Denitrification losses in response to N fertiliser rates - a synthesis of high temporal resolution N2O, in-situ 15N2O and 15N2 measurements and fertiliser 15N recoveries in intensive sugarcane systems

Naoya Takeda¹, Johannes Friedl², Robert Kirkby¹, David Rowlings¹, Clemens Scheer³, Daniele De Rosa⁴, and Peter R Grace¹

¹Queensland University of Technology ²Queensland Institute of Technology ³IMK-IFU, Karlsruhe Institute of Technology ⁴European Commission, Joint Research Centre (JRC), Sustainable Resources Directorate, Land Resources Unit

December 22, 2022

Abstract

Denitrification is a key process in the global nitrogen (N) cycle, causing both nitrous oxide (N2O) and dinitrogen (N2) emissions. However, estimates of seasonal denitrification losses (N2O+N2) are scarce, reflecting methodological difficulties in measuring soil-borne N2 emissions against the high atmospheric N2 background and challenges regarding their spatio-temporal upscaling. This study investigated N2O+N2 losses in response to N fertiliser rates (0, 100, 150, 200 and 250 kg N ha-1) on two intensively managed tropical sugarcane farms in Australia, by combining automated N2O monitoring, in-situ N2 and N2O measurements using the 15N gas flux method and fertiliser 15N recoveries at harvest. Dynamic changes in the N2O/(N2O+N2) ratio (< 0.01 to 0.768) were explained by fitting generalised additive mixed models (GAMMs) with soil factors to upscale high temporalresolution N2O data to daily N2 emissions over the season. Cumulative N2O+N2 losses ranged from 12 to 87 kg N ha-1, increasing non-linearly with increasing N fertiliser rates. Emissions of N2O+N2 accounted for 31–78% of fertiliser 15N losses and were dominated by environmentally benign N2 emissions. The contribution of denitrification to N fertiliser loss decreased with increasing N rates, suggesting increasing significance of other N loss pathways including leaching and runoff at higher N rates. This study delivers a blueprint approach to extrapolate denitrification measurements at both temporal and spatial scales, which can be applied in fertilised agroecosystems. Robust estimates of denitrification losses determined using this method will help to improve cropping system modelling approaches, advancing our understanding of the N cycle across scales.

Hosted file

952409_0_art_file_10553641_rn85fj.docx available at https://authorea.com/users/568832/ articles/614545-denitrification-losses-in-response-to-n-fertiliser-rates-a-synthesisof-high-temporal-resolution-n2o-in-situ-15n2o-and-15n2-measurements-and-fertiliser-15nrecoveries-in-intensive-sugarcane-systems

1	Donitrification losses in response to N fortiliser rates — a synthesis of high temperal
2	Denitrincation losses in response to $1\sqrt{16}$ refunser rates – a synthesis of high temporar
3	resolution N_2O , in-situ ${}^{13}N_2O$ and ${}^{13}N_2$ measurements and fertiliser ${}^{13}N$ recoveries in
4	intensive sugarcane systems
5	
6	Naoya Takeda* ¹ , Johannes Friedl* ¹ , Robert Kirkby ¹ , David Rowlings ¹ , Clemens Scheer ^{1, 2} , Daniele
7	De Rosa ³ , Peter Grace ¹
8 9	¹ Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
10	² IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
11	³ European Commission, Joint Research Centre (JRC), Sustainable Resources Directorate, Land
12	Resources Unit, I-21027 Ispra, Italy
13	
14	*Corresponding Authors: Naoya Takeda (<u>n3.takeda@qut.edu.au</u>), Johannes Friedl
15	(johannes.friedl@qut.edu.au)
16	
17	Key Points:
18	• A novel method to estimate N ₂ O+N ₂ losses by combining high-frequency N ₂ O data, the in-situ
19	¹⁵ N gas flux method and fertiliser ¹⁵ N recoveries
20	• Denitrification losses in sugarcane systems were 12–87 kg N ha ⁻¹ mostly as N_2 (> 94%) and
21	increased non-linearly with increasing N rates
22	• Denitrification accounted for 31–78% of N fertiliser losses while the proportion of reactive N
23	losses increased with increasing N rates

24 Abstract

25 Denitrification is a key process in the global nitrogen (N) cycle, causing both nitrous oxide (N_2O) and dinitrogen (N_2) emissions. However, estimates of seasonal denitrification losses (N_2O+N_2) are scarce, 26 reflecting methodological difficulties in measuring soil-borne N₂ emissions against the high atmospheric 27 N₂ background and challenges regarding their spatio-temporal upscaling. This study investigated N₂O+N₂ 28 losses in response to N fertiliser rates (0, 100, 150, 200 and 250 kg N ha⁻¹) on two intensively managed 29 tropical sugarcane farms in Australia, by combining automated N₂O monitoring, in-situ N₂ and N₂O 30 measurements using the ¹⁵N gas flux method and fertiliser ¹⁵N recoveries at harvest. Dynamic changes in 31 32 the N₂O/(N₂O+N₂) ratio (< 0.01 to 0.768) were explained by fitting generalised additive mixed models (GAMMs) with soil factors to upscale high temporal-resolution N2O data to daily N2 emissions over the 33 34 season. Cumulative N₂O+N₂ losses ranged from 12 to 87 kg N ha⁻¹, increasing non-linearly with increasing N fertiliser rates. Emissions of N₂O+N₂ accounted for 31-78% of fertiliser ¹⁵N losses and were dominated 35 by environmentally benign N2 emissions. The contribution of denitrification to N fertiliser loss decreased 36 37 with increasing N rates, suggesting increasing significance of other N loss pathways including leaching and runoff at higher N rates. This study delivers a blueprint approach to extrapolate denitrification 38 39 measurements at both temporal and spatial scales, which can be applied in fertilised agroecosystems. Robust estimates of denitrification losses determined using this method will help to improve cropping 40 system modelling approaches, advancing our understanding of the N cycle across scales. 41

42

43 Plain Language Summary

Denitrification is a key soil process in the global nitrogen (N) cycle. Denitrification produces a potent 44 greenhouse gas, nitrous oxide (N_2O), but also turns reactive N into environmentally benign dinitrogen (N_2). 45 The response of these N losses to N fertiliser inputs is critical to reducing environmental impacts while 46 47 maintaining crop productivity in agriculture. However, difficulties in measuring and upscaling N₂ emissions at the farm scale hinder estimation of denitrification losses, leaving denitrification as a major uncertainty 48 49 for N budgets. This study quantified denitrification losses in response to N fertiliser rates on sugarcane 50 farms in Australia, by combining automated greenhouse gas monitoring systems, N isotope techniques and 51 statistical models. This unique approach demonstrated denitrification as a major N loss pathway, increasing 52 nonlinearly with increasing N rates. Fertiliser N budgets showed that environmentally harmful N losses increased more than proportionally with N inputs. These findings emphasise that excessive N fertiliser use 53 54 leads to agronomic inefficiency with severe adverse effects on the surrounding ecosystems such as the Great Barrier Reef. The novel approach presented here will advance our understanding of N cycling across scales 55 56 and thus aid in reducing the environmental footprint of global agricultural production.

57

58 **1 Introduction**

59 Denitrification is a key process in the global nitrogen (N) cycle, reducing nitrate (NO_3^{-}) to gaseous 60 N emissions in the form of nitrous oxide (N_2O) and dinitrogen (N_2). Emissions of N_2O contribute to climate 61 change, as N₂O is a long-lived atmospheric trace gas with a global warming potential 273 times higher than 62 that of carbon dioxide (CO₂) over a 100-year period (IPCC, 2021) and the largest remaining threat to the stratospheric ozone layer (Portmann et al., 2012; Ravishankara et al., 2009). Emissions of N2, while 63 environmentally benign, still represent a loss of N from the system, with potential detrimental effects on 64 crop growth and productivity in agricultural systems. Despite a growing body of denitrification research 65 delivering both N_2O and N_2 data from different agroecosystems, the ratio between reactive N_2O and N_2 66 remains a major uncertainty for N budgets across scales (Friedl et al., 2020a; Scheer et al., 2020). Growing 67 evidence of non-linear responses of N₂O emissions to N fertiliser rates (Shcherbak et al., 2014; Takeda et 68 al., 2021a) together with increasing fertiliser ¹⁵N loss with increasing N rates (Rowlings et al., 2022; 69 Schwenke & Haigh, 2016; Takeda et al., 2021b) in intensive cropping systems suggests excessive N inputs 70 71 promote denitrification losses and lead to inefficiency of N use and adverse environmental impacts. Constraining the response of denitrification losses to N fertiliser rates is therefore critical for sustainable N 72 management strategies to reduce N losses while maintaining crop productivity. 73

Yet, measuring N_2 emissions from the soil against the high atmospheric N_2 background remains 74 challenging (Friedl et al., 2020a; Groffman et al., 2006), reflected in the small number of studies quantifying 75 both N₂O and N₂ in the field. The Helium/Oxygen atmosphere method (He/O₂ method) (Butterbach-Bahl 76 et al., 2002; Scholefield et al., 1997) and the ¹⁵N gas flux method (Mosier & Schimel, 1993) are considered 77 suitable for the direct quantification of N2 and N2O from soils. For the He/O2 method, soil cores are 78 79 incubated in the laboratory and the headspace atmosphere inside the closed incubation system is replaced with a He/O₂ mixture to measure soil-borne N₂ emissions. Field-scale seasonal/annual N₂ emissions can be 80 estimated by repeated short laboratory measurements of soil cores, which are returned to the field after 81 incubation. Uncertainty in the cumulative emissions with this approach however remains high due to 82 83 disturbance of the soil, as in-situ measurements are not possible with this method (Chen et al., 2019; Zistl-Schlingmann et al., 2019). The ¹⁵N gas flux method is the only method to measure N₂ emissions under both 84 laboratory and field conditions. The method requires highly enriched ¹⁵N fertiliser to be applied to a 85 designated plot. Gas samples are taken using the static chamber method and analysed for their different 86 87 isotopologues of N₂ and N₂O via isotope ratio mass spectrometry (IRMS) (Friedl et al., 2020a). As a result, evaluation of denitrification losses under field conditions is scarce and mostly limited to measurement 88 89 periods of less than a month (Baily et al., 2012; Buchen et al., 2016; Friedl et al., 2017; Warner et al., 2019;

Weier et al., 1998), as the sensitivity of this method declines in response to the decrease of the ¹⁵N enrichment in the soil NO₃⁻ pool. Due to the shortcomings of available direct measurement methods, estimates of cumulative denitrification losses over the crop growing season require upscaling approaches accounting for the highly dynamic response of denitrification to its drivers.

