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Abstract

Bodies of rock that are detached (recovered) from subducting oceanic plates, and exhumed to Earth’s surface, become invaluable

records of the mechanical and chemical processing of rock along subduction interfaces. Exposures of interface rocks with high-

pressure (HP) mineral assemblages provide insights into the nature of rock recovery, yet various interpretations concerning

thermal gradients, recovery rates, and recovery depths arise when directly comparing the rock record with numerical simulations

of subduction. Constraining recovery rates and depths from the rock record presents a major challenge because small sample

sizes of HP rocks makes statistical inference weak. As an alternative approach, this study implements numerical simulations of

oceanic-continental convergence and applies a classification algorithm to identify rock recovery. Over one million markers are

classified from 64 simulations representing a large range of subduction zones. We find recovery P’s (depths) correlate strongly

with convergence velocity and moderately with oceanic plate age, while PT gradients correlate strongly with oceanic plate age

and upper-plate thickness. Recovery rates strongly correlate with upper-plate thickness, yet show no correlation with other

boundary conditions. Likewise, PT distributions of recovered markers vary among numerical experiments and generally show

poor overlap with the rock record. A significant gap in predicted marker recovery is found near 2 GPa and 550 @C, coinciding

with the highest density of exhumed HP rocks. Implications for such a gap in marker recovery include numerical modeling

uncertainties, petrologic uncertainties, selective sampling of exhumed HP rocks, or natural geodynamic factors not accounted

for in numerical experiments.
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Abstract13

Bodies of rock that are detached (recovered) from subducting oceanic plates, and exhumed14

to Earth’s surface, become invaluable records of the mechanical and chemical process-15

ing of rock along subduction interfaces. Exposures of interface rocks with high-pressure16

(HP) mineral assemblages provide insights into the nature of rock recovery, yet various17

interpretations concerning thermal gradients, recovery rates, and recovery depths arise18

when directly comparing the rock record with numerical simulations of subduction. Con-19

straining recovery rates and depths from the rock record presents a major challenge be-20

cause small sample sizes of HP rocks makes statistical inference weak. As an alternative21

approach, this study implements numerical simulations of oceanic-continental conver-22

gence and applies a classification algorithm to identify rock recovery. Over one million23

markers are classified from 64 simulations representing a large range of subduction zones.24

We find recovery P’s (depths) correlate strongly with convergence velocity and moder-25

ately with oceanic plate age, while PT gradients correlate strongly with oceanic plate26

age and upper-plate thickness. Recovery rates strongly correlate with upper-plate thick-27

ness, yet show no correlation with other boundary conditions. Likewise, PT distributions28

of recovered markers vary among numerical experiments and generally show poor over-29

lap with the rock record. A significant gap in predicted marker recovery is found near30

2 GPa and 550 ◦C, coinciding with the highest density of exhumed HP rocks. Implica-31

tions for such a gap in marker recovery include numerical modeling uncertainties, petro-32

logic uncertainties, selective sampling of exhumed HP rocks, or natural geodynamic fac-33

tors not accounted for in numerical experiments.34

Plain language summary35

Converging tectonic plates leads to subduction of the denser plate beneath the other.36

Bodies of subducted rock that return to Earth’s surface bring information about the deep37

subduction interface, yet the rates, depths, and mechanisms that detach rock from the38

subducting plate are not well-understood. As an alternative to studying rock samples,39

this study implements a machine learning algorithm to identify rock detachment in nu-40

merical simulations. Over one million simulated rocks are classified from 64 simulations41

representing a large range of possible subduction zones. Marker pressure-temperature42

(PT) conditions are compared across models and with the rock record. Correlations are43

drawn among important model parameters, including plate velocities and plate thick-44
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ness, that reveal strong and weak effects on marker detachment. Recovery rates strongly45

correlate with upper-plate thickness, yet show no correlation with other parameters. Like-46

wise, PT distributions of markers show variable compatibility with the rock record de-47

pending on the comparison. A significant gap marker recovery coincides with a large pro-48

portion of exhumed HP rocks. Implications for such a gap in marker recovery include49

numerical modeling uncertainties, petrologic uncertainties, selective sampling of exhumed50

HP rocks, or natural geodynamic factors not accounted for in numerical experiments.51

1 Introduction52

Maximum pressure-temperature (PT) conditions have been estimated for hundreds53

of high-pressure (HP) metamorphic rocks exhumed from subduction zones (Figure 1, Agard54

et al., 2018; Hacker, 1996; Penniston-Dorland et al., 2015). These samples represent frag-55

ments of oceanic crust, continental crust, seafloor sediments, and upper mantle that have56

detached from subducting oceanic and continental lithospheres at various depths along57

the interface between subducting and overriding tectonic plates (referred to as “recov-58

ery” after Agard et al. (2018). This rock record is the only tangible evidence of PT-strain59

fields, deep seismic cycling, and fluid flow within Earth’s lithosphere during deformation60

and chemical processing in subduction zones. Together with geophysical imaging (e.g.61

Bostock, 2013; Ferris et al., 2003; Hyndman & Peacock, 2003; Mann et al., 2022; Naif62

et al., 2015; Rondenay et al., 2008; Syracuse & Abers, 2006), analysis of surface heat flow63

data (e.g. Currie & Hyndman, 2006; Gao & Wang, 2014; Hyndman et al., 2005; Kohn64

et al., 2018; Morishige & Kuwatani, 2020; Wada & Wang, 2009), and forward numer-65

ical geodynamic modeling (e.g. Gerya et al., 2002, 2008; Gerya & Stöckhert, 2006; Hacker66

et al., 2003; Kerswell et al., 2021; McKenzie, 1969; Peacock, 1990, 1996; Sizova et al.,67

2010; Syracuse et al., 2010; Yamato et al., 2007, 2008), investigation of the rock record68

underpins contemporary understandings of subduction geodynamics (e.g. Agard et al.,69

2009; Agard, 2021; Bebout, 2007).70

However, it remains difficult to directly interpret the rock record in terms of re-71

covery rates and distributions along the subduction interface. For example, compilations72

of PT estimates representing the global distribution of HP rocks exhumed during the Phanero-73

zoic (the pd15 and ag18 datasets, Agard et al., 2018; Penniston-Dorland et al., 2015) re-74

veal an abrupt decrease in relative sample abundance at P’s above 2.3-2.4 GPa (Figure75

1). For pd15 and ag18, a nearly-constant cumulative distribution (CDF) curve interrupted76
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Figure 1: PT diagram showing distributions of PT estimates for exhumed HP metamor-
phic rock samples compiled in the pd15 (solid contours, Penniston-Dorland et al., 2015)
and ag18 (filled contours, Agard et al., 2018) datasets. (insets) Probability distribution
diagrams of pd15 and ag18 samples showing broad bimodal and trimodal sample distri-
butions with respect to P (top inset) and a kinked CDF (bottom inset) indicating that a
substantial proportion of markers are recovered from P’s between 0.5-2.5 GPa with very
few rocks reaching maximum P’s above 3 GPa. Thin lines are thermal gradients labeled in
◦C/km. Reaction boundaries for eclogitization of oceanic crust and antigorite dehydration
are from Ito & Kennedy (1971) and Schmidt & Poli (1998), respectively.
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by a sharp change in slope around 2.3-2.4 GPa implies relatively uniform recovery of sub-77

ducting material up to 2.3-2.4 GPa, but increasingly rare recovery above 2.3-2.4 GPa (Agard78

et al., 2018; Kerswell et al., 2021; Monie & Agard, 2009; Plunder et al., 2015). On the79

one hand, evidence for common mechanical coupling depths near 2.3 GPa (Furukawa,80

1993; Kerswell et al., 2021; Wada & Wang, 2009) suggests an upper-limit to recovery depths81

that is consistent with the scarcity of (ultra-)HP samples in the rock record and invari-82

ant with respect to key thermo-kinematic parameters (convergence velocity, subduction83

geometry, plate thickness; Figure 1). On the other hand, substantial variations in lat-84

eral (along-strike) upper-plate surface heat flow patterns suggest coupling depths also85

vary substantially among subduction zone segments (Kerswell & Kohn, 2022) and do im-86

pose an invariant upper-limit to recovery depths. Moreover, geophysical constraints on87

the depths of key mechanical transitions likely to induce rock recovery (e.g. Abers et al.,88

2020; Audet & Kim, 2016; Audet & Schaeffer, 2018; Morishige & Kuwatani, 2020) sug-89

gest high recovery rates should cluster around discrete depths, rather than uniform and90

widespread recovery along the subduction interface implied by the pd15 and ag18 datasets.91

Difficulties in relating complex polymetamorphic rocks from different environments92

challenge the use of PT distributions of exhumed HP rock samples as robust constraints93

on key subduction zone parameters. Interpretations of rock recovery mechanisms, sub-94

duction interface behavior, metamorphic reactions, seismic cycling, and subduction geo-95

dynamics might vary depending on metamorphic terrane (local tectonic environment),96

sampling strategy (random or targeted outcrops), sample size (how many outcrops were97

observed and sampled in the field), and analytical sample selection (investigating PT’s98

and deformation histories for a subset of samples with a specific scientific question in mind).99

Different compilations of PT estimates can show different density distributions, in terms100

of relative abundances of samples across PT space, and thus imply different depths of101

rock recovery along the subduction interface. For example, Agard et al. (2018) noted102

that compilations from Plunder et al. (2015) and Groppo et al. (2016) show less disper-103

sion (i.e. a more step-like CDF) than ag18 with tighter bimodal or trimodal distributions104

clustering around inferred depths of important mechanical transitions along the subduc-105

tion interface. These peaks (modes) in distributions of exhumed HP rocks coincide with106

the continental Moho at approximately 25-35 km and the transition to mechanical plate107

coupling at approximately 80 km (Agard et al., 2018; Monie & Agard, 2009; Plunder et108

al., 2015). Less consensus explains a smaller, yet significant, intermediate mode at 55-109
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60 km (Agard et al., 2009, 2018; Plunder et al., 2015), although it is consistent with a110

high- density region of PT estimates in the pd15 dataset.111

Differences in compiled PT datasets notwithstanding, key observations regarding112

rock recovery in subduction zones emerge from pd15 and ag18:113

1. Rocks are recovered with relatively similar frequency up to 2.5 GPa114

2. 64-66% of recovered rocks equilibrated between 1-2.5 GPa115

3. 5-19% of recovered rocks equilibrated above 2.5 GPa116

4. 32-34% of recovered rocks equilibrated between 350-525 ◦C117

5. 50-56% of recovered rocks equilibrated above 525 ◦C118

6. 52-62% of recovered rocks record gradients between 5-10 ◦C/km119

7. 18-31% of recovered rocks record gradients between 10-15 ◦C/km120

8. 6-30% of recovered rocks record gradients above 15 ◦C/km121

These ranges in the relative abundances of exhumed HP rocks compiled in different datasets122

raise important questions in subduction zone research: are rocks recovered broadly and123

uniformly along the subduction interface or discretely from certain depths? How do re-124

covery rates and distributions vary among diverse subduction zone settings and through125

time?126

Previous work comparing the rock record directly with numerical models has gen-127

erally produced ambiguous interpretations concerning recovery rates and distributions128

along the subduction interface. For example, comparisons of different numerical geody-129

namic codes with subsets of the rock record show variable agreement in terms of over-130

lapping PT paths and thermal gradients (e.g. Angiboust et al., 2012b; Burov et al., 2014;131

Holt & Condit, 2021; Penniston-Dorland et al., 2015; Plunder et al., 2018; Roda et al.,132

2010, 2012, 2020; Ruh et al., 2015; Yamato et al., 2007, 2008). Initial setups for numer-133

ical experiments (oceanic plate age, convergence velocity, subduction dip angle, upper-134

plate thickness, and heating sources; Kohn et al., 2018; Penniston-Dorland et al., 2015;135

Ruh et al., 2015; van Keken et al., 2019), differential recovery rates from subduction zones136

with favorable thermo-kinematic boundary conditions (Abers et al., 2017; van Keken et137

al., 2018), and comparisons among suites of undifferentiated HP rocks (e.g. grouping rocks138

recovered during subduction initiation with rocks recovered during “steady-state” sub-139

duction, see Agard et al., 2018, 2020) all potentially contribute to nonoverlapping PT140
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distributions and thermal gradients between exhumed HP rocks and numerical geody-141

namic models. Compounding the ambiguity are arguments that material is sporadically142

recovered during short-lived mechanical transitions (Agard et al., 2016) and/or geody-143

namic changes (Monie & Agard, 2009)—implying exhumed HP rocks are not random144

samples of the subduction interface during steady-state subduction. Such ambiguities145

warrant further investigation into the general response of recovery rates and distribu-146

tions to broad ranges of thermo-kinematic boundary conditions and various implemen-147

tations of subduction interface rheologies.148

Fortunately, clues about the nature and PT limits of rock recovery are provided149

by many extensively studied examples of exhumed subduction interfaces (e.g. Agard et150

al., 2018; Angiboust et al., 2011; 2015; Cloos & Shreve, 1988; Fisher et al., 2021; Ioan-151

nidi et al., 2020; Kitamura & Kimura, 2012; Kotowski & Behr, 2019; Locatelli et al., 2019;152

Monie & Agard, 2009; Okay, 1989; Platt, 1986; Plunder et al., 2013, 2015; Tewksbury-153

Christle et al., 2021; Wakabayashi, 2015). However, these type localities represent an un-154

known fraction of subducted material and differ significantly in terms of their geome-155

try (field relationships), composition (rock types), and interpreted deformation histories156

(both detachment and exhumation). It is also unclear to what extent ag18 and pd15 (and157

other compilations) represent the full range of recovery conditions and/or represent sci-158

entific sampling bias (e.g. undersampling low-grade rocks or oversampling high-grade rocks159

from the same pristine exposures, Agard et al., 2018). Thus, a primary challenge to in-160

ferring recovery rates and distributions accurately from the rock record fundamentally161

stems from sparse nonrandom samples (typically less than a few dozen PT estimates from162

any given exhumed terrane) compared to the diversity of thermo-kinematic parameters163

characterizing subduction zones and petro-thermo-mechanical conditions suitable for rock164

recovery along the subduction interface.165

This study aims at addressing the sparsity and nonrandomness of exhumed HP rock166

samples by tracing numerous (1,341,729) Lagrangian markers from 64 numerical geody-167

namic simulations of oceanic-continental subduction (Kerswell et al., 2021). We first gen-168

erate a PT dataset from instantiations of a particular numerical geodynamic code so large169

that it was insensitive to noise and outliers—thus representing a statistically robust pic-170

ture of recovery rates and PT distributions in subduction zones. From such a large dataset171

of generated samples, we identify correlations among recovery rates, PT distributions,172

and thermo-kinematic boundary conditions that quantify parameter sensitivities and in-173
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dicate ranges of plausible conditions for reproducing the rock record. In fact, surpris-174

ingly low densities of generated samples, in terms of their relative abundances across PT175

space, were found coinciding with the highest-density regions of natural samples around176

2 GPa and 550 ◦C. We then discuss implications for poor overlap between generated sam-177

ple densities and exhumed HP rock densities, including insufficient implementation of178

recovery mechanisms in numerical geodynamic models (numerical bias) and a potential179

overabundance of natural samples collected from similar metamorphic grades around 2180

GPa and 550 ◦C (empirical bias).181

2 Methods182

This study presents a dataset of Lagrangian markers (described below) from nu-183

merical experiments that simulated 64 oceanic-continental convergent margins with thermo-184

kinematic boundary conditions (oceanic plate age, convergence velocity, and upper-plate185

lithospheric thickness) closely representing the range of presently active subduction zones186

(Syracuse & Abers, 2006; Wada & Wang, 2009). Initial conditions were modified from187

previous studies of active margins (Gorczyk et al., 2007; Sizova et al., 2010) using the188

numerical geodynamic code I2VIS (Gerya & Yuen, 2003). I2VIS models visco-plastic flow189

of geological materials by solving conservative equations of mass, energy, and momen-190

tum on a fully-staggered finite difference grid with a marker-in-cell technique (Gerya,191

2019; Gerya & Yuen, 2003; e.g. Harlow & Welch, 1965). Complete details about the ini-192

tial setup, boundary conditions, and rheological model are presented in Kerswell et al.193

(2021). Complete details about I2VIS and example code are presented in Gerya & Yuen194

(2003) and Gerya (2019).195

The following section defines Lagrangian markers (now referred to as markers) and196

briefly elaborates on their usefulness in understanding flow of geological materials, fol-197

lowed by a description of the marker classification algorithm. A complete mathemati-198

cal description of the classification algorithm is presented in Appendix A.1.199

2.1 Lagrangian Markers200

Markers are mathematical objects representing discrete parcels of material flow-201

ing in a continuum (Harlow, 1962, 1964). Tracing markers (saving marker information202
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at each timestep) is distinctly advantageous for investigating subduction dynamics in the203

following two ways.204

First, modeling subduction requires solving equations of mass, motion, and heat205

transport in a partly layered, partly heterogeneous, high-strain region known as the plate206

interface, subduction interface, or subduction channel (Gerya et al., 2002). Current con-207

ceptual models regard the subduction interface as a visco-plastic continuum with com-208

plex geometry and structure, sharp thermal, chemical, and strain gradients, strong ad-209

vection, and abundant fluid flow (Agard et al., 2016, 2018; Bebout, 2007; Bebout & Bar-210

ton, 2002; Cloos & Shreve, 1988; Gerya & Yuen, 2003; Penniston-Dorland et al., 2015;211

Shreve & Cloos, 1986; Stöckhert, 2002; Tewksbury-Christle et al., 2021). Finite-difference212

numerical approaches do not perform well with strong local gradients, and interpolat-213

ing and updating T, strain, and chemical fields with markers greatly improves accuracy214

and stability of numerical solutions (Gerya, 2019; Gerya & Yuen, 2003; Moresi et al., 2003).215

Second, tracing a marker closely proxies for tracing a rock’s PT-time history. Strictly216

speaking, deviations between calculated PT-time histories of markers and rocks are pos-217

sible because our numerical geodynamic simulations assume: (1) markers move in an in-218

compressible continuum (Batchelor, 1953; Boussinesq, 1897), (2) material properties are219

governed by a simplified petrologic model describing eclogitization of oceanic crust (Ito220

& Kennedy, 1971) and (de)hydration of upper mantle (antigorite ⇔ olivine+orthopyroxene+221

