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Abstract

Soil erosion is impacted by climate and land use changes which need to be quantified to assess future risks and to design

efficient soil conservation measures. The Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations have provided

the basis for most such assessments and yet are being gradually superseded by more recent simulations from Phase 6 (CMIP6).

The High-Resolution Model Intercomparison Project (HighResMIP) experiment in CMIP6 adds value over the downscaled

CMIP5 simulations by improving process representation in the global climate system. Our study investigates and compares

high-resolution model simulations from CMIP6 against CMIP5. Model evaluation for the reference period (1986–2005) indicates

that the CMIP6 model outperforms the regional climate models (RCM) from CMIP5 for better circulation simulations, but

both overestimate soil erosion in China. The average projected soil erosion increases by 27.85 from CMIP5 and 20.03 t·hm-2·a-1

from the CMIP6 model with remarkable geographical heterogeneity. Soil erosion is projected to decrease in black soil regions,

purple soil regions, and karst regions from CMIP6 results, which is opposite to the increasing trend found in those regions from

CMIP5. Land use and climatic changes contributed 51.68% and -5.92% respectively from CMIP5 simulations while 35.74% and

-13.77% from CMIP6 to the increased soil erosion rate. The negative contribution of land use change is gradually intensified

with the CMIP6 model representing finer-scale processes of converting land-use type into cropland, pasture, and urban land.

Overall, the CMIP6 projections provide a less severe soil erosion situation while addressing the need to pursue soil conservation

more.
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Key Points: 11 

• A comparison of soil erosion impacts using Coupled Model Intercomparison 12 
Project version 5 (CMIP5) and Phase 6 (CMIP6) high-resolution models is 13 
performed over China. 14 

• CMIP6 model outperforms downscaled model from CMIP5 for better 15 
circulation simulations in terms of validation and project a less severe soil 16 
erosion future. 17 

• It is recommended to update soil erosion impact studies performed using 18 
CMIP5 with the CMIP6 high-resolution models. 19 

  20 
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Abstract 21 
Soil erosion is impacted by climate and land use changes which need to be quantified to assess future 22 
risks and to design efficient soil conservation measures. The Coupled Model Intercomparison Project 23 
Phase 5 (CMIP5) simulations have provided the basis for most such assessments and yet are being 24 
gradually superseded by more recent simulations from Phase 6 (CMIP6). The High-Resolution Model 25 
Intercomparison Project (HighResMIP) experiment in CMIP6 adds value over the downscaled CMIP5 26 
simulations by improving process representation in the global climate system. Our study investigates 27 
and compares high-resolution model simulations from CMIP6 against CMIP5. Model evaluation for 28 
the reference period (1986–2005) indicates that the CMIP6 model outperforms the regional climate 29 
models (RCM) from CMIP5 for better circulation simulations, but both overestimate soil erosion in 30 
China. The average projected soil erosion for 2031–2050 relative to the historical period increases by 31 
27.85 from CMIP5 and 20.03 t·hm-2·a-1 from the CMIP6 model with remarkable geographical 32 
heterogeneity. Soil erosion is projected to decrease in the black soil region, purple soil region, and karst 33 
region from CMIP6 results, which is opposite to the increasing trend found in those regions from 34 
CMIP5. Land use and climatic changes contributed 51.68% and -5.92% respectively from CMIP5 35 
simulations while 35.74% and -13.77% from CMIP6 to the increased soil erosion rate. The negative 36 
contribution of land use change is gradually intensified with the CMIP6 model representing finer-scale 37 
processes of converting land-use type into cropland, pasture, and urban land. Overall, we assess that the 38 
CMIP6 projections provide a less severe soil erosion situation while addressing the need to pursue soil 39 
conservation more. 40 
 41 

