). The meridian spectrograph takes one-pixel-wide images of121

–5–



manuscript submitted to Earth and Space Science

the sky at intervals throughout the course of the night. The pixel intensities are recorded122

as a function of the elevation angle from the northern to southern horizon passing through123

local zenith. At auroral latitudes a north-to-south scan is most likely to sample any au-124

roral light because of the orientation of the auroral oval generally gives aurorae that are125

oriented east-west.126

A sample keogram (calibrated and corrected, as described in later sections) taken127

at one wavelength is shown in Figure 2a. The x axis is time, and each column is a line-128

scan image from north (0 deg) to south (180 deg) of light intensity (Rayleighs, shown129

by color) taken at one instant. Our objective is to use the keogram to detect whether130

clouds are present or not at each moment. By inspection we observe that Interval 1 iden-131

tified in Figure 2a corresponds to a dark sky with no aurora. A plot of the intensity as132

a function of elevation at the example instant identified with a red vertical line is shown133

in Figure 2b. The intensities are uniformly low at 04:00 UT. A histogram of these in-134

tensities over all angles at this instant is then shown in Figure 2c. The histogram of this135

snapshot taken over all viewing angles has a small both sample mean µ and standard136

deviation σ.137

Interval 2 identified in Figure 2a contains a segment of an auroral band in the north-138

ern part of the sky. For this example time, the intensity as a function of viewing angle139

is shown in Figure 2d, consisting of one narrow region of high intensity at the viewing140

angle to the aurora. The sky is clear because we can see the narrow angular extent of141

the band of the aurora, and is verified by manually viewing an all-sky image. The his-142

togram is shown in Figure 2e, and there is a spread of intensities due to distinctly brighter143

or dimmer auroral features.144

Interval 3 of Figure 2a corresponds to a period during which there are aurorae, but145

the presence of clouds has dimmed and scattered the auroral light (again, apparent by146

manually viewing the all-sky image). Clouds smear the light intensities spatially to give147

a more uniform brightness at all viewing angles, as shown in Figure 2f. As a result, the148

distribution of keogram intensities is narrowly clustered around a non-zero mean.149

Cloud cover has the effect of blurring the auroral light in the keogram. A commonly150

used image processing concept is useful here. Images taken are often post-processed to151

reduce noise or smooth out other unwanted effects by filtering. Comparing Figures 2d152

and 2f, we note that clouds between the auroral source and the imager have the effect153
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Interval 1

Interval 2

Interval 3

Figure 2. (a) Keogram for 01 Jan 2014 for 557.7 nm wavelength with three sky conditions

highlighted: (1) Dark sky (2) Cloud-free time with aurora, and (3) Cloudy aurora time. The

red lines in each interval mark example timestamps for the remaining plots. (b) Intensity versus

viewing angle and (c) histogram of keogram intensity for the dark sky example time. (d) Inten-

sity versus viewing angle and (e) histogram of the intensities at the cloud-free aurora time. (f)

Intensity versus viewing angle and (g) histogram of the intensities at the cloudy aurora time.

of smoothing out the intensities spatially, and effectively act as an imaging filter that blurs154

the image. The mathematical process of filtering is given by convolution of a filter that155

modifies an original signal. Clouds in the sky act as a filter that, convolved with light156

sources that would otherwise be present in a keogram at a cloud-free instant, produces157

a smoothed set of intensities received at the ground. In the case of the example shown158

in Figures 2f-2g, the filtered signal results in a histogram whose distribution is narrowed,159

as all viewing angles have similar intensity.160

At each instant t the keogram Y is a one-dimensional image of received intensities161

at a single wavelength over N discrete spatial coordinate elements θn. Assuming the keogram162

instrument is calibrated for uniform gain in all directions and undesired broadband and163

noise sources (e.g., from light pollution) have largely been removed, the residuals ϵ in164

the corrected keogram Y may be assumed to be zero-mean with a standard deviation165
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of σϵ. The intensity Y at a given wavelength in this case may be written as:166

Y (t, θn) = (a ∗ g)(t, θn) + ϵ (1)