Denitrification losses have been estimated by applying the average ratio between N₂O and N₂ 94 95 emissions measured for a short period under laboratory conditions to N₂O emissions measured over the crop growing season under field conditions (Scheer et al., 2009). Burchill et al. (2016) measured the N₂:N₂O 96 97 ratio bimonthly in the field and interpolated the ratio linearly between sampling events to apply to more 98 frequent N₂O measurements. However, the ratio between N₂O and N₂ is highly variable and changes rapidly in a non-linear fashion depending on interactions between environmental drivers of denitrification such as 99 100 soil water content (Friedl et al., 2016), temperature (Bizimana et al., 2021), C availability (Qin et al., 2017) and N substrate availability (Chen et al., 2019; Warner et al., 2019), leading to considerable bias and large 101 102 uncertainty in N₂ estimation if a fixed ratio is used. Wang et al. (2020) correlated the $N_2O/(N_2O+N_2)$ ratio measured under laboratory conditions to multiple soil factors and applied the ratio to field-measured N₂O 103 to estimate field-scale seasonal N_2 emissions. These approaches account for the dynamic response of the 104 N₂:N₂O ratio to key drivers. However, the absence of plants may bias the measured ratios, as plant-soil-105 microbe interactions are known to both affect magnitude and partitioning of N2 and N2O emissions (Henry 106 et al., 2008; Malique et al., 2019). Furthermore, inevitable disturbance of soil through sampling is also of 107 concern, while the lack of in-situ measurements hinders the direct validation of the N₂:N₂O ratio calculated 108 as a function of key drivers. These shortcomings denote a high uncertainty of field-scale seasonal N2 109 estimates using current approaches and demand a refined method that allows for robust estimates of N2 and 110 N_2O emissions. Critically, accounting for the dynamic responses of the ratio between N_2O and N_2 to soil 111 factors needs to occur under field conditions in the presence of plants. Such estimates are urgently needed 112 113 to constrain N budgets in different agroecosystems and to refine N fertiliser management strategies for both 114 agronomic and environmental benefits.

The aim of this study was to estimate seasonal denitrification losses (N_2O+N_2) in response to N 115 fertiliser rates in intensively managed tropical sugarcane (Saccharum spp.) systems in Australia, by 116 combining high temporal resolution N₂O measurements with automated greenhouse gas (GHG) monitoring 117 systems, in-situ measurements of N₂O/(N₂O+N₂) ratio with the ¹⁵N gas flux method and fertiliser ¹⁵N 118 119 recoveries. The dynamic changes in the $N_2O/(N_2O+N_2)$ ratio observed in the field were explained by fitting 120 generalised additive mixed models (GAMMs) with soil temperature, water-filled pore space (WFPS), soil 121 mineral N contents and CO₂ emissions, enabling spatio-temporal upscaling of high temporal frequency N₂O measurements to N2 emissions. Fertiliser-derived N2O+N2 losses were further calculated and compared 122

123 with fertiliser ¹⁵N loss, corroborating the estimates of N_2O+N_2 at the cumulative scale and differentiating

124 fertiliser ¹⁵N loss pathways. Establishing the response of N₂O+N₂ losses as well as their proportion of

125 fertiliser ¹⁵N loss to N fertiliser application rates with this innovative approach will refine N budget

126 estimates across scales and allow evaluation of N fertiliser management strategies accounting for N losses

127 from agroecosystems.

128

129 2 Materials and Methods

In this study, in-situ measurements of N₂O and N₂ emissions from two sugarcane systems were combined with previously reported high temporal resolution measurements of N₂O (Takeda et al., 2022; Takeda et al., 2021a) and recovery of ¹⁵N-labelled fertiliser in the plant, soil and N₂O (Takeda et al., 2022; Takeda et al., 2021b) presented in the previous studies to quantify seasonal N₂O and N₂ losses.

134

135 2.1 Study site

The field experiments were conducted on commercial sugarcane farms in Burdekin, OLD (19° 37' 136 4" S, 147° 20' 4" E) from October 2018 to August 2019 and in Mackay, QLD (21° 14' 4" S, 149° 04' 6" 137 E) from October 2019 to August 2020, described in details in Takeda et al. (2022). The climate is tropical 138 in both Burdekin and Mackay. The soil is classified as Brown Dermosol and Brown Kandosol in the 139 140 Australian Soil Classification (Isbell, 2016), or Luvisol and Fluvisol in the World Reference Base (WRB) Classification (IUSS Working Group, 2014), at the Burdekin and Mackay sites, respectively. Sugarcane 141 varieties Q240 and Q208 were planted in 2015 and 2016 and the crop was the 3rd ration during the 142 experiment at the Burdekin and Mackay sites, respectively. Irrigation was applied by furrow irrigation at 143 the Burdekin site and overhead sprinkler at the Mackay site. Sugarcane is burnt before harvest to remove 144 the leaves at the Burdekin site, leaving little trash (crop residues) on the ground. 'Green cane trash 145 146 blanketing (GCTB)', a practice where the cane is harvested green and the trash is spread over the ground, is practised at the Mackay site. Selected soil physical and chemical parameters are shown in Table 1. 147

	<u>.</u>	
Variable	Burdekin	Mackay
BD (g cm ⁻³)	1.3	1.1
pH (H ₂ O)	6.92	4.13
Total C (%)	1.60	1.35
Total N (%)	0.08	0.09
Clay (%)	35.4	22.2
Silt (%)	26.0	15.9
Sand (%)	38.7	61.9
Mineral N (kg N ha ⁻¹)	37.0	31.8

149 **Table 1** Soil properties at 0-0.2 m depth at the Burdekin and Mackay sites

150

151 2.2 Experimental design

A detailed description of the experimental design and setup at the Burdekin and Mackay sites can 152 be found in Takeda et al. (2021a) and Takeda et al. (2022), respectively. Briefly, treatments at the Burdekin 153 154 site were arranged in a randomised strip design with four plots across two strips for each N treatment. The 155 experiment at the Mackay site had a completely randomised block design with three replicates per treatment, accompanied by an unfertilised control (0N) plot with three subplots. Fertiliser N rate treatments 156 included 0N, 150 kg N ha⁻¹ (150N), 200 kg N ha⁻¹ (200N) and 250 kg N ha⁻¹ (250N), plus 100 kg N ha⁻¹ 157 158 (100N) at the Mackay site only. The recommended N application rate was based on the district yield 159 potential and soil C content as outlined in the SIX EASY STEPS protocol of the Australian sugar industry 160 (Schroeder et al., 2010) and was 150N at the Mackay site and 200N at the Burdekin site. Urea was applied 161 by banding the fertiliser 10 cm deep and 30 cm from the bed centre on both sides of the cane row at the Burdekin site and by stool splitting 10 cm deep at the bed centre of the cane row at the Mackay site. For 162 the ¹⁵N recovery in the soil and the plant, a 2.0 m section was excluded from the application of unlabelled 163 N fertiliser in each plot and ¹⁵N enriched urea fertiliser (5 atom%) in solution was manually applied at the 164 165 corresponding rate, matching the N fertiliser placement at the respective site.

166

167 2.3 Measurement of N₂O emissions using an automated chamber system

Soil-borne N_2O and CO_2 emissions were measured at a high temporal resolution using an automated chamber system (Grace et al., 2020) from 17 October 2018 to 15 August 2019 at the Burdekin site and from 3 October 2019 to 24 August 2020 at the Mackay site. Details of the automated chamber system are given in Supporting Information S1.1. Manual gas sampling was conducted for the control plots of the Mackay site by the static closed chamber method (Friedl et al., 2017), detailed in Supporting Information S1.2. The 173 placement of the chambers accounted for N fertiliser placement and irrigation practice at each site: At the

Burdekin site, chambers were installed covering the area from (a) the fertiliser band to the centre of the bed

(bed chamber) and (b) the fertiliser band the centre of the furrow (furrow chamber). At the Mackay site,
bed chambers (a) were placed at the centre of the bed (i.e., on the fertiliser band) and furrow chamber

measurements (b) were substituted with those from the control plots. Daily N_2O and CO_2 emissions were

178 calculated by averaging the measured hourly fluxes over a 24-h period from each chamber and multiplying

by 24. Missing daily N_2O and CO_2 emissions between measurements were imputed by linear interpolation.

180

181 2.4 ¹⁵N-labelled N_2 and N_2O sampling and analysis in the micro plots

The application of highly enriched ¹⁵N urea fertiliser enabled us to quantify N₂ and N₂O emissions 182 and their respective ratio, as well as the contribution of N fertiliser to N2 and N2O emissions. Micro plots 183 were established alongside the main plots with N fertiliser rates of 150, 200 and 250 kg N ha⁻¹ at the 184 Burdekin site and with 100, 150, 200 and 250 kg N ha⁻¹ at the Mackay site. The micro plots were arranged 185 in a completely randomised block design with four replicates. A steel base $(0.22 \text{ m} \times 0.22 \text{ m} \text{ at the Burdekin})$ 186 site and 0.2 m \times 0.4 m at the Mackay site) was installed in each micro plot and ¹⁵N enriched urea fertiliser 187 188 (70 atom%) was applied inside the base at the corresponding rates. Gas sampling was conducted with static closed chambers at the Burdekin site from November 2018 to February 2019 and with semi-automated 189 chambers at the Mackay site from October 2019 to January 2020 (Takeda et al. (2022), Supporting 190 Information S1.3). The gas samples were analysed for the concentration of N₂O and CO₂ using a Shimadzu 191 GC-2014 Gas Chromatograph (Shimadzu, Kyoto, Japan) and for different isotopologues of N2 and N2O 192 using an Isotope Ratio Mass Spectrometer (IRMS) (20-22 Sercon Limited, UK). 193

194

195 2.5 The 15 N gas flux method

The ¹⁵N enrichment of the soil NO₃⁻ pool undergoing denitrification (a_n) and the fraction of N₂ and 196 N_2O emitted from this pool (f_p) were calculated following the equations outlined by Spott et al. (2006) and 197 given in the Supporting Information S1.4. Multiplying the headspace concentrations of N₂ by the respective 198 f_p value gave N₂ emitted via denitrification, with fluxes expressed in g N₂-N emitted ha⁻¹ d⁻¹. The precision 199 of the IRMS for N_2 based on the standard deviation of atmospheric air samples (n = 18) at 95% confidence 200 intervals was 4.4×10^{-7} and 6.0×10^{-7} for ${}^{29}R$ (${}^{29}N_2/{}^{28}N_2$) and ${}^{30}R$ (${}^{30}N_2/{}^{28}N_2$), respectively. The 201 corresponding method detection limit ranged from 0.005 g N₂-N ha⁻¹ d⁻¹ with a_p assumed at 50 atom % to 202 0.014 g N₂-N ha⁻¹ d⁻¹ with a_p assumed at 20 atom %. For each gas sample, the product ratio RN₂O was 203 204 calculated as $N_2O/(N_2O+N_2)$.