H2O, Schmidt & Poli, 1998), and (3) marker stress and strain are related by a highly222

non-linear rheological model derived from empirical flow laws (Hilairet et al., 2007; Karato223

& Wu, 1993; Ranalli, 1995; Turcotte & Schubert, 2002). For example, if rocks within a224

subduction interface shear zone were highly compressible or could sustain large devia-225

toric stresses, P’s and T’s might be different from markers. The hydrological model im-226

plemented in our numerical simulations, embodied by assumptions 2 and 3, exert par-227

ticularly strong control on subduction interface strength, and thus the probability and228

style of detachment. Our simulations developed stable subduction channels (tectonic-229

mélanges, e.g. Gerya et al., 2002) instead of discrete shear zones that detach large co-230

herent slices of oceanic lithosphere (e.g. Ruh et al., 2015) primarily due to our choice231

of hydrological model. However, insofar as subduction interface shear zones closely be-232

have as mélange-like channels of incompressible visco-plastic fluids (under the assump-233

tions above, Gerya, 2019; Gerya & Yuen, 2003; Kerswell et al., 2021), comparisons be-234

tween marker PT distributions and the rock record may be made.235
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2.2 Marker Classification236

For each numerical experiment, 20,986 markers were initially selected from within237

a 760 km-long and 8 km-deep section of oceanic crust and seafloor sediments at t = 0238

Ma. Tracing proceeded for 115 timesteps (between 9.3-54.7 Ma depending on conver-239

gence velocity), which was sufficient for markers to be potentially subducted very deeply240

(up to 300 km) from their initial positions. However, only markers that detached from241

the subducting oceanic plate were relevant for comparison with PT estimates of exhumed242

HP rocks (because these markers and rocks were not subducted). The main challenge,243

therefore, was to first develop a method for determining which markers among 20,986244

detached and moved away from the subducting plate without knowing their fate a pri-245

ori. Moreover, the method needed to be generalizable to a large range of numerical ex-246

periments. Note that detached markers were classified as “recovered” even if they did247

not exhume to the surface within the modeling domain. Diverse processes can cause ex-248

humation of subduction zone rocks, including later tectonic events, and our goal was to249

compare only the maximum metamorphic conditions of markers and rocks along their250

prograde paths.251

Classifying unlabelled markers as either “recovered” or “not recovered” based solely252

on their undifferentiated traced histories defines an unsupervised classification problem253

(Barlow, 1989). Many methods can be applied to solve the unsupervised classification254

problem, yet this study implemented a Gaussian mixture model (Reynolds, 2009)—a type255

of “soft” clustering algorithm used extensively for pattern recognition, anomaly detec-256

tion, and estimating complex probability distribution functions (e.g. Banfield & Raftery,257

1993; Celeux & Govaert, 1995; Figueiredo & Jain, 2002; Fraley & Raftery, 2002; Vermeesch,258

2018). “Hard” classification is possible by directly applying simple rules to markers with-259

out clustering (e.g. Roda et al., 2012). However, “hard” methods are less generalizable260

than “soft” approaches like Gaussian mixture models, which can be implemented to study261

many possible features in numerical simulations with Lagrangian reference frames—not262

just recovery of subducted material. In this case, a Gaussian mixture model organized263

markers into groups (clusters) by fitting k = 14 bivariate Gaussian ellipsoids to the dis-264

tribution of markers in PT space. “Fitting” refers to adjusting parameters (centroids and265

covariance matrices) of all k Gaussian ellipsoids until the ellipsoids and data achieved266

maximum likelihood (see Appendix A.1 for a complete mathematical description). Fi-267
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nally, marker clusters with centroids located within certain bounds were classified as “re-268

covered”. The entire classification algorithm can be summarized as follows:269

0. Select markers within a 760 km × 8 km section of oceanic crust270

1. Trace markers for 115 timesteps271

2. Identify maximum marker PT conditions (at either maxT or maxP)272

3. Apply Gaussian mixture modeling to maximum marker PT conditions273

4. Check for cluster centroids within the bounds:274

• ≥ 3 ◦C/km AND275

• ≤ 1300 ◦C AND276

• ≤ 120 km (3.4 GPa)277

5. Classify marker clusters found in step 4 as “recovered”278

6. Classify all other markers as “not recovered”279

Note that maximum marker PT conditions used for clustering were assessed before mark-280

ers transformed (dehydrated or melted) and before the accretionary wedge toe collided281

with the high-viscosity convergence region positioned at 500 km from the left boundary282

(to avoid spurious maximum PT conditions from sudden isothermal burial). We also tried283

applying different prograde PT path positions in step 2 by determining maximum marker284

T’s (maxT) and maximum P’s (maxP) independently. Applying maxP vs. maxT con-285

ditions to the classifier resulted in distinct PT distributions of recovered markers and286

distinct correlations among thermo-kinematic boundary conditions and marker recov-287

ery modes. For natural samples of exhumed HP rocks, compilations emphasize maxP,288

not maxT, (Penniston-Dorland et al., 2015), and thus empirical PT estimates are best289

compared with maxP conditions. Also, many PT paths for exhumed HP rocks have “hair-290

pin” or isothermal decompression retrograde PT paths without significant heating dur-291

ing exhumation (Agard et al., 2009). Figures 2 & 3 illustrate marker classification for292

1 of 64 numerical experiments. All other experiments are presented in Supplementary293

??.294

2.3 Recovery Modes295

To better quantify how rock recovery can vary among subduction zones with dif-296

ferent boundary conditions, marker recovery modes (density peaks) were determined with297
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respect to absolute PT and PT gradients. The highest-density peak (mode1) shows where298

the greatest abundance of markers are recovered. The deepest, or warmest, density peak299

(mode2) shows where the most deeply subducted markers (or markers with the highest300

PT gradients) are recovered. In other words, changes in the positions of mode1 and mode2301

reflect variations in recovery conditions for “normal” recovery and “extreme cases”, re-302

spectively.303

Note that correlations are not presented here with respect to the thermal param-304

eter Φ (Φ = oceanic plate age · convergence velocity), unlike many studies. The ration-305

ale is three-fold: (1) the aim was to understand how oceanic plate age and convergence306

velocity affect marker recovery independently, (2) sample sizes of recovered markers were307

larger when grouped by oceanic plate age and convergence velocity (n = 335,788) com-308

pared to grouping by Φ (n = 83,947; implying they do not correlate well with Φ), and309

(3) and combining oceanic plate age and convergence velocity can draw unnecessarily310

ambiguous associations with other geodynamic features of subduction zones (e.g. Φ vs. H311

from England et al., 2004; Wada & Wang, 2009).312
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Figure 2: Example of marker classification for model cda62. (a) PT diagram showing marker clusters as assigned by Gaussian mixture modeling
(GMM; colored PT paths). Boxplots showing depth and thermal gradient distributions of marker clusters assigned by GMM. Markers belonging to
clusters with centroids (means) positioned at ≤ 120 km (top inset) and ≥ 5 ◦C/km (bottom inset) are classified as recovered. All others are classified
as not recovered. (b) PT diagram showing marker classification results (colored PT paths) and various marker positions along their PT paths (black,
white, and pink points). (insets) Histograms showing the distribution of T’s (top inset) and P’s (bottom inset) for recovered markers at maxP (black
bars) and maxT (white bars) conditions. In this experiment, a significant number of markers have different peak metamorphic conditions between their
maxT and maxP positions. Thin lines are thermal gradients labeled in ◦C/km. Only a random subset of markers are shown.
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Figure 3: Summary of marker recovery for model cda62. (a) PT diagram showing the density of recovered markers (black points and green Tanaka
contours) in comparison with the pd15 (solid red density contours) and ag18 (filled gray density contours) datasets. (insets) Probability distribution
diagrams showing trimodal recovery P’s (top inset) and a step-like CDF (bottom inset) indicating that a substantial proportion of markers are recov-
ered from depths between 0.5-1.5 GPa. Thin lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization of oceanic crust and
antigorite dehydration are from Ito & Kennedy (1971) and Schmidt & Poli (1998), respectively. (b) Visualization of log viscosity in the model domain
showing the major modes of marker recovery along a relatively thick subduction interface that tapers near the viscous coupling depth.
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3 Results313

3.1 Comparing Marker PT Distributions with the Rock Record314

3.1.1 Global Markers from all Numerical Experiments315

While marker recovery can occur at all P’s recorded by exhumed metamorphic rocks316

(Figure 4), large disparities between recovered markers and the rock record are found317

if considering sample densities with respect to P. For example, pd15 and ag18 show high318

sample densities centered at 1 GPa—a shared feature common to all 64 numerical experiments—319

yet sample densities above 1 GPa are much greater in pd15 and ag18 compared to sim-320

ulations (relative to the total number of samples in each dataset; Figure 4). Samples com-321

piled in pd15 and ag18 also show much broader bimodal or trimodal density distribu-322

tions across P’s compared to a narrow and strong unimodal P distribution centered at323

1 GPa for recovered markers. With respect to T, thermal gradients of recovered mark-324

ers are significantly lower than natural samples. On average, markers recovered from <325

2 GPa differ by 173 ◦C and 3-4 ◦C/km compared to rocks exhumed from < 2 GPa (ex-326

cluding the highest-T samples in ag18 that relate to subduction initiation, Agard et al.,327

2018, 2020; Soret et al., 2022). In fact, relatively poor overlap exists between the high-328

density peak of recovered markers centered at 1 GPa & 300◦ C and either high-density329

peaks of natural sample centered at 1 GPa & 350◦ C and 2 GPa & 550◦ C (Figure 4).330

3.1.2 Markers from Individual Numerical Experiments331

For most experiments, marker recovery is localized and discrete with peaky mul-332

timodal density distributions and step-like CDFs. The PT positions of recovery cluster333

centroids depend on thermo-kinematic boundary conditions, however, so marker PT dis-334

tributions vary. A few experiments show broad marker distributions that resemble the335

rock record with respect to P, but not with respect to thermal gradients (Supplemen-336

tary ??). Other experiments show the opposite. To compare marker recovery among var-337

ious subduction zone settings, we combined recovered markers from multiple numerical338

experiments with similar thermo-kinematic boundary conditions—–analogous to randomly339

sampling exhumed HP rocks from similar subduction zones (Figures 5 & 6).340
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Whether comparing the rock record with recovered markers from individual nu-341

merical experiments, suites of experiments, or all numerical experiments, several key ob-342

servations emerge (Figure 4):343

1. Recovered markers from most individual numerical experiments show discrete mul-344

timodal PT distributions with steep step-like CDFs (Figure 3 & Supplementary345

??)346

2. Relatively few markers are recovered from PT regions coinciding with high-densities347

of natural samples around 2 GPa and 550 ◦C348

3. Markers are recovered from a single major P mode near 1 GPa and minor P mode349

near 2.5 GPa with a higher rate of recovery from lower P’s (79% from ≤ 1.5 GPa)350

compared to natural samples (36-59% from ≤ 1.5 GPa)351

4. Markers are recovered from a single major T mode near 300 ◦C and minor T mode352

near 525 ◦C with a higher rate of recovery from lower T’s (97% from ≤ 525 ◦C)353

compared to natural samples (44-50% from ≤ 525 ◦C)354

5. The relative abundance of markers recovered along “typical” thermal gradients355

for subduction zones (87% from 5-12 ◦C/km) is high compared to natural sam-356

ples (59-78% from 5-12 ◦C/km)357

6. Many markers are recovered from the forbidden zone (11% from ≤ 5 ◦C/km)358

7. Virtually no markers (0.002%) are recovered from ≥ 15 ◦C/km compared to nat-359

ural samples (6-30% from ≥ 15 ◦C/km, Figure 4)360

3.2 Correlations with Boundary Conditions361

3.2.1 Oceanic Plate Age Effect362

Thermal gradients of recovered markers respond strongly to changes in oceanic plate363

age (Figure 7, Table 1). Both PT gradient modes are strongly inversely correlated with364

oceanic plate age, showing a mean increase from about 5.88 ± 0.17 ◦C/km (Grad mode1)365

and 6.91 ± 0.68 ◦C/km (Grad mode2) for older plates (≥ 85 Ma) to about 7.25 ± 0.05366

◦C/km (Grad mode1) and 8.84 ± 0.56 ◦C/km (Grad mode2) for younger plates (≤ 55367

Ma). The dominant P mode (P mode1) moderately correlates with oceanic plate age,368

indicating a slightly higher possibility of recovering material from beyond the continen-369

tal Moho for the oldest oceanic plates (≥ 85 Ma). Neither T modes, nor recovery rate370
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Figure 4: Recovered markers from all 64 numerical experiments. (a) PT diagram show-
ing the density of recovered markers (black points and green Tanaka contours) in com-
parison with the pd15 (solid red density contours) and ag18 (filled gray density contours)
datasets. Marker density is concentrated along relatively cool thermal gradients, primarily
near the continental Moho (1 GPa), with minor recovery modes centered near the onset of
plate coupling (2.3-2.5 GPa). (insets) Probability distribution diagrams showing discrete
multimodal recovery P’s (top inset) and a steep CDF (bottom inset) indicating that a
substantial proportion of markers are recovered from depths between 0.5-1.5 GPa. Note
the higher-abundance of pd15 and ag18 samples at > 1.5 GPa compared to markers. Thin
lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization of
oceanic crust and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt &
Poli (1998), respectively.
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Figure 5: Recovered markers from numerical experiments with young oceanic plates
(32.6-55 Ma). PT diagrams showing the densities of recovered markers (black points cloud
and green Tanaka contours) in comparison with the pd15 (solid red density contours)
and ag18 (filled gray density contours) datasets, grouped by thermo-kinematic boundary
conditions (16 experiments per plot; boundary conditions summarized in Kerswell et al.,
2021). (insets) Probability distribution (top inset) and CDF diagrams with respect to P.
Thin lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization
of oceanic crust and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt
& Poli (1998), respectively.
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Figure 6: Recovered markers from numerical experiments with older oceanic plates (85-
110 Ma). PT diagrams showing the densities of recovered markers (black points cloud
and green Tanaka contours) in comparison with the pd15 (solid red density contours)
and ag18 (filled gray density contours) datasets, grouped by thermo-kinematic boundary
conditions (16 experiments per plot; boundary conditions summarized in Kerswell et al.,
2021). (insets) Probability distribution (top inset) and CDF diagrams with respect to P.
Thin lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization
of oceanic crust and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt
& Poli (1998), respectively.
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correlate with oceanic plate age. Although oceanic plate age strongly affects the aver-371

age PT gradients of recovered material, it does not strongly shift marker recovery up or372

down the subduction interface.373

3.2.2 Convergence Velocity Effect374

P’s and T’s of recovered markers respond strongly to changes in convergence ve-375

locity (Figure 7, Table 1). Both P modes are strongly inversely correlated with conver-376

gence velocity, showing a mean increase from 1.09 ± 0.03 GPa (P mode1) and 1.91 ±377

0.33 GPa (P mode2) for fast moving plates (100 km/Ma) to about 1.37 ± 0.06 GPa (P378

mode1) and 2.64 ± 0.08 GPa (P mode2) for slow moving plates (40 km/Ma). However,379

the dominant P mode (P mode1) does not change significantly until convergence veloc-380

ity drops below 66 km/Ma (Table 1). Both T modes are strongly inversely correlated381

with convergence velocity, showing a mean increase from 249.3 ± 6.6 ◦C (T mode1) and382

371.8 ± 60.8 ◦C (T mode2) for fast moving plates (100 km/Ma) to about 311.6 ± 1.5383

◦C (T mode1) and 542.5 ± 74.3 ◦C (T mode2) for slow moving plates (40 km/Ma). Nei-384

ther PT gradient modes, nor recovery rate correlate with convergence velocity. In sum-385

mary, decreasing convergence velocity shifts marker recovery to warmer and deeper con-386

ditions along the subduction interface without significantly changing the average ther-387

mal gradient of subducted material.388

3.2.3 Upper-plate Thickness Effect389

From the same numerical experiments used to trace markers, an association be-390

tween upper-plate thickness and mechanical coupling depths was demonstrated (Kerswell391

et al., 2021). P distributions of markers were thus expected to respond strongly to changes392

in upper-plate thickness. However, a surprisingly negligible effect was observed (Figure393

7). For example, neither of the P modes, nor T mode2 (usually the most deeply subducted394

markers) correlate with upper-plate thickness. In contrast, both PT gradient modes and395

the dominant T mode (T mode1) inversely correlate with upper-plate thickness. Recov-396

ery rate is correlated with upper-plate thickness and not with any other boundary con-397

dition, indicating higher recovery rates are more likely underneath thick upper-plates.398

Recovery rates show a mean decrease from 10.65 ± 0.32 % for thicker plates (≥ 78 km-399

thick) to 8.09 ± 0.3 % for thinner upper-plates (≤ 62 km-thick). In summary, thin upper-400
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plates are more likely to produce warmer thermal gradients, higher T’s, and lower re-401

covery rates.402

Figure 7: Correlations among marker recovery modes and thermo-kinematic boundary
conditions. The dominant recovery mode (mode1) indicates the position of the tallest
density peak with respect to P, T, or thermal gradient (i.e. conditions from which the
greatest number of markers are recovered), while mode2 indicates the position of the
warmest, deepest, or highest gradient density peak (i.e. conditions from which deeply
subducted markers are recovered). While oceanic plate age and upper-plate thickness
more strongly affect the average thermal gradients of recovered markers (stronger correla-
tions with gradient modes and T mode1), convergence velocity more strongly affects the
depths of recovery along the subduction interface, especially for deeply subducted markers
(stronger correlation with P modes and T mode2). The dominant T mode (T mode1) and
recovery rate are correlated with upper-plate thickness, but not with any other boundary
condition. Symbols indicate the Spearman’s rank correlation coefficient that measures the
significance of monotonic correlations. *** ρ ≤ 0.001, ** ρ ≤ 0.01, * ρ ≤ 0.05, - ρ ≥ 0.05.
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Table 1: Subduction zone parameters and marker classification summary

