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Abstract

We present a method for forecasting the foF2 and hmF2 parameters using modal decompositions from measured ionospheric

electron density profiles. Our method is based on Dynamic Mode Decomposition (DMD), which provides a means of determining

spatiotemporal modes from measurements alone. Our proposed extensions to DMD use wavelet decompositions that provide

separation of a wide range of high-intensity, transient temporal scales in the measured data. This scale separation allows for

DMD models to be fit on each scale individually, and we show that together they generate a more accurate forecast of the

time-evolution of the F-layer peak. We call this method the Scale-Separated Dynamic Mode Decomposition (SSDMD). The

approach is shown to produce stable modes that can be used as a time-stepping model to predict the state of foF2 and hmF2

at a high time resolution. We demonstrate the SSDMD method on data sets covering periods of high and low solar activity as

well as low, mid, and high latitude locations.
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ŷ
j

-100 -50 0 50 100
Error (km), y ! ŷ
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Key Points:9

• We present a method to adapt the Dynamic Mode Decomposition algorithm to10

work on a time series of ionospheric sounder profiles11

• The method accounts for multiscale fluctuations in the time series using wavelet12

decompositions and builds a dynamical model from data alone13

• The method can be used to forecast the foF2 and hmF2 parameters in near-real14

time using relatively short measurements from a sounder15
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Abstract16

We present a method for forecasting the foF2 and hmF2 parameters using modal decom-17

positions from measured ionospheric electron density profiles. Our method is based on18

Dynamic Mode Decomposition (DMD), which provides a means of determining spatiotem-19

poral modes from measurements alone. Our proposed extensions to DMD use wavelet20

decompositions that provide separation of a wide range of high-intensity, transient tem-21

poral scales in the measured data. This scale separation allows for DMD models to be22

fit on each scale individually, and we show that together they generate a more accurate23

forecast of the time-evolution of the F-layer peak. We call this method the Scale-Separated24

Dynamic Mode Decomposition (SSDMD). The approach is shown to produce stable modes25

that can be used as a time-stepping model to predict the state of foF2 and hmF2 at a26

high time resolution. We demonstrate the SSDMD method on data sets covering peri-27

ods of high and low solar activity as well as low, mid, and high latitude locations.28

Plain Language Summary29

Understanding the current and future state of Earth’s ionosphere plays an essen-30

tial role in many global communications and radar applications. However, generating31

accurate forecasts of it is challenging due to the complex physics that drive the dynam-32

ics. Additionally, measurements of the ionosphere show that there is a wide frequency33

range of fluctuations that occur in those measurements. We overcome both the complex-34

ity of the physics and the multiscale phenomena by applying methods from signals pro-35

cessing and machine learning to separate the various time scales over which these fluc-36

tuations arise. However, we do this in such a way that preserves strong couplings between37

the scales. We then demonstrate how to construct a forecast model from these separated38

scales. This approach to ionospheric forecasting is both equation-free and data-driven,39

and it is shown to have a modest improvement in accuracy over the current state-of-the-40

art.41

1 Introduction42

The need for accurate modeling and forecasting of the prevailing space weather con-43

ditions continues to play a critical role in the development and operation of a variety of44

radio communications and radar applications. The Earth’s ionosphere is of particular45

interest as it provides a medium for the propagation of radio waves far beyond the hori-46

zon (Ratcliffe, 1959; Budden, 1985; Davies, 1990). As a result, the ionosphere has been47

the subject of intense study for decades, and efforts to enhance our ability to model and48

predict the vertical plasma density profile continue to this day. Parameterizations of the49

height-dependent structure of the ionosphere include specifying the maximum plasma50

density value and the height at which it occurs. This peak in the plasma density pro-51

file is known as the F2-layer critical frequency, foF2, and is generally given in units of52

megahertz (MHz). The altitude at which the foF2 occurs is called hmF2 and has units53

of kilometers (km). Together, these two parameters specify a crucial point in the local54

ionosphere that can have a considerable impact on radio propagation. Specifically, foF255

and hmF2 will affect the reflection height and thus ground distance that a radio wave56

at a given frequency will reach (Fagre et al., 2019). Therefore, misrepresenting the peak57

of the plasma density profile has immediate implications for military, commercial, and58

civilian applications. In general, there are two modeling approaches for ionospheric spec-59

ification: physics-based and empirical.60

In physics-based models, the equations of fluid mechanics and magnetohydrody-61

namics are solved. However, the ionosphere is driven by many exogenous systems, in-62

cluding solar and geomagnetic activity, tidal forcing from the lower troposphere (H. L. Liu,63

2016), and thermospheric general circulation (Killeen, 1987). This means that while the64

physics are relatively well-understood, careful specification of these drivers is required65
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in order to produce accurate simulations and forecasts. Additionally, even when physics-66

based models such as the thermosphere-ionosphere-mesosphere-electrodynamics general67

circulation model (TIME-GCM) (Dickinson et al., 1981; Roble & Ridley, 1994; Roble,68

1995) and SAMI3 (Huba et al., 2000; Huba & Krall, 2013) offer accurate modeling ca-69

pability, they often underestimate the variance observed in the measurements of the iono-70

spheric plasma density (Zawdie et al., 2020).71

On the other hand, empirical models, such as the International Reference Ionosphere72

(IRI), are generally less intensive to run but require large quantities of data from many73

different sources to account for the complex interactions between the various space weather74

systems. These sources include estimates from Mass Spectrometer Incoherent Scatter75

Radar (MSIS) to provide neutral composition derived from years of ground and space-76

based observations (Picone et al., 2002), as well as vertical soundings for the bottom-77

side, GPS-based observations of the total electron content (TEC), and in situ satellite78

measurements for the relevant ion species composition (Bilitza, 2001). Such an under-79

taking requires decades of dedicated service with international collaboration and has re-80

sulted in IRI becoming the official International Standardization Organization (ISO) stan-81

dard for the ionosphere. Nevertheless, IRI provides only statistical estimates of the monthly82

average plasma density given several user-defined inputs such as solar activity via the83

monthly smoothed sunspot number and geomagnetic activity rather than simulating the84

dynamics.85

More recently, determining reduced-order models (ROM) from data has been ex-86

plored. In (Mehta et al., 2018), a quasi-physical dynamic ROM is obtained for the ther-87

mospheric mass density using the thermosphere-ionosphere-electrodynamics general cir-88

culation model (TIE-GCM) (Richmond et al., 1992), a precursor to TIME-GCM, as the89

source of observations. This ROM is based on a modal decomposition technique known90

as Dynamic Mode Decomposition (DMD) in which a set of spatiotemporal modes are91

determined via a linear best fit to data snapshots of a dynamical system (Schmid, 2010;92