Plain Language Summary 42 
Global warming is intensifying the hydrological cycle significantly, which in turn impacts soil erosion 43 
by water worldwide. It is essential to quantify these impacts to assess future risk and vulnerability. 44 
High-resolution climate models coupled with erosion models are the optimal tools to achieve this. The 45 
models from Coupled Model Intercomparison Project version 5 (CMIP5) have been downscaled to 46 
assess the impacts of climate change on rainfall erosivity over the past decade. The more recent sixth 47 
phase (CMIP6) has started to directly generate high-resolution projections, which brings the necessity 48 
of comparison between CMIP5 and CMIP6 in terms of performance and projection differences. Results 49 
show that the CMIP6 model outperforms the downscaled model from CMIP5 in terms of validation and 50 
projects a less severe soil erosion future. The high-resolution CMIP6 model adds value over the 51 
downscaled CMIP5 model by improving process representation in the global climate system. Soil 52 
erosion is projected to decrease in the black soil region, purple soil region, and karst region from 53 
CMIP6 results while the increase from CMIP5. 54 
  55 
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1 Introduction 56 
According to the Global Assessment of Land Degradation (GLADA), about 1.1 billion hectares of 57 

global land have been degraded by soil erosion (Bai et al., 2008). Erosion removes the fertile topsoil, 58 
where most organic matter and nutrients are available. Naipal et al., (2018) estimated that accelerated 59 
soil erosion due to human activities has led to a total potential soil organic carbon loss of 74 Pg during 60 
the period 1850–2005, of which 79%–85% occurred in agricultural land and grassland. Moreover, soil 61 
erosion has been reported to cause annual socio-economic losses of approximately 40 billion dollars 62 
globally (Oldeman et al., 1990; Crosson, 1995). Now, coupled with the rapid changes in land use and 63 
climate, these problems will worsen. A recent study found that both land use and climate change 64 
contributing to global soil erosion by water would increase by 30%–66% by 2070 (Borrelli et al., 65 
2020). Hence, projecting this variability well in advance can more effectively guide the government to 66 
take measures to control soil degradation, protect the ecological environment, and provide a theoretical 67 
reference for realizing the sustainable utilization of land resources. A modeling approach, climate 68 
models with different climate scenarios combined with erosion models, is a common and useful way to 69 
project soil erosion under climate change (Zhi et al., 2011). However, the previous model simulation is 70 
based on the framework of CMIP5. With the introduction of new CMIP6 and SSP scenarios, the issue 71 
of revisiting soil erosion simulations and projections is raised. 72 

Over the past few decades, progress in climate modeling has provided new insight regarding soil 73 
erosion. The potential effects of climate change on erosion have been studied using different integrated 74 
modeling frameworks consisting of hydrologic/erosion, climate, and land use models(Maeda et al., 75 
2010b; Borrelli et al., 2020; Eekhout and Vente, 2022; Luetzenburg et al., 2020; Maeda et al., 2010a; 76 
Pal et al., 2021). In order to incorporate the impacts of future climate change, a multi-model, multi-77 
scenario approach with various global climate models (GCMs) is often combined with the Revised 78 
Universal Soil Loss Equation (RUSLE). GCMs can simulate the effects of greenhouse gas (GHG) 79 
emissions on climatic systems and realistically predict future conditions (Hartmann, 2016). The 80 
essential climatic variables obtained from GCMs simulations are used as input data to RUSLE to assess 81 
the possible impacts of climate change on soil erosion. These GCMs are available publicly as part of 82 
the Coupled Model Intercomparison Project (CMIP). However, the resolution of GCMs is too coarse to 83 
feed the erosion models (Rivington et al., 2008). The resolution of the model plays an important role in 84 
the reliability of the final results. Meanwhile, extreme events are responsible for high soil erosion rates, 85 
the GCMs do not capture these extremes. The high-resolution regional climate models (RCMs) are 86 
superior to that GCMs to capture a more realistic local forcing such as complex topography and land 87 
surface heterogeneity (Nikiema et al., 2017; Vizy et al., 2013). Recently, the continuous efforts to 88 
develop model resolution and physics have shown advancement in rainfall and land use simulation in 89 
the CMIP6 models relative to the CMIP5 and CMIP3 models. The CMIP6 model forecasts additional 90 
scenarios using shared socioeconomic pathways (SSPs) (O'Neill et al., 2016; Schlund et al., 2020). 91 
These updated climate projections take socioeconomic developments, technological advancement, and 92 
other environmental factors (such as land use) into account (Moss et al., 2010), enabling the 93 
development of new scenarios to better evaluate the consequences of climate change policies. The 94 
CMIP6 is the ideal framework for conducting studies of a large multi-model ensemble with a higher 95 
resolution. The High-Resolution Model Intercomparison Project (HighResMIP) experiments within the 96 
CMIP6 models (Haarsma et al., 2016), for the first time, were conducted with resolutions of at least 50 97 
km in the atmosphere and 0.25° in the ocean. These experiments provide an opportunity to understand 98 
the hydrological cycle and its variability based on global high-resolution multi-model ensemble 99 
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simulation. Compared with CMIP5, CMIP6 (coarse resolution and HighResMIP experiments) models 100 
show an improvement in bias reduction of extreme precipitation over Asia (Dong and Dong, 2021), 101 
particularly for HighResMIP in the simulation of precipitation distribution in China (Xin et al., 2021). 102 
Therefore, the investigation of the impact of land use and climate change on soil erosion based on these 103 
recently released model projections and the horizontal comparison with the results of CMIP5 high-104 
resolution RCMs has not been performed. Hence, more studies showing the benefit obtained from the 105 
improvement of CMIP6 compared with the CMIP5 framework affecting the research on soil erosion 106 
are needed. 107 