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cda46 13.0 46 32.6 40 1482±28 7.8±0.14 1.12±0.00 2.46±0.04 336±2 584±138 8.2±0.02 9.5±0.04

cda62 13.0 62 32.6 40 1351±24 7.2±0.12 1.12±0.00 2.24±0.26 332±2 534±36 8.3±0.02 8.3±0.02

cda78 13.0 78 32.6 40 1863±30 9.9±0.16 1.39±0.00 2.38±0.02 352±2 477±2 5.9±0.02 9.3±1.66

cda94 13.0 94 32.6 40 1932±28 10.2±0.14 1.24±0.00 2.65±0.02 341±2 502±26 5.6±0.02 7.8±0.04

cdb46 21.5 46 32.6 66 1806±34 9.6±0.18 1.04±0.00 2.37±0.74 334±2 657±2 8.3±0.04 8.4±0.38

cdb62 21.5 62 32.6 66 1405±20 7.4±0.10 1±0.00 2.16±0.00 281±2 531±32 7.8±0.04 10±0.06

cdb78 21.5 78 32.6 66 1884±32 10±0.18 0.92±0.00 2.49±0.08 264±2 541±6 8.1±0.04 8.1±0.04

cdb94 21.5 94 32.6 66 2330±124 12.3±0.66 1.16±0.16 2.64±0.12 291±2 464±44 7.5±0.02 7.9±1.10

cdc46 26.1 46 32.6 80 1736±46 9.2±0.24 1.02±0.00 1.27±0.68 320±0 475±162 8.8±0.40 9.1±0.98

cdc62 26.1 62 32.6 80 1288±28 6.8±0.16 0.99±0.00 2.01±0.00 264±2 531±2 6.7±0.02 8.6±0.92

cdc78 26.1 78 32.6 80 1801±24 9.5±0.14 0.94±0.10 2.88±0.16 283±2 519±28 7.8±0.02 8.1±2.00

cdc94 26.1 94 32.6 80 2158±26 11.4±0.14 1.14±0.00 3.01±0.02 274±0 533±2 6.7±0.04 9.8±0.04
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdd46 32.6 46 32.6 100 1055±58 5.6±0.30 1±0.00 1.76±0.14 226±0 465±50 5.9±0.02 8.5±0.06

cdd62 32.6 62 32.6 100 1365±28 7.2±0.14 0.99±0.00 1.63±0.16 262±2 342±30 5.6±0.04 8.9±0.04

cdd78 32.6 78 32.6 100 1889±28 10±0.16 1±0.00 1.93±0.08 264±2 512±2 7.5±0.04 11.8±1.56

cdd94 32.6 94 32.6 100 2716±32 14.4±0.16 1.23±0.00 2.9±0.00 242±38 660±6 7.3±0.02 7.3±0.02

cde46 22.0 46 55.0 40 1612±36 8.5±0.18 1.11±0.00 2.83±0.54 315±2 675±90 6.7±0.02 7.9±0.94

cde62 22.0 62 55.0 40 1794±50 9.5±0.26 1.08±0.00 2.24±0.00 285±2 485±2 6.1±0.00 7.4±0.64

cde78 22.0 78 55.0 40 1866±34 9.9±0.18 1.37±0.00 2.52±0.00 315±2 507±98 5.9±0.06 7.5±0.02

cde94 22.0 94 55.0 40 1808±20 9.6±0.10 2.33±0.86 2.54±0.00 319±2 431±0 5±0.02 7.2±0.02

cdf46 36.3 46 55.0 66 2246±56 11.9±0.30 1.11±0.04 2.68±0.28 308±2 673±14 7.6±0.02 7.6±0.02

cdf62 36.3 62 55.0 66 1569±38 8.3±0.20 1.14±0.00 2.2±0.06 265±2 582±130 6.9±0.02 6.9±0.02

cdf78 36.3 78 55.0 66 1621±26 8.6±0.14 0.99±0.00 2.75±0.18 228±2 545±8 7±0.02 7.5±1.16

cdf94 36.3 94 55.0 66 1964±30 10.4±0.16 0.93±0.00 2.79±0.02 216±0 597±212 6.6±0.02 6.6±0.02
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdg46 44.0 46 55.0 80 2101±74 11.1±0.40 1.2±0.00 1.96±0.04 338±2 338±2 8.1±0.16 8.2±1.26

cdg62 44.0 62 55.0 80 1334±24 7.1±0.12 1±0.00 1.74±0.06 218±4 277±48 5.2±0.02 7.5±0.04

cdg78 44.0 78 55.0 80 1585±26 8.4±0.14 1.01±0.00 2.21±0.02 238±2 529±210 4.9±0.02 7.1±0.02

cdg94 44.0 94 55.0 80 2132±22 11.3±0.12 0.98±0.00 2.69±0.02 209±0 402±36 6.4±0.02 9.4±0.10

cdh46 55.0 46 55.0 100 947±16 5±0.08 0.95±0.00 1.63±0.26 273±4 368±98 7±0.18 9.2±0.48

cdh62 55.0 62 55.0 100 1448±24 7.7±0.12 0.99±0.00 1.73±0.00 237±36 243±2 6.9±1.46 7.1±0.02

cdh78 55.0 78 55.0 100 1631±22 8.6±0.12 0.99±0.02 1.59±0.26 215±10 256±84 6.6±1.36 6.8±0.16

cdh94 55.0 94 55.0 100 2281±28 12.1±0.14 0.88±0.00 1.24±0.14 203±0 275±2 6.7±0.02 10.3±0.62

cdi46 34.0 46 85.0 40 1275±24 6.8±0.14 1.17±0.00 3.55±0.32 287±2 721±72 6.6±0.02 6.6±0.02

cdi62 34.0 62 85.0 40 1915±34 10.1±0.18 1.09±0.00 2.28±0.00 257±2 494±286 5.6±0.76 6.7±0.04

cdi78 34.0 78 85.0 40 2043±24 10.8±0.12 1.65±0.02 2.56±0.00 320±2 443±4 5.4±0.02 6.5±0.02

cdi94 34.0 94 85.0 40 2007±38 10.6±0.20 1.66±0.02 2.94±0.00 292±2 493±6 5.1±0.02 6.4±0.02
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdj46 56.1 46 85.0 66 1656±100 8.8±0.52 1.07±0.00 2.55±0.58 273±2 616±318 6.4±0.06 7.4±0.12

cdj62 56.1 62 85.0 66 1364±28 7.2±0.14 1.09±0.00 2.13±0.04 238±2 516±24 6.3±0.02 6.3±0.02

cdj78 56.1 78 85.0 66 1326±28 7±0.14 1.22±0.00 1.97±0.02 202±0 315±0 4.5±0.02 6.5±0.06

cdj94 56.1 94 85.0 66 1849±26 9.8±0.14 1.03±0.00 1.52±0.00 206±0 206±0 5.9±0.02 5.9±0.02

cdk46 68.0 46 85.0 80 1463±24 7.8±0.14 1.06±0.02 1.11±0.26 270±2 400±120 7.5±0.02 7.5±0.02

cdk62 68.0 62 85.0 80 1204±20 6.4±0.10 1.07±0.00 1.83±0.00 220±2 452±170 4.7±0.02 6.7±0.04

cdk78 68.0 78 85.0 80 1540±36 8.2±0.20 1.02±0.04 1.78±0.34 214±8 214±8 6±1.58 6.9±0.90

cdk94 68.0 94 85.0 80 2032±32 10.8±0.16 1.04±0.00 3.19±0.06 265±2 677±30 6±0.02 6±0.02

cdl46 85.0 46 85.0 100 714±16 3.8±0.08 1.1±0.00 1.56±0.02 268±2 268±2 6±0.06 6.5±2.78

cdl62 85.0 62 85.0 100 1096±22 5.8±0.12 1.02±0.00 2.23±0.02 246±2 466±126 6.8±0.18 6.8±0.18

cdl78 85.0 78 85.0 100 1663±42 8.8±0.22 1.08±0.18 1.94±0.02 273±2 273±2 4±0.02 8.9±2.46

cdl94 85.0 94 85.0 100 1508±218 8±1.16 1.23±0.16 1.27±0.08 225±4 370±70 5.8±0.06 7.4±2.74
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdm46 44.0 46 110.0 40 1390±24 7.4±0.12 1.39±0.00 3.14±0.02 320±2 711±6 6.1±0.02 8.1±1.94

cdm62 44.0 62 110.0 40 2326±28 12.3±0.14 1.21±0.00 2.45±0.00 281±0 439±2 5.5±0.38 5.7±0.04

cdm78 44.0 78 110.0 40 1828±36 9.7±0.18 1.48±0.00 2.51±0.00 331±4 668±208 5.5±0.02 6.4±1.04

cdm94 44.0 94 110.0 40 1901±28 10.1±0.14 1.53±0.00 2.87±0.00 302±2 517±210 5.3±0.02 6±0.02

cdn46 72.6 46 110.0 66 1942±88 10.3±0.46 1.25±0.00 2.3±0.08 283±2 637±70 7.1±0.06 7.1±0.06

cdn62 72.6 62 110.0 66 1217±24 6.5±0.14 1.13±0.00 2.15±0.24 269±0 559±136 6.9±0.06 6.9±0.06

cdn78 72.6 78 110.0 66 1684±38 8.9±0.20 1.38±0.00 1.38±0.00 212±2 429±4 3.9±0.02 7±1.22

cdn94 72.6 94 110.0 66 1685±26 8.9±0.14 1.06±0.00 1.77±0.36 203±2 299±144 5.6±0.04 6.6±0.44

cdo46 88.0 46 110.0 80 1476±128 7.8±0.68 1.21±0.04 1.75±0.86 280±2 343±74 7.4±0.08 7.4±0.08

cdo62 88.0 62 110.0 80 1328±82 7.1±0.44 1.06±0.02 2.31±0.60 252±4 577±230 7.1±0.08 7.1±0.08

cdo78 88.0 78 110.0 80 1629±34 8.7±0.18 0.92±0.00 1.38±0.02 194±2 376±90 4.1±0.02 6.9±1.58

cdo94 88.0 94 110.0 80 1997±152 10.6±0.80 1.07±0.22 2.68±1.86 252±26 526±410 5.7±0.02 6.9±2.58
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdp46 110.0 46 110.0 100 1518±144 8±0.76 1.27±0.00 2.15±3.24 301±2 306±30 7±0.06 7±0.06

cdp62 110.0 62 110.0 100 1371±114 7.3±0.60 1.12±0.00 2.06±0.00 234±2 346±312 5.2±0.78 9.6±1.62

cdp78 110.0 78 110.0 100 1650±36 8.8±0.20 1.11±0.00 1.82±0.24 274±2 541±70 6.1±1.08 6.3±0.06

cdp94 110.0 94 110.0 100 1848±156 9.8±0.84 1.41±0.12 3.17±0.66 244±0 259±90 5.7±0.02 5.7±0.02

Classifier uncertainties (2σ) estimated by running the classifier 30 times with random marker samples (jackknife sample proportion: 90%)

–
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4 Discussion403

4.1 Thermo-Kinematic Controls on Rock Recovery404

While the combined distribution of markers recovered from all numerical exper-405

iments shows appreciable deviations from PT estimates compiled by Penniston-Dorland406

et al. (2015) and Agard et al. (2018), markers recovered from simulations with the youngest407

oceanic plates (32.6-55 Ma) and the slowest convergence velocities (40-66 km/Ma) be-408

gin to resemble the distribution of exhumed HP rocks (compare Figure 4 with Figures409

5 & 6) with respect to thermal gradients and P distributions. Slower subduction of younger410

plates increases marker thermal gradients and strongly shifts marker recovery down the411

subduction interface (strong correlations with Grad mode1 and P mode1 & mode2, Fig-412

ure 7). The correlations in Figure 7 also suggest a shift towards warmer recovery con-413

ditions should be complemented by thin upper-plates—implying systems with thin upper-414

plates, slow convergence, and young oceanic plates should be most consistent with the415

distribution of rock recovery implied by pd15 and ag18 (Figure 5). This correspondence416

might appear consistent with inferences that the rock record is composed primarily of417

rock bodies exhumed from “warm” subduction settings (Abers et al., 2017; van Keken418

et al., 2018). However, our numerical experiments also show that recovery rates do not419

correlate with oceanic plate age or convergence velocity, and that recovery rates are poorer420

for thinner upper-plates (Figure 7). Correlations between thermo-kinematic boundary421

conditions and recovery rates drawn from many tens of thousands of recovered mark-422

ers across numerous simulations counter the notion that preferential recovery is happen-423

ing in “warm” subduction settings.424

Besides recovery rates of subducting markers, other dynamic characteristics appear425

to correlate with oceanic plate age and convergence velocity. For example, simulations426

with slow convergence velocities (e.g. models: cda, cde, cdi, cdm) tend to have higher427

subduction angles (see Supplementary ??)with thicker subduction interfaces that allow428

more markers to subduct to deeper, and thus warmer, conditions compared to other ex-429

periments (e.g. models: cdd, cdh, cdl, cdp) that form narrow interfaces with shallow choke430

points (e.g. see Supplementary ??). Observationally, the angle of subduction does not431

correlate significantly with oceanic plate age or convergence velocity, but rather inversely432

with the duration of subduction (Hu & Gurnis, 2020). Thus, the rock record might in-433

dicate preferential exhumation during the earlier stages of subduction when subduction434
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angles were steeper (although not necessarily during subduction initiation), even for older435

oceanic plates. More generally, differences in plate flexibility, overall subduction geom-436

etry, and velocity of plate motions strongly affect PT distributions of rock recovery (Monie437

& Agard, 2009)—rather than strictly “warm” versus “cool” subduction settings per se.438

In other words, thermo-kinematic boundary conditions typically inferred to strictly reg-439

ulate thermal effects (e.g. young-slow oceanic plates supporting warmer thermal gradi-440

ents) may indeed be regulating more dynamic effects (e.g. young-slow oceanic plates flex-441

ibly rolling back to support deeper subduction of material along thicker interfaces) that442

are subsequently observed as thermal effects (average increase in marker PT’s).443

4.2 Comparison with other Numerical Experiments444

Marker PT distributions and their correlations with thermo-kinematic boundary445

conditions presented above are determined directly from large samples of recovered ma-446

terial evolving dynamically in a deforming subduction interface (analogous to reconstruct-447

ing thermal gradients from large random samples of exhumed HP rocks). In contrast,448

other studies investigating thermal responses to variable boundary conditions typically449

determine PT gradients statically along discrete surfaces representing megathrust faults450

(e.g. Abers et al., 2006; Currie et al., 2004; Davies, 1999; Furukawa, 1993; Gao & Wang,451

2014; McKenzie, 1969; Molnar & England, 1990; Peacock & Wang, 1999; Syracuse et al.,452

2010; van Keken et al., 2011, 2019; Wada & Wang, 2009) or dynamically by “finding”453

the subduction interface heuristically at each timestep (e.g. Arcay, 2017; Holt & Con-454

dit, 2021; Ruh et al., 2015). Other studies using similar geodynamic codes have traced455

many fewer markers (typically dozens vs. ˜ 120,000; Faccenda et al., 2008; Gerya et al.,456

2002; Sizova et al., 2010; Yamato et al., 2007, 2008) from a narrower range of thermo-457

kinematic boundary conditions, so they implicitly have less statistical rigor. This study458

stresses the importance of large sample sizes because individual marker PT paths can459

vary considerably within a single simulation, yet important modes of recovery become460

apparent from density peaks as more markers are traced. Furthermore, most other stud-461

ies make no attempt to determine peak PT conditions related to detachment and recov-462

ery (with some exceptions, e.g. Roda et al., 2012, 2020), so marker PT paths are less463

analogous to PT paths determined by applying petrologic modeling.464
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4.3 Comparison with Geophysical Observations465

The locations of important recovery modes determined from numerical experiments466

correspond closely with the depths of important mechanical transitions inferred from seis-467

mic imaging studies and surface heat flow observations. For example, the dominant re-468

covery mode common among all numerical experiments at about 1 GPa (Table 1 & Fig-469

ure 4) is consistent with a layer of low seismic velocities and high Vp/Vs ratios observed470

at numerous subduction zones between 20-50 km depth (Bostock, 2013). While consid-471

erable unknowns persist about the nature of deformation in this region (Bostock, 2013;472

Tewksbury-Christle & Behr, 2021), the low-velocity zone, accompanied by low-frequency473

and slow-slip seismic events, is often interpreted as a transitional brittle-ductile shear474

zone actively accommodating underplating of subducted material and/or formation of475

a tectonic mélange around the base of the continental Moho (Audet & Kim, 2016; Au-476

det & Schaeffer, 2018; Bostock, 2013; Calvert et al., 2011, 2020; Delph et al., 2021).477

Formation of low-velocity zones and their geophysical properties are generally at-478

tributed to high pore-fluid pressures caused by metamorphic reactions relating to the479

dehydration of oceanic crust (Hacker, 2008; Rondenay et al., 2008; van Keken et al., 2011).480

Surprisingly, despite our numerical implementation of a relatively simple model for de-481

hydration of oceanic crust (Ito & Kennedy, 1971; Kerswell et al., 2021), and a relatively482

simple visco-plastic rheological model (Gerya & Yuen, 2003; Kerswell et al., 2021), the483

primary mode of marker recovery at 1.15 ± 0.46 GPa (2 σ, Table 1) coincides closely with484

the expected region for shallow underplating according to geophysical constraints (35 ±485

15 km or 1.0 ± 0.4 GPa). The size of the markers dataset (n = 119,364 recovered mark-486

ers) and prevalence of marker recovery from 1 GPa suggest that although dehydration487

may indeed trigger detachment of subducting rocks, other factors—notably the compo-488

sitional and mechanical transition in the upper-plate across the Moho—also influence489

detachment at this depth.490

The termination of the low-velocity zone at depths beyond the continental Moho491

marks another important mechanical transition. This second transition is often inter-492

preted as the onset of mechanical plate coupling near 80 km (or 2.3 GPa) and coincides493

well with the deeper recovery modes determined from recovered markers at 2.2 ± 1.1 GPa494

(2 σ, Table 1). Between these two modes of recovery at ∼ 40 and ∼ 80 km lies a gap that495
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coincides with the highest sample density of exhumed HP rocks compiled in pd15 and496

ag18 (Figure 4). This recovery gap is discussed in the following section.497

4.4 The Marker Recovery Gap498

Although recovered markers partially overlap with the range of PT estimates com-499

piled in the pd15 and ag18 datasets, the differences between distributions of recovered500

markers and natural samples are numerous, including: (1) an obvious lack of markers501

recovered from ≥ 15 ◦C/km (0.002%) compared to pd15 and ag18 (37-48%, Figure 4),502

(2) recovery of markers from a single dominant mode near 1 GPa and 300 ◦C compared503

to more broadly distributed multimodal recovery across PT space for natural samples504

(Figure 4), (3) a general shift towards lower T’s and cooler thermal gradients for mark-505

ers compared to natural samples, and (4) a remarkable gap in marker recovery near 2506