Mezić, 2005; Kutz et al., 2016). DMD has also been shown to be especially useful in many93

physics and engineering contexts, such as in (Curtis et al., 2019) where it was used to94

help identify structure in weakly turbulent flows. Prior work on adapting DMD to data95

with dynamics at multiple scales can be found in (Dylewsky et al., 2019; Kutz et al., 2015),96

and building DMD models for nonlinear systems using deep learning in (Alford-Lago et97

al., 2022).98

Our approach is motivated by the prevalence of vertical ionospheric sounder sta-99

tions worldwide. These sounders generate data streams at regular cadences regarding100

the height-dependent profile of the ionospheric plasma density. However, plasma irreg-101

ularities and traveling ionospheric disturbances manifest as fluctuations in the electron102

density profile (EDP) and occur over a range of time scales. Furthermore, the spatial103

frequencies of these irregularities are shown to range from the atmospheric scale height,104

where fluctuations are driven by gravity, down to the ion gyroradius, where fluctuations105

are driven by Earth’s magnetic field (Booker, 1979).106

We therefore see that modal analysis and dimensional reduction techniques, which107

facilitate the identification of simpler features within relatively complex data, would be108

of great utility in the study and use of ionospheric data. Likewise, measurement driven109

modeling techniques which bypass the intricate physics modeling that has been neces-110

sary to date to develop predictive capabilities would be especially desirable. To this end,111

we propose nontrivial extensions of DMD by way of wavelet decompositions that sep-112

arate scales in a time series of EDPs. We call this method Scale-Separated DMD (SS-113

DMD) and demonstrate its utility in obtaining a dynamic model of the local ionospheric114

peak density from a relatively short recording of data.115

SSDMD provides a novel approach to predicting the parameters foF2 and hmF2116

that does not model their time evolution directly but instead uses the entire EDP time117
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series to build a high-dimensional, expressive model for the dynamics. Our key contri-118

bution is incorporating a wavelet decomposition step and correlation analysis before ap-119

plying DMD to the data. We find that critical couplings between scales that impact the120

stable evolution of DMD modes are preserved by grouping certain scales back together.121

These groupings are based on a one-step correlation that relates to how DMD is opti-122

mized. We find that the complete EDP forecasts from the method produce reasonable123

results in the F-region. However, the true utility of the method is the accuracy with which124

it predicts the foF2 and hmF2 parameters.125

IRI was chosen for model comparison in this study because it is recognized as the126

official standard for the ionosphere by ISO, the International Union of Radio Science (URSI),127

the Committee on Space Research (COSPAR), and the European Cooperation for Space128

Standardization (ECCS) (Bilitza, 2018). While the number of ionospheric forecasting129

models seems to grow each year, we chose to use IRI as the gold standard because of its130

wide use in the community, (Bilitza, 2001) having over 1,000 citations at the writing of131

this paper, and is accessible to the research community through simple programming APIs.132

While there are variants of IRI that employ more sophisticated techniques such as as-133

similation of real-time data (Galkin et al., 2012), these models are more complex and134

generally less accessible to the public. Moreover, the goal of this paper and the SSDMD135

model itself is not to outperform the most advanced, high-fidelity ionospheric models.136

Instead, we aim to provide a simple approach to forecasting key parameters using min-137

imal amounts of data while providing reasonably accurate results that are on par with138

the most common and established methods.139

Note that many existing ionospheric forecast models require the specification of so-140

lar and geomagnetic drivers, often through the sunspot number and the station K and141

A indices. In this paper, however, we will show that a short-term forecast of the foF2142

and hmF2 for a single-station sounder is indeed obtainable purely through modeling the143

variations observed during a 10-day period. While other attempts at forecasting iono-144

spheric parameters without specifying drivers or control variables have seen success, see145

(Wang et al., 2020; Grzesiak et al., 2018; Stanislawska & Zbyszynski, 2001), we show that146

straightforward scale separation enables the use of powerful data-driven methods such147

as DMD. Of course, such an approach will not capture storms or large perturbations to148

the EDP that one would see with the appropriate exogenous control variables. Never-149

theless, it lifts the burden of also having to forecast the drivers themselves and instead150

provides a lightweight, real-time method of forecasting the foF2 and hmF2. Addition-151

ally, observations of solar and geomagnetic activity are not widely available at the time152

resolution our method is set up to model. Many ionospheric sounding systems can pro-153

duce measurements at a cadence of 5-minutes, whereas sunspot number and station in-154

dices are only available as averages over several hours.155

This paper will provide the necessary background and algorithmic details to per-156

form SSDMD on a time series of EDPs, and is organized as follows. In Section 2.1, we157

present the DMD algorithm to compute spatial modes with time-evolving dynamics. Then,158

in Section 2.2, we demonstrate how we generate a scale-separated expansion of a signal159

using wavelet decompositions. Sections 2.3 and 2.4 then describe how we determine strong160

couplings across scales in the time series and average across them to produce an SSDMD161

model. Finally, Section 3 presents our results from this analysis on measured data from162

several Digisonde vertical sounders (Reinisch & Galkin, 2011).163

2 Method164

The SSDMD method presented here will generate a near-term, e.g., 48-hour, fore-165

cast of the local ionospheric conditions using a time series of EDPs from a vertical in-166

cidence sounder. In particular, we will use this model to generate a forecast of the peak167

plasma density, foF2, and height, hmF2. The method consists of four primary steps:168
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1. Use 1-dimensional wavelet decompositions at each fixed height in the data to sep-169

arate fluctuations at different time scales and reconstruct the signal with each scale170

individually.171

2. Compute one-step correlations across each scale reconstruction, determine which172

scales are strongly correlated, and add them together to form connected compo-173

nents.174

3. Average each connected component over 24-hour lags.175

4. Perform DMD on the averaged connected components to obtain a set of modes176

and eigenvalues for each.177

This algorithm will result in a separate DMD model for each of the averaged connected178

components. However, all these models will sum coherently to form a final reconstruc-179

tion of the profile time series and predictions of its future state. From the forecasted pro-180

files, we then compute the foF2 and hmF2 parameters.181

Figure 1: Dataset 1, a profilogram from the Digisonde Boulder, CO station covering the
days of October 05, 2019 to October 17, 2019. Profiles were measured every 5 minutes.