=

N∑
m=−N

a[n−m]g[m] + ϵn (2)

where a represents any light sources behind the clouds, i.e., aurorae; g the filtering func-167

tion (sometimes called the kernel or point-spread function) of the clouds that scatters168

the light source, the symbol * represents the convolution operation, and ϵ is a random169

variable representing the residuals and noise after calibration. Equation 2 defines con-170

volution for discrete signals over viewing angle at time t. The signal a at N discrete an-171

gles can be zero-padded for the convolution operation.172

For a cloud-free sky (subscript “cf”) we can represent the cloud kernel as a Kro-173

necker delta function gcf [m] = δ0m, which does no spreading of the intensity, so the sum-174

mation simplifies as:175

Ycf (t, θn) =

N∑
m=−N

a[n−m]gcf [m] + ϵn (3)

= a[n] + ϵn (4)

For zero-mean noise, the mean intensity Ȳ over all viewing angles θn at time t is the mean176

intensity ā of a over all elevations:177

Ȳcf (t) =
1

N

N∑
n=1

a[n] + ϵn (5)

= ā(t) (6)

The sample variance would be the sum of the variance σ2
a of a over all elevations and of178

the noise, assuming the light sources and noise to be independent, which can be seen by179

substituting Eqs. 4 and 6 into Eq. 7:180

σ2
cf =

1

N − 1

N∑
n=1

(
Y (t, θn)− Ȳ (t)

)2
(7)

=
1

N − 1

N∑
n=1

(a[n] + ϵn − ā)
2

(8)

= σ2
a + σ2

ϵ (9)

While a specific cloud kernel is not known and might depend on the type of cloud,181

we can imagine the extreme case of a cloud that spreads the intensity evenly across all182

N elevations, whose filter would be gc[n] = 1/N . In this case, the intensity would be:183

Yc(t, θn) =

N∑
m=1

a[n−m]gc[n] + ϵn (10)

= ā(t) + ϵn (11)

–8–



manuscript submitted to Earth and Space Science

The angle-averaged intensity would be Ȳ = ā as in the cloud-free case. However, the184

variance with angle would be given by:185

σ2
c =

1

N − 1

N∑
n=1

(
Y (t, θn)− Ȳ (t)

)2
(12)

=
1

N − 1

N∑
n=1

(��ā(t) + ϵn −��ā(t))
2

(13)

= σ2
ϵ (14)

leaving only the variance of the noise.186

However, if the sky is dark, there is no light source to be blurred, meaning a = 0,187

the cloud kernel whether gc or gcf has little effect on the intensity Yd of a dark sky.188

Yd(t, θn) = (0 ∗ g)(t, θn) + ϵ (15)

= ϵn (16)

Ȳd(t) = ϵ̄(t) = 0 (17)

σ2
d =

1

N − 1

N∑
n=1

(
Y (t, θn)− Ȳ (t)

)2
(18)

=
1

N − 1

N∑
n=1

(ϵn − ϵ̄(t))
2

(19)

= σ2
ϵ (20)

The mean and variance of a dark clear sky would be indistinguishable from that of a dark189

cloudy sky. On the other hand, they are not of interest for auroral studies. For this rea-190

son we exclude dark sky intervals such as Interval 1 from consideration, by setting a min-191

imum mean value Ȳ of the samples that must be exceeded.192

Given that there is auroral light in the keogram at time t, our objective is to de-193

termine whether the image at that time is cloudy or not. The coefficient of variation c(t)194

is the sample standard deviation σ of Y (t) normalized by the mean Ȳ , shown in Eq. 21.195

It is a measure of how much variation there is at each time over all elevation angles θ196

of the keogram.197

c(t) ≡ σ(t)

Ȳ (t)
(21)

The example relationship between (a) a keogram, (b) its standard deviation, (c) mean,198

and (d) coefficient of variation can be seen in Figure 3. In the cloud-free aurora-present199

case (Interval 2), c = σcf/ā ∼ 1, but for the cloudy sky case (Interval 3) c ≈ σc/ā <<200

1. The dark sky case (Interval 1) also has c ≈ σϵ/ϵ̄ ∼ 1, but is artificially large be-201
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cause Ȳ is so low. After filtering out dark-sky intervals, for which a small Ȳ would ar-202

tificially inflate c, we propose the coefficient of variation as a metric for detecting cloudy203

auroral-lit intervals in keograms (i.e., distinguishing Interval 2 from 3 in Figure 2.204

1 2 3

Figure 3. (a) Keogram Y of 1 January 2014 pre-processed as described in Appendix A with

the corresponding sample (b) standard deviation, (c) mean, and (d) coefficient of variation c with

specific times highlighted to explain what the keogram looks like in various sky conditions: 1)

Dark sky 2) cloud-free with aurora 3) cloudy with aurora.