GPa and 550 ◦C that coincides with the highest density of natural samples (Figure 4).507

In fact, across 64 numerical experiments with wide-ranging initial conditions less than508

1% (0.63%) of markers are recovered from between 1.8-2.2 GPa and 475-625 ◦C. Why509

might this gap occur? Four possibilities are considered:510

1. Simple rheological models preclude certain recovery mechanisms (poor implemen-511

tation of subduction interface mechanics, i.e., modeling uncertainty, Section 4.3)512

2. Peak metamorphic conditions are systematically misinterpreted (peak metamor-513

phic conditions do not correspond to maxP or PT paths are not well constrained,514

i.e., petrologic uncertainties, e.g., see Penniston-Dorland et al., 2015)515

3. Rocks are frequently (re)sampled from the same peak metamorphic conditions and516

other rocks from different metamorphic grades are infrequently sampled (selective517

nonrandom sampling, i.e., scientific bias, e.g., see Agard et al., 2018)518

4. Rocks are recovered during short-lived events (e.g., subduction of seamounts, Agard519

et al., 2009) that are not implemented in our numerical experiments, rather than520

recovered during steady-state subduction within a serpentine-rich tectonic mélange521

that is characteristic of our numerical experiments (i.e., geodynamic uncertain-522

ties)523
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4.4.1 Numerical Modeling Uncertainties524

Simplifying assumptions in our numerical experiments influence thermal gradients525

and dynamics of rock recovery from the subducting oceanic plate. Substantially lower526

T’s and thermal gradients in numerical experiments compared to natural samples (Fig-527

ure 4) might indicate imperfect implementation of heat generation and transfer (Kohn528

et al., 2018; Penniston-Dorland et al., 2015). Our hydrologic model and implementation529

of serpentine rheology in the numerical experiments creates a weak interface. A stronger530

rheology (e.g., quartz or a mixed melange zone Beall et al., 2019; Ioannidi et al., 2021),531

or a stronger serpentine flow law (Burdette & Hirth, 2022), would yield greater heating532

and higher T’s from enhanced viscous dissipation along the subduction interface (Kohn533

et al., 2018). In principle, a stronger rheology might shift the overall PT distribution of534

markers to higher T’s and help fill in the marker recovery gap around 2 GPa and 550535

◦C, and/or possibly change flow to extract rocks more broadly along the subduction in-536

terface. Although the effects of different interface rheologies on thermal structure or rock537

recovery were not explicitly explored in this study, even numerical simulations with the538

smallest PT discrepancies between markers and natural samples (youngest oceanic plates539

and slowest convergence velocities, Figures 5 & 6) exhibit the same sizeable gap in marker540

recovery around 2 GPa and 550 ◦C. Thus, higher T’s alone would not seem to close the541

gap.542

4.4.2 Petrologic Uncertainties543

Interpreting peak metamorphic conditions of complex polymetamorphic rocks is544

challenging with many sources of uncertainties. However, a global shift in PT estimates545

of natural samples towards warmer conditions compared to recovered markers would im-546

ply that decades of field observations, conventional thermobarometry (e.g. Spear & Selver-547

stone, 1983), phase equilibria modeling (e.g. Connolly, 2005), trace element thermom-548

etry (e.g. Ferry & Watson, 2007; Kohn, 2020), and Raman Spectroscopy of Carbona-549

ceous Material thermometry (Beyssac et al., 2002) from many independent localities world-550

wide (e.g. Agard et al., 2009, 2018; Angiboust et al., 2009, 2012a, 2016; Avigad & Gar-551

funkel, 1991; Monie & Agard, 2009; Plunder et al., 2013, 2015) have systematically mis-552

interpreted the prograde and retrograde histories of exhumed HP rocks. The consistency553

of independent analytical techniques suggests systematic bias is unlikely and estimated554
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uncertainties are generally too small for this argument to be viable (Penniston-Dorland555

et al., 2015).556

4.4.3 Selective Sampling and Scientific Bias557

At least two factors might lead to scientific bias. First, the application of conven-558

tional thermobarometry is easier for certain rock types and mineral assemblages (e.g. eclogite-559

facies metabasites and metapelitic schists) than for others (e.g. quartzites, metagraywackes).560

Second, certain subduction complexes expose more rocks than others. These factors lead561

to sampling bias, both in the rocks that are selected for analysis and which subduction562

complexes contribute most to compilations. For example, a PT condition of ∼ 2 GPa563

and 550 ◦C typically yields assemblages that are both recognizable in the field (eclog-564

ites, sensu stricto, and kyanite- or chloritoid-schists) and amenable to thermobaromet-565

ric calculations and petrologic modeling. This fact may lead to oversampling of the rocks566

that yield these PT conditions and the subduction zones that expose these rocks. In Penniston-567

Dorland et al. (2015), the western and central European Alps, which contain many rocks568

that equilibrated near this PT condition, represented ∼ 90 samples across < 1000 km569

(∼ 1 sample per 100 km), whereas the Himalaya and Andes, which contained more di-570

verse PT conditions, represented only ∼ 1 sample per 300-400 km. Some subduction zones571

are not represented at all in these datasets (e.g. central and western Aleutians, Kamchatka,572

Izu-Bonin-Marianas, Philippines, Indonesia, etc.), either because metamorphic rocks are573

not exposed or rock types are not amenable to petrologic investigation. Correcting for574

this type of bias is challenging because it would require large random samples of exhumed575

HP rocks from localities worldwide and development of new techniques for quantifying576

PT conditions in diverse rock types.577

4.4.4 Short-lived Events and Geodynamic Uncertainties578

Detachment of rocks from the subducting slab might not occur randomly, but rather579

in response to specific events, such as subduction of asperities or seamounts (e.g. Agard580

et al., 2009) or abrupt fluid events. Yet no numerical models have attempted to model581

these events. In the case of seamounts, high surface roughness correlates with higher co-582

efficients of friction (Gao & Wang, 2014). Higher friction increases heating and T’s, driv-583

ing subduction interface thermal gradients into the field of PT conditions defined by the584

pd15 and ag18 datasets (Kohn et al., 2018). If asperities become mechanically unsta-585
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ble at depths of ∼ 50-70 km, preferential detachment would create an “overabundance”586

of recorded PT conditions at moderate T (∼ 550 ◦C) at ∼ 2 GPa, as observed.587

Alternatively, although fluid release is modeled in our numerical experiments as con-588

tinuous, it may occur sporadically. Two dehydration reactions along the subduction in-589

terface are particularly relevant: the transformation of lawsonite to epidote, and the trans-590

formation of chlorite (plus quartz) to garnet. Although dehydration of lawsonite is nearly591

discontinuous in PT space, few rocks show clear evidence for lawsonite immediately prior592

to peak metamorphism (although such evidence can be subtle). In the context of equi-593

librium thermodynamics, chlorite dehydration should occur continuously below depths594

of ∼ 35 km, consistent with assumptions of many numerical geodynamic models. How-595

ever, research suggests substantial overstepping of this reaction, resulting in the abrupt596

formation of abundant garnet and release of water (Castro & Spear, 2017). Direct geochronol-597

ogy of garnet growth rates in subduction complexes also suggests abrupt growth and wa-598

ter release (Dragovic et al., 2015). Because fluids are thought to help trigger brittle fail-599

ure (earthquakes) that could detach rocks from the subducting slab surface, abrupt re-600

lease at a depth of ∼ 50-70 km might again result in an “overabundance” of recorded601

PT conditions at P’s of ∼ 2 GPa. This mechanism would require relatively consistent602

degrees of overstepping in rocks of similar bulk composition and would not directly ex-603

plain higher T’s, however.604

5 Conclusion605

This study traces PT paths of more than one million markers from 64 subduction606

simulations representing a large range of presently active subduction zones worldwide.607

Marker recovery is identified by implementing a “soft” clustering algorithm, and PT dis-608

tributions of recovered markers are compared among models and with the rock record.609

Such a large dataset presents a statistically-robust portrait of important recovery modes610

(where most markers are detached) along the subduction interface. The three most im-611

portant findings are as follows:612

1. Numerical simulations with relatively simple (de)hydration models and visco-plastic613

interface rheologies simulate important recovery mechanisms near the base of the614

continental Moho around 1 GPa and 300 ◦C (underplating and/or formation of615
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tectonic mélanges) and near the depth of mechanical plate coupling around 2.5616

GPa and 525 ◦C.617

2. Subduction systems with young oceanic plates, slow convergence velocities, and618

thin upper-plate lithospheres are most consistent with the rock record, but it is619

unclear to what extent kinematic effects (young flexible oceanic plates with high620

subduction angles accommodating deeper subduction of material) rather than ther-621

mal effects (young oceanic plates supporting higher thermal gradients) drive changes622

in marker PT distributions. Comparing young-slow-thin numerical experiments623

to the rock record is not straightforward, however, because recovery rates do not624

correlate with either oceanic plate age or convergence velocity, and warmer sub-625

duction zones yield poorer recovery rates.626

3. A gap in marker recovery near 2 GPa and 550 ◦C coinciding with the highest den-627

sities of natural samples suggests an “overabundance” of samples are studied from628

this PT region. Explanations for this “overabundance” might include selective sam-629

pling of rocks amenable to petrologic investigation (scientific bias), reaction over-630

stepping (abrupt release of water triggering detachment of rock near 2 GPa and631

550 ◦C), or processes such as subduction of seamounts that are not included in632

numerical simulations. Future work investigating natural samples from a larger633

range of peak PT conditions and analyzing marker recovery from numerical geo-634

dynamic models that include new hydrologic models and interface rheologies might635

help resolve this discrepancy.636
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ing the transition between seismically coupled and decoupled segments along an an-684

cient subduction interface. Geochemistry, Geophysics, Geosystems, 16 (6), 1905–1922.685

Angiboust, S., Agard, P., Glodny, J., Omrani, J., & Oncken, O. (2016). Zagros blueschists:686

Episodic underplating and long-lived cooling of a subduction zone. Earth and Plan-687

etary Science Letters, 443, 48–58.688

Arcay, D. (2017). Modelling the interplate domain in thermo-mechanical simulations of689

subduction: Critical effects of resolution and rheology, and consequences on wet man-690

tle melting. Physics of the Earth and Planetary Interiors, 269, 112–132.691

Audet, P., & Kim, Y. (2016). Teleseismic constraints on the geological environment of692

deep episodic slow earthquakes in subduction zone forearcs: A review. Tectonophysics,693

670, 1–15.694

–37–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Audet, P., & Schaeffer, A. (2018). Fluid pressure and shear zone development over the695

locked to slow slip region in cascadia. Science Advances, 4 (3), eaar2982.696

Avigad, D., & Garfunkel, Z. (1991). Uplift and exhumation of high-pressure metamor-697

phic terrains: The example of the cycladic blueschist belt (aegean sea). Tectonophysics,698

188 (3-4), 357–372.699

Banfield, J., & Raftery, A. (1993). Model-based gaussian and non-gaussian clustering.700

Biometrics, 803–821.701

Barlow, H. (1989). Unsupervised learning. Neural Computation, 1 (3), 295–311.702

Batchelor, G. (1953). The theory of homogeneous turbulence. Cambridge university press.703
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A Appendix968

A.1 Gaussian Mixture Models969

Let the traced markers represent a d-dimensional array of n random independent

variables xi ∈ Rn×d. Assume markers xi were drawn from k discrete probability dis-

tributions with parameters Φ. The probability distribution of markers xi can be mod-

eled with a mixture of k components:

p(xi|Φ) =
k∑

j=1

πjp(xi|Θj) (A.1)

where p(xi|Θj) is the probability of xi under the jth mixture component and πj is the970

mixture proportion representing the probability that xi belongs to the jth component971

(πj ≥ 0;
∑k

j=1 πj = 1).972

Assuming Θj describes a Gaussian probability distributions with mean µj and co-

variance Σj , Equation (A.1) becomes:

p(xi|Φ) =
k∑

j=1

πjN (xi|µj ,Σj) (A.2)

where

N (xi|µj ,Σj) =
exp{− 1

2 (xi − µj)(xi − µj)
TΣ−1

j }√
det(2πΣj)

(A.3)

The parameters µj and Σj , representing the center and shape of each cluster, are

estimated by maximizing the log of the likelihood function, L(xi|Φ) =
∏n

i=1 p(xi|Φ):

log L(xi|Φ) = log

n∏
i=1

p(xi|Φ) =
n∑

i=1

log

 k∑
j=1

πjp(xi|Θj)

 (A.4)

Taking the derivative of Equation (A.4) with respect to each parameter, π, µ, Σ,

setting the equation to zero, and solving for each parameter gives the maximum likeli-

hood estimators:

Nj =

n∑
i=1

ωi

πj =
Nj

n

µj =
1

Nj

n∑
i=1

ωixi

Σj =
1

Nj

n∑
i=1

ωi(xi − µj)(xi − µj)
T

(A.5)
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where ωi (ωi ≥ 0;
∑k

j=1 ωi = 1) are membership weights representing the probability973

of an observation xi belonging to the jth Gaussian and Nj represents the number of ob-974

servations belonging to the jth Gaussian. Please note that ωi is unknown for markers975

so maximum likelihood estimator cannot be computed with Equation (A.5). The solu-976

tion to this problem is the Expectation-Maximization algorithm, which is defined below.977

General purpose functions in the R package Mclust (Scrucca et al., 2016) are used

to fit Gaussian mixture models. “Fitting” refers to adjusting all k Gaussian parameters

µj and Σj until the data and Gaussian ellipsoids achieve maximum likelihood defined

by Equation (A.4). After Banfield & Raftery (1993), covariance matrices Σ in Mclust

are parameterized to be flexible in their shape, volume, and orientation (Scrucca et al.,

2016):

Σj = λjDjAjD
T
j (A.6)

where Dj is the orthogonal eigenvector matrix, Aj and λj are diagonal matrices of val-978

ues proportional to the eigenvalues. This implementation allows fixing one, two, or three979

geometric elements of the covariance matrices. That is, the volume λj , shape Aj , and980

orientation Dj of Gaussian clusters can change or be fixed among all k clusters (e.g. Celeux981

& Govaert, 1995; Fraley & Raftery, 2002). Fourteen parameterizations of Equation (A.6)982

are tried, representing different geometric combinations of the covariance matrices Σ (see983

Scrucca et al., 2016) and the Bayesian information criterion is computed (Schwarz, 1978).984

The parameterization for Equation (A.6) is chosen by Bayesian information criterion.985

A.2 Expectation-Maximization986

The Expectation-Maximization algorithm estimates Gaussian mixture model pa-987

rameters by initializing k Gaussians with parameters (πj , µj ,Σj), then iteratively com-988

puting membership weights with Equation (A.7) and updating Gaussian parameters with989

Equation (A.5) until reaching a convergence threshold (Dempster et al., 1977).990

The expectation (E-)step involves a “latent” multinomial variable zi ∈ {1, 2, . . . , k}

representing the unknown classifications of xi with a joint distribution p(xi, zi) = p(xi|zi)p(zj).

Membership weights ωi are equivalent to the conditional probability p(zi|xi), which rep-

resents the probability of observation xi belonging to the jth Gaussian. Given initial guesses

for Gaussian parameters πj , µj , Σj , membership weights are computed using Bayes The-

–51–



manuscript submitted to Geochemistry, Geophysics, Geosystems

orem (E-step):

p(zi|xi) =
p(xi|zi)p(zj)

p(xi)
=

πjN (µj ,Σj)∑k
j=1 πjN (µj ,Σj)

= ωi (A.7)

and Gaussian estimates are updated during the maximization (M-)step by applying ωi991

to Equation (A.5). This step gives markers xi class labels zi ∈ {1, . . . , k} representing992

assignment to one of k clusters (Figure 2).993
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Abstract13

Bodies of rock that are detached (recovered) from subducting oceanic plates, and exhumed14

to Earth’s surface, become invaluable records of the mechanical and chemical process-15

ing of rock along subduction interfaces. Exposures of interface rocks with high-pressure16

(HP) mineral assemblages provide insights into the nature of rock recovery, yet various17

interpretations concerning thermal gradients, recovery rates, and recovery depths arise18

when directly comparing the rock record with numerical simulations of subduction. Con-19

straining recovery rates and depths from the rock record presents a major challenge be-20

cause small sample sizes of HP rocks makes statistical inference weak. As an alternative21

approach, this study implements numerical simulations of oceanic-continental conver-22

gence and applies a classification algorithm to identify rock recovery. Over one million23

markers are classified from 64 simulations representing a large range of subduction zones.24

We find recovery P’s (depths) correlate strongly with convergence velocity and moder-25

ately with oceanic plate age, while PT gradients correlate strongly with oceanic plate26

age and upper-plate thickness. Recovery rates strongly correlate with upper-plate thick-27

ness, yet show no correlation with other boundary conditions. Likewise, PT distributions28

of recovered markers vary among numerical experiments and generally show poor over-29

lap with the rock record. A significant gap in predicted marker recovery is found near30

2 GPa and 550 ◦C, coinciding with the highest density of exhumed HP rocks. Implica-31

tions for such a gap in marker recovery include numerical modeling uncertainties, petro-32

logic uncertainties, selective sampling of exhumed HP rocks, or natural geodynamic fac-33

tors not accounted for in numerical experiments.34

Plain language summary35

Converging tectonic plates leads to subduction of the denser plate beneath the other.36

Bodies of subducted rock that return to Earth’s surface bring information about the deep37

subduction interface, yet the rates, depths, and mechanisms that detach rock from the38

subducting plate are not well-understood. As an alternative to studying rock samples,39

this study implements a machine learning algorithm to identify rock detachment in nu-40

merical simulations. Over one million simulated rocks are classified from 64 simulations41

representing a large range of possible subduction zones. Marker pressure-temperature42

(PT) conditions are compared across models and with the rock record. Correlations are43

drawn among important model parameters, including plate velocities and plate thick-44
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ness, that reveal strong and weak effects on marker detachment. Recovery rates strongly45

correlate with upper-plate thickness, yet show no correlation with other parameters. Like-46

wise, PT distributions of markers show variable compatibility with the rock record de-47

pending on the comparison. A significant gap marker recovery coincides with a large pro-48

portion of exhumed HP rocks. Implications for such a gap in marker recovery include49

numerical modeling uncertainties, petrologic uncertainties, selective sampling of exhumed50

HP rocks, or natural geodynamic factors not accounted for in numerical experiments.51