The data used in this study are time series of ionospheric EDPs and their respec-182

tive foF2 and hmF2 parameters gathered from two repositories, the Lowell GIRO Data183

Center digital ionogram database (Didbase) and the NOAA National Centers for En-184

vironmental Information (NCEI) Mirrion 2 data mirror. We will use a 12-day snippet,185

called Dataset 1, from a station in Boulder, Colorado, covering the dates 2019/October/05186

to 2019/October/17 to illustrate each of the four steps of the SSDMD method above.187

This period of observation occurred near the last solar minimum yet still exhibits a wide188

spectrum of oscillations in the profile.189

Figure 1 shows Dataset 1 as a profilogram, which we have preprocessed by inter-190

polating the raw sounder profiles to a regular 1km resolution height grid and then clipped191

below 150km. This is done because our model is intended to capture the dynamics of192

the F-layer parameters of the ionosphere. The following sections will now illustrate each193

step in SSDMD, starting with a description of the DMD method since it forms the ba-194

sis of SSDMD.195

2.1 Dynamic Mode Decomposition196

DMD provides a method of finding a one-step, linear best-fit transformation from197

a time series of data that maps any observation in the series one time-step into the fu-198

ture. We start with a series of measurements of the system199

Y = {y1 y2 · · ·yNT} , (1)200
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where yk = y(tk) ∈ RNS is a snapshot of the system at time tk, thus Y ∈ RNS×NT .201

In the case of Dataset 1, each snapshot is a measurement of the vertical profile so each202

column in Y is an EDP. We assume a regular measurement cadence with tk = kδt for203

some time step δt, though in general this is not a requirement. From this, we create two204

new matrices205

Y− = {y1 y2 · · ·yNT−1} and Y+ = {y2 y3 · · ·yNT
} (2)206

and find a matrix K ∈ RNS×NS such that207

KY− = Y+. (3)208

This can be done simply via regression by solving the following optimization problem,209

Ko = argmin
K

||Y+ −KY−||2F = Y+Y
†
−, (4)210

where ||·||F denotes the Frobenius norm and Y†
− denotes the Moore-Penrose inverse of211

Y−. The DMD model is then given by the eigendecomposition of the matrix Ko, how-212

ever, solving (4) directly can generate highly unstable results due to ill-conditioning in213

Y−. To address this, it is common in the DMD literature to use the singular-value de-214

composition (SVD) of Y− and apply a threshold to keep only the most significant sin-215

gular values. If the SVD of Y− is216

Y− = UΣV∗, (5)217

then introducing a threshold, csvd > 0, we truncate the columns of U and V correspond-218

ing to the singular values, Σjj , such that219

log10

(
Σjj

Σ11

)
> −csvd, (6)220

where Σjj are entries along the diagonal of Σ and are ordered such that221

Σ11 ≥ Σ22 ≥ · · · ≥ ΣNSNS
. (7)222

We label the truncated versions of U, Σ, and V as Ũ, Σ̃, and Ṽ respectively. A straight-223

forward approximation of Equation (4) can then be given by224

Ko ≈ Y+ṼΣ̃−1Ũ∗. (8)225

Note, Ko will be an NS×NS matrix, so when NS is very large it may be computation-226

ally expensive to compute the eigendecomposition; see (Tu et al., 2014) for alternate for-227

mulations of DMD when this is the case. However, we found that the EDP data from228

a single sounding station is not high-dimensional enough to require these alternate forms.229

Instead, we simply compute the DMD modes and eigenvalues of Ko through the diag-230

onalization231

K̃o = WΛW−1, (9)232

where W is a matrix whose columns are eigenvectors, or DMD modes, and Λ is a di-233

agonal matrix of DMD eigenvalues. For a given δt representing the amount of time which234

has passed from observation yk to yk+1, we construct a continuous-time model of the235

system,236

y(t) ≈WΛt/δtW†y(0), (10)237

where y(0) is some initial condition. Note that this decomposition provides a time step-238

ping mechanism for reconstructing our time series that we may use for forecasting.239

Comparisons of DMD to the well-established Empirical Orthogonal Function (EOF)240

analysis may be drawn. In practice, EOF models use Principal Component Analysis (PCA)241

to decompose the data into linear combinations of orthogonal functions. Fourier expan-242

sions of modulating coefficients for each component then provide variation over monthly243

and solar cycle scales; see (C. Liu et al., 2008; Zhang et al., 2009, 2014; Mehta & Linares,244
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2017; Li et al., 2021) for in-depth description of EOF analysis for space weather. This245

has the advantage of including proxies for external drivers such as the F10.7-cm solar246

flux in the forecast. Nevertheless, such indices are not readily available on the time scales247

that we are able to measure ionospheric profiles and provide little additional input for248

a 24- to 48-hour forecast. Furthermore, EOF models are restricted to an orthogonal ba-249

sis of functions for the dynamics due to the use of PCA. The DMD modes have no such250

restriction since they are derived from the eigendecomposition of the Ko matrix. An-251

other major difference between our method and conventional EOF models is we sepa-252

rate the various time scales in the data prior to fitting the DMD modes and eigenval-253

ues.254

Thus, beyond just producing a modal decomposition from data, the DMD method255

gives a time-evolving model for said data through the spectra of the K matrix. Further256

connections between DMD and dynamical systems analysis can be established through257

its relationship with the Koopman operator (Koopman, 1931); see Appendix A. While258

a generally successful approach, this straightforward implementation struggles with mul-259

tiscale data or any data that has both very small and very large gradients from snap-260

shot to snapshot due to the one-step regression in Equation 4. This motivates the use261

of some form of temporal scale separation.262

2.2 Scale Separation of EDP Time Series263

The primary contribution of this paper is to provide a method of adapting the DMD264

algorithm to work on data with fluctuations at multiple scales, as is the case when mod-265

eling EDP measurements. The need to account for these oscillations is motivated by the266

Hilbert spectrum of a slice through Dataset 1 at a vertical height of 400km. At this al-267

titude, we see there is a significant degree of instantaneous energy at frequencies much268

higher than diurnal variation (1 cycle/day); see Figure 2. These relatively high-frequency,269

transient events complicate direct applications of DMD, but do not necessarily repre-270

sent noise that should be filtered out.

Figure 2: The affiliated Hilbert spectrum for a slice through Dataset 1 at a height of
400km. The Hilbert spectrum plot reveals the instantaneous energy in the data as a func-
tion of time and frequency. The stable diurnal oscillation can be see near 1 cycle/day,
while various time localized, spurious oscillations occur throughout at frequencies that are
an order of magnitude higher.