3 Method205

In order to test the effectiveness of the coefficient of variation as a detection met-206

ric for clouds, we use a database of keograms collected at Poker Flat Research Range (PFRR),207

Alaska, from 2014-2017 (source listed in Open Research Section). After calibrating and208

correcting the keograms, we compute the coefficient of variation for each over time and209

compare them to NOAA satellite image-derived cloud mask data over PFRR. The satel-210

lite imagery provides a truth reference for whether clouds were present or not. We use211

standard detection theory to identify the distributions of coefficient of variation for two212

populations (cloudy and cloud-free). We test different thresholds of the detection met-213

ric to compute the number of events that are correctly identified or mislabeled. We use214

the events in years 2014 and 2016 as the training data, to find a threshold that produces215
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the fewest mislabeled events (missed detections and false alarms), which is maximizes216

the accuracy (correct detections and true negatives). Then we apply the same thresh-217

old for keogram data for the years 2015 and 2017, to test whether the threshold found218

yields reproducible results on different data.219

At PFRR, a meridian spectrograph operates with filters at 6 wavelengths to record220

keograms from sunset to sunrise nightly, except during the summer months which have221

near-continuous daylight. The keogram image intensities are given in camera counts at222

6 different wavelengths: 427.8 nm, 486.1 nm, 520 nm, 557.7 nm, 630.0 nm, and 670 nm.223

Intensities at each wavelength are accumulated over approximately 12.5-second intervals.224

The wavelengths used in this study for computing the coefficient of variation are 557.7225

nm (green) and, separately, 630.0 nm (red). The processing of the raw data, conversion226

to intensity in Rayleighs, removal of background light, and flat-field correction to pro-227

duce Y (t, θn) are described in Appendix A.228

Figure 3a represents the flat-field corrected keogram Y (identical to Figure 2a). By229

inspection Interval 1 has dark sky with no aurora present. Dark sky times are defined230

using the mean intensity of the keogram Ȳ (t) at that time point, shown in Figure 3c.231

The average intensity is very low when there is no aurora in the sky in Interval 1 in Fig-232

ure 3c, and increases as aurora becomes present. We choose 500 R in the 557.7 nm keogram233

(marked with a red line in Figure 3c) as the threshold to automatically determine dark-234

ness. If Ȳ (t) < 500 R, then the sky is determined to be dark and thus cannot be used235

to determine cloud presence. The dark sky test based on the green emission is used whether236

the red or green cloud detection metric is used.237

The National Oceanic and Atmospheric Association (NOAA) Advanced Very High238

Resolution Radiometer (AVHRR) and High-resolution Infra-Red Sounder (HIRS) Pathfinder239

Atmospheres Extended (PATMOS-x) Climate Data Record (CDR) database is used as240

the reference true cloud condition. The AVHRR+HIRS Cloud Properties in the PATMOS-241

x CDR provides data for cloud properties, brightness, and temperatures collected by the242

AVHRR and HIRS instruments on board the NASA Polar Operational Environmental243

Satellites (POES) NOAA-15, NOAA-18, and NOAA-19, and European MetOp-2 plat-244

forms (Oceanic & Administration, n.d.).245

Within the PATMOS-x CDR, the cloud mask is an index describing how cloudy246

the sky is at a given geographic latitude, longitude, and time. The cloud mask is on a247
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scale of 0-3 as follows: 0 for clear, 1 for probably clear, 2 for probably cloudy, 3 for cloudy.248

An example of the cloud mask data over Alaska is shown in Figure 4. These data are249

used as the truth reference, to train and test the keogram cloud detection method.250

Figure 4. NOAA cloud mask data over Alaska with Poker Flat Research Range marked with

a red square.