This study has two main objectives: (1) Through the selected CMIP6 high-resolution GCM and 108 
CMIP5 high-resolution RCM, combined with land use change data and RUSLE model, the impacts and 109 
differences of climate change and land use change on soil erosion in China under the two frameworks 110 
are comprehensively analyzed and compared. The future estimation of soil and water loss under RCPS 111 
and SSPs scenarios is studied. (2) The control variable method is used to quantitatively analyze the 112 
difference in the contribution rate of climate change and land use change to soil erosion under the two 113 
frameworks, and to analyze the underlying mechanism and reasons. This effort will assist local 114 
authorities to pinpoint current and future problematic soil erosion rates at the highest resolution 115 
possible, in support of measures to conserve soil resources. Assessment of the simulated relationship 116 
from the recent two generations of CMIP will also provide new insight for the scientific community in 117 
model development. 118 
2 Data and Methods 119 

2.1 Study area 120 
China is located on the east side of the Eurasian continent and the west coast of the Pacific Ocean, 121 

geographically ranging from 73°33'E to 135°05'E and 3°51'N to 53°33'N. The huge undulation of 122 
topography, numerous mountains and hills, and complex and diverse strata, especially the Quaternary 123 
loose sediments and slightly cemented clastic rocks that are widely covered, provide conditions for soil 124 
erosion. Precipitation is the basic dynamic condition for the occurrence and development of hydraulic 125 
erosion. China has obvious monsoons and strong continental characteristics. Precipitation is 126 
concentrated, rain and heat are in the same season, and the water and heat conditions from the southeast 127 
coast to the northwest inland are different in space. The precipitation in most parts of the country is 128 
concentrated from June to August, and the precipitation decreases from southeast to northwest. The 129 
surface composition, soil, and its parent material are the material sources of soil erosion. The soil types 130 
in China are diverse and show a zonal distribution pattern, which is closely related to the occurrence 131 
and distribution of soil erosion. Vegetation is an important factor affecting soil erosion. The zonal 132 
distribution of vegetation in China is obvious. Due to the gradual reduction of precipitation from 133 
coastal to inland, the landscape features from forest to grassland and then to the desert are formed, 134 
reflecting the law of regional differentiation from coastal to inland. In addition, China's social and 135 
economic development is unbalanced, the economic development intensity in the eastern region is 136 
high, a large amount of agricultural land is converted into construction land, and artificial soil erosion 137 
is relatively serious. The problems of grassland overload and land desertification and degradation are 138 
prominent in the western region. Excessive land reclamation still exists in Southwest China, and soil 139 
erosion of sloping farmland is very serious. Frequent rainstorms, dense population distribution, and 140 
frequent production activities lead to obvious differences in soil erosion types and distributions in 141 
China. According to the Soil Erosion Classification Standard of China established by the Ministry of 142 
Water Resources, the study area is divided into the following eight water and soil conservation areas, as 143 
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shown in Fig.1 144 

 145 
Fig.1 The eight soil and water conservation areas in mainland China: Northeast China black soil 146 

region (I), North China mountainous region (II), Northwest China Loess Plateau region (III), North 147 
China sandstorm region (IV), South China red soil region (V), Southwest China purple soil region (VI), 148 
Southwest China karst region (VII) and Qinghai-Tibet Plateau region (VIII) 149 