271
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We therefore use a multiresolution analysis by way of 1-dimensional wavelet de-272

compositions to facilitate DMD; see (Mallat, 2009, 1989) for in-depth theory and appli-273

cations of wavelet decompositions. For a given time series y(t) ∈ RNs representing vec-274

tor observations of EDPs, we decompose each height in the time series into Nlvl levels,275

such that276

y(t) ≈
Nlvl+1∑
j=1

dj(t), (11)277

where dj(t) ∈ RNs , such that278

dj(t) =

Mf∑
n=−Mf

dj,nψj,n(t), 1 ≤ j ≤ Nlvl, (12)279

and280

dNlvl+1(t) =

Mf∑
n=−Mf

dNlvl+1,nϕNlvl,n(t), (13)281

where ψ(t) and ϕ(t) are the wavelet and scaling functions of the decomposition, respec-282

tively,283

ψj,n(t) =
√
2
−j
ψ
(
2−jt− n

)
,284

ϕNlvl,n(t) =
√
2
−Nlvl

ϕ
(
2−Nlvlt− n

)
. (14)285

286

The vectors dj,n, 1 ≤ j ≤ Nlvl, denote the detail coefficients at the jth scale while dNlvl+1,n287

denotes the approximation coefficients at the terminal scale.288

With the wavelet decompositions performed independently at each height in the289

profile, the vector quantities dj(t) represent only parts of the signal at the jth scale at290

time t. Given our discrete time series from Equation (1), these vector quantities form291

the columns of a new set of data matrices,292

Yj = {dj,1 dj,2 · · · dj,NT
} , (15)293

which are reconstructions of the original data at each scale and sum coherently, so that294

Y =
∑Nlvl+1

j=1 Yj .295

In Figure 3, we have Dataset 1 expanded into 12 scale reconstructions. These scales296

further illustrate the multiscale nature of high-resolution EDP measurements, with fluc-297

tuations on the order of 1-2MHz in magnitude observed up to the fastest scales. These298

sub-diurnal oscillations can appear as broad-spectrum noise in the raw profilogram and299

can make modal decompositions like DMD quite challenging. Note that the diurnal os-300

cillation itself does not appear until the 5th or 6th scale in Figure 3, and several longer-301

period trends are observed before the terminal scale. In the following section we will see302

how these oscillations can be highly correlated in terms of an optimal DMD one-step fit.303

Fourth-order Coiflets were used for the discrete wavelet transforms. The wavelet type304

is a model hyperparameter and may vary for different data sets. However, we found that305

this choice worked well for all test cases in this study.306

2.3 Computing Correlations Across Scales307

Applying DMD to each scale separately does not produce optimal results and can308

even produce DMD modes that are unstable and decay to zero or grow to infinity almost309

immediately. Instead, we found correlations across each of the scales can indicate strong310

dynamical couplings between them, and preserving these has a pronounced impact on311

the fidelity and stability of the DMD modes. Identifying the strength of these couplings312

required developing a measure of correlation that takes into account the role that the313
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Figure 3: Dataset 1 decomposed into 12 scales. Each panel is a reconstruction of the full
EDP time series using only the jth scale coefficients from the wavelet decomposition at
each height, Yj . The color axis represents plasma frequency in MHz.

matrix Ko plays in advancing the data forward in time. To this end, we defined the fol-314

lowing correlation matrix C whose entries are given by315

Cjl =
1

2

∣∣ỹj,+ ⊙ ỹl,− + ỹj,− ⊙ ỹl,+

∣∣ , (16)316

with, j, l ∈ 1, . . . , Nlvl + 1, and317

ỹj =
[Yj ]− [Yj ]∣∣∣∣∣∣[Yj ]− [Yj ]

∣∣∣∣∣∣
2,t

. (17)318

The · and [·] denote taking the mean in the time and space dimensions of the time se-319

ries, respectively, ||·||2,t is an L2-norm over time, and ⊙ is the Hadamard product be-320

tween two matrices. Finally, the + and − subscripts indicate shifting the time series for-321

ward or backward one time step as in Equation 2. Note that the full-dimensional EDP322

is reduced to an average for this correlation coefficient in Equation 17. This works be-323
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cause we have limited the time series to the upper F-region of the profile since we are324

concerned with forecasting the F-peak characteristics only.325

Because Ko is optimized to advance any profile in the data one time step into the326

future, this correlation coefficient provides a quantitative means for comparing the time327

series across different timescales in the context of fitting optimal DMD modes. Then,328

by setting a threshold value, ccorr, we generate an adjacency matrix A with entries329

Ajl =

{
1, |Cjl| ≥ ccorr
0, |Cjl| < ccorr

(18)330

The matrix C is symmetric, and so A is as well. Note, in practice these correlations will331

typically be larger for the longer time scales since we are looking at one-step correlations,332

with higher frequency oscillations becoming increasingly less correlated. The matrix A333

generates a graph G that indicates which of the Yj scale reconstructions should be grouped334

back together to preserve their dynamic coupling.335

Thus, for a given choice of threshold ccorr, we will have NC ≤ Nlvl+1 connected336

components within G. We then form NC new time series by summing only the Yj which337

belong to the same connected component,338

YC
n =

∑
j∈Gn

Yj , (19)339

where j ∈ Gn denotes the scales that are in the nth connected component in G, and340

YC
n is the time series for the nth connected component. Figure 4 shows the matrix C341

and the graph G for Dataset 1. Note that the first group consists of the bulk of the large342

scale features in the time series while the higher frequency scales remain on their own.343

However, this may not always be the case, and subgroups within the high frequency com-344

ponents could arise depending on the data observed.

Figure 4: The correlation coefficient matrix C (left) and the corresponding graph G
(right) indicating which scales are highly coupled. The correlation threshold ccorr = −1.95
was used for Dataset 1.

345

At this point, one could find a corresponding K̃o,n via DMD and generate an af-346

filiated expansion for each connected component so that the total time series can be ap-347

proximated by348

y(t) ≈
NC∑
n=1

WnΛ
t/∆t
n W†

nyn,0. (20)349
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Figure 5: Dataset 1 decomposed into 7 connected components. Each component captures
features of the data with strong correlations according to the one-step spatiotemporal
coefficients.

However, we note that, using observations that span only several days in time, the EDP350

at a single sounding station is essentially memoryless after twenty-four hours have passed351

(Araujo-Pradere et al., 2005). This strongly suggests that before naively applying the352

DMD method to time series of arbitrary length, instead, we should first average the data353

across 24-hour cycles for the duration of our measurement period.354

2.4 Averaging for DMD355

Having decomposed the EDP time series into correlated time scales, we now have356

a collection of time series,357

YC
1 , Y

C
2 , · · · , YC

NC
, (21)358

that represent scales within the data set whose one-step correlations are relatively weak.359

We treat these as being essentially independent with respect to our DMD approxima-360

tion.361

Denoting the number of time steps in a full day as TD and assuming that NT +362

1 is divisible by TD, so that the data set represents the number of days ND where363

ND =
NT + 1

TD
, (22)364

we isolate the mean signal over 24-hour cycles from the fluctuations about the mean for365

each YC
n . This creates two new affiliated time series for each connected component that366

have the properties,367

ȳC
n (tk + TD) = ȳC

n (tk), (23)368
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and369

TD∑
k=1

ŷC
n (tk +mTD) = 0, m = 0, . . . , ND − 1, (24)370

where ·̄ and ·̂ denote the 24-hour mean signal and fluctuations about the 24-hour mean,371

respectively. The fluctuations in Equation 24 effectively represent the noise signal for each372

component. These may prove useful in future experiments to generate nonparametric373

error estimates, however, in this paper they are not used further since our goal is to fore-374

cast parameters derived from the profile. Taking the vector quantities, ȳC
n to be columns375

of new mean-signal matrices we have376

ȲC
n =

{
ȳC
n,1, ȳ

C
n,2, . . . , ȳ

C
n,TD

}
. (25)377

Figure 6: Dataset 1 connected components averaged over 24-hour lags, ȲC
n .