206 2.6 Plant and soil sampling and analyses

Plant and soil samples were taken from each of the 2.0 m sections prior to harvest (on 27-28 August 207 2019 at the Burdekin site and 25-26 August 2020 at the Mackay site). The procedure of plant and soil 208 sampling and analyses are detailed in Takeda et al. (2021b) and Takeda et al. (2022) as well as Supporting 209 Information S1.5. Briefly, aboveground sugarcane biomass, trash on the ground, two green leaves at the 3rd 210 node from the section and the adjacent row and remaining stools and major roots of sugarcane were 211 212 harvested. Soil samples were taken at three to four points between the bed and furrow centres using a soil 213 corer and a post-hole driver down to 1.0 m. The dried plant and soil samples were then finely ground and analysed for N and ¹⁵N content via IRMS analysis (20–22 Sercon Limited, UK). 214

215

216 2.7 ¹⁵N calculations

Fertiliser ¹⁵N recovered in the plant, soil, N₂O and N₂ emissions were then calculated by ¹⁵N mass balance (Friedl et al., 2017; Rowlings et al., 2016; Takeda et al., 2022) using equations detailed in the Supporting Information S1.6. Overall fertiliser ¹⁵N loss was calculated by the difference between the N applied and fertiliser ¹⁵N recovered in the soil and plant. The contribution of soil-derived N to plant N uptake, N₂O and N₂ emissions was calculated by the difference between total N and fertiliser ¹⁵N recovered in each N pool. This contribution of soil-derived N includes residue fertiliser N from the previous seasons, N in the crop residue and other sources such as N deposition or fixation.

224

225 2.8 Auxiliary measurements

For soil NH_4^+ and NO_3^- measurements, soil samples (0–20 cm depth) were taken in each plot one 226 day after fertilisation, every 3–7 days for the first three months and monthly thereafter. At each sampling 227 event, soils were taken from the bed near the fertiliser band at the Burdekin site where N fertiliser was 228 applied on both sides of the bed while from both bed and furrow at the Mackay site where N fertiliser was 229 applied at the centre of the bed. Soil NH_4^+ and NO_3^- were extracted by adding 100 mL of 2 M KCl to 20 g 230 of air-dried soil and shaking the solution for one hour, followed by NH_4^+ and NO_3^- content measurements 231 using a GalleryTM Discrete Analyzer (Thermo Fisher Scientific, USA). Volumetric soil water content was 232 233 measured at 10 cm depth every 30 minutes using a field-calibrated FDR soil moisture probe (EnviroSCAN, Sentek, Australia) and then averaged per day. Then, WFPS was calculated from the volumetric soil water 234 content using the measured bulk density assumed constant during the season. Soil temperature in the surface 235 soil layer (0-10 cm) was measured every five minutes using a PT100 probe (IMKO, Germany) and then 236 237 averaged per day.

238

239 2.9 Upscaling N₂ emissions and statistical analysis

Statistical analyses and graphical presentations in this study were conducted using R statistical software version 3.5.2 (R Core Team, 2018) with a significant level set at P < 0.05. Gap-filling of missing daily measurements of N₂O and CO₂ emissions and soil NH₄⁺ and NO₃⁻ contents was conducted with linear interpolation using "imputeTS" package (Moritz & Bartz-Beielstein, 2017).

244 Emissions of N_2 at the plot scale were calculated by fitting a statistical model trained with RN_2O observed in the micro plots and applying the predicted RN_2O to high-frequency measurements of N_2O 245 emissions in the main plots. First, daily RN₂O measured in the micro plots at both sites were modelled per 246 N rate using the following predictors: (i) soil temperature and WFPS measured at each site, (ii) soil NH4⁺ 247 and NO_3^- contents measured near the band at the corresponding rate in the main plots, (iii) CO_2 emissions 248 measured in the micro plots and (iv) site as a factor. Then, daily RN₂O in the main plots were predicted per 249 plot for each bed and furrow position for the whole crop growing season using soil temperature, WFPS, 250 soil NH_4^+ and NO_3^- contents and daily CO_2 emissions measured in the main plots. Daily N_2 emissions were 251 calculated per plot for each bed and furrow position for the whole crop growing season as the product of 252 253 predicted RN₂O and daily N₂O emissions measured in the main plots. Finally, N₂ emissions were upscaled to the plot scale by the area ratio bed: furrow = 1:1 at the Burdekin site and bed: furrow = 1:2 at the Mackay 254 255 site. Cumulative N₂ emissions were calculated by the sum of daily upscaled N₂ emissions for each plot over the whole crop growing season. 256

Modelling of RN_2O and gap-filling of $NdffN_2$ were conducted by fitting generalised additive mixed models (GAMMs), using a package "mgcv" (Wood, 2011) and detailed in Supporting Information S1.7. Briefly, GAMMs can quantify non-linear relationships without specifying the functional forms (De Rosa et al., 2020; Dorich et al., 2020), which were used to analyse RN_2O in response to soil variables and Ndff N_2 in response to days after fertilisation (DAF) and N rates. Furthermore, GAMMs allow the use of (i) the beta family suitable to model proportions ranging from 0 to 1 and (ii) random factors to handle repeated measurements.

Effects of the sites, N fertiliser treatments and bed/furrow positions on RN₂O and N₂ emissions as well as fertiliser-derived N₂O+N₂ in the proportion of the N fertiliser applied and the N fertiliser lost were examined by fitting generalised linear (mixed) models, using packages "Ime4" (Bates et al., 2015) and "mgcv" (Wood, 2011). The beta family was specified for RN₂O and the proportions of fertiliser-derived N₂O+N₂ and the gamma family for N₂ together with chamber/plot as a random factor in the case of daily variables. To establish the response of cumulative N₂O+N₂ losses to N rates, (generalised) linear models were fitted for each site.

272 3 Results

273 3.1 Daily RN₂O and N₂ emissions

Daily RN₂O observed ranged from < 0.01 to 0.768 (Fig. 1) during ~ 120 DAF of the measurement period, peaking at values > 0.25 within 30 DAF at the Burdekin and within 60 DAF at the Mackay site. For the remainder of the measurement period, RN₂O stayed below 0.1. The range of observed RN₂O averaged for each N rate was 0.030–0.092 at the Burdekin site, smaller than 0.082–0.189 at the Mackay site (Table 2). Overall, the observed daily RN₂O correlated positively with the N fertiliser rates (Table 2).

279

280

Figure 1 Observed RN₂O near the band in the micro plots over the measurement period at N rates of 100, 150, 200 and 250 kg N ha⁻¹ at the Burdekin (a) and Mackay (b) sites. Points and error bars indicate mean values and standard errors

284

285

287	Table 2 The RN ₂ C) observed daily	, RN ₂ O pre	dicted daily fo	or bed and furrow	positions and R	N ₂ O calculated
-----	---------------------------------	------------------	-------------------------	-----------------	-------------------	-----------------	-----------------------------

with cumulative N_2O and N_2 emissions in response to N rates ranging from 0 to 250 kg N ha⁻¹, sites and

289 positions

Site	N rate	Observed RN ₂ O	Predicted RN ₂ O		RN ₂ O at cumulative
			Bed	Furrow	
Burdekin	0		0.054 ± 0.001	0.054 ± 0.001	0.024 ± 0.002
	150	0.030 ± 0.01	0.060 ± 0.002	0.061 ± 0.002	0.032 ± 0.003
	200	0.092 ± 0.02	0.061 ± 0.001	0.063 ± 0.001	0.028 ± 0.002
	250	0.072 ± 0.02	0.061 ± 0.001	0.062 ± 0.001	0.035 ± 0.001
Mackay	0		0.091 ± 0.002	0.087 ± 0.002	0.050 ± 0.001
	100	0.082 ± 0.02	0.104 ± 0.003	0.087 ± 0.002	0.048 ± 0.007
	150	0.133 ± 0.04	0.097 ± 0.002	0.086 ± 0.002	0.051 ± 0.005
	200	0.093 ± 0.03	0.115 ± 0.003	0.087 ± 0.002	0.058 ± 0.003
	250	0.189 ± 0.06	0.109 ± 0.003	0.087 ± 0.002	0.047 ± 0.007
P value					
Site		< 0.001	< 0.001		< 0.001
N rate		0.006	< 0.001		0.121
Position			< 0.	.001	

290

Fitting the RN₂O observed near the fertiliser band in the micro plots using the GAMM with Site, soil temperature, WFPS, soil NH₄⁺ and NO₃⁻ contents and CO₂ emissions as predictors showed 51.7% of deviance explained and 0.151 of root mean square error (RMSE). The predicted RN₂O was larger at the Mackay site compared to the Burdekin site (P < 0.001) as well as on the bed compared to the furrow position (P < 0.001) (Table 2). The predicted RN₂O increased with increasing N rates (P < 0.001) (Table 2), which was apparent within 50 DAF (Fig. 2). The predicted RN₂O showed larger values during the late crop growing season compared to < 90 DAF (Fig. 2).

299

Figure 2 Daily RN₂O predicted over the crop growing season across N rates 0, 100, 150, 200 and 250 kg N ha⁻¹ at the Burdekin (a) and Mackay (b) sites. Lines and shaded areas indicate predicted mean values and 95% confidence intervals

303

Daily N₂ emissions reached up to 5 kg N ha⁻¹ d⁻¹ within 50 DAF and stayed elevated for approximately 100 DAF with minor emissions for the remainder of the season (Fig. 3). Daily N₂ emissions increased with increasing N rates (P < 0.001) and were on average larger at the Mackay site compared to the Burdekin site (P < 0.001).