2.2 Datasets 150 
The simulated daily precipitation data are retrieved from the MPI-M-MPI-ESM-LR of CORDEX 151 

(https://esg-dn1.nsc.liu.se/search/cordex/) and MPI-ESM1.2-XR of CMIP6 (https://esgf-152 
node.llnl.gov/search/cmip6/). Both models have been developed by the Max Planck Institute for 153 
Meteorology (MPI-M), Germany. They shared the same parent dynamical core structure, 154 
parameterizations, simulation variant, and spatial resolution (50km). MPI-ESM1.2-XR is obtained 155 
from the control runs of a model taking part in the High-Resolution Model Intercomparison Project 156 
(HighResMIP) within the CMIP6 protocol. HighResMIP aims to study improvement in climate model 157 
simulation performance with increased horizontal resolution and to reduce simulation uncertainty based 158 
on multi-model ensemble simulation (Haarsma et al., 2016). High-resolution models are more capable 159 
of representing diurnally forced circulations and modulated rainfall due to orography (Boyle and Klein, 160 
2010). We mainly focus on the high-emission pathways (SSP5-8.5 for CMIP6 and RCP8.5 for CMIP5), 161 
because they can allow us to respond to climate extremes to high-level warming (e.g., 3 °C above pre-162 
industrial). SSP5-8.5 for CMIP6 and RCP8.5 for CMIP5 are high-emission scenarios with the same 163 
radiative forcing of 8.5 W/m2 by 2100. Although SSP5-8.5 shows about 20% higher CO2 emissions by 164 
the end of the century and lower emissions of other greenhouse gases, they are close to each other. 165 

To assess the ability of the models to simulate precipitation, daily precipitation in 1986-2005 from 166 
the APHRODITE (Asian Precipitation-Highly Resolved Observational Data Integration Towards 167 
Evaluation of Water Resources) dataset is used. APHRODITE, with a spatial resolution of 0.25°× 168 
0.25°, is a high-resolution and long-time (since 1951) land precipitation gridding data covering the 169 
entire Asian region. At present, the dataset has been applied to the research on climate change and the 170 
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water cycle, and the test of high-resolution model results (Xu et al., 2016; Du et al., 2022; Tan et al., 171 
2021).  172 

The dataset of land use includes four periods 1990, 1995, 2000, and 2005. The Landsat TM/ETM 173 
remote sensing images of each period are used as the main data source and generated through manual 174 
visual interpretation. DEM data is derived from the Resource Data Cloud Platform 175 
(http://www.resdc.cn/). The soil data and Normalized Difference Vegetation Index (NDVI) data are 176 
developed by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/). Land-Use 177 
Harmonization 1 (LUH1) (https://doi.org/10.3334/ORNLDAAC/1248) and Land-Use Harmonization 2 178 
(LUH2) (https://luh.umd.edu/) are used for the CMIP5 and CMIP6 simulations of land use states. In 179 
preparation for CMIP5, the LUH1(Chini et al., 2014) project provided harmonized land use data for the 180 
years 1500–2100 at 0.5∘×0.5∘ resolution. Land use categories of cropland, pasture, primary land, 181 
secondary (recovering) land, urban land, and underlying annual land-use transitions are included. 182 
Building upon previous work from CMIP5, for which the original LUH1 dataset was used, LUH2 183 
(Hurtt et al., 2020) has updated inputs from the History of the Global Environment database (HYDE) 184 
for historical agricultural patterns, a new historical wood harvest reconstruction, new maps, and 20 185 
rates of shifting cultivation, extends the timespan to 850-2100 at 0.25×0.25 ̊, and constrains the forest 186 
cover gross transitions using remote sensing observations. In addition, LUH2 includes 12 different 187 
land-use types (i.e. forested and non-forested primary and secondary land, cropland of C3 annual, C3 188 
perennial, C4 annual, C4 perennial, and C3 nitrogen-fixing, urban, managed pasture and rangeland) 189 
and includes transitions between all combinations of these categories. 190 

2.3 Methodology 191 
The RUSLE was developed in the 1980s by the U.S. Department of Agriculture Agricultural 192 

Research Service (USDA-ARS) (Renard et al., 1991) (Renard, 1997). Supported by the geographical 193 
information system (GIS) and remote sensing (RS) technologies, the RUSLE model has been 194 
extensively used to estimate long-term annual soil erosion under many scenarios (Millward & Mersey, 195 
1999) and at multiple scales (Wang et al., 2021). Studies have confirmed the applicability and 196 
reliability of the model in China (Wang et al., 2021). This paper adopted the RUSLE model to estimate 197 
the soil erosion in China from 1986-2005 and 2031-2050 (Tang et al., 2015; Xue et al., 2018; Ghosal 198 
and Das, 2020), and the model can be expressed as follows:  199 