Provisional cloud mask files, available daily for 2014 through the first half of 2017,251

are used. From each cloud mask file, the times, cloud mask, and latitude and longitude252

of points within 8 km of PFRR are saved.253

For each NOAA data point, we determine the keogram 557.7 nm snapshot that is254

closest in time and at least within 20 s of the time the keogram data was taken. Because255

satellite data are recorded imaging over a swath, if there is more than one NOAA data256

point within 20 s of the same keogram timestamp, the NOAA pixel that is geographi-257

cally closest to PFRR is used, so that there is only one NOAA cloud mask associated258

with one keogram timestamp.259
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The true condition is determined from the NOAA cloud mask, corresponding to260

0 when cloud-free, and 3 when cloudy. The cloud masks of 1 and 2 are not considered261

in this work. The keogram cloud categorization is determined from the coefficient of vari-262

ation c being either less than the threshold (cloudy) or greater than or equal to the thresh-263

old (cloud-free). Each coefficient of variation and cloud mask pair are categorized into264

one of four groups: 1) the keogram-derived coefficient of variation c and NOAA cloud265

mask both indicate cloud-free conditions; 2) the keogram and NOAA cloud mask both266

indicate cloudy; 3) the keogram categorization predicts cloud-free but the NOAA cat-267

egorization shows that the sky is cloudy (missed detection); and 4) the keogram cate-268

gorization predicts cloudy and the NOAA categorization cloud-free (false alarm).269

The training data for keogram-based cloud detection are all cloud masks over PFRR270

that have a 557.7 nm keogram measurement present at the corresponding time, in 2014271

and 2016. We find a threshold with the lowest percent of mislabeled events (both missed272

detections and false alarms), starting from a threshold of c = 0.01 incrementing by 0.01273

to c = 1. We then apply the best threshold found to the testing data of 2015 and 2017,274

and compute the mislabeling rates for that set of events. The accuracy of the detector275

is defined as 100 percent minus the mislabeled percent.276

4 Results277

In the training data of 2014 and 2016, there are a total of 794 events for which there278

are cloud mask and keogram data at the corresponding times and location. Of these, 434279

of the events have cloud mask of 0 or 3 (cloudy or clear). Among these 434 events, 295280

of the events are bright enough to exceed the dark sky threshold. The percentage of events281

mislabeled (the sum of false alarms and missed detections) as a function of the 557.7 nm282

keogram coefficient of variation threshold is shown in Figure 5a. The plot shows that the283

threshold with the lowest percent of events that are mislabeled is 0.51, with about 21%284

of events mislabeled. For about 13% of the events, NOAA cloud mask indicates clear sky285

but the keogram coefficient of variation indicates cloudy. For 8% of the events the keogram286

is cloud-free but the cloud mask indicates cloudy. The percent for which both the cloud287

mask and keogram agree the sky is cloud-free is 26%. For about 53% of the events they288

both indicate cloudy conditions. Histograms plotted in Figure 5b show the distribution289

of the coefficient of variation for cloudy events (blue) and for clear sky events (red). A290

vertical red line marks the threshold of 0.51. The blue bars exceeding that threshold are291
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the ones that are missed detections of clouds. The red bars below the threshold line are292

the false alarms, in which using the detector c value indicates cloudy sky but the true293

condition is clear. On Figure 5a, we can see that above a threshold of about 0.2, there294

is a wide shallow minimum area up to about 0.8. This indicates that the greenline de-295

tection statistics may not be very sensitive to the specific choice of threshold within this296

range.297

For the testing data set of 2015 and the first half of 2017, there are a total of 529298

events, 266 of which have a cloud mask of 0 or 3 (cloudy or clear, respectively). Of these299

events, 196 of them are above the dark sky threshold. We compute the percent of events300

mislabeled as either false alarms or missed detections for a range of thresholds, as shown301

in Figure 5c. The threshold of 0.51, which was found to yield the lowest mislabeling rate302

with the training data, is marked with a red circle. For this data set, while 0.51 is near303

a local minimum, it is not the global minimum. For the testing data, 25% of the events304

are mislabeled (with 10% identified as cloudy with the cloud mask but detected cloud-305

free with our method, and 15% cloud-free but determined to be cloudy by our method).306