1 Introduction52

Maximum pressure-temperature (PT) conditions have been estimated for hundreds53

of high-pressure (HP) metamorphic rocks exhumed from subduction zones (Figure 1, Agard54

et al., 2018; Hacker, 1996; Penniston-Dorland et al., 2015). These samples represent frag-55

ments of oceanic crust, continental crust, seafloor sediments, and upper mantle that have56

detached from subducting oceanic and continental lithospheres at various depths along57

the interface between subducting and overriding tectonic plates (referred to as “recov-58

ery” after Agard et al. (2018). This rock record is the only tangible evidence of PT-strain59

fields, deep seismic cycling, and fluid flow within Earth’s lithosphere during deformation60

and chemical processing in subduction zones. Together with geophysical imaging (e.g.61

Bostock, 2013; Ferris et al., 2003; Hyndman & Peacock, 2003; Mann et al., 2022; Naif62

et al., 2015; Rondenay et al., 2008; Syracuse & Abers, 2006), analysis of surface heat flow63

data (e.g. Currie & Hyndman, 2006; Gao & Wang, 2014; Hyndman et al., 2005; Kohn64

et al., 2018; Morishige & Kuwatani, 2020; Wada & Wang, 2009), and forward numer-65

ical geodynamic modeling (e.g. Gerya et al., 2002, 2008; Gerya & Stöckhert, 2006; Hacker66

et al., 2003; Kerswell et al., 2021; McKenzie, 1969; Peacock, 1990, 1996; Sizova et al.,67

2010; Syracuse et al., 2010; Yamato et al., 2007, 2008), investigation of the rock record68

underpins contemporary understandings of subduction geodynamics (e.g. Agard et al.,69

2009; Agard, 2021; Bebout, 2007).70

However, it remains difficult to directly interpret the rock record in terms of re-71

covery rates and distributions along the subduction interface. For example, compilations72

of PT estimates representing the global distribution of HP rocks exhumed during the Phanero-73

zoic (the pd15 and ag18 datasets, Agard et al., 2018; Penniston-Dorland et al., 2015) re-74

veal an abrupt decrease in relative sample abundance at P’s above 2.3-2.4 GPa (Figure75

1). For pd15 and ag18, a nearly-constant cumulative distribution (CDF) curve interrupted76
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Figure 1: PT diagram showing distributions of PT estimates for exhumed HP metamor-
phic rock samples compiled in the pd15 (solid contours, Penniston-Dorland et al., 2015)
and ag18 (filled contours, Agard et al., 2018) datasets. (insets) Probability distribution
diagrams of pd15 and ag18 samples showing broad bimodal and trimodal sample distri-
butions with respect to P (top inset) and a kinked CDF (bottom inset) indicating that a
substantial proportion of markers are recovered from P’s between 0.5-2.5 GPa with very
few rocks reaching maximum P’s above 3 GPa. Thin lines are thermal gradients labeled in
◦C/km. Reaction boundaries for eclogitization of oceanic crust and antigorite dehydration
are from Ito & Kennedy (1971) and Schmidt & Poli (1998), respectively.
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by a sharp change in slope around 2.3-2.4 GPa implies relatively uniform recovery of sub-77

ducting material up to 2.3-2.4 GPa, but increasingly rare recovery above 2.3-2.4 GPa (Agard78

et al., 2018; Kerswell et al., 2021; Monie & Agard, 2009; Plunder et al., 2015). On the79

one hand, evidence for common mechanical coupling depths near 2.3 GPa (Furukawa,80

1993; Kerswell et al., 2021; Wada & Wang, 2009) suggests an upper-limit to recovery depths81

that is consistent with the scarcity of (ultra-)HP samples in the rock record and invari-82

ant with respect to key thermo-kinematic parameters (convergence velocity, subduction83

geometry, plate thickness; Figure 1). On the other hand, substantial variations in lat-84

eral (along-strike) upper-plate surface heat flow patterns suggest coupling depths also85

vary substantially among subduction zone segments (Kerswell & Kohn, 2022) and do im-86

pose an invariant upper-limit to recovery depths. Moreover, geophysical constraints on87

the depths of key mechanical transitions likely to induce rock recovery (e.g. Abers et al.,88

2020; Audet & Kim, 2016; Audet & Schaeffer, 2018; Morishige & Kuwatani, 2020) sug-89

gest high recovery rates should cluster around discrete depths, rather than uniform and90

widespread recovery along the subduction interface implied by the pd15 and ag18 datasets.91

Difficulties in relating complex polymetamorphic rocks from different environments92

challenge the use of PT distributions of exhumed HP rock samples as robust constraints93

on key subduction zone parameters. Interpretations of rock recovery mechanisms, sub-94

duction interface behavior, metamorphic reactions, seismic cycling, and subduction geo-95

dynamics might vary depending on metamorphic terrane (local tectonic environment),96

sampling strategy (random or targeted outcrops), sample size (how many outcrops were97

observed and sampled in the field), and analytical sample selection (investigating PT’s98

and deformation histories for a subset of samples with a specific scientific question in mind).99

Different compilations of PT estimates can show different density distributions, in terms100

of relative abundances of samples across PT space, and thus imply different depths of101

rock recovery along the subduction interface. For example, Agard et al. (2018) noted102

that compilations from Plunder et al. (2015) and Groppo et al. (2016) show less disper-103

sion (i.e. a more step-like CDF) than ag18 with tighter bimodal or trimodal distributions104

clustering around inferred depths of important mechanical transitions along the subduc-105

tion interface. These peaks (modes) in distributions of exhumed HP rocks coincide with106

the continental Moho at approximately 25-35 km and the transition to mechanical plate107

coupling at approximately 80 km (Agard et al., 2018; Monie & Agard, 2009; Plunder et108

al., 2015). Less consensus explains a smaller, yet significant, intermediate mode at 55-109
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60 km (Agard et al., 2009, 2018; Plunder et al., 2015), although it is consistent with a110

high- density region of PT estimates in the pd15 dataset.111

Differences in compiled PT datasets notwithstanding, key observations regarding112

rock recovery in subduction zones emerge from pd15 and ag18:113

1. Rocks are recovered with relatively similar frequency up to 2.5 GPa114

2. 64-66% of recovered rocks equilibrated between 1-2.5 GPa115

3. 5-19% of recovered rocks equilibrated above 2.5 GPa116

4. 32-34% of recovered rocks equilibrated between 350-525 ◦C117

5. 50-56% of recovered rocks equilibrated above 525 ◦C118

6. 52-62% of recovered rocks record gradients between 5-10 ◦C/km119

7. 18-31% of recovered rocks record gradients between 10-15 ◦C/km120

8. 6-30% of recovered rocks record gradients above 15 ◦C/km121

These ranges in the relative abundances of exhumed HP rocks compiled in different datasets122

raise important questions in subduction zone research: are rocks recovered broadly and123

uniformly along the subduction interface or discretely from certain depths? How do re-124

covery rates and distributions vary among diverse subduction zone settings and through125

time?126

Previous work comparing the rock record directly with numerical models has gen-127

erally produced ambiguous interpretations concerning recovery rates and distributions128

along the subduction interface. For example, comparisons of different numerical geody-129

namic codes with subsets of the rock record show variable agreement in terms of over-130

lapping PT paths and thermal gradients (e.g. Angiboust et al., 2012b; Burov et al., 2014;131

Holt & Condit, 2021; Penniston-Dorland et al., 2015; Plunder et al., 2018; Roda et al.,132

2010, 2012, 2020; Ruh et al., 2015; Yamato et al., 2007, 2008). Initial setups for numer-133

ical experiments (oceanic plate age, convergence velocity, subduction dip angle, upper-134

plate thickness, and heating sources; Kohn et al., 2018; Penniston-Dorland et al., 2015;135

Ruh et al., 2015; van Keken et al., 2019), differential recovery rates from subduction zones136

with favorable thermo-kinematic boundary conditions (Abers et al., 2017; van Keken et137

al., 2018), and comparisons among suites of undifferentiated HP rocks (e.g. grouping rocks138

recovered during subduction initiation with rocks recovered during “steady-state” sub-139

duction, see Agard et al., 2018, 2020) all potentially contribute to nonoverlapping PT140

–6–



manuscript submitted to Geochemistry, Geophysics, Geosystems

distributions and thermal gradients between exhumed HP rocks and numerical geody-141

namic models. Compounding the ambiguity are arguments that material is sporadically142

recovered during short-lived mechanical transitions (Agard et al., 2016) and/or geody-143

namic changes (Monie & Agard, 2009)—implying exhumed HP rocks are not random144

samples of the subduction interface during steady-state subduction. Such ambiguities145

warrant further investigation into the general response of recovery rates and distribu-146

tions to broad ranges of thermo-kinematic boundary conditions and various implemen-147

tations of subduction interface rheologies.148

Fortunately, clues about the nature and PT limits of rock recovery are provided149

by many extensively studied examples of exhumed subduction interfaces (e.g. Agard et150

al., 2018; Angiboust et al., 2011; 2015; Cloos & Shreve, 1988; Fisher et al., 2021; Ioan-151

nidi et al., 2020; Kitamura & Kimura, 2012; Kotowski & Behr, 2019; Locatelli et al., 2019;152

Monie & Agard, 2009; Okay, 1989; Platt, 1986; Plunder et al., 2013, 2015; Tewksbury-153

Christle et al., 2021; Wakabayashi, 2015). However, these type localities represent an un-154

known fraction of subducted material and differ significantly in terms of their geome-155

try (field relationships), composition (rock types), and interpreted deformation histories156

(both detachment and exhumation). It is also unclear to what extent ag18 and pd15 (and157

other compilations) represent the full range of recovery conditions and/or represent sci-158

entific sampling bias (e.g. undersampling low-grade rocks or oversampling high-grade rocks159

from the same pristine exposures, Agard et al., 2018). Thus, a primary challenge to in-160

ferring recovery rates and distributions accurately from the rock record fundamentally161

stems from sparse nonrandom samples (typically less than a few dozen PT estimates from162

any given exhumed terrane) compared to the diversity of thermo-kinematic parameters163

characterizing subduction zones and petro-thermo-mechanical conditions suitable for rock164

recovery along the subduction interface.165

This study aims at addressing the sparsity and nonrandomness of exhumed HP rock166

samples by tracing numerous (1,341,729) Lagrangian markers from 64 numerical geody-167

namic simulations of oceanic-continental subduction (Kerswell et al., 2021). We first gen-168

erate a PT dataset from instantiations of a particular numerical geodynamic code so large169

that it was insensitive to noise and outliers—thus representing a statistically robust pic-170

ture of recovery rates and PT distributions in subduction zones. From such a large dataset171

of generated samples, we identify correlations among recovery rates, PT distributions,172

and thermo-kinematic boundary conditions that quantify parameter sensitivities and in-173
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dicate ranges of plausible conditions for reproducing the rock record. In fact, surpris-174

ingly low densities of generated samples, in terms of their relative abundances across PT175

space, were found coinciding with the highest-density regions of natural samples around176

2 GPa and 550 ◦C. We then discuss implications for poor overlap between generated sam-177

ple densities and exhumed HP rock densities, including insufficient implementation of178

recovery mechanisms in numerical geodynamic models (numerical bias) and a potential179

overabundance of natural samples collected from similar metamorphic grades around 2180

GPa and 550 ◦C (empirical bias).181

2 Methods182

This study presents a dataset of Lagrangian markers (described below) from nu-183

merical experiments that simulated 64 oceanic-continental convergent margins with thermo-184

kinematic boundary conditions (oceanic plate age, convergence velocity, and upper-plate185

lithospheric thickness) closely representing the range of presently active subduction zones186

(Syracuse & Abers, 2006; Wada & Wang, 2009). Initial conditions were modified from187

previous studies of active margins (Gorczyk et al., 2007; Sizova et al., 2010) using the188

numerical geodynamic code I2VIS (Gerya & Yuen, 2003). I2VIS models visco-plastic flow189

of geological materials by solving conservative equations of mass, energy, and momen-190

tum on a fully-staggered finite difference grid with a marker-in-cell technique (Gerya,191

2019; Gerya & Yuen, 2003; e.g. Harlow & Welch, 1965). Complete details about the ini-192

tial setup, boundary conditions, and rheological model are presented in Kerswell et al.193

(2021). Complete details about I2VIS and example code are presented in Gerya & Yuen194

(2003) and Gerya (2019).195

The following section defines Lagrangian markers (now referred to as markers) and196

briefly elaborates on their usefulness in understanding flow of geological materials, fol-197

lowed by a description of the marker classification algorithm. A complete mathemati-198

cal description of the classification algorithm is presented in Appendix A.1.199

2.1 Lagrangian Markers200

Markers are mathematical objects representing discrete parcels of material flow-201

ing in a continuum (Harlow, 1962, 1964). Tracing markers (saving marker information202
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at each timestep) is distinctly advantageous for investigating subduction dynamics in the203

following two ways.204

First, modeling subduction requires solving equations of mass, motion, and heat205

transport in a partly layered, partly heterogeneous, high-strain region known as the plate206

interface, subduction interface, or subduction channel (Gerya et al., 2002). Current con-207

ceptual models regard the subduction interface as a visco-plastic continuum with com-208

plex geometry and structure, sharp thermal, chemical, and strain gradients, strong ad-209

vection, and abundant fluid flow (Agard et al., 2016, 2018; Bebout, 2007; Bebout & Bar-210

ton, 2002; Cloos & Shreve, 1988; Gerya & Yuen, 2003; Penniston-Dorland et al., 2015;211

Shreve & Cloos, 1986; Stöckhert, 2002; Tewksbury-Christle et al., 2021). Finite-difference212

numerical approaches do not perform well with strong local gradients, and interpolat-213

ing and updating T, strain, and chemical fields with markers greatly improves accuracy214

and stability of numerical solutions (Gerya, 2019; Gerya & Yuen, 2003; Moresi et al., 2003).215

Second, tracing a marker closely proxies for tracing a rock’s PT-time history. Strictly216

speaking, deviations between calculated PT-time histories of markers and rocks are pos-217

sible because our numerical geodynamic simulations assume: (1) markers move in an in-218

compressible continuum (Batchelor, 1953; Boussinesq, 1897), (2) material properties are219

governed by a simplified petrologic model describing eclogitization of oceanic crust (Ito220

& Kennedy, 1971) and (de)hydration of upper mantle (antigorite ⇔ olivine+orthopyroxene+221

H2O, Schmidt & Poli, 1998), and (3) marker stress and strain are related by a highly222

non-linear rheological model derived from empirical flow laws (Hilairet et al., 2007; Karato223

& Wu, 1993; Ranalli, 1995; Turcotte & Schubert, 2002). For example, if rocks within a224

subduction interface shear zone were highly compressible or could sustain large devia-225

toric stresses, P’s and T’s might be different from markers. The hydrological model im-226

plemented in our numerical simulations, embodied by assumptions 2 and 3, exert par-227

ticularly strong control on subduction interface strength, and thus the probability and228

style of detachment. Our simulations developed stable subduction channels (tectonic-229

mélanges, e.g. Gerya et al., 2002) instead of discrete shear zones that detach large co-230

herent slices of oceanic lithosphere (e.g. Ruh et al., 2015) primarily due to our choice231

of hydrological model. However, insofar as subduction interface shear zones closely be-232

have as mélange-like channels of incompressible visco-plastic fluids (under the assump-233

tions above, Gerya, 2019; Gerya & Yuen, 2003; Kerswell et al., 2021), comparisons be-234

tween marker PT distributions and the rock record may be made.235
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2.2 Marker Classification236

For each numerical experiment, 20,986 markers were initially selected from within237

a 760 km-long and 8 km-deep section of oceanic crust and seafloor sediments at t = 0238

Ma. Tracing proceeded for 115 timesteps (between 9.3-54.7 Ma depending on conver-239

gence velocity), which was sufficient for markers to be potentially subducted very deeply240

(up to 300 km) from their initial positions. However, only markers that detached from241

the subducting oceanic plate were relevant for comparison with PT estimates of exhumed242

HP rocks (because these markers and rocks were not subducted). The main challenge,243

therefore, was to first develop a method for determining which markers among 20,986244

detached and moved away from the subducting plate without knowing their fate a pri-245

ori. Moreover, the method needed to be generalizable to a large range of numerical ex-246

periments. Note that detached markers were classified as “recovered” even if they did247

not exhume to the surface within the modeling domain. Diverse processes can cause ex-248

humation of subduction zone rocks, including later tectonic events, and our goal was to249

compare only the maximum metamorphic conditions of markers and rocks along their250

prograde paths.251

Classifying unlabelled markers as either “recovered” or “not recovered” based solely252

on their undifferentiated traced histories defines an unsupervised classification problem253

(Barlow, 1989). Many methods can be applied to solve the unsupervised classification254

problem, yet this study implemented a Gaussian mixture model (Reynolds, 2009)—a type255

of “soft” clustering algorithm used extensively for pattern recognition, anomaly detec-256

tion, and estimating complex probability distribution functions (e.g. Banfield & Raftery,257

1993; Celeux & Govaert, 1995; Figueiredo & Jain, 2002; Fraley & Raftery, 2002; Vermeesch,258

2018). “Hard” classification is possible by directly applying simple rules to markers with-259

out clustering (e.g. Roda et al., 2012). However, “hard” methods are less generalizable260

than “soft” approaches like Gaussian mixture models, which can be implemented to study261

many possible features in numerical simulations with Lagrangian reference frames—not262

just recovery of subducted material. In this case, a Gaussian mixture model organized263

markers into groups (clusters) by fitting k = 14 bivariate Gaussian ellipsoids to the dis-264

tribution of markers in PT space. “Fitting” refers to adjusting parameters (centroids and265

covariance matrices) of all k Gaussian ellipsoids until the ellipsoids and data achieved266

maximum likelihood (see Appendix A.1 for a complete mathematical description). Fi-267
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nally, marker clusters with centroids located within certain bounds were classified as “re-268

covered”. The entire classification algorithm can be summarized as follows:269

0. Select markers within a 760 km × 8 km section of oceanic crust270

1. Trace markers for 115 timesteps271

2. Identify maximum marker PT conditions (at either maxT or maxP)272

3. Apply Gaussian mixture modeling to maximum marker PT conditions273

4. Check for cluster centroids within the bounds:274

• ≥ 3 ◦C/km AND275

• ≤ 1300 ◦C AND276

• ≤ 120 km (3.4 GPa)277

5. Classify marker clusters found in step 4 as “recovered”278

6. Classify all other markers as “not recovered”279

Note that maximum marker PT conditions used for clustering were assessed before mark-280

ers transformed (dehydrated or melted) and before the accretionary wedge toe collided281

with the high-viscosity convergence region positioned at 500 km from the left boundary282