A R LS K C P= × × × ×  200 
A is the annual soil erosion (t·hm-2·a-1). R is the rainfall erosivity factor (MJ·mm·hm-2·h-1·a-1). A 201 
universal rainfall erosivity calculation method based on daily rainfall data from 71 representative 202 
meteorological stations across China is applied in this study (Zhang et al., 2002). K is the soil 203 
erodibility factor (t·hm2·h·MJ-1·hm-2·mm-1), which can be calculated using the formula proposed by 204 
(Williams, 1990). C is the cover management factor and the C factor in this paper was updated based 205 
on the method (Knijff et al., 2000). LS is the average topographical parameter that combines the slope 206 
length and steepness (dimensionless) by referring to the method of (Liu et al., 1994). P is the 207 
conservation support practice factor.  208 
3 Results 209 

3.1 Historical simulation of soil erosion 210 
Fig.2 shows the spatial distribution of annual mean soil erosion over China derived from 211 

observation data, CMIP5, and CMIP6 models for the period from 1986-2005. The figure of observation 212 
shows that annual soil erosion is relatively low over Northeast China's black soil region, increasing 213 
southeastward and reaching the maximum in the Qinghai-Tibet Plateau region and Northwest China 214 
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Loess Plateau region. The study area's average annual total soil erosion for the base period (1986 to 215 
2005) is 55.89 t·hm-2·a-1. Compared to observation data, CMIPs simulate the annual soil erosion in a 216 
similar spatial pattern, both of which can capture regional and local behaviors of high-intensity soil 217 
erosion across China. There is no apparent improvement in CMIP6 models in capturing the spatial 218 
pattern and direction of changes in the observation data (Gusain et al., 2020). However, the average soil 219 
erosion of 1986-2005 in CMIP5 and CMIP6 are 364.79, 477.97t·hm-2·a-1. The simulated soil erosion is 220 
higher than the observations over most areas, especially in the Qinghai-Tibet Plateau region. This is 221 
mainly because the observation data is obtained by interpolating the measured rainfall data of the 222 
rainfall stations, but there are few rainfall stations in the Qinghai-Tibet Plateau which could lead to 223 
great uncertainty in the interpolation. 224 

An overestimation of rainfall erosivity (34%-71% higher) and underestimation of the conservation 225 
support practice factor (16%-19% lower) for all of China are estimated by CMIPs compared with the 226 
observations. Only the spatial patterns of rainfall erosivity in CMIP6 for a few areas are closer to the 227 
observations than in CMIP5. The RCM of CMIP5 fails to capture the orographic effects and local 228 
change in the landmass that influences the spatial variability and distribution of rainfall (Zhu et al., 229 
2020; Jain et al., 2019; Wang et al., 2022). This will lead to an underestimation of extreme rainfall by 230 
the RCM. Latest studies have also shown that an improvement is observed in CMIP6 over CMIP5 in 231 
simulating the spatial variability of average mean precipitation over the dry areas and high rainfall 232 
receiving areas (Gusain et al., 2020). CMIP6 simulation results pay more attention to the influence of 233 
rainfall erosivity on soil erosion, especially the critical soil and water loss caused by heavy rainfall 234 
events. For the P factor, the decreased difference from observation is found in arid and semiarid regions 235 
of China from CMIP5 to CMIP6. The new version of Land-Use Harmonization 2 is completely updated 236 
with new inputs and includes higher spatial resolution, increased detail (12 states vs. 5 and all 237 
associated transitions), and added management layers (Hurtt et al., 2020). The newly added 238 
management factors for CMIP6 are conducive to better evaluating the P factor. 239 

 240 

 241 
Fig.2 Spatial patterns of soil erosion (unit: t·km-2·a-1) from (a) observation, (b) CMIP5 model 242 

and(c) CMIP6 model over China for 1986-2005 243 
Tab.1 Factors A, R, and P of each area from (a) observation, (b) CMIP5 model, and (c) CMIP6 244 
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model over China for 1986-2005 245 

Area 
A (t·km-2·a-1) R (MJ·mm·hm-2·h-1·a-1) P 
OBS CMIP5 CMIP6 OBS CMIP5 CMIP6 OBS CMIP5 CMIP6 