The histograms of the coefficient of variation for cloud-free events (red) and cloudy events307

(blue) are shown in Figure 5d, with the 0.51 threshold marked with a vertical line. There308

are fewer events in this data set than the training data, and this appears in the histograms309

with fewer counts in the modal intervals than in the training data, as well as some bins,310

e.g., in the clear distribution at c = 1.2 that are completely unpopulated. This sam-311

pling likely accounts for the appearance of multiple local minima in Figure 5c. For this312

data set the global minimum occurs at c = 0.37 with a 23% mislabeled event rate. This313

is comparable to the mislabeled rate for the 0.51 threshold. The testing data set has one-314

third fewer events for assessment than the training set. We expect that with more com-315

plete sampling, e.g., including the second half of 2017 for which at this time provisional316

cloud mask data are not yet available, we would likely again find a wide region of min-317

imum mislabeling error spanning from around 0.2 to 0.8.318

For the same set of training and testing events, in which the dark sky has been elim-319

inated using the requirement that the average green emission exceed 500 R, we test the320

effectiveness of using the 630.0 nm emission coefficient of variation. The training mis-321

labeling percentage results and histograms are shown in Figures 6a and b. The testing322

results are shown in Figures 6c and d. The threshold yielding the minimum combined323

rate of false alarms and missed detections of about 21% using 630.0 nm is 0.46. Apply-324
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ing the same threshold to the testing data yields a comparable 22% mislabeled rate. In325

the case of the redline mislabeling statistics (Figures 6a and c), the minimum percent-326

age mislabeled region does not appear to be quite as wide and shallow as for the green327

emission, only dropping below 25% above a threshold of about 0.3, and increasing close328

to monotonically for thresholds higher than about 0.5. It is possible that for a given set329

of events, the redline emission has the potential to improve accuracy by a few percent330

relative to the greenline emission, but may be more sensitive to choice of threshold.331

An effective detector metric is one that separates the distributions between two dif-332

ferent populations most widely. We demonstrated the coefficient of variation metric us-333

ing the greenline emission, which are associated with discrete aurora at a range of higher334

energy precipitation populations. It will likely perform less well for diffuse aurora which335

are spatially more widespread. We also tested the coefficient of variation on the redline336

emission, and we found it performed a few percent better for the same sets of training337

and testing events. On the other hand, to ensure the same set of events, we relied on the338

greenline emission to define “dark,” so the results may differ for a darkness threshold based339

on only the redline emissions, which would need to be chosen.340

This method’s reliance on a one-dimensional line scan across the sky also does not341

indicate cloud conditions in different regions of the sky. The keogram line scan should342

ideally be oriented orthogonally to the typical orientation of aurorae at a given location,343

if possible. It could in principle be extended to all-sky images with a sequence of 1D bands344

or as an all-sky distribution of intensity. This method has been tested for fully clear and345

fully cloudy events, which as events, likely provide the best separation between the pop-346

ulations. For partly cloudy or mostly cloudy events (cloud masks 1-2), we expect the mis-347

labeled rate to be higher than the 25% found in this work. Our processing did not test348

for or eliminate moonlight because we assume that is eliminated in the background re-349

moval described in the Appendix.350

Whether this method might be useful for airglow observations is an open question.351

In particular uniform airglow might be mistaken for cloud cover, but for studies inves-352

tigating atmospheric waves or traveling disturbances as they manifest in airglow e.g., (Ramkumar353

et al., 2021), the variation in the airglow intensities might be sufficient to be able to dis-354

tinguish a “wavy” from a uniform sky intensity, which could filter out a stratus-type cloud355

layer. The coefficient of variation would tend to mislabel waves whose wavefronts are aligned356
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with the 1D linescan direction chosen. In principle the point spread function might be357

derived for different cloud types based on radiative transfer modeling, such that cloudy358

data might someday be recoverable.359

While detection theory with traditional metrics and thresholds does not have the360

recent popularity of some machine learning methods applied to all-sky images (Zhong361

et al., 2020; Clausen & Nickisch, 2018; Sado et al., 2022), its advantages are simplicity362