Figure 6 shows each ȲC
n for Dataset 1. These matrices represent the average plasma378

frequency oscillation over a given day at various scales in the dynamics. Therefore, this379

step acts as a denoising process that has minimal impact on the multiscale nature of the380

signal and reduces the amount of information that would be lost by simply filtering the381

raw EDP time series.382

Finally, using Equation (10) on these 24-hour averaged and scale-correlated data,383

we generate a continuous-time DMD model for each connected component,384

ȳC
n (t) ≈WnΛ

t/∆t
n W†

nȳ
C
n,0. (26)385
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Note that all of the NC components sum coherently and form the final the SSDMD model,386

ȳ(t) ≈
NC∑
n=1

WnΛ
t/∆t
n W†

nȳ
C
n,0. (27)387

Figure 7: SSDMD reconstruction and forecast of Dataset 1. The vertical dotted white
line denotes the transition from data used to fit the model to validation data. Black lines
in each panel trace the hmF2 parameter.

Equation (27) is a model for the dynamics of the average that accounts for non-388

linear oscillations at multiple scales while preserving strong couplings between scales. See389

Appendix B for pseudocode of the complete SSDMD algorithm. Figure 7 depicts the re-390

sult of this model applied to Dataset 1, using the first 10 days of data to generate the391

SSDMD model and then advancing the DMD modes via their eigenvalues out an addi-392

tional 2 days as a forecast. The figure includes both the original measurement time se-393

ries and the SSDMD reconstruction and forecast.394

We compute the foF2 and hmF2 parameters by finding the peak frequency and height395

in the modeled EDPs. Figure 7 shows the predicted hmF2 and observed hmF2 overlayed396

on their respective EDP time series. The reconstruction of the first 10 days, i.e. the fit-397

ting data, appears excellent simply because it is advancing each profile a single time step.398

The remaining two days, however, illustrate the stability of the modes that have been399

determined through SSDMD, since we are iterating the DMD eigenvalues and using the400

last observed EDP from the training data as an initial condition. Thus, we have built401

a stable time-stepping model of foF2 and hmF2 using a dynamical model that utilizes402

the full EDP time series expanded over several time scales. In Section 3.2 we will explore403

the accuracy of the resultant foF2 and hmF2 forecasts in greater detail.404
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3 Results405

3.1 Data Description406

Data sets were gathered from Boulder, Colorado (40°N, -105.3°W) over 2019, and407

from Rome, Italy (41.9°N, 12.5°E) over 2014. The years 2019 and 2014 were roughly at408

the last solar minimum and solar maximum, respectively. These data sets will provide409

statistical estimates of how the proposed method performs at mid-latitudes during pe-410

riods of high and low solar activity. Additionally, shorter data sets taken from Gakona,411

Alaska (62.38°N, 145°W) and Guam (13.62°N, 144.86°E) and will demonstrate the method’s412

application in high-latitude and equatorial environments, respectively. Results presented413

for foF2 are in units of megahertz and hmF2 in kilometers unless otherwise labeled.414

The sounder located in Boulder, Colorado (station name BC840) had a measure-415

ment cadence of 5 minutes in 2019, while the Rome, Italy sounder (station name RO041)416

measured profiles every 15 minutes in 2014. The shorter data sets from Gakona, Alaska417

(station name GA762) and Guam (station name GU513) both had cadences of 7.5 min-418

utes. Table 1 summarizes the locations, times, and lengths of the data sets gathered for419

this study, and Figures 8 and 9 show time series of the foF2 and hmF2 parameters as420

measured at each station. Each data point in these time series has an affiliated EDP, but421

these are not shown for brevity. Missing values in the data are not used in the final er-422

ror analysis.423

All sounder stations generate estimates of the vertical EDP using the ARTIST5424

algorithm to invert raw ionograms (Galkin & Reinisch, 2008). The EDP time series is425

limited to a height range of 150-500km. This is primarily because the plasma frequency426

in E-region at night dips low enough that it is outside the measurement bandwidth of427

the Digisonde sounders (Bibl et al., 1981). Because of this, the ARTIST5 inversion al-428

gorithm will generally output a default value, e.g., 0.2 MHz, in these regions for most429

of the nighttime profiles. These periods of constant plasma density complicate the fit-430

ting of an SSDMD model since they require inherently oscillatory modes to approximate431

a constant value. Above the peak plasma density, echoes from the sounder are no longer432

received, and a standard parameterized profile is fit to provide the topside plasma den-433

sity. Thus, restricting the profiles to only the F-region helps ensure the SSDMD model434

is able to more accurately capture the dynamics of the F-layer parameters and minimizes435

the effects of these boundary regions.436

Boulder Rome Gakona Guam

Station name BC840 RO041 GA762 GU513

Year 2019 2014 2022 2022

Lat/Lon 40°N 105.3°W 41.9°N 12.5°E 62.38°N 145°W 13.62°N 144.86°E

Number of days 365 365 12 12

Measurement cadence 5 min. 15 min. 7.5 min. 7.5 min.

Solar cycle min max mid mid

Table 1: Summary of data gathered from Didbase sounder stations.

We used the IRI2016 model in Python with up-to-date solar and magnetic indices.437

IRI has many settings that allow the user to tweak parameters or turn certain submod-438

els on or off. These settings are known as the JF switches. The version of IRI used in439
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Figure 8: Time series of foF2 from the BC840 (red), RO041 (blue), GA762 (green), and
GU513 (magenta) sounders. Note that the x-axis (day of year) has been zoomed in for the
shorter data sets GA762 and GU513.

this paper had all the default JF values, which are found on the IRI model website. Time440

series of the EDP, foF2, and hmF2 were generated from IRI for each data set, and the441