Ⅰ 0.85 2.03 2.21 548.85 1723.70 1663.90 0.79 0.71 0.69 
Ⅱ 20.64 33.19 30.12 1226.00 1432.80 2520.70 0.59 0.60 0.33 
Ⅲ 71.53 96.75 141.72 416.00 667.76 1251.30 0.76 0.54 0.53 
Ⅳ 61.20 380.49 243.83 51.57 236.27 205.27 0.97 0.75 0.84 
Ⅴ 30.19 19.13 19.21 4670.40 3330.30 3752.20 0.70 0.69 0.61 
Ⅵ 24.97 24.39 66.85 1947.70 1373.90 3294.60 0.73 0.67 0.68 
Ⅶ 42.40 62.07 74.79 1930.00 2740.60 2490.60 0.85 0.72 0.77 
Ⅷ 148.34 1288.00 2174.50 196.37 1466.80 1780.40 0.98 0.65 0.80 
China 55.89 364.79 477.97 1004.30 1347.60 1718.50 0.85 0.69 0.71 

 246 
This study uses a Taylor diagram (Taylor, 2001) to quantify the pattern similarity between two 247 

variables (i.e., soil erosion from observations and CMIPs). The Taylor diagram provides a concise 248 
statistic summary of how well the pattern distribution of the two variables matches. The diagram 249 
visualizes the degree of correlation (pattern correlation coefficient, PCC), centered root mean square 250 
error (RMSE), and the ratio of spatial standard deviation (RSD). In this study, the Taylor diagram was 251 
used to visualize and evaluate the soil erosion performance of CMIP5 and CMIP6 over each erosion 252 
region. The ability of the two CMIP models to estimate annual soil erosion is presented as Taylor 253 
diagrams (Fig.3). ‘REF’ on the x-axis represents the observation data (observation). As shown in Fig.3, 254 
both CMIP5 and CMIP6 offer good performance in reproducing soil erosion in the Northeast China 255 
black soil region and the Southwest China karst region. The PCCs between the simulation and 256 
observation are greater than 0.90, the centered RMSEs are generally less than 0.25, and the RSDs 257 
mainly vary from 1 to 1.25. Results of CMIPs have lower PCCs and higher RMSEs over the North 258 
China sandstorm region, Southwest China purple soil region, and Qinghai-Tibet Plateau region 259 
compared with the results of the other five regions. Overall, CMIP6 shows slight improvements, 260 
compared to CMIP5, in simulating the spatial pattern for soil erosion, especially in the Northeast China 261 
black soil region, and Northwest China Loess Plateau region with higher PCCs and lower RSDs. In 262 
conclusion, compared with CMIP5, limited improvements in reproducing soil erosion are found in 263 
CMIP6. The high-resolution GCM results of CMIP6 are closer to the observed values than the high-264 
resolution RCM results of CORDEX. This suggests that the most recent GCM offered by CMIP6 can 265 
enhance local simulation details while better capturing the relationship between large-scale and 266 
mesoscale circulation. Therefore, CMIP6's high-resolution GCM can provide more reliable climate 267 
system simulation and projection. The horizontal resolution of the model does not change from the 268 
RCM of CMIP5 to the GCM of CMIP6. In terms of relative aspects, the better performance of climate 269 
models in capturing climate variables and soil erosion characteristics is more likely associated with the 270 
representation of physical processes in climate models from CMIP6 (Su et al., 2021). 271 
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 272 
Fig.3 Taylor diagram of the spatial distribution of annual soil erosion for CMIP5 and CMIP6 273 

models 274 
3.2 Future projections of soil erosion 275 
The CMIP5 and CMIP6 outputs of soil erosion were used to estimate the projected percentage of 276 