and computational ease. For a few percent accuracy penalty, the coefficient of variation363

metric could potentially be implemented in real-time at remote observing sites with lim-364

ited computational power. In addition, while beyond the scope of this work, theoreti-365

cal or empirical fits to the sample histogram distributions could be used to demonstrate366

a probability of false alarm or missed detection, should an application have a “not-to-367

exceed” requirement on the probability of either.368

5 Conclusion369

The method of using a keogram-based coefficient of variation to determine whether370

a timestamp is cloudy or not during nighttime while aurora is present has been devel-371

oped and verified. A coefficient of variation threshold for the 557.7 nm wavelength of 0.51372

was shown based on cloud mask truth data from 2014 and 2016 to give the lowest per-373

cent of mislabeled events by the keogram method when referenced to NOAA cloud mask374

data, at 21% in the training data and 25% in the validation data. After using the 557.7375

nm greenline emission to omit dark sky periods, the 630.0 nm coefficient of variation thresh-376

old of 0.46 was found to give a 21% mislabeled (79% accuracy) in the 2014 and 2016 train-377

ing data set and 78% accuracy in the validation data set.378

This method is computationally efficient and useful working with multi-year sur-379

veys of imaging data. Future work includes testing this method on air glow keograms,380

and how well the coefficient of variation test statistic could also be used on all-sky im-381

ages to determine which portions of the images are cloudy and cloud free.382

Appendix A Keogram Processing383

This section describes the method of obtaining, calibrating, and flat-field correct-384

ing the keograms before cloud detection analysis. Raw keogram netcdf files at 557.7 nm385

and 630.0 nm wavelengths are first downloaded for every night in 2014-2017 from the386
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Geophysical Institute and PFRR optics data archive website (Geophysical Institute and387

Poker Flat Research Range, n.d.) (D. Hampton, n.d.) and then processed using the method388

outlined in Figure A1.389

The downloaded keograms are the raw sensor data Sλ in camera counts for λ =390

557.7, 630.0 nm wavelengths. For a given wavelength λ, a measurement model of the pho-391

ton flux measurement S in camera counts as a function of time t and elevation angle θ392

is shown in Eq. A1.393

Sλ(t, θn) = G(θn) [(a ∗ g)(t, θn) + b(t, θn)] + β(t, θn) + ν (A1)

The sources of photons in a keogram measurement S are auroral light a, which may be394

scattered by clouds, represented as kernel g, undesired broadband emissions from light395

pollution b (which may also be reflected and scattered by the bottomside of the clouds396

but is absorbed into b), keogram sensor bias β, and noise ν. The spectrograph sensor re-397

sponse to received light at each viewing angle is represented as a gain function G and398

multiplied element-wise to the quantity in brackets.399

We remove error sources b and β by subtracting a background keogram of base in-400

tensity from the measured keogram. The keogram spectrograph makes a second mea-401

surement S̃λ, the background keogram, by filtering at a nearby wavelength, whose com-402

ponents are shown in Eq. A2. Broadband emissions b are still present at the same strength,403

but the narrow auroral emissions a drop. The same sensor gain G and bias b are present,404

and random noise ν̂ remains.405

S̃λ(t, θn) = G(θn) [b(t, θn)] + β(t, θn) + ν̃ (A2)

The background keogram S̃λ is then subtracted from the measured keogram S, giv-406

ing a baseline keogram ∆Sλ in Eq. A3. Broadband light b and common bias β are re-407

moved, leaving direct auroral light a, cloud scattering g, and differenced noise (ν - ν̃).408

∆Sλ(t, θn) = Sλ(t, θn)− S̃λ(t, θn) = G(θn) [(a ∗ g)(t, θn)] + ν − ν̃ (A3)

Then each keogram is cropped to remove excess sunlight from the times near dusk409

or dawn, and near the horizons. Sunlight intensity during twilight is a function of the410
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sun’s angle below the horizon. To crop the keogram in time to remove light saturation,411

a sun elevation angle cutoff of 12◦ below the horizon (solar zenith angle of 102◦) is used.412

Sunlight also appears at the horizon first. The regions within 10◦ of the northern and413

southern horizons are discarded, leaving a keogram spanning θ = [10◦, 170◦].414

The unbiased cropped keogram ∆Sλ in camera units is converted to photon flux

Mλ in Rayleighs (R) using the camera calibration factor kλ, by Eq. A4.