(to avoid spurious maximum PT conditions from sudden isothermal burial). We also tried283

applying different prograde PT path positions in step 2 by determining maximum marker284

T’s (maxT) and maximum P’s (maxP) independently. Applying maxP vs. maxT con-285

ditions to the classifier resulted in distinct PT distributions of recovered markers and286

distinct correlations among thermo-kinematic boundary conditions and marker recov-287

ery modes. For natural samples of exhumed HP rocks, compilations emphasize maxP,288

not maxT, (Penniston-Dorland et al., 2015), and thus empirical PT estimates are best289

compared with maxP conditions. Also, many PT paths for exhumed HP rocks have “hair-290

pin” or isothermal decompression retrograde PT paths without significant heating dur-291

ing exhumation (Agard et al., 2009). Figures 2 & 3 illustrate marker classification for292

1 of 64 numerical experiments. All other experiments are presented in Supplementary293

??.294

2.3 Recovery Modes295

To better quantify how rock recovery can vary among subduction zones with dif-296

ferent boundary conditions, marker recovery modes (density peaks) were determined with297
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respect to absolute PT and PT gradients. The highest-density peak (mode1) shows where298

the greatest abundance of markers are recovered. The deepest, or warmest, density peak299

(mode2) shows where the most deeply subducted markers (or markers with the highest300

PT gradients) are recovered. In other words, changes in the positions of mode1 and mode2301

reflect variations in recovery conditions for “normal” recovery and “extreme cases”, re-302

spectively.303

Note that correlations are not presented here with respect to the thermal param-304

eter Φ (Φ = oceanic plate age · convergence velocity), unlike many studies. The ration-305

ale is three-fold: (1) the aim was to understand how oceanic plate age and convergence306

velocity affect marker recovery independently, (2) sample sizes of recovered markers were307

larger when grouped by oceanic plate age and convergence velocity (n = 335,788) com-308

pared to grouping by Φ (n = 83,947; implying they do not correlate well with Φ), and309

(3) and combining oceanic plate age and convergence velocity can draw unnecessarily310

ambiguous associations with other geodynamic features of subduction zones (e.g. Φ vs. H311

from England et al., 2004; Wada & Wang, 2009).312
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Figure 2: Example of marker classification for model cda62. (a) PT diagram showing marker clusters as assigned by Gaussian mixture modeling
(GMM; colored PT paths). Boxplots showing depth and thermal gradient distributions of marker clusters assigned by GMM. Markers belonging to
clusters with centroids (means) positioned at ≤ 120 km (top inset) and ≥ 5 ◦C/km (bottom inset) are classified as recovered. All others are classified
as not recovered. (b) PT diagram showing marker classification results (colored PT paths) and various marker positions along their PT paths (black,
white, and pink points). (insets) Histograms showing the distribution of T’s (top inset) and P’s (bottom inset) for recovered markers at maxP (black
bars) and maxT (white bars) conditions. In this experiment, a significant number of markers have different peak metamorphic conditions between their
maxT and maxP positions. Thin lines are thermal gradients labeled in ◦C/km. Only a random subset of markers are shown.
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Figure 3: Summary of marker recovery for model cda62. (a) PT diagram showing the density of recovered markers (black points and green Tanaka
contours) in comparison with the pd15 (solid red density contours) and ag18 (filled gray density contours) datasets. (insets) Probability distribution
diagrams showing trimodal recovery P’s (top inset) and a step-like CDF (bottom inset) indicating that a substantial proportion of markers are recov-
ered from depths between 0.5-1.5 GPa. Thin lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization of oceanic crust and
antigorite dehydration are from Ito & Kennedy (1971) and Schmidt & Poli (1998), respectively. (b) Visualization of log viscosity in the model domain
showing the major modes of marker recovery along a relatively thick subduction interface that tapers near the viscous coupling depth.

–
1
4
–



manuscript submitted to Geochemistry, Geophysics, Geosystems

3 Results313

3.1 Comparing Marker PT Distributions with the Rock Record314

3.1.1 Global Markers from all Numerical Experiments315

While marker recovery can occur at all P’s recorded by exhumed metamorphic rocks316

(Figure 4), large disparities between recovered markers and the rock record are found317

if considering sample densities with respect to P. For example, pd15 and ag18 show high318

sample densities centered at 1 GPa—a shared feature common to all 64 numerical experiments—319

yet sample densities above 1 GPa are much greater in pd15 and ag18 compared to sim-320

ulations (relative to the total number of samples in each dataset; Figure 4). Samples com-321

piled in pd15 and ag18 also show much broader bimodal or trimodal density distribu-322

tions across P’s compared to a narrow and strong unimodal P distribution centered at323

1 GPa for recovered markers. With respect to T, thermal gradients of recovered mark-324

ers are significantly lower than natural samples. On average, markers recovered from <325

2 GPa differ by 173 ◦C and 3-4 ◦C/km compared to rocks exhumed from < 2 GPa (ex-326

cluding the highest-T samples in ag18 that relate to subduction initiation, Agard et al.,327

2018, 2020; Soret et al., 2022). In fact, relatively poor overlap exists between the high-328

density peak of recovered markers centered at 1 GPa & 300◦ C and either high-density329

peaks of natural sample centered at 1 GPa & 350◦ C and 2 GPa & 550◦ C (Figure 4).330

3.1.2 Markers from Individual Numerical Experiments331

For most experiments, marker recovery is localized and discrete with peaky mul-332

timodal density distributions and step-like CDFs. The PT positions of recovery cluster333

centroids depend on thermo-kinematic boundary conditions, however, so marker PT dis-334

tributions vary. A few experiments show broad marker distributions that resemble the335

rock record with respect to P, but not with respect to thermal gradients (Supplemen-336

tary ??). Other experiments show the opposite. To compare marker recovery among var-337

ious subduction zone settings, we combined recovered markers from multiple numerical338

experiments with similar thermo-kinematic boundary conditions—–analogous to randomly339

sampling exhumed HP rocks from similar subduction zones (Figures 5 & 6).340
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Whether comparing the rock record with recovered markers from individual nu-341

merical experiments, suites of experiments, or all numerical experiments, several key ob-342

servations emerge (Figure 4):343

1. Recovered markers from most individual numerical experiments show discrete mul-344

timodal PT distributions with steep step-like CDFs (Figure 3 & Supplementary345

??)346

2. Relatively few markers are recovered from PT regions coinciding with high-densities347

of natural samples around 2 GPa and 550 ◦C348

3. Markers are recovered from a single major P mode near 1 GPa and minor P mode349

near 2.5 GPa with a higher rate of recovery from lower P’s (79% from ≤ 1.5 GPa)350

compared to natural samples (36-59% from ≤ 1.5 GPa)351

4. Markers are recovered from a single major T mode near 300 ◦C and minor T mode352

near 525 ◦C with a higher rate of recovery from lower T’s (97% from ≤ 525 ◦C)353

compared to natural samples (44-50% from ≤ 525 ◦C)354

5. The relative abundance of markers recovered along “typical” thermal gradients355

for subduction zones (87% from 5-12 ◦C/km) is high compared to natural sam-356

ples (59-78% from 5-12 ◦C/km)357

6. Many markers are recovered from the forbidden zone (11% from ≤ 5 ◦C/km)358

7. Virtually no markers (0.002%) are recovered from ≥ 15 ◦C/km compared to nat-359

ural samples (6-30% from ≥ 15 ◦C/km, Figure 4)360

3.2 Correlations with Boundary Conditions361

3.2.1 Oceanic Plate Age Effect362

Thermal gradients of recovered markers respond strongly to changes in oceanic plate363

age (Figure 7, Table 1). Both PT gradient modes are strongly inversely correlated with364

oceanic plate age, showing a mean increase from about 5.88 ± 0.17 ◦C/km (Grad mode1)365

and 6.91 ± 0.68 ◦C/km (Grad mode2) for older plates (≥ 85 Ma) to about 7.25 ± 0.05366

◦C/km (Grad mode1) and 8.84 ± 0.56 ◦C/km (Grad mode2) for younger plates (≤ 55367

Ma). The dominant P mode (P mode1) moderately correlates with oceanic plate age,368

indicating a slightly higher possibility of recovering material from beyond the continen-369

tal Moho for the oldest oceanic plates (≥ 85 Ma). Neither T modes, nor recovery rate370
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Figure 4: Recovered markers from all 64 numerical experiments. (a) PT diagram show-
ing the density of recovered markers (black points and green Tanaka contours) in com-
parison with the pd15 (solid red density contours) and ag18 (filled gray density contours)
datasets. Marker density is concentrated along relatively cool thermal gradients, primarily
near the continental Moho (1 GPa), with minor recovery modes centered near the onset of
plate coupling (2.3-2.5 GPa). (insets) Probability distribution diagrams showing discrete
multimodal recovery P’s (top inset) and a steep CDF (bottom inset) indicating that a
substantial proportion of markers are recovered from depths between 0.5-1.5 GPa. Note
the higher-abundance of pd15 and ag18 samples at > 1.5 GPa compared to markers. Thin
lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization of
oceanic crust and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt &
Poli (1998), respectively.
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Figure 5: Recovered markers from numerical experiments with young oceanic plates
(32.6-55 Ma). PT diagrams showing the densities of recovered markers (black points cloud
and green Tanaka contours) in comparison with the pd15 (solid red density contours)
and ag18 (filled gray density contours) datasets, grouped by thermo-kinematic boundary
conditions (16 experiments per plot; boundary conditions summarized in Kerswell et al.,
2021). (insets) Probability distribution (top inset) and CDF diagrams with respect to P.
Thin lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization
of oceanic crust and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt
& Poli (1998), respectively.
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Figure 6: Recovered markers from numerical experiments with older oceanic plates (85-
110 Ma). PT diagrams showing the densities of recovered markers (black points cloud
and green Tanaka contours) in comparison with the pd15 (solid red density contours)
and ag18 (filled gray density contours) datasets, grouped by thermo-kinematic boundary
conditions (16 experiments per plot; boundary conditions summarized in Kerswell et al.,
2021). (insets) Probability distribution (top inset) and CDF diagrams with respect to P.
Thin lines are thermal gradients labeled in ◦C/km. Reaction boundaries for eclogitization
of oceanic crust and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt
& Poli (1998), respectively.
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correlate with oceanic plate age. Although oceanic plate age strongly affects the aver-371

age PT gradients of recovered material, it does not strongly shift marker recovery up or372

down the subduction interface.373

3.2.2 Convergence Velocity Effect374

P’s and T’s of recovered markers respond strongly to changes in convergence ve-375

locity (Figure 7, Table 1). Both P modes are strongly inversely correlated with conver-376

gence velocity, showing a mean increase from 1.09 ± 0.03 GPa (P mode1) and 1.91 ±377

0.33 GPa (P mode2) for fast moving plates (100 km/Ma) to about 1.37 ± 0.06 GPa (P378

mode1) and 2.64 ± 0.08 GPa (P mode2) for slow moving plates (40 km/Ma). However,379

the dominant P mode (P mode1) does not change significantly until convergence veloc-380

ity drops below 66 km/Ma (Table 1). Both T modes are strongly inversely correlated381

with convergence velocity, showing a mean increase from 249.3 ± 6.6 ◦C (T mode1) and382

371.8 ± 60.8 ◦C (T mode2) for fast moving plates (100 km/Ma) to about 311.6 ± 1.5383

◦C (T mode1) and 542.5 ± 74.3 ◦C (T mode2) for slow moving plates (40 km/Ma). Nei-384

ther PT gradient modes, nor recovery rate correlate with convergence velocity. In sum-385

mary, decreasing convergence velocity shifts marker recovery to warmer and deeper con-386

ditions along the subduction interface without significantly changing the average ther-387

mal gradient of subducted material.388

3.2.3 Upper-plate Thickness Effect389

From the same numerical experiments used to trace markers, an association be-390

tween upper-plate thickness and mechanical coupling depths was demonstrated (Kerswell391

et al., 2021). P distributions of markers were thus expected to respond strongly to changes392

in upper-plate thickness. However, a surprisingly negligible effect was observed (Figure393

7). For example, neither of the P modes, nor T mode2 (usually the most deeply subducted394

markers) correlate with upper-plate thickness. In contrast, both PT gradient modes and395

the dominant T mode (T mode1) inversely correlate with upper-plate thickness. Recov-396

ery rate is correlated with upper-plate thickness and not with any other boundary con-397

dition, indicating higher recovery rates are more likely underneath thick upper-plates.398

Recovery rates show a mean decrease from 10.65 ± 0.32 % for thicker plates (≥ 78 km-399

thick) to 8.09 ± 0.3 % for thinner upper-plates (≤ 62 km-thick). In summary, thin upper-400
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plates are more likely to produce warmer thermal gradients, higher T’s, and lower re-401

covery rates.402

Figure 7: Correlations among marker recovery modes and thermo-kinematic boundary
conditions. The dominant recovery mode (mode1) indicates the position of the tallest
density peak with respect to P, T, or thermal gradient (i.e. conditions from which the
greatest number of markers are recovered), while mode2 indicates the position of the
warmest, deepest, or highest gradient density peak (i.e. conditions from which deeply
subducted markers are recovered). While oceanic plate age and upper-plate thickness
more strongly affect the average thermal gradients of recovered markers (stronger correla-
tions with gradient modes and T mode1), convergence velocity more strongly affects the
depths of recovery along the subduction interface, especially for deeply subducted markers
(stronger correlation with P modes and T mode2). The dominant T mode (T mode1) and
recovery rate are correlated with upper-plate thickness, but not with any other boundary
condition. Symbols indicate the Spearman’s rank correlation coefficient that measures the
significance of monotonic correlations. *** ρ ≤ 0.001, ** ρ ≤ 0.01, * ρ ≤ 0.05, - ρ ≥ 0.05.
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Table 1: Subduction zone parameters and marker classification summary

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cda46 13.0 46 32.6 40 1482±28 7.8±0.14 1.12±0.00 2.46±0.04 336±2 584±138 8.2±0.02 9.5±0.04

cda62 13.0 62 32.6 40 1351±24 7.2±0.12 1.12±0.00 2.24±0.26 332±2 534±36 8.3±0.02 8.3±0.02

cda78 13.0 78 32.6 40 1863±30 9.9±0.16 1.39±0.00 2.38±0.02 352±2 477±2 5.9±0.02 9.3±1.66

cda94 13.0 94 32.6 40 1932±28 10.2±0.14 1.24±0.00 2.65±0.02 341±2 502±26 5.6±0.02 7.8±0.04

cdb46 21.5 46 32.6 66 1806±34 9.6±0.18 1.04±0.00 2.37±0.74 334±2 657±2 8.3±0.04 8.4±0.38

cdb62 21.5 62 32.6 66 1405±20 7.4±0.10 1±0.00 2.16±0.00 281±2 531±32 7.8±0.04 10±0.06

cdb78 21.5 78 32.6 66 1884±32 10±0.18 0.92±0.00 2.49±0.08 264±2 541±6 8.1±0.04 8.1±0.04

cdb94 21.5 94 32.6 66 2330±124 12.3±0.66 1.16±0.16 2.64±0.12 291±2 464±44 7.5±0.02 7.9±1.10

cdc46 26.1 46 32.6 80 1736±46 9.2±0.24 1.02±0.00 1.27±0.68 320±0 475±162 8.8±0.40 9.1±0.98

cdc62 26.1 62 32.6 80 1288±28 6.8±0.16 0.99±0.00 2.01±0.00 264±2 531±2 6.7±0.02 8.6±0.92

cdc78 26.1 78 32.6 80 1801±24 9.5±0.14 0.94±0.10 2.88±0.16 283±2 519±28 7.8±0.02 8.1±2.00

cdc94 26.1 94 32.6 80 2158±26 11.4±0.14 1.14±0.00 3.01±0.02 274±0 533±2 6.7±0.04 9.8±0.04