309

Figure 3 Daily N₂ emissions estimated over the crop growing season at N rates of 0, 100, 150, 200 and 250 kg N ha⁻¹ at the Burdekin (a) and Mackay (b) sites. Lines and shaded areas indicate predicted mean values and 95% confidence intervals, respectively

313

314 3.2 Cumulative denitrification losses (N_2O+N_2)

Cumulative denitrification losses (N_2O+N_2) for the whole growing season increased exponentially 315 from 11.9 ± 2.9 to 87.8 ± 14.4 kg N ha⁻¹ with increasing N fertiliser rates from 0 to 250 kg N ha⁻¹ at the 316 Burdekin site (Fig. 4). At the Mackay site, cumulative N_2O+N_2 emissions increased from 29.5 ± 2.5 kg ha⁻ 317 ¹ in the unfertilised treatment to a range from 71.7 ± 5.0 to 83.2 ± 6.5 kg N ha⁻¹ observed across N rates 318 from 100-250 kg N ha⁻¹, with no differences between N fertilised treatments (Fig. 4). Overall, cumulative 319 N_2O+N_2 emissions were larger at the Mackay site compared to the Burdekin site (P = 0.027). Cumulative 320 emissions of N2O accounted for 2.4-3.5% of N2O+N2 emissions at the Burdekin site, which was lower than 321 4.8–5.8% at the Mackay site (P < 0.001) (Table 2). 322

324

Figure 4 Cumulative denitrification losses over the crop growing season in response to N fertiliser rates at
 the Burdekin (blue) and Mackay (red) sites. Points and error bars indicate mean values and standard errors.
 Lines and shaded areas indicate fitted curves and 95% confidence intervals, respectively

- 328
- 329

330 3.3 Fertiliser N contribution to denitrification losses (N_2O+N_2)

Contribution of N fertiliser to N_2 emissions was high within 50 DAF, accounting for > 50% and 331 332 70% of N_2 emissions at the Burdekin and at the Mackay site, respectively, with a diminishing contribution for the rest of the measurement period (Fig. S1). Of the cumulative N_2 emissions, 51.0–57.5% and 43.1– 333 51.0% were derived from fertiliser N at the Burdekin and Mackay sites, respectively. Cumulative fertiliser-334 derived N₂O+N₂ emissions ranged from 23.9 to 45.8 and 34.2 to 41.7 kg N ha⁻¹ at the Burdekin and Mackay 335 sites, respectively (Fig. 5). Cumulative fertiliser-derived N₂O+N₂ emissions accounted for 30.8–33.3% and 336 30.5-77.5% of the overall fertiliser ¹⁵N loss, at the Burdekin and Mackay sites, respectively (Fig. 5). The 337 percentage of fertiliser N lost as N_2O+N_2 was larger at the Mackay site (P = 0.02) and decreased with 338 increasing N rates at both sites (P = 0.009). Contribution of fertiliser N to N₂O+N₂ emissions accounted for 339 340 15.9–18.3% and 16.7–35.9% of the N applied at the Burdekin and Mackay sites, respectively.

Emissions of N_2O+N_2 derived from soil N in the fertilised treatments were 22.9–42.1 and 35.4– 47.3 kg N ha⁻¹ at the Burdekin and Mackay sites, respectively.

343

344

Figure 5 Cumulative fertiliser-derived denitrification losses (red) in comparison to overall fertiliser ¹⁵N
loss (grey) in response to N fertiliser rates 100, 150, 200 and 250 kg N ha⁻¹ at the Burdekin (a) and Mackay
(b) sites. Error bars indicate standard errors

348

349 4 Discussion

The unique combination of high-frequency N₂O and in-situ N₂O/(N₂O+N₂) ratio (RN₂O) 350 measurements using automated GHG monitoring systems and ¹⁵N gas flux method together with GAMMs 351 enabled us to quantify field-scale N₂O and N₂ emissions in response to N fertiliser rates in two sugarcane 352 systems over the whole crop growing season. This method accounts for the dynamic nature of the RN₂O 353 354 considering the overlapping effects of key drivers of N2O and N2 production, delivering robust estimates of N₂ emissions at the field scale. Furthermore, comparing fertiliser-derived N₂O+N₂ emissions to fertiliser 355 ¹⁵N loss allowed us to validate the estimated N₂ emissions at the cumulative scale. Applying this method 356 across two intensively managed sugarcane systems showed a) > 80 kg N ha⁻¹ lost as N₂O+N₂ over the 357

- 358 growing season, with b) emissions dominated by N_2 accounting for > 95% of N_2O+N_2 losses, and c) that
- 359 31-78% of ¹⁵N fertiliser losses occurred in the form of N₂O+N₂. The method proposed here can be used as
- 360 a blueprint approach to deliver seasonal denitrification estimates, targeting a key uncertainty in N budgets
- 361 of different agroecosystems.
- 362

363 4.1 Estimating N₂ emissions over the crop growing season using RN₂O

364 Daily The high temporal variability of observed RN₂O ranging from < 0.01 to 0.768 (Fig. 1) emphasises the need to account for dynamic changes in RN₂O to estimate N₂ emissions. The use of GAMMs 365 in this study allowed us to express RN₂O as a function of soil water content, temperature, soil mineral N 366 content and CO₂ emissions, accounting for their effect on the RN₂O at both temporal and spatial scales (Fig. 367 2). Banding of N fertiliser on or beside the bed creates a distinct zone in and close to the band with high N 368 availability, decreasing towards the furrow. Direct measurements of RN₂O in the unfertilised furrow are 369 not possible with the ¹⁵N gas flux method, as it requires the application of ¹⁵N fertiliser, highlighting the 370 need for the GAMMs to estimate RN₂O accounting for changes in N availability in the furrow. Higher 371 values of RN₂O as a result of higher N-substrate availability are consistent with the increase in observed 372 373 RN₂O from the band with increasing N fertiliser rates (Table 2). This relationship is also shown by the higher values of predicted RN₂O from the bed than the furrow at the Mackay site (Table 2), where the 374 375 application of a single N fertiliser band likely increased spatial differences in N availability as compared to the Burdekin site with banding on both sides of the bed. Differences in RN₂O may be explained by 376 preferential NO₃⁻ reduction over N₂O in zones of high NO₃⁻ availability around the fertiliser band (Friedl 377 et al., 2020b; Senbayram et al., 2019). Since banding of N fertiliser is a common practice in intensively 378 managed cropping systems, accounting for its effects on RN₂O as demonstrated here is of therefore of great 379 380 importance to upscaling N₂ emissions.

It is noteworthy that in contrast to previous studies (Bizimana et al., 2022; Wang et al., 2020), 381 382 RN₂O data in the study presented here are based on field measurements, which removes the need for measurements of the ratio between N2O and N2 using laboratory assays. In-situ measurements avoid a 383 potential bias due to the disturbance of the soil and the absence of plants in the laboratory incubation. An 384 incubation study using the soil samples from the Burdekin site without plants found much lower $RN_2O <$ 385 0.03 across the whole measurement period compared to this study despite comparable ranges of soil factors 386 (Kirkby et al., personal communication). Both smaller (Bizimana et al., 2022) and larger (Wang et al., 2020) 387 N₂O emissions were reported under laboratory conditions compared to in-situ measurements, indicating an 388 inconsistent discrepancy in RN₂O between field and laboratory measurements. This discrepancy 389 390 emphasises the need for in-situ measurements as presented here. However, field measurements are likely

391 to show a higher degree of variability, which was reflected in 52% of deviance explained on average when 392 fitting GAMMs to the observed RN₂O with cross-validation. Fitting GAMMs to the entire dataset without 393 cross-validation resulted in 86% of deviance explained, comparable to the multivariate model of Wang et al. (2020) which explained 92% of the variability of RN_2O . In this study, the cross-validated model by 394 replicate was used to extrapolate at both temporal and spatial scales. Setting the k-fold validation across 395 replicates considerably minimised the potential model overfitting observed when using the entire dataset 396 for model training (Dorich et al., 2020). Comparing the fertiliser-derived N₂O+N₂ with the overall fertiliser 397 ¹⁵N loss allowed us to constrain the RN₂O modelling with GAMMs. This constraint at the cumulative scale 398 399 reduced the uncertainty in N₂ estimates, emphasising the advantage of in-situ N₂O and N₂ measurements with the ¹⁵N gas flux method combined with fertiliser ¹⁵N recovery measurements. 400

Applying predicted values of RN₂O to high temporal-resolution N₂O measurements gave estimates of 401 daily N_2 emissions over the season (Fig 3). Similar to N_2O , the majority of N_2 emissions occurred within 402 100 days after fertilisation, which is consistent with peaks in soil NO₃- availability (Takeda et al., 2021a). 403 404 High NO_3^- substrate availability for denitrification together with limited O_2 in the soil following intense rainfall and/or irrigation promoted N loss in the form of N₂, which accounted for > 95% of total N₂O+N₂ 405 emissions over the crop growing season (Table 2). On the other hand, the average of observed RN₂O 406 without temporal and spatial upscaling demonstrated up to 9% and 19% of N₂O+N₂ losses as N₂O (Table 407 408 2). This discrepancy indicates an underestimation of N_2 emissions if the average of observed RN₂O was 409 directly applied to N₂O emissions. Using fixed RN₂O values from measurements with limited coverage of 410 environmental conditions may therefore lead to a bias in estimated N₂ emissions. In turn, this difference emphasises the importance to include a range of soil conditions covering the spatio-temporal variability 411 412 observed within a cropping system and season when using the ratio between N_2O and N_2 to upscale N_2 emissions to the field scale. 413

414

415 4.2 Denitrification as a major N loss pathway in intensive sugarcane systems

416 Total N_2O+N_2 emissions over the season exceeded 80 kg N ha⁻¹ at both sites (Fig. 4). Denitrification losses have been regarded as a major portion of N budgets in intensively managed sugarcane systems (Bell 417 et al., 2014) but emissions were only measured from the fertiliser band in short-term trials (Warner et al., 418 2019; Weier et al., 1996; Weier et al., 1998). The lack of seasonal estimates of denitrification losses in 419 sugarcane hinders the comparison to the range of N₂+N₂O emissions observed in the study presented here. 420 In a simulation study, Thorburn et al. (2017) predicted denitrification losses up to 50 kg N ha⁻¹ with N 421 fertiliser rates up to 200 kg N ha⁻¹ from Australian sugarcane systems. This range is substantially lower 422 than the N₂+N₂O emissions from both sites. Even though denitrification rates are subject to specific site 423

and environmental conditions, predictions of denitrification losses in biogeochemical models rely mostly on N₂O data. The lack of N₂ data hinders the validation of overall rates, and changes in N₂O may be caused by a change in denitrification rate and/or RN₂O (Del Grosso et al., 2020). Our estimates of seasonal N₂O+N₂ losses not only provide experimental evidence that denitrification is a major pathway of N loss from

428 intensively managed sugarcane systems, but also the opportunity to test and validate the representation of

429 denitrification in biogeochemical models.

Cumulative N₂O+N₂ losses responded exponentially to N fertiliser rates at the Burdekin site but 430 did not increase across the fertilised treatments at the Mackay site (Fig.4), indicating other factors but N 431 availability limited denitrification at the site. Mackay experienced less rainfall and received less irrigation 432 than the Burdekin site in the critical time window three months after fertilisation. Furthermore, irrigation 433 was applied via overhead sprinklers in Mackay, compared to furrow (flood) irrigation in Burdekin. 434 Considering the sandier soil texture (Table 1) at the Mackay site, the differences in management and rainfall 435 indicate an increased frequency of aerobic conditions in the soil at the Mackay site compared to the 436 437 Burdekin site (Takeda et al., 2022), limiting the response of denitrification to N rate. Regardless, relatively large N₂O+N₂ losses > 50 kg N ha⁻¹ were consistently observed at high N rates above the recommended N 438 rate ($\geq 200 \text{ kg N ha}^{-1}$) across the sites (Fig. 4), suggesting increased N substrate availability for N losses via 439 440 denitrification.