EDPs were interpolated to the same vertical height grid as the sounder data.442

There are several hyperparameters of the SSDMD model that must be set prior to443

fitting a model. The first is the correlation threshold from Equation 18 that determines444

how strongly scales must be correlated in order to form a connected component. This445

threshold currently requires manual tuning. We found a value of ccorr = −1.95 achieved446

good results for stations BC840, GA762, and GU513, while ccorr = −1.75 performed447

better for RO041. Generating more efficient ways of determining the optimal value for448

this parameter will be a topic of future research, though its value here was chosen such449

that the MAE of the foF2 and hmF2 parameters were minimized.450

Another hyperparameter is the number of days used to fit the SSDMD model. Us-451

ing long time series will result in more averaging over the 24-hour cycles, thus increas-452

ing bias in the forecast. We found that 10 days of EDPs worked reasonably well for all453

stations for short-term prediction. If one attempts a longer-term forecast, averaging over454

additional time lags may be necessary. The last hyperparameter of SSDMD is the thresh-455

old at which to truncate the singular values in the DMD step, Equation 6. This thresh-456

old was set to csvd = 6, which worked well for all data sets. Lowering this threshold457

will result in fewer spectral pairs (λj ,wj) in the SSDMD model and thus reduces the num-458

ber of modes used to generate the forecast. Table 2 summarizes these hyperparameters.459

460
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Figure 9: Time series of hmF2 from the BC840 (red), RO041 (blue), GA762 (green), and
GU513 (magenta) sounders. Note that the x-axis (day of year) has been zoomed in for the
shorter data sets GA762 and GU513.

SSDMD Parameter Value

Num. days for fit 10

Num. days forecast 2

ccorr -1.95 (BC840, GA762, GU513) / -1.75 (RO041)

csvd 6

Wavelet type coiflet 4th order

Table 2: Summary of parameters for the SSDMD model used for each data set.

3.2 SSDMD Model Performance461

We tested the SSDMD method on 30 randomly chosen 12-day periods in the BC840462

and RO041 data sets. Each of these stations contained several large gaps in their data463

which were not used in the random start times as one cannot fit an SSDMD model with-464

out contiguous data. Even though standard DMD methods will work for arbitrary snap-465

shots of data (x,y), where y = Kx, the wavelet decompositions used in SSDMD re-466

quire a regular measurement cadence, i.e., the data snapshots are always δt time apart.467
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Figure 10: SSDMD forecasts of foF2 (top panels) and hmF2 (bottom panels) for the
BC840 sounding station for randomly chosen starting times in 2019. The MAE is pro-
vided for both the SSDMD and IRI forecasts.
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Figure 11: SSDMD forecasts of foF2 (top panels) and hmF2 (bottom panels) for the
RO041 sounding station for randomly chosen starting times in 2014. The MAE is pro-
vided for both the SSDMD and IRI forecasts.

For each random 12-day period, the first 10 days were used for fitting an SSDMD468

model and the remaining 2 days for testing a 48-hour forecast of the foF2 and hmF2 pa-469

rameters. Figures 10 and 11 show these test forecast periods for 3 of the 30 randomly470

chosen times in each of the BC840 and RO041 data sets. The SSDMD and IRI predic-471

tions for the F-layer parameters, along with the measured values from the sounder, are472

presented for each. From these, we see that SSDMD captures some smaller-scale fluc-473

tuations in the parameters that are commonly lost in climatological models due to ex-474

treme averaging over monthly and seasonal variations. The mean absolute error (MAE)475

is provided for each forecast. While, in general, the SSDMD MAE shows modest improve-476

ments over IRI for BC840 in 2019, it is not always the case, as we can see in the hmF2477

forecast for RO041 in 2014. However, in the cases where SSDMD does perform worse478

than IRI, it is still relatively close considering how little data is used to generate the fore-479

cast.480

Figures 12 and 13 provide scatter plots and histograms of the foF2 modeled vs. mea-481

sured forecasts for BC840 and RO041, respectively. The histograms are given to illus-482

trate the shapes of the total model error distributions. The area of each bin simply rep-483
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Figure 12: Forecasted vs. measured foF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the BC840 station in 2019. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.
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Figure 13: Forecasted vs. measured foF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the RO041 station in 2014. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.

resents the relative number of model errors within that interval over all 48-hour forecast484

test periods. Note that SSDMD forecasts perform markedly better on the BC840 data485

set, with IRI producing a significant bimodal error distribution. This may point toward486
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limitations in SSDMD’s applicability during periods of high solar activity. Figure 8 shows487

a significant seasonal variation in the foF2 parameter of the RO041 station. Applying488

SSDMD to longer time series to capture seasonal and solar cycle trends will be a topic489

of future study. Furthermore, in the context of short-term forecasts, SSDMD’s reliance490

on the fit of the Ko matrix to advance any data point one time-step into the future ben-491

efits from higher measurement cadences. In addition, as the time resolution of sounder492

measurements increases, a wider spectrum of geophysical noise will be observed, and thus,493

SSDMD’s ability to identify couplings between dominant scales becomes more pronounced.494
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ŷ SSDMD MAE: 16.41

0

50

100

150

200

jy
!

ŷ
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Figure 14: Forecasted vs. measured hmF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the BC840 station in 2019. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.

Figures 14 and 15 give similar scatter plots and histograms for the hmF2 param-495

eter for the BC840 and RO041 stations, respectively. With hmF2, we find the model er-496

ror distributions for both SSDMD and standard IRI to be very similar. However, SS-497

DMD provides a slight bias correction over IRI for the BC840 data set. While the hmF2498

MAE for SSDMD on the RO041 data is worse than IRI, its performance is still quite close,499

given the relatively small amount of data used to generate the forecast.500

The SSDMD model was run on the GA762 station data set to illustrate its use on501

data streams from higher latitudes. GA762 is at a latitude of 62.38°N and is the site of502

the High-frequency Active Auroral Research Program (HAARP) (Bailey & Worthing-503

ton, 2000), a valuable ionospheric-thermospheric research instrument used in a variety504

of fundamental and experimental physics applications (Bell, 2001; Bernhardt et al., 2009).505

Improved forecasts of the foF2 and hmF2 parameters continue to play a critical role in506

high-frequency radio experimentation and modeling. The use of a lightweight and adap-507

tive forecast like SSDMD for real-time operations may be explored in future work, but508

in this paper we use this station to provide validation of our method in these high-latitude509

regions. Figures 16 and 17 give forecasts of foF2 and hmF2 and visualizations of the full510

EDP reconstructions for this station.511
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Figure 15: Forecasted vs. measured hmF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the RO041 station in 2014. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.

2022/06/11 2022/06/12
2

4

6

8

10

fo
F

2 
(M

H
z)

Measured
SSDMD (MAE: 0.68)
IRI (MAE: 0.59)

2022/06/11 2022/06/12
100

150

200

250

300

350

400

h
m

F
2 

(k
m

)

Measured
SSDMD (MAE: 30.32)
IRI (MAE: 34.41)

Figure 16: SSDMD 2-day forecast of the foF2 (top) and hmF2 (bottom) parameters for
the GA762 station with IRI predictions. MAE values for both models are provided in the
legend.