change for the near future (2031-2050) compared to the base period over China (Fig.4). In terms of the 277 
spatial distribution of changes, results show that almost all regions expect an increase of soil erosion 278 
under the RCP8.5 and SSP5-8.5. They both projected the largest increase in soil erosion over the 279 
Qinghai-Tibet Plateau region. But CMIP6 projected a less amount of positive change in soil erosion 280 
than projected by CMIP5 models. Relative to 1986-2005, areal-mean soil erosion would increase by 281 
approximately 27.85 and 20.03 t·hm-2·a-1 over China for RCP8.5 and SSP5-8.5, respectively. 282 
Furthermore, the change in soil erosion in a few parts of eastern China is not consistent between the 283 
two CMIPs. According to the latest version CMIP6 and the extreme scenario SSP5-8.5, soil erosion 284 
over the Northeast China black soil region, Southwest China purple soil region, and Southwest China 285 
karst region signalize 4.54%, 2.88%, and 1.62% decrease for 2031-2050 relative to 1986-2005. 286 
Contrary to CMIP6, CMIP5 estimates that these areas will increase by 15-21% under the RCP8.5 287 
climate scenario.  Under the framework of CMIP6, LUH2 pays more attention to the influence of 288 
management factors on land use. The introduction of human disturbance and the slow increase of 289 
rainfall erosivity result in the intensified soil erosion simulated by CMIP6 is less than that simulated by 290 
CMIP5. CMIP6 model takes more parameters into account, so its simulated soil erosion change needs 291 
more attention. 292 
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 293 
Fig.4 Relative percentage changes for 2031-2050 relative to 1986-2005 in annual soil erosion 294 

(unit: t·km-2·a-1) projected by CMIP5 and CMIP6 models  295 
3.3 Effects of climate and land use change on soil erosion 296 
In the process of projecting changes in soil erosion in the study area, it is considered that climate 297 

warming affects the R and P factors in the RUSLE model mainly by changing rainfall and land use 298 
types. Through the control variate method, the contribution rates of rainfall and land use to soil erosion 299 
changes can be calculated by exploring one factor while remaining the other unchanged. The results are 300 
shown in the following Fig.5. According to the CMIP5 simulation, the contribution rate of rainfall 301 
change to the aggravation of soil erosion in the study area is as high as 51.68%, while the contribution 302 
rate of land use is only -5.92%. Both climate change and land use change affect soil erosion and its 303 
spatial distribution. The impact of climate change is far greater than that of land use change. Compared 304 
with CMIP5, CMIP6 amplifies the negative effect of land use, with a contribution rate of -13.77%, 305 
while reducing the positive effect of rainfall, with a contribution rate of only 35.74%.  306 

For rainfall erosivity, regions showing obvious differences between CMIP6 and CMIP5 are 307 
mainly located in a few areas of the Southwest China karst region, Northwest China Loess Plateau 308 
region, and Northeast China black soil region, where the magnitude of the difference is respectively 309 
75.34%, 74.63%, and 63.53%. Among them, it is worth noting that the future response of extreme 310 
rainfall to warming in the Northwest China Loess Plateau region by CMIP6 (72.67%) is large than by 311 
CMIP5 (-1.96%). CMIP6 and CMIP5 simulated climate changes in these three regions have opposite 312 
contributions to soil erosion. This is related to the opposite variation of erosive rainfall simulated by the 313 
two models. CMIP6 simulation results show that the erosive rainfall in the Southwest China karst 314 
region and Northeast China black soil region during 2031-2050 will decrease compared with the 315 
historical period, and in other areas will further increase compared with CMIP5. As the most active 316 
factor in the process of soil erosion, changes in precipitation can directly lead to changes in soil 317 
erosion, and the change rate of the latter can be several times of the former. A 4% to 18% increase in 318 
precipitation can cause a 31% to 167% increase in soil loss (Zhang, 2007). Considering the superiority 319 
of CMIP6 compared with CMIP5, it is necessary to timely optimize the soil and water conservation 320 
work in each region according to the simulation results of CMIP6. 321 

Land use change can either lead to a further increase in soil erosion (agricultural expansion and 322 
deforestation) or a decrease (agricultural abandonment and reforestation) (Eekhout and de Vente, 323 
2022). But if we only discuss the P factor, with the improvement of human awareness of protecting the 324 
ecological environment, taking scientific and reasonable soil and water conservation measures will help 325 
to achieve the effect of controlling soil and water loss. In near future for all regions except the Qinghai-326 



manuscript submitted to Earth’s Future 
 
 

 