–
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdd46 32.6 46 32.6 100 1055±58 5.6±0.30 1±0.00 1.76±0.14 226±0 465±50 5.9±0.02 8.5±0.06

cdd62 32.6 62 32.6 100 1365±28 7.2±0.14 0.99±0.00 1.63±0.16 262±2 342±30 5.6±0.04 8.9±0.04

cdd78 32.6 78 32.6 100 1889±28 10±0.16 1±0.00 1.93±0.08 264±2 512±2 7.5±0.04 11.8±1.56

cdd94 32.6 94 32.6 100 2716±32 14.4±0.16 1.23±0.00 2.9±0.00 242±38 660±6 7.3±0.02 7.3±0.02

cde46 22.0 46 55.0 40 1612±36 8.5±0.18 1.11±0.00 2.83±0.54 315±2 675±90 6.7±0.02 7.9±0.94

cde62 22.0 62 55.0 40 1794±50 9.5±0.26 1.08±0.00 2.24±0.00 285±2 485±2 6.1±0.00 7.4±0.64

cde78 22.0 78 55.0 40 1866±34 9.9±0.18 1.37±0.00 2.52±0.00 315±2 507±98 5.9±0.06 7.5±0.02

cde94 22.0 94 55.0 40 1808±20 9.6±0.10 2.33±0.86 2.54±0.00 319±2 431±0 5±0.02 7.2±0.02

cdf46 36.3 46 55.0 66 2246±56 11.9±0.30 1.11±0.04 2.68±0.28 308±2 673±14 7.6±0.02 7.6±0.02

cdf62 36.3 62 55.0 66 1569±38 8.3±0.20 1.14±0.00 2.2±0.06 265±2 582±130 6.9±0.02 6.9±0.02

cdf78 36.3 78 55.0 66 1621±26 8.6±0.14 0.99±0.00 2.75±0.18 228±2 545±8 7±0.02 7.5±1.16

cdf94 36.3 94 55.0 66 1964±30 10.4±0.16 0.93±0.00 2.79±0.02 216±0 597±212 6.6±0.02 6.6±0.02
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdg46 44.0 46 55.0 80 2101±74 11.1±0.40 1.2±0.00 1.96±0.04 338±2 338±2 8.1±0.16 8.2±1.26

cdg62 44.0 62 55.0 80 1334±24 7.1±0.12 1±0.00 1.74±0.06 218±4 277±48 5.2±0.02 7.5±0.04

cdg78 44.0 78 55.0 80 1585±26 8.4±0.14 1.01±0.00 2.21±0.02 238±2 529±210 4.9±0.02 7.1±0.02

cdg94 44.0 94 55.0 80 2132±22 11.3±0.12 0.98±0.00 2.69±0.02 209±0 402±36 6.4±0.02 9.4±0.10

cdh46 55.0 46 55.0 100 947±16 5±0.08 0.95±0.00 1.63±0.26 273±4 368±98 7±0.18 9.2±0.48

cdh62 55.0 62 55.0 100 1448±24 7.7±0.12 0.99±0.00 1.73±0.00 237±36 243±2 6.9±1.46 7.1±0.02

cdh78 55.0 78 55.0 100 1631±22 8.6±0.12 0.99±0.02 1.59±0.26 215±10 256±84 6.6±1.36 6.8±0.16

cdh94 55.0 94 55.0 100 2281±28 12.1±0.14 0.88±0.00 1.24±0.14 203±0 275±2 6.7±0.02 10.3±0.62

cdi46 34.0 46 85.0 40 1275±24 6.8±0.14 1.17±0.00 3.55±0.32 287±2 721±72 6.6±0.02 6.6±0.02

cdi62 34.0 62 85.0 40 1915±34 10.1±0.18 1.09±0.00 2.28±0.00 257±2 494±286 5.6±0.76 6.7±0.04

cdi78 34.0 78 85.0 40 2043±24 10.8±0.12 1.65±0.02 2.56±0.00 320±2 443±4 5.4±0.02 6.5±0.02

cdi94 34.0 94 85.0 40 2007±38 10.6±0.20 1.66±0.02 2.94±0.00 292±2 493±6 5.1±0.02 6.4±0.02
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdj46 56.1 46 85.0 66 1656±100 8.8±0.52 1.07±0.00 2.55±0.58 273±2 616±318 6.4±0.06 7.4±0.12

cdj62 56.1 62 85.0 66 1364±28 7.2±0.14 1.09±0.00 2.13±0.04 238±2 516±24 6.3±0.02 6.3±0.02

cdj78 56.1 78 85.0 66 1326±28 7±0.14 1.22±0.00 1.97±0.02 202±0 315±0 4.5±0.02 6.5±0.06

cdj94 56.1 94 85.0 66 1849±26 9.8±0.14 1.03±0.00 1.52±0.00 206±0 206±0 5.9±0.02 5.9±0.02

cdk46 68.0 46 85.0 80 1463±24 7.8±0.14 1.06±0.02 1.11±0.26 270±2 400±120 7.5±0.02 7.5±0.02

cdk62 68.0 62 85.0 80 1204±20 6.4±0.10 1.07±0.00 1.83±0.00 220±2 452±170 4.7±0.02 6.7±0.04

cdk78 68.0 78 85.0 80 1540±36 8.2±0.20 1.02±0.04 1.78±0.34 214±8 214±8 6±1.58 6.9±0.90

cdk94 68.0 94 85.0 80 2032±32 10.8±0.16 1.04±0.00 3.19±0.06 265±2 677±30 6±0.02 6±0.02

cdl46 85.0 46 85.0 100 714±16 3.8±0.08 1.1±0.00 1.56±0.02 268±2 268±2 6±0.06 6.5±2.78

cdl62 85.0 62 85.0 100 1096±22 5.8±0.12 1.02±0.00 2.23±0.02 246±2 466±126 6.8±0.18 6.8±0.18

cdl78 85.0 78 85.0 100 1663±42 8.8±0.22 1.08±0.18 1.94±0.02 273±2 273±2 4±0.02 8.9±2.46

cdl94 85.0 94 85.0 100 1508±218 8±1.16 1.23±0.16 1.27±0.08 225±4 370±70 5.8±0.06 7.4±2.74
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdm46 44.0 46 110.0 40 1390±24 7.4±0.12 1.39±0.00 3.14±0.02 320±2 711±6 6.1±0.02 8.1±1.94

cdm62 44.0 62 110.0 40 2326±28 12.3±0.14 1.21±0.00 2.45±0.00 281±0 439±2 5.5±0.38 5.7±0.04

cdm78 44.0 78 110.0 40 1828±36 9.7±0.18 1.48±0.00 2.51±0.00 331±4 668±208 5.5±0.02 6.4±1.04

cdm94 44.0 94 110.0 40 1901±28 10.1±0.14 1.53±0.00 2.87±0.00 302±2 517±210 5.3±0.02 6±0.02

cdn46 72.6 46 110.0 66 1942±88 10.3±0.46 1.25±0.00 2.3±0.08 283±2 637±70 7.1±0.06 7.1±0.06

cdn62 72.6 62 110.0 66 1217±24 6.5±0.14 1.13±0.00 2.15±0.24 269±0 559±136 6.9±0.06 6.9±0.06

cdn78 72.6 78 110.0 66 1684±38 8.9±0.20 1.38±0.00 1.38±0.00 212±2 429±4 3.9±0.02 7±1.22

cdn94 72.6 94 110.0 66 1685±26 8.9±0.14 1.06±0.00 1.77±0.36 203±2 299±144 5.6±0.04 6.6±0.44

cdo46 88.0 46 110.0 80 1476±128 7.8±0.68 1.21±0.04 1.75±0.86 280±2 343±74 7.4±0.08 7.4±0.08

cdo62 88.0 62 110.0 80 1328±82 7.1±0.44 1.06±0.02 2.31±0.60 252±4 577±230 7.1±0.08 7.1±0.08

cdo78 88.0 78 110.0 80 1629±34 8.7±0.18 0.92±0.00 1.38±0.02 194±2 376±90 4.1±0.02 6.9±1.58

cdo94 88.0 94 110.0 80 1997±152 10.6±0.80 1.07±0.22 2.68±1.86 252±26 526±410 5.7±0.02 6.9±2.58
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Table 1: Subduction zone parameters and marker classification summary (continued)

Initial Boundary Conditions Marker Classification Summary

model Φ ZUP age v⃗ recovered rec. rate P mode1 P mode2 T mode1 T mode2 grad mode1 grad mode2

km km Ma km/Ma % GPa GPa ◦C ◦C ◦C/km ◦C/km

cdp46 110.0 46 110.0 100 1518±144 8±0.76 1.27±0.00 2.15±3.24 301±2 306±30 7±0.06 7±0.06

cdp62 110.0 62 110.0 100 1371±114 7.3±0.60 1.12±0.00 2.06±0.00 234±2 346±312 5.2±0.78 9.6±1.62

cdp78 110.0 78 110.0 100 1650±36 8.8±0.20 1.11±0.00 1.82±0.24 274±2 541±70 6.1±1.08 6.3±0.06

cdp94 110.0 94 110.0 100 1848±156 9.8±0.84 1.41±0.12 3.17±0.66 244±0 259±90 5.7±0.02 5.7±0.02

Classifier uncertainties (2σ) estimated by running the classifier 30 times with random marker samples (jackknife sample proportion: 90%)

–
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4 Discussion403

4.1 Thermo-Kinematic Controls on Rock Recovery404

While the combined distribution of markers recovered from all numerical exper-405

iments shows appreciable deviations from PT estimates compiled by Penniston-Dorland406

et al. (2015) and Agard et al. (2018), markers recovered from simulations with the youngest407

oceanic plates (32.6-55 Ma) and the slowest convergence velocities (40-66 km/Ma) be-408

gin to resemble the distribution of exhumed HP rocks (compare Figure 4 with Figures409

5 & 6) with respect to thermal gradients and P distributions. Slower subduction of younger410

plates increases marker thermal gradients and strongly shifts marker recovery down the411

subduction interface (strong correlations with Grad mode1 and P mode1 & mode2, Fig-412

ure 7). The correlations in Figure 7 also suggest a shift towards warmer recovery con-413

ditions should be complemented by thin upper-plates—implying systems with thin upper-414

plates, slow convergence, and young oceanic plates should be most consistent with the415

distribution of rock recovery implied by pd15 and ag18 (Figure 5). This correspondence416

might appear consistent with inferences that the rock record is composed primarily of417

rock bodies exhumed from “warm” subduction settings (Abers et al., 2017; van Keken418

et al., 2018). However, our numerical experiments also show that recovery rates do not419

correlate with oceanic plate age or convergence velocity, and that recovery rates are poorer420

for thinner upper-plates (Figure 7). Correlations between thermo-kinematic boundary421

conditions and recovery rates drawn from many tens of thousands of recovered mark-422

ers across numerous simulations counter the notion that preferential recovery is happen-423

ing in “warm” subduction settings.424

Besides recovery rates of subducting markers, other dynamic characteristics appear425

to correlate with oceanic plate age and convergence velocity. For example, simulations426

with slow convergence velocities (e.g. models: cda, cde, cdi, cdm) tend to have higher427

subduction angles (see Supplementary ??)with thicker subduction interfaces that allow428

more markers to subduct to deeper, and thus warmer, conditions compared to other ex-429

periments (e.g. models: cdd, cdh, cdl, cdp) that form narrow interfaces with shallow choke430

points (e.g. see Supplementary ??). Observationally, the angle of subduction does not431

correlate significantly with oceanic plate age or convergence velocity, but rather inversely432

with the duration of subduction (Hu & Gurnis, 2020). Thus, the rock record might in-433

dicate preferential exhumation during the earlier stages of subduction when subduction434
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angles were steeper (although not necessarily during subduction initiation), even for older435

oceanic plates. More generally, differences in plate flexibility, overall subduction geom-436

etry, and velocity of plate motions strongly affect PT distributions of rock recovery (Monie437

& Agard, 2009)—rather than strictly “warm” versus “cool” subduction settings per se.438

In other words, thermo-kinematic boundary conditions typically inferred to strictly reg-439

ulate thermal effects (e.g. young-slow oceanic plates supporting warmer thermal gradi-440

ents) may indeed be regulating more dynamic effects (e.g. young-slow oceanic plates flex-441

ibly rolling back to support deeper subduction of material along thicker interfaces) that442

are subsequently observed as thermal effects (average increase in marker PT’s).443

4.2 Comparison with other Numerical Experiments444

Marker PT distributions and their correlations with thermo-kinematic boundary445

conditions presented above are determined directly from large samples of recovered ma-446

terial evolving dynamically in a deforming subduction interface (analogous to reconstruct-447

ing thermal gradients from large random samples of exhumed HP rocks). In contrast,448

other studies investigating thermal responses to variable boundary conditions typically449

determine PT gradients statically along discrete surfaces representing megathrust faults450

(e.g. Abers et al., 2006; Currie et al., 2004; Davies, 1999; Furukawa, 1993; Gao & Wang,451

2014; McKenzie, 1969; Molnar & England, 1990; Peacock & Wang, 1999; Syracuse et al.,452

2010; van Keken et al., 2011, 2019; Wada & Wang, 2009) or dynamically by “finding”453

the subduction interface heuristically at each timestep (e.g. Arcay, 2017; Holt & Con-454

dit, 2021; Ruh et al., 2015). Other studies using similar geodynamic codes have traced455

many fewer markers (typically dozens vs. ˜ 120,000; Faccenda et al., 2008; Gerya et al.,456

2002; Sizova et al., 2010; Yamato et al., 2007, 2008) from a narrower range of thermo-457

kinematic boundary conditions, so they implicitly have less statistical rigor. This study458

stresses the importance of large sample sizes because individual marker PT paths can459

vary considerably within a single simulation, yet important modes of recovery become460

apparent from density peaks as more markers are traced. Furthermore, most other stud-461

ies make no attempt to determine peak PT conditions related to detachment and recov-462

ery (with some exceptions, e.g. Roda et al., 2012, 2020), so marker PT paths are less463

analogous to PT paths determined by applying petrologic modeling.464
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4.3 Comparison with Geophysical Observations465

The locations of important recovery modes determined from numerical experiments466

correspond closely with the depths of important mechanical transitions inferred from seis-467

mic imaging studies and surface heat flow observations. For example, the dominant re-468

covery mode common among all numerical experiments at about 1 GPa (Table 1 & Fig-469

ure 4) is consistent with a layer of low seismic velocities and high Vp/Vs ratios observed470

at numerous subduction zones between 20-50 km depth (Bostock, 2013). While consid-471

erable unknowns persist about the nature of deformation in this region (Bostock, 2013;472

Tewksbury-Christle & Behr, 2021), the low-velocity zone, accompanied by low-frequency473

and slow-slip seismic events, is often interpreted as a transitional brittle-ductile shear474

zone actively accommodating underplating of subducted material and/or formation of475

a tectonic mélange around the base of the continental Moho (Audet & Kim, 2016; Au-476

det & Schaeffer, 2018; Bostock, 2013; Calvert et al., 2011, 2020; Delph et al., 2021).477

Formation of low-velocity zones and their geophysical properties are generally at-478

tributed to high pore-fluid pressures caused by metamorphic reactions relating to the479

dehydration of oceanic crust (Hacker, 2008; Rondenay et al., 2008; van Keken et al., 2011).480

Surprisingly, despite our numerical implementation of a relatively simple model for de-481

hydration of oceanic crust (Ito & Kennedy, 1971; Kerswell et al., 2021), and a relatively482

simple visco-plastic rheological model (Gerya & Yuen, 2003; Kerswell et al., 2021), the483

primary mode of marker recovery at 1.15 ± 0.46 GPa (2 σ, Table 1) coincides closely with484

the expected region for shallow underplating according to geophysical constraints (35 ±485

15 km or 1.0 ± 0.4 GPa). The size of the markers dataset (n = 119,364 recovered mark-486

ers) and prevalence of marker recovery from 1 GPa suggest that although dehydration487

may indeed trigger detachment of subducting rocks, other factors—notably the compo-488

sitional and mechanical transition in the upper-plate across the Moho—also influence489

detachment at this depth.490

The termination of the low-velocity zone at depths beyond the continental Moho491

marks another important mechanical transition. This second transition is often inter-492

preted as the onset of mechanical plate coupling near 80 km (or 2.3 GPa) and coincides493

well with the deeper recovery modes determined from recovered markers at 2.2 ± 1.1 GPa494

(2 σ, Table 1). Between these two modes of recovery at ∼ 40 and ∼ 80 km lies a gap that495
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coincides with the highest sample density of exhumed HP rocks compiled in pd15 and496

ag18 (Figure 4). This recovery gap is discussed in the following section.497

4.4 The Marker Recovery Gap498

Although recovered markers partially overlap with the range of PT estimates com-499

piled in the pd15 and ag18 datasets, the differences between distributions of recovered500

markers and natural samples are numerous, including: (1) an obvious lack of markers501

recovered from ≥ 15 ◦C/km (0.002%) compared to pd15 and ag18 (37-48%, Figure 4),502

(2) recovery of markers from a single dominant mode near 1 GPa and 300 ◦C compared503

to more broadly distributed multimodal recovery across PT space for natural samples504

(Figure 4), (3) a general shift towards lower T’s and cooler thermal gradients for mark-505

ers compared to natural samples, and (4) a remarkable gap in marker recovery near 2506

GPa and 550 ◦C that coincides with the highest density of natural samples (Figure 4).507

In fact, across 64 numerical experiments with wide-ranging initial conditions less than508

1% (0.63%) of markers are recovered from between 1.8-2.2 GPa and 475-625 ◦C. Why509

might this gap occur? Four possibilities are considered:510

1. Simple rheological models preclude certain recovery mechanisms (poor implemen-511

tation of subduction interface mechanics, i.e., modeling uncertainty, Section 4.3)512

2. Peak metamorphic conditions are systematically misinterpreted (peak metamor-513

phic conditions do not correspond to maxP or PT paths are not well constrained,514

i.e., petrologic uncertainties, e.g., see Penniston-Dorland et al., 2015)515

3. Rocks are frequently (re)sampled from the same peak metamorphic conditions and516

other rocks from different metamorphic grades are infrequently sampled (selective517

nonrandom sampling, i.e., scientific bias, e.g., see Agard et al., 2018)518

4. Rocks are recovered during short-lived events (e.g., subduction of seamounts, Agard519

et al., 2009) that are not implemented in our numerical experiments, rather than520

recovered during steady-state subduction within a serpentine-rich tectonic mélange521

that is characteristic of our numerical experiments (i.e., geodynamic uncertain-522

ties)523
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4.4.1 Numerical Modeling Uncertainties524

Simplifying assumptions in our numerical experiments influence thermal gradients525

and dynamics of rock recovery from the subducting oceanic plate. Substantially lower526

T’s and thermal gradients in numerical experiments compared to natural samples (Fig-527

ure 4) might indicate imperfect implementation of heat generation and transfer (Kohn528

et al., 2018; Penniston-Dorland et al., 2015). Our hydrologic model and implementation529

of serpentine rheology in the numerical experiments creates a weak interface. A stronger530

rheology (e.g., quartz or a mixed melange zone Beall et al., 2019; Ioannidi et al., 2021),531

or a stronger serpentine flow law (Burdette & Hirth, 2022), would yield greater heating532

and higher T’s from enhanced viscous dissipation along the subduction interface (Kohn533

et al., 2018). In principle, a stronger rheology might shift the overall PT distribution of534

markers to higher T’s and help fill in the marker recovery gap around 2 GPa and 550535

◦C, and/or possibly change flow to extract rocks more broadly along the subduction in-536

terface. Although the effects of different interface rheologies on thermal structure or rock537

recovery were not explicitly explored in this study, even numerical simulations with the538

smallest PT discrepancies between markers and natural samples (youngest oceanic plates539

and slowest convergence velocities, Figures 5 & 6) exhibit the same sizeable gap in marker540

recovery around 2 GPa and 550 ◦C. Thus, higher T’s alone would not seem to close the541

gap.542

4.4.2 Petrologic Uncertainties543

Interpreting peak metamorphic conditions of complex polymetamorphic rocks is544

challenging with many sources of uncertainties. However, a global shift in PT estimates545

of natural samples towards warmer conditions compared to recovered markers would im-546

ply that decades of field observations, conventional thermobarometry (e.g. Spear & Selver-547

stone, 1983), phase equilibria modeling (e.g. Connolly, 2005), trace element thermom-548

etry (e.g. Ferry & Watson, 2007; Kohn, 2020), and Raman Spectroscopy of Carbona-549

ceous Material thermometry (Beyssac et al., 2002) from many independent localities world-550

wide (e.g. Agard et al., 2009, 2018; Angiboust et al., 2009, 2012a, 2016; Avigad & Gar-551

funkel, 1991; Monie & Agard, 2009; Plunder et al., 2013, 2015) have systematically mis-552

interpreted the prograde and retrograde histories of exhumed HP rocks. The consistency553

of independent analytical techniques suggests systematic bias is unlikely and estimated554
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uncertainties are generally too small for this argument to be viable (Penniston-Dorland555

et al., 2015).556

4.4.3 Selective Sampling and Scientific Bias557

At least two factors might lead to scientific bias. First, the application of conven-558

tional thermobarometry is easier for certain rock types and mineral assemblages (e.g. eclogite-559

facies metabasites and metapelitic schists) than for others (e.g. quartzites, metagraywackes).560