Mλ(t, θn) = kλ∆Sλ(t, θn) (A4)

where kλ is the wavelength-specific calibration factor. The calibration factor is k557.7 =415

6.2 R/count, and k630.0 = 7.8 R/count for 13 s exposures.416

The calibrated keogram Mλ for a specific date each year is used to estimate the flat417

field gain G, one for each year. The gain can vary over time due to aging of the instru-418

ment and changes to the enclosure through which the instrument views the sky. When419

processing images, variations G(θ) in a sensor response as a function of viewing angle420

must be taken into account. Sometimes both a dark field (unlit) image and a flat-field421

(i.e., uniformly lit) image are captured before data collection, to be used later to cali-422

brate the image for the sensor response. For this meridian spectrograph, the dark field423

is effectively the background keogram at the nearby wavelength S̃λ. A flat field image424

is typically taken by uniformly lighting a camera and taking an image. However, uniformly-425

lit images were not separately collected with the meridian spectrograph and, in any case,426

the gain response changes over the years.427

Therefore, to estimate G(θ), we select time intervals during which the camera is428

naturally as uniformly lit as possible. These occur when there is heavy cloud cover over429

auroral light. Figure A2a shows the calibrated keogram at 557.7 nm before flat-field cor-430

rection for 1 Jan 2014. Between 12:00 and 14:00 UT, we note by inspection that there431

is heavy cloud cover over auroral light. During this time, variations in intensity with el-432

evation angle are continuous over time, and the variations appear as faint horizontal streaks433

of dimming/brightening. To remove the sensor’s direction-dependent response, we can434

use this type of time interval (cloudy and uniformly lit) as a period of flat-field imag-435

ing. We identify this time interval by using the coefficient of variation of the calibrated436

keogram (see Figure A2b), because the lower the coefficient of variation is, the more uni-437

formly lit the keogram is. We identify times with a coefficient of variation c <= 0.15438

(black dashed line in Figure A2b) as uniformly lit enough to be used in reconstruction439
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of the flat field. The flat-field timestamps ti meeting this criterion on 1 Jan 2014 are iden-440

tified in Figure A2b with orange dots.441

At each time ti for which the coefficient of variation is below 0.15, the individual

keogram snapshot measurement in units of R after calibration is

Mλ(ti, θn) = Gλ(ti, θn) [(a ∗ g)(ti, θn)] + ϵ (A5)

where ϵ = ν−ν̃ is random and zero-mean with some standard deviation σϵ. The mean442

intensity over all N elevation angles will be:443

M̄λ(ti) =
1

N

N∑
n=1

Mλ(ti, θn) (A6)

=
1

N

N∑
n=1

Gλ(ti, θn)[(a ∗ g)(ti, θn)] (A7)

The sensor gain Gλ at time ti is found by dividing each keogram intensity at viewing an-444

gle θn by the average intensity M̄ of the keogram over angle.445

Gλ(ti, θn) =
Mλ(ti, θn)

M̄λ(ti)
(A8)

where the average appearing in the denominator is taken over all angles θn. The time446

series of Gλ(ti, θn) is then averaged for each viewing angle θn, by summing over time and447

dividing by the number of uniformly lit time points Nt, to make an estimate Ĝλ of the448

flat-field gain as the time-averaged mean Ḡλ.449

Ĝλ(θn) = Ḡλ(θn) =
1

Nt

Nt∑
i=1

G(ti, θn) (A9)

In this work, the flat field gain is determined by averaging over all cloudy intervals in450

one date chosen for flat-field correction per year: 1 Jan 2014, 11 Jan 2015, 1 Jan 2016,451

1 Jan 2017. The flat field gains Ḡ557.7 for 557.7 nm for each year 2014-2017 are plotted452

as a function of elevation in Figure A2c. Flat-field gains are similarly constructed for the453

630.0 nm keograms as well. From this figure, we note that the camera sensor gain is chang-454

ing over the years. For this reason taking a flat field image in the present day is not likely455

to work as well for correcting images dating back to 2014, and that constructing a flat456

field gain for each year analyzed is useful.457

The flat field gain Ḡλ is used to modify the calibrated keogram images Mλ from458