Tibet Plateau region, the negative effect of the P factor on soil erosion in SSP5-8.5 are larger than those 327 
in RCP8.5. The largest differences are found in Southwest China purple soil region. Under the SSP5-328 
8.5 climate scenario, more land in the region has changed from natural vegetation that has never been 329 
affected by human activities to non-forest land that has gradually recovered under human interference. 330 
The area of purple soil area is smaller than that of other areas (such as black soil area), so the change 331 
proportion of the same volume of land in the whole area will become particularly prominent. 332 
Additionally, due to the unique fertile soil conditions of black soil and purple soil, protective 333 
agriculture must be actively carried out in the farming area to ensure food security in the future. 334 
Currently, the relative share of conservation agriculture of total global cropland is estimated at 12.5%, 335 
with a clear increasing trend since the mid-1990s (Kassam et al., 2019). The soil conservation practice 336 
scenario shows a potential overall offset of the estimated soil erosion increase of about 64% (Borrelli et 337 
al. 2017). Soil conservation measures are often promoted as a solution to adapt to the projected 338 
increase of soil erosion under climate change (Amundson et al., 2015), which may include land use 339 
change, such as reforestation, and a range of on-site and off-site measures (Xiong et al., 2018). The 340 
future projections of soil loss rates could be at least 16% higher if land use changes are ignored. 341 
Therefore, it is recommended that projections of soil losses due to water erosion should consider both a 342 
wide range of climate change scenarios but also future land use changes.  343 

Tab.2 Contributions of land use and climate changes to soil erosion in each area 344 

Area 
Climate change Land use change 
CMIP5 CMIP6 CMIP5 CMIP6 

Ⅰ 52.98 -10.55 -6.99 -17.34 
Ⅱ 41.31 45.85 -16.48 -35.17 
Ⅲ -1.96 72.67 22.61 -15.06 
Ⅳ 48.38 41.38 -0.46 -6.15 
Ⅴ 61.86 45.90 -20.40 -33.18 
Ⅵ 52.56 20.67 -11.19 -51.03 
Ⅶ 72.16 -3.19 -9.17 -12.21 
Ⅷ 72.68 52.36 0.70 7.72 
China 51.68 35.74 -5.92 -13.77 

 345 
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 346 
Fig.5 The contribution of climate change and land use change to soil erosion under RCP8.5 and 347 

SSP5-8.5 348 
4 Conclusion 349 

This study compares a 50km global climate model from CMIP6 and a 50km regional climate 350 
model from CMIP5 in terms of simulating and projecting soil erosion response to climate and land-use 351 
changes. Special attention is paid to the differences in the effects of land use change and precipitation 352 
change on soil erosion under different emission scenarios. The main findings are summarized as 353 
follows: 354 

(1) Our diagnostics from both CMIP5 and CMIP6 show that there are increases in soil erosion 355 
over China for a future warmer world. We find that both CMIP5 and CMIP6 models capture the 356 
observed soil erosion patterns. But the PCC of CMIP6 is slightly larger than that of CMIP5, and the 357 
RSD is smaller. The validation results of the high-resolution GCM of CMIP6 are superior to the RCM 358 
of CMIP5 with the same resolution because the CMIP6 model not only depicts the finer regional 359 
details of processes but also reproduces their interaction with large mesoscale circulation. 360 

(2) Both models project increased soil erosion in China for 2031-2050 relative to 1986-2005, but 361 
the value projected under SSP5-8.5 is less than that under RCP8.5. The average projected increases in 362 
soil erosion are 27.85 derived from CMIP5 and 20.03 t·hm-2·a-1 derived from CMIP6 models with 363 
remarkable geographical heterogeneity. We assess that the CMIP6 projections provide a less severe soil 364 
erosion situation with better performance in reproducing observational patterns. It is recommended to 365 
the decision-makers to update impact studies for water and soil conservation performed using CMIP5 366 
with the CMIP6 high-resolution model. 367 

(3) The contribution rates of land use change and climate change to soil erosion projected by 368 
CMIP models are quantified. Land use and climatic changes contributed 51.68% and -5.92% 369 
respectively from CMIP5 simulations while 35.74% and -13.77% from CMIP6 to the increased soil 370 
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erosion rate. The negative contribution of land use change is gradually intensified with CMIP6 models 371 
representing finer-scale processes of converting land-use type into cropland, pasture, and urban land. 372 
Therefore, impact studies for soil erosion based on the CMIP5 projections would benefit from updating 373 
to the CMIP6 high-resolution model to get more confidence in estimating future climate and land-use 374 
conditions. This has important implications for policymakers and stakeholders who will have to weigh 375 
the uncertainty of climate and land-use change in their decisions.  376 
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