Lastly, Figures 18 and 19 demonstrate the SSDMD model in a low-latitude envi-512

ronment. Figure 19 illustrates the dramatic oscillations of the hmF2 as compared with513

the mid- and high-latitude stations. The presence of complex physical processes like the514

equatorial plasma fountain (MacDougall, 1969; Balan et al., 2018) induce categorically515

more complex dynamics in the EDP time series than observed at mid-latitudes. Still,516

we find SSDMD can fit a model that improves the MAE for both foF2 and hmF2 com-517

pared to IRI.518
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Figure 17: SSDMD full EDP time series reconstruction and 2-day forecast of the GA762
station during a 15-day period in 2022. The vertical dotted magenta line indicates the
transition from fitting data to test data, and the solid black line follows the hmF2 param-
eter computed using the EDP time series.
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Figure 18: SSDMD 2-day forecast of the foF2 (top) and hmF2 (bottom) parameters for
the GU513 station with IRI predictions. MAE values for both models are provided in the
legend.

In addition to the MAE statistics presented for each station, Tables 3 and 4 give519

summaries of root-mean-squared error (RMSE) and mean absolute percentage error (MAPE)520

for all foF2 and hmF2 forecasts, respectively. We find that SSDMD either outperforms521

or closely matches a standard IRI forecast for both foF2 and hmF2 for the data sets pre-522

sented. While significant improvement in the IRI forecast can be made by tweaking co-523

efficients within the model or even through the assimilation of real time data, SSDMD524

provides an easily implementable fitting method that can adapt to new data in real-time.525

Moreover, adjusting the parameters within IRI will not always improve its forecast ac-526

curacy, as one does not know in which direction to adjust parameters until observations527

of the ionosphere are made.528
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Figure 19: SSDMD full EDP time series reconstruction and 2-day forecast of the GU513
station during a 15-day period in 2022. The vertical dotted magenta line indicates the
transition from fitting data to test data and the solid black line follows the hmF2 parame-
ter computed using the EDP time series.

foF2 Forecast Errors

RMSE MAE MAPE

Station SSDMD IRI SSDMD IRI SSDMD IRI

BC840 0.54 1.06 0.39 0.81 10.08 21.54

RO041 0.93 0.95 0.74 0.76 11.54 11.44

GA762 0.91 0.81 0.68 0.59 13.59 13.18

GU513 1.26 1.57 0.99 1.23 16.02 26.30

Table 3: Summary of foF2 error statistics for all stations using SSDMD and IRI.

4 Conclusions and Future Directions529

We presented the standard DMD algorithm and formalized extensions that account530

for oscillations at multiple scales within measured data. Wavelet decompositions along531

each spatial dimension separated various scales within the time series that may other-532

wise appear as noise and will often preclude a standard DMD approach. For each of the533

scales, an affiliated reconstruction of the EDP time series was generated. Subsequent cor-534

relation analysis across the time scales then showed how we may recombine specific scales535

to preserve strong dynamic couplings between them in their one-step correlation. We called536

these correlated scales the connected components of the model. We performed an av-537

eraging step for each connected component by computing the mean over 24-hour time538

lags. This process denoises the data without erroneously removing oscillations from the539

original EDP signal that may initially appear as noise. Computing DMD on the connected540
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hmF2 Forecast Errors

RMSE MAE MAPE

Station SSDMD IRI SSDMD IRI SSDMD IRI

BC840 23.03 28.68 16.41 22.65 6.72 9.72

RO041 22.72 22.15 17.20 16.80 5.91 5.66

GA762 38.30 45.87 30.32 34.41 13.08 16.02

GU513 45.43 54.74 34.00 41.41 9.84 11.90

Table 4: Summary of hmF2 error statistics for all stations using SSDMD and IRI.

components individually alleviates the problem of having large single-step gradients in541

the measurement data that would prevent DMD from fitting any stable modes. With542

each connected component, we produced a set of DMD eigenvalues and modes that summed543

coherently to form the SSDMD model. The final foF2 and hmF2 forecasts were then de-544

termined from the predicted EDPs.545

SSDMD is one among many recent attempts to improve short-term forecasts of the546

foF2 and hmF2 parameters (cf. Perrone & Mikhailov, 2022; Wang et al., 2020; Tsagouri547

et al., 2018; Mikhailov & Perrone, 2014; Zhang et al., 2014). While other methods gen-548

erally treat past foF2 or hmF2 measurements as inputs to the model, SSDMD instead549

uses the full EDP. The number of DMD modes is limited by the initial dimensionality550

of the data; see Equation 8. Therefore, if the data used to generate the model only con-551

sisted of the foF2 and hmF2 parameters, we would be restricted to a maximum of two552

eigenvalues. Instead, using the high-dimensional EDP from the sounder gives our method553

far richer spectral properties.554

We note that all profile data in this study are autoscaled. This is an inherent data555

limitation as there are no widely available manually scaled data sets that are of a size556

suitable for statistical analysis. However, future studies with SSDMD and manually scaled557

data may reveal additional insights into the spatial and temporal distributions of fluc-558

tuations. Despite using autoscaled EDPs to construct the SSDMD models, our forecast559

errors reflect the method’s predictions of foF2 and hmF2 and not the full profile.560

The SSDMD algorithm is computationally efficient compared to physics-based mod-561

els such as TIME-GCM or SAMI3, fitting a model and simulating a 5-minute resolution,562

2-day forecast on the order of seconds using a single core on a consumer laptop. There-563

fore, SSDMD is lightweight enough to be updated in near-real-time as additional data564

are obtained, and it adapts to different measurement cadences without any changes to565

the model parameters. Additionally, SSDMD requires far less data to generate and up-566

date than empirical models like IRI or assimilation models like IRI-Real-Time-Assimilative-567

Mapping (IRTAM) (Galkin et al., 2012) and the Global Assimilation of Ionospheric Mea-568

surements (GAIM) model (Schunk et al., 2004). With limited observations, as is the case569

with a single vertical ionosonde, SSDMD can produce reasonable forecasts of the aver-570

age profile dynamics in the low, mid, and high latitudes. With high enough measurement571

cadence, the method should produce reliable short-term forecasts during periods of ei-572
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ther solar maximum or solar minimum. A final added benefit of the SSDMD approach573

is the model has only four major hyperparameters, see Table 2, making it relatively sim-574

ple to tune when necessary.575

SSDMD fits a linear model to an expansion of full EDP time series and thus may576

be seen as an autoregressive approach to forecasting foF2 and hmF2, and the simplic-577

ity of the approach makes it accessible to a wide range of operational and research ap-578

plications. Still, the method is not without its limitations, as SSDMD does not account579

for any external driving forces such as solar activity, tidal forcing, or geomagnetic ac-580

tivity. As such, model forecast accuracy is highly dependent on there being strong cor-581

relations between the measurement and forecast periods at each time of day. Predict-582

ing anomalous events in the data is not possible without the inclusion of driving forces.583