Second, certain subduction complexes expose more rocks than others. These factors lead561

to sampling bias, both in the rocks that are selected for analysis and which subduction562

complexes contribute most to compilations. For example, a PT condition of ∼ 2 GPa563

and 550 ◦C typically yields assemblages that are both recognizable in the field (eclog-564

ites, sensu stricto, and kyanite- or chloritoid-schists) and amenable to thermobaromet-565

ric calculations and petrologic modeling. This fact may lead to oversampling of the rocks566

that yield these PT conditions and the subduction zones that expose these rocks. In Penniston-567

Dorland et al. (2015), the western and central European Alps, which contain many rocks568

that equilibrated near this PT condition, represented ∼ 90 samples across < 1000 km569

(∼ 1 sample per 100 km), whereas the Himalaya and Andes, which contained more di-570

verse PT conditions, represented only ∼ 1 sample per 300-400 km. Some subduction zones571

are not represented at all in these datasets (e.g. central and western Aleutians, Kamchatka,572

Izu-Bonin-Marianas, Philippines, Indonesia, etc.), either because metamorphic rocks are573

not exposed or rock types are not amenable to petrologic investigation. Correcting for574

this type of bias is challenging because it would require large random samples of exhumed575

HP rocks from localities worldwide and development of new techniques for quantifying576

PT conditions in diverse rock types.577

4.4.4 Short-lived Events and Geodynamic Uncertainties578

Detachment of rocks from the subducting slab might not occur randomly, but rather579

in response to specific events, such as subduction of asperities or seamounts (e.g. Agard580

et al., 2009) or abrupt fluid events. Yet no numerical models have attempted to model581

these events. In the case of seamounts, high surface roughness correlates with higher co-582

efficients of friction (Gao & Wang, 2014). Higher friction increases heating and T’s, driv-583

ing subduction interface thermal gradients into the field of PT conditions defined by the584

pd15 and ag18 datasets (Kohn et al., 2018). If asperities become mechanically unsta-585
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ble at depths of ∼ 50-70 km, preferential detachment would create an “overabundance”586

of recorded PT conditions at moderate T (∼ 550 ◦C) at ∼ 2 GPa, as observed.587

Alternatively, although fluid release is modeled in our numerical experiments as con-588

tinuous, it may occur sporadically. Two dehydration reactions along the subduction in-589

terface are particularly relevant: the transformation of lawsonite to epidote, and the trans-590

formation of chlorite (plus quartz) to garnet. Although dehydration of lawsonite is nearly591

discontinuous in PT space, few rocks show clear evidence for lawsonite immediately prior592

to peak metamorphism (although such evidence can be subtle). In the context of equi-593

librium thermodynamics, chlorite dehydration should occur continuously below depths594

of ∼ 35 km, consistent with assumptions of many numerical geodynamic models. How-595

ever, research suggests substantial overstepping of this reaction, resulting in the abrupt596

formation of abundant garnet and release of water (Castro & Spear, 2017). Direct geochronol-597

ogy of garnet growth rates in subduction complexes also suggests abrupt growth and wa-598

ter release (Dragovic et al., 2015). Because fluids are thought to help trigger brittle fail-599

ure (earthquakes) that could detach rocks from the subducting slab surface, abrupt re-600

lease at a depth of ∼ 50-70 km might again result in an “overabundance” of recorded601

PT conditions at P’s of ∼ 2 GPa. This mechanism would require relatively consistent602

degrees of overstepping in rocks of similar bulk composition and would not directly ex-603

plain higher T’s, however.604

5 Conclusion605

This study traces PT paths of more than one million markers from 64 subduction606

simulations representing a large range of presently active subduction zones worldwide.607

Marker recovery is identified by implementing a “soft” clustering algorithm, and PT dis-608

tributions of recovered markers are compared among models and with the rock record.609

Such a large dataset presents a statistically-robust portrait of important recovery modes610

(where most markers are detached) along the subduction interface. The three most im-611

portant findings are as follows:612

1. Numerical simulations with relatively simple (de)hydration models and visco-plastic613

interface rheologies simulate important recovery mechanisms near the base of the614

continental Moho around 1 GPa and 300 ◦C (underplating and/or formation of615
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tectonic mélanges) and near the depth of mechanical plate coupling around 2.5616

GPa and 525 ◦C.617

2. Subduction systems with young oceanic plates, slow convergence velocities, and618

thin upper-plate lithospheres are most consistent with the rock record, but it is619

unclear to what extent kinematic effects (young flexible oceanic plates with high620

subduction angles accommodating deeper subduction of material) rather than ther-621

mal effects (young oceanic plates supporting higher thermal gradients) drive changes622

in marker PT distributions. Comparing young-slow-thin numerical experiments623

to the rock record is not straightforward, however, because recovery rates do not624

correlate with either oceanic plate age or convergence velocity, and warmer sub-625

duction zones yield poorer recovery rates.626

3. A gap in marker recovery near 2 GPa and 550 ◦C coinciding with the highest den-627

sities of natural samples suggests an “overabundance” of samples are studied from628

this PT region. Explanations for this “overabundance” might include selective sam-629

pling of rocks amenable to petrologic investigation (scientific bias), reaction over-630

stepping (abrupt release of water triggering detachment of rock near 2 GPa and631

550 ◦C), or processes such as subduction of seamounts that are not included in632

numerical simulations. Future work investigating natural samples from a larger633

range of peak PT conditions and analyzing marker recovery from numerical geo-634

dynamic models that include new hydrologic models and interface rheologies might635

help resolve this discrepancy.636
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A Appendix968

A.1 Gaussian Mixture Models969

Let the traced markers represent a d-dimensional array of n random independent

variables xi ∈ Rn×d. Assume markers xi were drawn from k discrete probability dis-

tributions with parameters Φ. The probability distribution of markers xi can be mod-

eled with a mixture of k components:

p(xi|Φ) =
k∑

j=1

πjp(xi|Θj) (A.1)

where p(xi|Θj) is the probability of xi under the jth mixture component and πj is the970

mixture proportion representing the probability that xi belongs to the jth component971

(πj ≥ 0;
∑k

j=1 πj = 1).972

Assuming Θj describes a Gaussian probability distributions with mean µj and co-

variance Σj , Equation (A.1) becomes:

p(xi|Φ) =
k∑

j=1

πjN (xi|µj ,Σj) (A.2)

where

N (xi|µj ,Σj) =
exp{− 1

2 (xi − µj)(xi − µj)
TΣ−1

j }√
det(2πΣj)

(A.3)

The parameters µj and Σj , representing the center and shape of each cluster, are

estimated by maximizing the log of the likelihood function, L(xi|Φ) =
∏n

i=1 p(xi|Φ):

log L(xi|Φ) = log

n∏
i=1

p(xi|Φ) =
n∑

i=1

log

 k∑
j=1

πjp(xi|Θj)

 (A.4)

Taking the derivative of Equation (A.4) with respect to each parameter, π, µ, Σ,

setting the equation to zero, and solving for each parameter gives the maximum likeli-

hood estimators:

Nj =

n∑
i=1

ωi

πj =
Nj

n

µj =
1

Nj

n∑
i=1

ωixi

Σj =
1

Nj

n∑
i=1

ωi(xi − µj)(xi − µj)
T

(A.5)
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where ωi (ωi ≥ 0;
∑k

j=1 ωi = 1) are membership weights representing the probability973

of an observation xi belonging to the jth Gaussian and Nj represents the number of ob-974

servations belonging to the jth Gaussian. Please note that ωi is unknown for markers975

so maximum likelihood estimator cannot be computed with Equation (A.5). The solu-976

tion to this problem is the Expectation-Maximization algorithm, which is defined below.977

General purpose functions in the R package Mclust (Scrucca et al., 2016) are used

to fit Gaussian mixture models. “Fitting” refers to adjusting all k Gaussian parameters

µj and Σj until the data and Gaussian ellipsoids achieve maximum likelihood defined

by Equation (A.4). After Banfield & Raftery (1993), covariance matrices Σ in Mclust

are parameterized to be flexible in their shape, volume, and orientation (Scrucca et al.,

2016):

Σj = λjDjAjD
T
j (A.6)

where Dj is the orthogonal eigenvector matrix, Aj and λj are diagonal matrices of val-978

ues proportional to the eigenvalues. This implementation allows fixing one, two, or three979

geometric elements of the covariance matrices. That is, the volume λj , shape Aj , and980

orientation Dj of Gaussian clusters can change or be fixed among all k clusters (e.g. Celeux981

& Govaert, 1995; Fraley & Raftery, 2002). Fourteen parameterizations of Equation (A.6)982

are tried, representing different geometric combinations of the covariance matrices Σ (see983

Scrucca et al., 2016) and the Bayesian information criterion is computed (Schwarz, 1978).984

The parameterization for Equation (A.6) is chosen by Bayesian information criterion.985

A.2 Expectation-Maximization986

The Expectation-Maximization algorithm estimates Gaussian mixture model pa-987

rameters by initializing k Gaussians with parameters (πj , µj ,Σj), then iteratively com-988

puting membership weights with Equation (A.7) and updating Gaussian parameters with989

Equation (A.5) until reaching a convergence threshold (Dempster et al., 1977).990

The expectation (E-)step involves a “latent” multinomial variable zi ∈ {1, 2, . . . , k}

representing the unknown classifications of xi with a joint distribution p(xi, zi) = p(xi|zi)p(zj).

Membership weights ωi are equivalent to the conditional probability p(zi|xi), which rep-

resents the probability of observation xi belonging to the jth Gaussian. Given initial guesses

for Gaussian parameters πj , µj , Σj , membership weights are computed using Bayes The-
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orem (E-step):

p(zi|xi) =
p(xi|zi)p(zj)

p(xi)
=

πjN (µj ,Σj)∑k
j=1 πjN (µj ,Σj)

= ωi (A.7)

and Gaussian estimates are updated during the maximization (M-)step by applying ωi991

to Equation (A.5). This step gives markers xi class labels zi ∈ {1, . . . , k} representing992

assignment to one of k clusters (Figure 2).993
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1Department of Geology & Environmental Earth Science, Miami University, Oxford, OH 45056

2Department of Geosicences, Boise State University, Boise, ID 83725

3Department of Earth Sciences, ETH-Zurich, Sonneggstrasse 5, Zurich 8092, Switzerland

1 Contents of this File

1. Visualizations S1 to S64

2 Introduction

The following pages contain visualizations of marker classifications results for all

64 subduction zone simulations summarized in the main text of this study. Each page

contains figures showing marker PT distributions and geodynamic snapshots that sup-

plement the examples used in the manuscript. Data and code for reproducing these vi-

sualizations are available online at https://github.com/buchanankerswell/kerswell

et al marx and https://osf.io/3emwf/.
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Figure S1: PT distribution of recovered markers from model cda46. Refer to the main text for explanation of panels and colors.
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Figure S2: PT distribution of recovered markers from model cda62. Refer to the main text for explanation of panels and colors.
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Figure S3: PT distribution of recovered markers from model cda78. Refer to the main text for explanation of panels and colors.
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Figure S4: PT distribution of recovered markers from model cda94. Refer to the main text for explanation of panels and colors.
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Figure S5: PT distribution of recovered markers from model cdb46. Refer to the main text for explanation of panels and colors.
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Figure S6: PT distribution of recovered markers from model cdb62. Refer to the main text for explanation of panels and colors.
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Figure S7: PT distribution of recovered markers from model cdb78. Refer to the main text for explanation of panels and colors.
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Figure S8: PT distribution of recovered markers from model cdb94. Refer to the main text for explanation of panels and colors.
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Figure S9: PT distribution of recovered markers from model cdc46. Refer to the main text for explanation of panels and colors.
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Figure S10: PT distribution of recovered markers from model cdc62. Refer to the main text for explanation of panels and colors.
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Figure S11: PT distribution of recovered markers from model cdc78. Refer to the main text for explanation of panels and colors.
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Figure S12: PT distribution of recovered markers from model cdc94. Refer to the main text for explanation of panels and colors.
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Figure S13: PT distribution of recovered markers from model cdd46. Refer to the main text for explanation of panels and colors.
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Figure S14: PT distribution of recovered markers from model cdd62. Refer to the main text for explanation of panels and colors.
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Figure S15: PT distribution of recovered markers from model cdd78. Refer to the main text for explanation of panels and colors.
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Figure S16: PT distribution of recovered markers from model cdd94. Refer to the main text for explanation of panels and colors.
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Figure S17: PT distribution of recovered markers from model cde46. Refer to the main text for explanation of panels and colors.
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Figure S18: PT distribution of recovered markers from model cde62. Refer to the main text for explanation of panels and colors.
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Figure S19: PT distribution of recovered markers from model cde78. Refer to the main text for explanation of panels and colors.
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Figure S20: PT distribution of recovered markers from model cde94. Refer to the main text for explanation of panels and colors.
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Figure S21: PT distribution of recovered markers from model cdf46. Refer to the main text for explanation of panels and colors.

–
2
2
–



m
a
n
u
scrip

t
su
b
m
itted

to
G
eoch

em
istry,

G
eo
p
h
ysics,

G
eo
system

s

Figure S22: PT distribution of recovered markers from model cdf62. Refer to the main text for explanation of panels and colors.
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Figure S23: PT distribution of recovered markers from model cdf78. Refer to the main text for explanation of panels and colors.
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Figure S24: PT distribution of recovered markers from model cdf94. Refer to the main text for explanation of panels and colors.
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Figure S25: PT distribution of recovered markers from model cdg46. Refer to the main text for explanation of panels and colors.
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Figure S26: PT distribution of recovered markers from model cdg62. Refer to the main text for explanation of panels and colors.

–
2
7
–



m
a
n
u
scrip

t
su
b
m
itted

to
G
eoch

em
istry,

G
eo
p
h
ysics,

G
eo
system

s

Figure S27: PT distribution of recovered markers from model cdg78. Refer to the main text for explanation of panels and colors.
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Figure S28: PT distribution of recovered markers from model cdg94. Refer to the main text for explanation of panels and colors.
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Figure S29: PT distribution of recovered markers from model cdh46. Refer to the main text for explanation of panels and colors.
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Figure S30: PT distribution of recovered markers from model cdh62. Refer to the main text for explanation of panels and colors.
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Figure S31: PT distribution of recovered markers from model cdh78. Refer to the main text for explanation of panels and colors.
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Figure S32: PT distribution of recovered markers from model cdh94. Refer to the main text for explanation of panels and colors.
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Figure S33: PT distribution of recovered markers from model cdi46. Refer to the main text for explanation of panels and colors.
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Figure S34: PT distribution of recovered markers from model cdi62. Refer to the main text for explanation of panels and colors.
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Figure S35: PT distribution of recovered markers from model cdi78. Refer to the main text for explanation of panels and colors.
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Figure S36: PT distribution of recovered markers from model cdi94. Refer to the main text for explanation of panels and colors.

–
3
7
–



m
a
n
u
scrip

t
su
b
m
itted

to
G
eoch

em
istry,

G
eo
p
h
ysics,

G
eo
system

s

Figure S37: PT distribution of recovered markers from model cdj46. Refer to the main text for explanation of panels and colors.
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Figure S38: PT distribution of recovered markers from model cdj62. Refer to the main text for explanation of panels and colors.
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Figure S39: PT distribution of recovered markers from model cdj78. Refer to the main text for explanation of panels and colors.
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Figure S40: PT distribution of recovered markers from model cdj94. Refer to the main text for explanation of panels and colors.
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Figure S41: PT distribution of recovered markers from model cdk46. Refer to the main text for explanation of panels and colors.
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Figure S42: PT distribution of recovered markers from model cdk62. Refer to the main text for explanation of panels and colors.
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Figure S43: PT distribution of recovered markers from model cdk78. Refer to the main text for explanation of panels and colors.
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Figure S44: PT distribution of recovered markers from model cdk94. Refer to the main text for explanation of panels and colors.
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Figure S45: PT distribution of recovered markers from model cdl46. Refer to the main text for explanation of panels and colors.
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Figure S46: PT distribution of recovered markers from model cdl62. Refer to the main text for explanation of panels and colors.
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Figure S47: PT distribution of recovered markers from model cdl78. Refer to the main text for explanation of panels and colors.
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Figure S48: PT distribution of recovered markers from model cdl94. Refer to the main text for explanation of panels and colors.
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Figure S49: PT distribution of recovered markers from model cdm46. Refer to the main text for explanation of panels and colors.
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Figure S50: PT distribution of recovered markers from model cdm62. Refer to the main text for explanation of panels and colors.
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Figure S51: PT distribution of recovered markers from model cdm78. Refer to the main text for explanation of panels and colors.
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Figure S52: PT distribution of recovered markers from model cdm94. Refer to the main text for explanation of panels and colors.
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Figure S53: PT distribution of recovered markers from model cdn46. Refer to the main text for explanation of panels and colors.
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Figure S54: PT distribution of recovered markers from model cdn62. Refer to the main text for explanation of panels and colors.
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Figure S55: PT distribution of recovered markers from model cdn78. Refer to the main text for explanation of panels and colors.
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Figure S56: PT distribution of recovered markers from model cdn94. Refer to the main text for explanation of panels and colors.
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Figure S57: PT distribution of recovered markers from model cdo46. Refer to the main text for explanation of panels and colors.
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Figure S58: PT distribution of recovered markers from model cdo62. Refer to the main text for explanation of panels and colors.
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Figure S59: PT distribution of recovered markers from model cdo78. Refer to the main text for explanation of panels and colors.
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Figure S60: PT distribution of recovered markers from model cdo94. Refer to the main text for explanation of panels and colors.
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Figure S61: PT distribution of recovered markers from model cdp46. Refer to the main text for explanation of panels and colors.
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Figure S62: PT distribution of recovered markers from model cdp62. Refer to the main text for explanation of panels and colors.
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Figure S63: PT distribution of recovered markers from model cdp78. Refer to the main text for explanation of panels and colors.
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Figure S64: PT distribution of recovered markers from model cdp94. Refer to the main text for explanation of panels and colors.
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