441 Denitrification was dominated by N₂ emissions (Table 2) and accounted for up to 33% and 78% of 442 the overall fertiliser ¹⁵N loss (Fig. 5), showing that a large fraction of N fertiliser loss occurs in the form of 443 environmentally benign N₂. The relative contribution of N₂O+N₂ losses to overall fertiliser ¹⁵N loss however 444 decreased with increasing N rates (Fig. 5). This suggests increasing significance of other reactive N loss 445 pathways including ammonia volatilisation, leaching and runoff with increasing N rates, as denitrification may become limited by factors other than N availability. Losses of N₂O+N₂ accounted for a smaller 446 proportion of fertiliser ¹⁵N loss at the Burdekin site compared to the Mackay site, which is consistent with 447 furrow irrigation and severe flooding events likely causing greater losses of N fertiliser via leaching and 448 runoff at the Burdekin site. Loss of N via runoff and leaching from Australian sugarcane systems is currently 449 estimated to account for 46-65% of the total dissolved inorganic N load to the Great Barrier Reef (GBR) 450 (Bartley et al., 2017). Increasing N losses via runoff and leaching with increasing N rates have been mostly 451 demonstrated by simulation studies (Reading et al., 2019; Thorburn et al., 2017; Vilas et al., 2022). The 452 study presented here shows that even though a large proportion of N fertiliser loss from sugarcane systems 453 occurs as environmentally benign N₂, more N is lost via environmentally harmful pathways of N loss 454 including ammonia volatilisation, leaching and runoff as N rates increase. These findings suggest that even 455 if N₂O+N₂ losses aren't responding to increasing N rates, environmental costs of sugarcane production are 456 457 likely to show a non-linear response to N fertiliser.

The large amounts of soil N contributing to N_2O+N_2 across N rates (23–47 kg N ha⁻¹) corroborate 458 459 the importance of mineralised N for N cycling in sugarcane soils (Takeda et al., 2022). These exports of soil N, together with the plant N uptake derived from soil N (67–122 kg N ha⁻¹), largely exceeded the 460 fertiliser ¹⁵N remaining in the soil (40-60 kg N ha⁻¹) across N rates, even when accounting for N in the crop 461 residue which can be returned (~ 60 kg N ha^{-1}). This negative balance demonstrates the ineffectiveness of 462 increasing N fertiliser rates to compensate for soil N depletion. Higher rates of banded N fertiliser 463 application with the aim of carrying surplus N into subsequent seasons ("N-bank" concept) were reported 464 to be associated with high risks of N losses under wet conditions in sub-tropical sorghum systems (Rowlings 465 et al., 2022). The N balance in the study here suggests long-term soil N depletion despite high N inputs in 466 intensively managed sugarcane systems. Together with the non-linear responses of N_2O+N_2 losses and their 467 contribution to fertiliser ¹⁵N loss, these results indicate that increasing N fertiliser rates result in lower NUE 468 and higher environmental costs but also don't prevent soil N mining. Maintaining crop productivity while 469 reducing environmental impacts therefore requires N fertiliser rate strategies integrated with additional 470 471 measures such as the use of enhanced efficiency fertilisers (Connellan & Thompson, 2022) and rotation with legume crops (Otto et al., 2020). 472

473

474 4.3 Extrapolating RN₂O to a wider range of cropping systems towards the global N budget

475 Denitrification losses have been assumed to account for a significant portion of the global terrestrial N budget despite uncertainties due to limited evaluation at the plot scale (Bouwman et al., 2013; Houlton 476 & Bai, 2009; Scheer et al., 2020). Given that measurements of N₂O emissions are relatively well established 477 and conducted globally, the values of RN₂O play a critical role in estimating the global N budget. 478 479 Nevertheless, agricultural systems or crop management practices have not been differentiated in most of the reports to date. For example, Scheer et al. (2020) showed a mean RN₂O of 0.11 for agricultural soils 480 481 and 0.02 for wetlands by summarising the previously reported RN₂O values. The values of RN₂O 0.024-482 0.058 (Table 2) based on the cumulative N2 and N2O emissions in the study presented herein are indicative of intensively managed cropping systems with high N and water inputs. Compared to the range given by 483 Scheer et al. (2020), this would shift denitrification losses from agricultural soils towards the upper end of 484 the current uncertainty range. The method presented in this study provides a unique tool to estimate seasonal 485 denitrification losses accounting for spatial and temporal variability in intensive agroecosystems. This is 486 therefore well suited to generate data that can close the gap in current N budgets, helping to encourage 487 488 actions to mitigate N pollution.

Refinements of the global N budget require the effects of cropping systems and site conditions on
 RN₂O to be incorporated. Within this study, the larger RN₂O at the Mackay site (Table 2) may reflect the

effect of the low pH (4.1) compared to the Burdekin site (pH 6.9) (Table 1) shifting the ratio towards N₂O 491 492 (Dannenmann et al., 2008; Russenes et al., 2016; Šimek & Cooper, 2002). The sandier soil texture may 493 have led to better drainage and larger gas diffusivity at the Mackay site, contributing to the larger RN₂O (Friedl et al., 2017). On the other hand, GCTB management at the Mackay site possibly promoted 494 completion of denitrification and thus reduced RN₂O by preventing evaporation and thus promoting 495 anaerobic conditions (Weier et al., 1993). Accounting for these effects individually to generalise RN₂O 496 estimates requires further data collection across a wide range of environmental conditions such as cropping 497 systems, management practices, soil pH and texture. Controlling environmental factors in laboratory assays 498 499 can aid in disentangling such overlapping effects, highlighting the need to integrate both laboratory and insitu measurements of N2O and N2 in future research. Generalised estimation of RN2O covering a wider 500 range of cropping systems and environmental conditions, together with increasing robust in-situ 501 measurements of N₂O emissions, will aid the accuracy of global N budget estimates as well as the 502 identification of hot spots of denitrification losses. 503

504

505 5 Conclusions

This is the first study establishing the response of cumulative denitrification losses (N_2O+N_2) to N 506 fertiliser rates over the whole crop growing season at the plot scale based on in-situ measurements. We 507 propose the integration of in-situ RN₂O with the ¹⁵N gas flux method, high-frequency N₂O with an 508 automated GHG monitoring system and fertiliser ¹⁵N recovery measurements as a novel and robust method 509 applicable to a wide range of cropping systems to quantify cumulative denitrification losses under field 510 511 conditions. In contrast to previous approaches, this method accounts for both temporal as well as spatial 512 variability of RN₂O and includes in-situ data for validation of denitrification losses at the cumulative scale. The use of this method demonstrated that seasonal denitrification losses were dominated by N₂ emissions, 513 514 and accounted for 31-78% of total N fertiliser losses, providing critical evidence for its significance as an N loss pathway from sugarcane systems. The non-linear response of cumulative denitrification losses to 515 increasing N rates, with > 80 kg N ha⁻¹ emitted as N₂ and N₂O emphasises the agronomic and environmental 516 inefficiency of excessive N fertiliser application. Even though a large proportion of N fertiliser loss 517 occurred as environmentally benign N₂, more N was lost via environmentally harmful pathways including 518 ammonia volatilisation, leaching and runoff with increasing N rates. These findings highlight that excessive 519 N rates not only increase agronomic inefficiencies, but also the environmental footprint of intensive 520 sugarcane production. This research delivers critical data targeting key uncertainties in biogeochemical 521 models and will aid parameterisation and improvement of denitrification algorithms, advancing our 522 understanding of N cycles across scales. These improvements are urgently needed to develop N fertiliser 523

- 524 rate strategies integrated with soil fertility management and simulate their long-term impacts, to maintain
- 525 crop productivity while reducing environmental impacts of intensive agroecosystems.
- 526

527 Acknowledgements

The authors have no relevant financial or non-financial interests to disclose. This study was funded by Sugar Research Australia. The authors would like to thank Farmacist and Sheree Biddle for their assistance as well as Richard Kelly and Mario Torrisi for the use of their property as research sites. Some of the data reported in this paper were obtained at the Central Analytical Research Facility operated by the Institute for Future Environments at Queensland University of Technology.

533

534 **References**

- Baily, A., Watson, C. J., Laughlin, R., Matthews, D., McGeough, K., & Jordan, P. (2012). Use of the ¹⁵N
 gas flux method to measure the source and level of N₂O and N₂ emissions from grazed grassland.
 Nutrient Cycling in Agroecosystems, 94, 287-298. <u>https://doi.org/https://doi.org/10.1007/s10705-</u>
 <u>012-9541-x</u>
- Bartley, R., Waters, D., Turner, R., Kroon, F., Wilkinson, S., Garzon-Garcia, A., Kuhnert, P., Lewis, S.,
- 540 Smith, R., Bainbridge, Z., Olley, J., Brooks, A., Burton, J., Brodie, J., & Waterhouse, J. (2017).
- 541 Scientific Consensus Statement 2017: A synthesis of the science of land-based water quality
- 542 impacts on the Great Barrier Reef, Chapter 2: Sources of sediment, nutrients, pesticides and
- 543 *other pollutants to the Great Barrier Reef.* (Scientific Consensus Statement 2017: A synthesis of 544 the science of land-based water quality impacts on the Great Barrier Reef. Issue.
- Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using
 lme4. *Journal of Statistical Software*, 67. <u>https://doi.org/10.18637/jss.v067.i01</u>
- Bell, M. J., Biggs, J., McKellar, L. B., Connellan, J., Di Bella, L., Dwyer, R., Empson, M., Garside, A. J.,
 Harvey, T., Kraak, J., Lakshmanan, P., Lamb, D. W., Meier, E., Moody, P., Muster, T., Palmer,
- J., Robinson, N., Robson, A., Salter, B., . . . Wood, A. (2014). A review of nitrogen use efficiency *in sugarcane*. Sugar Research Australia.
- 551 Bizimana, F., Luo, J., Timilsina, A., Dong, W., Gaudel, G., Ding, K., Qin, S., & Hu, C. (2022).
- 552 Estimating field N_2 emissions based on laboratory-quantified $N_2O/(N_2O + N_2)$ ratios and field-
- quantified N₂O emissions. *Journal of Soils and Sediments*. <u>https://doi.org/10.1007/s11368-022-</u>
 03212-0
- Bizimana, F., Timilsina, A., Dong, W., Uwamungu, J. Y., Li, X., Wang, Y., Pandey, B., Qin, S., & Hu, C.
 (2021). Effects of long-term nitrogen fertilization on N₂O, N₂ and their yield-scaled emissions in

a temperate semi-arid agro-ecosystem. Journal of Soils and Sediments, 21(4), 1659-1671.