Extending SSDMD further to incorporate external forcing is the topic of future devel-584

opment and, combined with longer measurement series, could allow for a significant in-585

crease in forecast accuracy over much longer prediction windows. The DMD method can586

be modified to include control variables (Proctor et al., 2016), and in Mehta et al. (2018)587

a version of this method was implemented for a global model to great effect. Neverthe-588

less, this model was fit using simulated data, whereas SSDMD aims to address the mul-589

tiscale nature of measured EDPs. For this reason, the applicability of SSDMD to peri-590

ods of prolonged or recurrent F-layer perturbations during quiet geomagnetic conditions591

may also be explored in future work. These disturbances can induce long-lived devia-592

tions in foF2 and hmF2 with magnitudes that far exceed climatology (Perrone et al., 2020;593

Zawdie et al., 2020) which would not necessarily be captured by empirical models with594

drivers derived from geomagnetic and solar indices.595

While the method was developed for one-dimensional observations of the ionosphere596

at a single sounder station, in future work, data from the global network of sounders may597

be used. However, a global model will require fitting additional spatial expansion func-598

tions to interpolate between the stations. Finally, data spanning longer time periods may599

also be used to extract seasonal and solar cycle dynamics. The method of SSDMD is ul-600

timately not limited to ionospheric prediction, and it should be adaptable not only to601

other space weather domains, but many other systems that involve low-dimensional dy-602

namics embedded in high-dimensional, multiscale observations.603

5 Data Availability Statement604

The code used in this study is openly available at https://github.com/JayLago/605

SSDMD-Ionosphere or at the permanent release link, https://doi.org/10.5281/zenodo606

.7109436. The data used was obtained through the LGDC, https://giro.uml.edu/607

didbase/, using the SAO Explorer program, for which we are grateful to the develop-608

ers and maintainers. The authors would like to thank Dr. Terrance Bullet from the Na-609

tional Centers for Environmental Information, NOAA, as well as Dr. Ivan Galkin from610

the LGDC for the data from the Boulder, CO Digisonde station they continue to col-611

lect and make available.612

Appendix A Koopman Mode Analysis613

Dynamic Mode Decomposition may be seen as a finite-dimensional approximation614

to the Koopman operator (Koopman, 1931). The Koopman operator demonstrates how615

the equations for a generic nonlinear dynamical system may be rewritten as a linear infinite-616

dimensional operator acting on measurement functions of the system. This begins by con-617

sidering a generic dynamical system,618

d

dt
y(t) = f(y(t)), y(0) = y0 ∈M ⊆ RNs , (A1)619
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whereM is some connected, compact subset of RNs and define an observable, g(y(t)),620

such that g : M 7→ C. Denoting the affiliated flow, y(t) = S(t;y), we may rewrite621

the system using the Koopman operator, Kt,622

Ktg(y) = g (S(t;y)) . (A2)623

We see Kt is linear since624

Kt(αg1(y) + βg2(y)) = αg1(S(t;y)) + βg2(S(t;y))625

= αKtg1(y) + βKtg2(y). (A3)626

Following (Alford-Lago et al., 2022), we see that with some basic assumptions, i.e. if we627

choose observables such that they are square-integrable and supposeM is invariant with628

respect to the flow, we have simplified a problem of determining some unknown nonlin-629

ear function f(y(t)) to one of finding an eigendecomposition of the linear operator, Kt.630

Moreover, by finding the Koopman eigenfunctions631

{ϕj}∞j=1 (A4)632

and affiliated eigenvalues633

{λj}∞j=1, (A5)634

where635

Ktϕj = etλjϕj , j ∈ {1, 2, . . . }, (A6)636

then we have a modal decomposition for any other observable, g, so that637

g(y) =

∞∑
j=1

cjϕj(y), (A7)638

and we can track the evolution of g(y) along the flow with the formula,639

Ktg(y) =

∞∑
j=1

cje
tλjϕj(y). (A8)640

See (Budisić et al., 2012) and (Mezić, 2019) for more in-depth treatments of the Koop-641

man operator and its properties, (Mezić, 2005; Kutz et al., 2016) for deeper connections642

between DMD and Koopman, and (Schmid, 2010; Tu et al., 2014; Williams et al., 2015)643

for additional details on the DMD algorithm and its variations. We point out that the644

Koopman operator is most naturally formulated with respect to Lagrangian data while645

in this work we focus on analyzing Eularian data, that is to say, we assume the yj ob-646

servations in our data stream are measurements of the EDP at fixed positions in alti-647

tude. Were one to develop effective Euler-to-Lagrangian maps for the data sets studied648

herein, this would open up a wider range of tools related to the DMD method. This is649

a subject for future research.650

Appendix B Pseudocode Algorithm651

The complete SSDMD method is summarized in Algorithm 1. We assume famil-652

iarity with standard numerical methods for computing the reduced Singular Value De-653

composition (SVD), eigenvalue decomposition, solving an initial value problem, and com-654

puting 1-dimensional wavelet decompositions. When computing the mean profiles over655

24-cycles, use Equation 24. The algorithm returns the reconstructed time series of the656

input data along with the DMD eigenvalues, modes, and eigenfunctions.657
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Algorithm 1: SSDMD

Data: Y ∈ RNS×NT such that each column, yi ∈ RNS , is an observation of the
system δt time from yi−1.

Result: Ŷ,W,Λ,Φ
Initialize: set DMD threshold cdmd > 0, and correlation threshold ccorr > 0.
begin

Ỹ ←− discreteWaveletDecomposition(Y)

ỸC, NC ←− correlatedConnectedComponents(Ỹ, ctr)
for n=1 . . .NC do

ȲC
n ←− meanDailyCycles(ỸC

n )

ȲC
n,− ←−

[
ȳC
n,1 ȳC

n,2 · · · ȳC
n,m−1

]
ȲC

n,+ ←−
[
ȳC
n,2 ȳC

n,3 · · · ȳC
n,m

]
U,Σ,V† ←− reducedSV D(ȲC

n,−, Cdmd)

K←− ȲC
n,+VΣ−1U†

Wn,Λn ←− eigenvalueDecomposition(K)

Φn ←− solveIV P (Wn, Ȳ
C
n,−)

Ŷn ←−WnΛnΦn

Ŷ ←−
∑NC

n=1 Ŷn

W←− [W1 W2 · · · Wn]
Λ←− [Λ1 Λ2 · · · Λn]
Φ←− [Φ1 Φ2 · · · Φn]

The authors would like to especially thank Dr. Douglas Drob from the Naval Re-661

search Laboratory Space Science Division for his insights and perspective on the use of662

this method.663
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