Eq. A5 to be the corrected images Yλ using Eq. A10, where “/” represents element-wise459

division along the viewing angle θn dimension.460
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Yλ(t, θn) =
∆M(t, θn)

Ḡ(θn)
(A10)

The flat-field-corrected keogram Y557.7 for 1 Jan 2014 is shown in Figure A2d, as well461

as Figures 2 and 3. Notice that the horizontal stripes of brightness variation are greatly462

reduced compared to Figure A2a. This flat-field-corrected form of keogram Y is then used463

for detecting cloudy intervals, as given in Eqs. 1-21.464

Once used in those equations for detecting cloudy intervals (also via the coefficient465

of variation), the coefficient of variation computed from Y differs slightly from that of466

M , as shown in Figure A2e with blue (c before flat-field correction) and red (c after flat-467

field correction). The blue curve is identical to that shown in Figure A2b, and the red468

curve is identical to the curve shown in Figure 3d. The effect of flat-field correcting the469

keogram is to enhance the contrast in the coefficient of variation between clear sky in-470

tervals (e.g., 08:00-10:00 UT) and cloudy intervals (e.g., 12:00-14:00 UT).471

Open Research Section472

The keogram data used in this effort are publicly available at http://optics.gi473

.alaska.edu/amisrarchive/PKR/DMSP/NCDF/. The National Oceanic and Atmospheric474

Administration cloud mask data are publicly available at https://www.ncei.noaa.gov/475

products/climate-data552-records/avhrr-hirs-cloud-properties-patmos. The476

source code used to process the data and produce the plots shown in this paper will be477

made publicly available upon acceptance for publication.478
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Figure 5. (a) Results from comparing 2014 and 2016 events using greenline coefficient of

variation thresholds from 0.01 to 1 with steps of 0.01. The threshold that produces the lowest

percent of mislabeled events is marked with a red circle. (b) Histogram of the cloudy (blue)

and cloud free (red) NOAA categorized events and their respective keogram coefficients of vari-

ation for 2014 and 2016. The vertical line marks the threshold coefficient of variation of 0.51.

(c) Results from comparing 2015 and 2017 events using thresholds starting from 0.01 to 1 with

steps of 0.01. The best threshold found with the training data of 0.51 is marked with a red cir-

cle. (d) Histogram of the cloudy (blue) and cloud free (red) NOAA categorized events and their

respective keogram coefficients of variation. The vertical line marks the threshold coefficient of

variation of 0.51.
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Figure 6. (a) Results from comparing 2014 and 2016 events using redline coefficient of varia-

tion thresholds from 0.01 to 1 with steps of 0.01. The threshold that produces the lowest percent

of mislabeled events is marked with a red circle. (b) Histogram of the cloudy (blue) and cloud

free (red) NOAA categorized events and their respective keogram coefficients of variation for 2014

and 2016. The vertical line marks the threshold coefficient of variation of 0.46. (c) Results from

comparing 2015 and 2017 events using thresholds starting from 0.01 to 1 with steps of 0.01. The

best threshold found with the training data of 0.46 is marked with a red circle. (d) Histogram

of the cloudy (blue) and cloud free (red) NOAA categorized events and their respective keogram

coefficients of variation. The vertical line marks the threshold coefficient of variation of 0.46.
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Download keograms for nights of interest

Convert from camera counts to physical units (Rayleighs)

Crop the dusk dawn times and the regions near the 
horizons from the keogram

Determine flat field gain for each year

Flat field correction like step for each keogram

Subtract background keogram

Designate cloud-free times c557nm  ≥ 0.51

Figure A1. Method of processing raw keograms.
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Figure A2. (a) Calibrated but not flat-field-corrected keogram M of Jan 1 2014 with the

corresponding sample (b) coefficient of variation with the time points where the c is less than or

equal to 0.15, (c) annual flat field gains for 557.7 nm for years 2014-2017, (d) flat-field-corrected

keogram for 2014 using the 2014 flat-field gain, and (e) the coefficient of variation before and

after flat field correction.
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