557

558 https://doi.org/https://doi.org/10.1007/s11368-021-02903-4 559 Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W., Hefting, M. M., Oenema, O., Van Puijenbroek, P. J. T. M., Seitzinger, S., Slomp, C. P., & Stehfest, E. (2013). Global trends 560 and uncertainties in terrestrial denitrification and N₂O emissions. *Philosophical Transactions of* 561 the Royal Society B: Biological Sciences, 368(1621), 20130112. 562 https://doi.org/https://doi.org/10.1098/rstb.2013.0112 563 Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., & Well, R. (2016). Fluxes of N₂ and 564 N₂O and contributing processes in summer after grassland renewal and grassland conversion to 565 maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry, 101, 566 6-19. https://doi.org/https://doi.org/10.1016/j.soilbio.2016.06.028 567 Burchill, W., Lanigan, G. J., Li, D., Williams, M., & Humphreys, J. (2016). A system N balance for a 568 pasture-based system of dairy production under moist maritime climatic conditions. Agriculture, 569 Ecosystems & Environment, 220, 202-210. 570 https://doi.org/https://doi.org/10.1016/j.agee.2015.12.022 571 Butterbach-Bahl, K., Willibald, G., & Papen, H. (2002). Soil core method for direct simultaneous 572 573 determination of N₂ and N₂O emissions from forest soils. *Plant and Cell Physiology*, 240, 105-574 116. https://doi.org/https://doi.org/10.1029/92gb02124 575 Chen, T., Oenema, O., Li, J., Misselbrook, T., Dong, W., Oin, S., Yuan, H., Li, X., & Hu, C. (2019). 576 Seasonal variations in N₂ and N₂O emissions from a wheat-maize cropping system. Biology and Fertility of Soils, 55, 539-551. https://doi.org/https://doi.org/10.1007/s00374-019-01373-8 577 578 Connellan, J., & Thompson, M. (2022). Support of cane farmer trials of enhanced efficiency fertiliser in the catchments of the Great Barrier Reef: Final report 2016/807. 579 Dannenmann, M., Butterbach-Bahl, K., Gasche, R., Willibald, G., & Papen, H. (2008). Dinitrogen 580 emissions and the N₂:N₂O emission ratio of a Rendzic Leptosol as influenced by pH and forest 581 582 thinning. Soil Biology and Biochemistry, 40(9), 2317-2323. https://doi.org/https://doi.org/10.1016/j.soilbio.2008.05.009 583 De Rosa, D., Rowlings, D. W., Fulkerson, B., Scheer, C., Friedl, J., Labadz, M., & Grace, P. R. (2020). 584 Field-scale management and environmental drivers of N₂O emissions from pasture-based dairy 585 systems. Nutrient Cycling in Agroecosystems, 117, 299–315. 586 https://doi.org/https://doi.org/10.1007/s10705-020-10069-7 587 Del Grosso, S. J., Smith, W., Kraus, D., Massad, R. S., Vogeler, I., & Fuchs, K. (2020). Approaches and 588 589 concepts of modelling denitrification: increased process understanding using observational data

- can reduce uncertainties. *Current Opinion in Environmental Sustainability*, 47, 37-45.
 <u>https://doi.org/https://doi.org/10.1016/j.cosust.2020.07.003</u>
- Dorich, C. D., De Rosa, D., Barton, L., Grace, P., Rowlings, D., Migliorati, M. D. A., Wagner-Riddle, C.,
 Key, C., Wang, D., Fehr, B., & Conant, R. T. (2020). Global Research Alliance N₂O chamber
 methodology guidelines: Guidelines for gap-filling missing measurements
- 595 [https://doi.org/10.1002/jeq2.20138]. Journal of Environmental Quality, 49(5), 1186-1202.
- 596 https://doi.org/https://doi.org/10.1002/jeq2.20138
- Friedl, J., Cardenas, L. M., Clough, T. J., Dannenmann, M., Hu, C., & Scheer, C. (2020a). Measuring
 denitrification and the N₂O:(N₂O+N₂) emission ratio from terrestrial soils. *Current Opinion in Environmental Sustainability*, 47, 61-71.
- 600 <u>https://doi.org/https://doi.org/10.1016/j.cosust.2020.08.006</u>
- Friedl, J., Scheer, C., Rowlings, D. W., Deltedesco, E., Gorfer, M., De Rosa, D., Grace, P. R., Müller, C.,
 & Keiblinger, K. M. (2020b). Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate
 (DMPP) on N-turnover, the N₂O reductase-gene nosZ and N₂O:N₂ partitioning from agricultural
 soils. *Scientific Reports*, 10(1), 2399. https://doi.org/https://doi.org/10.1038/s41598-020-59249-z
- Friedl, J., Scheer, C., Rowlings, D. W., McIntosh, H. V., Strazzabosco, A., Warner, D. I., & Grace, P. R.
 (2016). Denitrification losses from an intensively managed sub-tropical pasture Impact of soil
 moisture on the partitioning of N₂ and N₂O emissions. *Soil Biology and Biochemistry*, *92*, 58-66.
 https://doi.org/https://doi.org/10.1016/j.soilbio.2015.09.016
- Friedl, J., Scheer, C., Rowlings, D. W., Mumford, M. T., & Grace, P. R. (2017). The nitrification inhibitor
 DMPP (3,4-dimethylpyrazole phosphate) reduces N₂ emissions from intensively managed
- 611 pastures in subtropical Australia. Soil Biology and Biochemistry, 108, 55-64.
 612 <u>https://doi.org/10.1016/j.soilbio.2017.01.016</u>
- Grace, P. R., van der Weerden, T. J., Rowlings, D. W., Scheer, C., Brunk, C., Kiese, R., Butterbach-Bahl,
 K., Rees, R. M., Robertson, G. P., & Skiba, U. M. (2020). Global Research Alliance N₂O
 chamber methodology guidelines: Considerations for automated flux measurement. *Journal of Environmental Quality*, 49(5), 1126-1140. https://doi.org/https://doi.org/10.1002/jeq2.20124
- Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K.,
- Giblin, A. E., Kana, T. M., Nielsen, L. P., & Voytek, M. A. (2006). Methods for measuring
 denitrification: Diverse approaches to a difficult problem. *Ecological Applications*, *16*, 20912122. https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
- Henry, S., Texier, S., Hallet, S., Bru, D., Dambreville, C., Chèneby, D., Bizouard, F., Germon, J. C., &
 Philippot, L. (2008). Disentangling the rhizosphere effect on nitrate reducers and denitrifiers:
 insight into the role of root exudates [https://doi.org/10.1111/j.1462-2920.2008.01599.x].

- *Environmental Microbiology*, *10*(11), 3082-3092. <u>https://doi.org/https://doi.org/10.1111/j.1462-</u>
 2920.2008.01599.x
- Houlton, B. Z., & Bai, E. (2009). Imprint of denitrifying bacteria on the global terrestrial biosphere.
 Proceedings of the National Academy of Sciences, 106(51), 21713-21716.
 https://doi.org/10.1073/pnas.0912111106
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
 Sixth Assessment Report of the Intergovernmental Panel on Climate Change. C. U. Press.
- 631 Isbell, R. (2016). *The Australian Soil Classification*. CSIRO publishing.
- IUSS Working Group. (2014). World reference base for soil resources 2014. International soil
 classification system for naming soils and creating legends for soil maps (World Soil Resources
 Report, Issue.
- Malique, F., Ke, P., Boettcher, J., Dannenmann, M., & Butterbach-Bahl, K. (2019). Plant and soil effects
 on denitrification potential in agricultural soils. *Plant and Soil*, 459-474.
 https://doi.org/10.1007/s11104-019-04038-5
- Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. *The R Journal*, 9, 207-218. <u>https://doi.org/https://doi.org/10.32614/rj-2017-009</u>
- Mosier, A., & Schimel, D. (1993). Nitrification and denitrification. In *Nitrogen isotope techniques* (pp. 181-208). Elsevier.
- 642 Otto, R., Pereira, G. L., Tenelli, S., Carvalho, J. L. N., Lavres, J., de Castro, S. A. Q., Lisboa, I. P., &
- 643Sermarini, R. A. (2020). Planting legume cover crop as a strategy to replace synthetic N fertilizer644applied for sugarcane production. *Industrial Crops and Products*, *156*, 112853.
- 645 <u>https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112853</u>
- Portmann, R. W., Daniel, J. S., & Ravishankara, A. R. (2012). Stratospheric ozone depletion due to
 nitrous oxide: Influences of other gases. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367, 1256-1264. https://doi.org/https://doi.org/10.1098/rstb.2011.0377
- Qin, S., Hu, C., Clough, T. J., Luo, J., Oenema, O., & Zhou, S. (2017). Irrigation of DOC-rich liquid
- 650 promotes potential denitrification rate and decreases $N_2O/(N_2O+N_2)$ product ratio in a 0–2 m soil 651 profile. *Soil Biology and Biochemistry*, *106*, 1-8.
- 652 <u>https://doi.org/https://doi.org/10.1016/j.soilbio.2016.12.001</u>
- R Core Team. (2018). *R: A language and environment for statistical computing. R Foundation for Statistical Computing.* In https://www.R-project.org/
- 655 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant
- Ozone-Depleting Substance Emitted in the 21st Century. *Science*, *326*(5949), 123.
- 657 https://doi.org/https://doi.org/10.1126/science.1176985

- Reading, L. P., Bajracharya, K., & Wang, J. (2019). Simulating deep drainage and nitrate leaching on a
 regional scale: implications for groundwater management in an intensively irrigated area. *Irrigation Science*, 37, 561-581. <u>https://doi.org/10.1007/s00271-019-00636-4</u>
- Rowlings, D. W., Lester, D. W., Grace, P. R., Scheer, C., De Rosa, D., De Antoni Migliorati, M., Friedl,
 J., & Bell, M. J. (2022). Seasonal rainfall distribution drives nitrogen use efficiency and losses in
- dryland summer sorghum. *Field Crops Research*, 283, 108527.
- 664 <u>https://doi.org/https://doi.org/10.1016/j.fcr.2022.108527</u>
- Rowlings, D. W., Scheer, C., Liu, S., & Grace, P. R. (2016). Annual nitrogen dynamics and urea fertilizer
 recoveries from a dairy pasture using ¹⁵N; effect of nitrification inhibitor DMPP and reduced
 application rates. *Agriculture, Ecosystems & Environment, 216*, 216-225.
 https://doi.org/https://doi.org/10.1016/j.agee.2015.09.025
- Russenes, A. L., Korsaeth, A., Bakken, L. R., & Dörsch, P. (2016). Spatial variation in soil pH controls
 off-season N₂O emission in an agricultural soil. *Soil Biology and Biochemistry*, 99, 36-46.
 https://doi.org/https://doi.org/10.1016/j.soilbio.2016.04.019
- Scheer, C., Fuchs, K., Pelster, D. E., & Butterbach-Bahl, K. (2020). Estimating global terrestrial
 denitrification from measured N₂O:(N₂O + N₂) product ratios. *Current Opinion in Environmental Sustainability*, 47, 72-80. <u>https://doi.org/10.1016/j.cosust.2020.07.005</u>
- Scheer, C., Wassmann, R., Butterbach-Bahl, K., Lamers, J. P. A., & Martius, C. (2009). The relationship
 between N₂O, NO, and N₂ fluxes from fertilized and irrigated dryland soils of the Aral Sea Basin,
 Uzbekistan. *Plant and Soil*, *314*, 273-283. <u>https://doi.org/https://doi.org/10.1007/s11104-008-</u>
- 678 <u>9728-8</u>
- Scholefield, D., Hawkins, J., & Jackson, S. (1997). Development of a helium atmosphere soil incubation
 technique for direct measurement of nitrous oxide and dinitrogen fluxes during denitrification. *Soil Biology and Biochemistry*, 29(9-10), 1345-1352.

682 https://doi.org/https://doi.org/10.1016/S0038-0717(97)00021-7

- Schroeder, B. L., Hurney, A. P., Wood, A. W., Moody, P. W., & Allsopp, P. G. (2010). Concepts and
 value of the nitrogen guidelines contained in the Australian sugar industry's 'Six Easy Steps'
 nutrient management program. Proceedings of the International Society of Sugar Cane
 Technologists,
- Schwenke, G., & Haigh, B. (2016). The interaction of seasonal rainfall and nitrogen fertiliser rate on soil
 N₂O emission, total N loss and crop yield of dryland sorghum and sunflower grown on sub tropical Vertosols. *Soil Research*, *54*(5), 604-618. https://doi.org/https://doi.org/10.1071/SR15286
- 690 Senbayram, M., Budai, A., Bol, R., Chadwick, D., Marton, L., Gündogan, R., & Wu, D. (2019). Soil
- NO_3^- level and O_2 availability are key factors in controlling N_2O reduction to N_2 following long-

692	term liming of an acidic sandy soil. Soil Biology and Biochemistry, 132, 165-173.
693	https://doi.org/https://doi.org/10.1016/j.soilbio.2019.02.009
694	Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of
695	soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of
696	Sciences, 111, 9199-9204. https://doi.org/https://doi.org/10.1073/pnas.1322434111
697	Šimek, M., & Cooper, J. E. (2002). The influence of soil pH on denitrification: Progress towards the
698	understanding of this interaction over the last 50 years. European Journal of Soil Science, 53,
699	345-354. https://doi.org/https://doi.org/10.1046/j.1365-2389.2002.00461.x
700	Spott, O., Russow, R., Apelt, B., & Stange, C. F. (2006). A ¹⁵ N-aided artificial atmosphere gas flow
701	technique for online determination of soil N2 release using the zeolite Köstrolith SX6®
702	[https://doi.org/10.1002/rcm.2722]. Rapid Communications in Mass Spectrometry, 20(22), 3267-
703	3274. https://doi.org/https://doi.org/10.1002/rcm.2722
704	Takeda, N., Friedl, J., Kirkby, R., Rowlings, D., De Rosa, D., Scheer, C., & Grace, P. (2022). Interaction
705	between soil and fertiliser nitrogen drives plant nitrogen uptake and nitrous oxide (N2O)
706	emissions in tropical sugarcane systems. Plant and Soil.
707	https://doi.org/https://doi.org/10.1007/s11104-022-05458-6
708	Takeda, N., Friedl, J., Rowlings, D., De Rosa, D., Scheer, C., & Grace, P. (2021a). Exponential response
709	of nitrous oxide (N2O) emissions to increasing nitrogen fertiliser rates in a tropical sugarcane
710	cropping system. Agriculture, Ecosystems & Environment, 313, 107376.
711	https://doi.org/https://doi.org/10.1016/j.agee.2021.107376
712	Takeda, N., Friedl, J., Rowlings, D., De Rosa, D., Scheer, C., & Grace, P. (2021b). No sugar yield gains
713	but larger fertiliser ¹⁵ N loss with increasing N rates in an intensive sugarcane system. Nutrient
714	Cycling in Agroecosystems, 121(1), 99-113. https://doi.org/https://doi.org/10.1007/s10705-021-
715	<u>10167-0</u>
716	Thorburn, P. J., Biggs, J. S., Palmer, J., Meier, E. A., Verburg, K., & Skocaj, D. M. (2017). Prioritizing
717	Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops. Frontiers
718	in Plant Science, 8, 1-16. https://doi.org/https://doi.org/10.3389/fpls.2017.01504
719	Vilas, M. P., Shaw, M., Rohde, K., Power, B., Donaldson, S., Foley, J., & Silburn, M. (2022). Ten years
720	of monitoring dissolved inorganic nitrogen in runoff from sugarcane informs development of a
721	modelling algorithm to prioritise organic and inorganic nutrient management. Science of The
722	Total Environment, 803, 150019. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150019
723	Wang, R., Pan, Z., Zheng, X., Ju, X., Yao, Z., Butterbach-Bahl, K., Zhang, C., Wei, H., & Huang, B.
724	(2020). Using field-measured soil N_2O fluxes and laboratory scale parameterization of

- N₂O/(N₂O+N₂) ratios to quantify field-scale soil N₂ emissions. *Soil Biology and Biochemistry*,
 148, 107904. <u>https://doi.org/10.1016/j.soilbio.2020.107904</u>
- Warner, D. I., Scheer, C., Friedl, J., Rowlings, D. W., Brunk, C., & Grace, P. R. (2019). Mobile
 continuous-flow isotope-ratio mass spectrometer system for automated measurements of N₂ and
 N₂O fluxes in fertilized cropping systems. *Scientific Reports*, *9*, 11097.
- 730 https://doi.org/https://doi.org/10.1038/s41598-019-47451-7
- Weier, K., McEwan, C., Vallis, I., Catchpoole, V., & Myers, R. J. A. J. o. A. R. (1996). Potential for
 biological denitrification of fertilizer nitrogen in sugarcane soils. 47(1), 67-79.
- Weier, K., Rolston, D., & Thorburn, P. J. (1998). The potential of N losses via denitrification beneath a
 green cane trash blanket. Proceedings of the Australian Society of Sugar Cane Technologists,
- Weier, K. L., Doran, J. W., Power, J. F., & Walters, D. T. (1993). Denitrification and the
- Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate. *Soil Science Society of America Journal*, *57*, 66-72.
- 738 <u>https://doi.org/https://doi.org/10.2136/sssaj1993.03615995005700010013x</u>
- Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of
 semiparametric generalized linear models. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 73(1), 3-36. <u>https://doi.org/https://doi.org/10.1111/j.1467-</u>
 <u>9868.2010.00749.x</u>
- 743 Zistl-Schlingmann, M., Feng, J., Kiese, R., Stephan, R., Zuazo, P., Willibald, G., Wang, C., Butterbach-
- Bahl, K., & Dannenmann, M. (2019). Dinitrogen emissions: an overlooked key component of the
- 745 N balance of montane grasslands. *Biogeochemistry*, *143*(1), 15-30.
- 746 <u>https://doi.org/https://doi.org/10.1007/s10533-019-00547-8</u>
- 747

@AGUPUBLICATIONS

Global Biogeochemical Cycles

Supporting Information for

Denitrification losses in response to N fertiliser rates – a synthesis of high temporal resolution N₂O, in-situ ¹⁵N₂O and ¹⁵N₂ measurements and fertiliser ¹⁵N recoveries in intensive sugarcane systems

Naoya Takeda^{*1}, Johannes Friedl^{*1}, Robert Kirkby¹, David Rowlings¹, Clemens Scheer^{1, 2}, Daniele De Rosa³, Peter Grace¹

¹ Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia

² IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

³ European Commission, Joint Research Centre (JRC), Sustainable Resources Directorate, Land Resources Unit, I-21027 Ispra, Italy

Figure S1 Relative contribution of fertiliser N to N₂ emissions (Ndff N₂) on the fertiliser band over the measurement period across N rates 100, 150, 200 and 250 kg N ha⁻¹ at the Burdekin (a) and Mackay (b) sites. Points and error bars indicate mean values and standard errors. Lines and shaded areas indicate fitted curves and 95% confidence intervals

@AGUPUBLICATIONS

Global Biogeochemical Cycles

Supporting Information for

Denitrification losses in response to N fertiliser rates – a synthesis of high temporal resolution N₂O, in-situ ¹⁵N₂O and ¹⁵N₂ measurements and fertiliser ¹⁵N recoveries in intensive sugarcane systems

Naoya Takeda^{*1}, Johannes Friedl^{*1}, Robert Kirkby¹, David Rowlings¹, Clemens Scheer^{1, 2}, Daniele De Rosa³, Peter Grace¹

¹ Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia

² IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

³ European Commission, Joint Research Centre (JRC), Sustainable Resources Directorate, Land Resources Unit, I-21027 Ispra, Italy

S1 Materials and methods

S1.1. Automated chamber system

Acrylic static chambers (0.5 m × 0.5 m × 0.15 m) were mounted on stainless steel frames inserted 10 cm into the soil. The lids of the chambers were opened and closed automatically with pneumatic pistons, and four chambers were closed at one time. Air samples were taken sequentially from each closed chamber, followed by a single-point known standard (Air Liquide, Dallas, TX, USA) of 0.5 ppm N₂O and 800 ppm CO₂ for calibration and drift correction (i.e., after every fourth sample). Changes in headspace N₂O and CO₂ concentration after chamber closure were measured with a gas chromatograph (SRI 8610C, SRI Instruments, Inc., Las Vegas, NV, USA) equipped with a ⁶³Ni electron capture detector (ECD) for N₂O analysis while an infrared gas analyser (LI-820, LI-COR Biosciences, Lincoln, NE, USA) was used for measurements of CO₂. In total, each chamber was sampled four times (every 15 min) over 60 min. This enabled up to eight single flux rates to be determined per chamber and day. The detection limit of the system was 2.0 μ g N₂O-N m⁻² h⁻¹ for N₂O. Hourly N₂O and CO₂ fluxes were calculated from the slope of the linear change in gas concentration during the closure period (60 min) and corrected for air temperature, atmospheric pressure and the ratio of chamber volume to surface area as described in detail by Grace et al. (2020). The coefficient of determination (R^2) for the linear regression was calculated and used as a quality check for the measurement. Flux rates were discarded if R^2 was < 0.80.

S1.2. Manual chamber system

Manual gas sampling was conducted with sealed polyethylene chambers (0.5 m × 0.5 m × 0.15 m). Headspace gas samples were taken between 0900 and 1200 H analogous to the sampling regime of the GHG system, connecting a syringe to a 2-way luer-lock tap installed in the lid of the chamber. Gas samples were injected into pre-evacuated 12 mL glass vials with a double wadded Teflon/silicone septa cap (Labco Exetainer ®, UK) and analysed for N₂O and CO₂ using a Shimadzu GC-2014 Gas Chromatograph (Shimadzu, Kyoto, Japan) at the Central Analytical Research Facility of the Queensland University of Technology, Australia.

S1.3. Gas sampling procedure in the micro plots

Gas samples were taken 1–3 times a week between 0900-1200H with higher frequency after N fertiliser application and irrigation or rainfall events. At the Burdekin site, polyethylene chambers with a headspace height of 19.93 cm were placed on the steel frames, ensuring airtight conditions. Headspace gas samples (20 ml) were taken by connecting a syringe to a 2-way luer-lock tap installed in the lid of the chamber. Gas samples were then injected into a pre-evacuated 12 ml glass vial with a double wadded Teflon/silicone septa cap (Labco, UK). Headspace gas samples were collected at 0, 60 and 180 min after closure. At the Mackay site, airtight polyethylene chambers with a headspace height of 15 cm were placed on the base and connected to a battery-powered sampling unit. The chambers were automatically closed at sampling events according to the pre-programmed schedule and gas samples were collected at 0, 60 and 180 min after the chamber closure. Headspace gas samples (20 ml) were automatically taken and injected into the pre-evacuated 12 ml glass vials sequentially installed on a belt in the sampling unit.

S1.4. The ¹⁵N gas flux method

The ¹⁵N enrichment of the NO₃⁻ pool undergoing denitrification ($a_p N_2$ and $a_p N_2O$) and the fraction of N₂ and N₂O emitted from this pool (f_p) were calculated following the equations given by Spott et al. (2006)

$$f_p = \frac{a_m - a_{bgd}}{a_p - a_{bgd}}$$
[S1]

where a_{bgd} is the ¹⁵N abundance of the atmospheric background and a_m is the measured ¹⁵N abundance of N₂ from headspace gas samples taken 0 and 180 minutes after closure, respectively. Both a_{bgd} and a_m are calculated as

$$a_i = \frac{{}^{29}R + 2 * {}^{30}R}{2 * (1 + {}^{29}R + {}^{30}R)}$$
[S2]

and ${}^{30}x_m$ is the measured fraction of m/z 30 in N₂:

$${}^{30}x_m = \frac{{}^{30}R}{(1 + {}^{29}R + {}^{30}R)}$$
[S3]

If only ²⁹R was > the detection limit (DL), f_p was calculated as

$$f_{p=} \frac{1}{1 - \frac{{}^{29}R(1 - a_p)^2 - 2a_p(1 - a_p)}{{}^{29}R(1 - a_{bgd})^2 - 2a_{bgd}(1 - a_{bgd})}}$$
[S4]

using $a_p N_2O$ assuming that N_2 and N_2O were derived from the same NO_3^- pool undergoing denitrification.

S1.5. Plant and soil sampling

All the sugarcane plants in the 2.0 m section were sampled by cutting at ground level and the trash on the ground in the section was also collected, followed by fresh weight measurements. Roughly six stalks from the middle of the 2.0 m section were chosen and separated into tops (above 7th node), stalk and dead leaves. Two green leaves at the 3rd node (L+3) were sampled from the plants from the 2-m section (L3_CR) and the adjacent row (L3_AR) to estimate the fertiliser ¹⁵N recovery in the plant in the adjacent rows. After sampling aboveground biomass, remaining stools and major roots were sampled from a 0.5×0.5 m square in the middle of the 2.0 m section by digging down to 0.15 m depth. Roots were washed to remove the attached soil and separated into stool and roots. The tops, stalks, dead leaves and trash samples were coarsely ground, subsampled (about 10% on a fresh weight basis) and weighed to calculate partitioning ratios. The plant subsamples, L+3 samples, root samples and stool samples were oven-dried at 60 °C and dry weights were recorded. The stalk samples were further dried with a vacuum oven at 40 °C for 48 hours before fine grinding to avoid aggregation due to sugar.

Soil samples were taken at three to four points between the bed and furrow centres using a soil corer and a post-hole driver down to 1.0 m. At the Burdekin site, the sampling points were 0, 0.25, 0.50, 0.75 m away from the bed centre. At the Mackay site, those were 0, 0.12, 0.40, 0.80 m away from the bed centre in 100N and 250N and the three points except for 0.12 m away from the bed centre in 150N and 200N. Each soil core sample of 1.0 m was separated into 0–0.2, 0.2–0.4, 0.4–0.7, 0.7–1.0 m soil depths and subsamples (about 100 g) were taken.

S1.6. ¹⁵N calculation in plant and soil

The percentage of N in the individual plant, soil, N_2O and N_2 samples ('sinks') derived from ¹⁵N-labelled fertiliser was calculated from

$$Ndff(\%) = \frac{\%^{15}N \, excess \, of \, sink}{\%^{15}N \, excess \, of \, fertiliser} \times 100$$
[S5]

where the $\%^{15}N$ excess used for all sources and sinks was the ¹⁵N abundance less an adjustment of $\%^{15}N$ measured for the corresponding plant and soil samples in the 0N plots for background enrichment or the natural abundance (0.0036765) for N₂O and N₂ samples.

Fertiliser N recovered in each plant part (PlantFNi) was calculated from

$$PlantFN_i = Biomass_i \times N \ content_i \times \frac{Ndff_i}{100}$$
[S6]

where i indicates the plant part. Fertiliser N recovered in tops, stalk, dead leaves and trash were summed to calculate the fertiliser N recovered in the aboveground biomass (*PlantFN_{AG}*) in the centre row in each plot. Fertiliser N recovered in the belowground biomass (*PlantFN_{BG}*) in the centre row was calculated by summing the fertiliser N recovered in stool and roots. Fertiliser N recovered in the adjacent rows (*PlantFN_{AR}*) was calculated in each plot by multiplying the total N uptake in the centre row and the Ndff calculated from L3_AR sample. Fertiliser ¹⁵N uptake was then calculated as follows:

Fertiliser ¹⁵N uptake =
$$(PlantFN_{AG} + PlantFN_{BG} + PlantFN_{AR} \times 2)$$
 [S7]

To calculate fertiliser ¹⁵N recovery in the soil, the distribution of ¹⁵N fertiliser across the soil profile between bed and furrow was first analysed to account for the spatial variation caused by banding N fertiliser, following Takeda et al. (2021). (i) Fertiliser N recovered in the soil (*SoilFN_{ij}*) of each sample (four points from the bed centre and four depths down to 1.0 m per plot at the centre of the soil layer as the average) was calculated from

$$SoilFN_{ij} = BD_{ij} \times N \ content_{ij} \times \frac{Ndff_{ij}}{100}$$
[S8]

where i and j indicate the sampling point and depth per plot. At the Mackay site, the missing *SoilFN*_{ij} values at the sampling point 0.12 m away from the bed centre in 150N and 200N treatments were substituted with the estimated values from regressions by N rates at each soil depth. (ii) The fertiliser ¹⁵N recovered in the soil (*SoilFN*_{ij}) was then interpolated across one side of the sugarcane row (0.75 m width, x-axis) and down to a soil depth of 1.0 m (y-axis) for each plot by fitting a thin-plate spline using a package "mgcv" (Wood, 2011). (iii) The interpolated fertiliser N recovered in the soil

(SoilFN_{xy}) was integrated and divided by the area of one side of the row (*Area*, 0.75 m²) to express fertiliser N recovered in kg N ha⁻¹. Fertiliser ¹⁵N recovery in the soil as a proportion to the N rate was then calculated as follows:

Fertiliser ¹⁵N recovery in the soil =
$$\frac{\sum SoilFN_{xy}}{Area}$$
 [S9]

Overall fertiliser ¹⁵N loss was calculated by the difference between the N applied and fertiliser ¹⁵N recovered in the soil and plant.

Calculations for fertiliser ¹⁵N recovered in N₂O emissions are detailed in Takeda et al. (2022) and those for N₂ emissions followed the same procedure. Briefly, the proportion of N₂ emissions derived from fertiliser (*Ndff* N₂) at the fertiliser band was first calculated by Equation [S5]. Then, *Ndff* N₂ was gap-filled per N rate over the crop growing season on a daily basis at each site, which were then applied to daily N₂ emissions per plot in the main plots to calculate fertiliser-derived N₂ as follows:

Fertiliser derived
$$N_2$$
 emissions_{i,j} = N_2 emissions_{i,j} × $\frac{Naff N_{2i,j}}{100}$ [S10]

where i and j indicate days after fertilisation and chamber position (i.e. bed or furrow). At the Burdekin site, *Ndff* N_2 at the fertiliser band in micro plots was used for both bed and furrow chambers because both chambers covered the fertiliser band. At the Mackay site, *Ndff* N_2 at the furrow was assumed to be zero because the furrow chamber did not cover the fertiliser band. Contribution of fertiliser N to N_2 was calculated by area-weighted sum of fertiliser-derived N_2 emissions over the crop growing season.

S1.7. Use of generalised additive mixed models

The use of generalised additive mixed models (GAMMs) can quantify non-linear relationships without specifying the functional forms and GAMMs further allow repeated measurements. The distribution of RN₂O and *Ndff* N₂ was assumed Beta distributed, which is suitable to fit variables taking values between 0 and 1, and the logit function was specified as the link function, respectively. A dispersion parameter can further be specified in Beta regressions, which was useful to fit the RN₂O densely distributed near zero. The dispersion parameter was set at 23 based on a comparison of AIC.

To model RN₂O, the site factor was specified as a linear term and the CO₂ emissions measured in the micro plots, soil NH_4^+ and NO_3^- contents measured near the band in the main plots and WFPS and soil temperature measured across the paddock were specified as smooth terms

and the micro plots as the random variable. For RN₂O modelling, cross-validation was performed by splitting datasets into training and testing by replicates (k = 4) and the predictive performance was evaluated by the averaged deviance explained and root mean square error (RMSE). The average of RN₂O predicted across k for each plot and bed/furrow position was used to calculate N₂ emissions.

In gap-filling of *Ndff* N₂, days after fertilisation (DAF) and N rates were specified as the explanatory variables in a tensor product, allowing the changes in *Ndff* N₂ over time to differ between N rate treatments. To account for the repeated measurements of *Ndff* N₂ at the same chamber, 'chamber' was specified as the random variable nested in DAF. The estimated *Ndff* N₂ was then multiplied by 100 to show in percentage.