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Abstract

Heat related illnesses are one of the leading causes of weather-related mortality in the United States, and heat extremes continue

to increase in frequency and duration. Public health interventions include population mobility, including travel to central cooling

centers or wellness checks on vulnerable populations. Using anonymized cellphone data from Safegraph’s neighborhood patterns

dataset and gridded temperature data from gridMET, we explored the mobility-temperature relationship in the San Francisco

Bay Area at fine spatial and temporal scale. We leveraged spatial variability in median income and temporal variability in

COVID-19 related policies across two summers (2020-2021) to analyze their influence on the mobility-temperature relationship.

We completed quantile regressions for a dataset stratified by income and year. We found that mobility increased at a higher rate

with higher temperatures in 2020 than 2021. However, in 2021, the relationship reversed for several wealthier income groups,

where mobility decreased with higher temperatures. We then augmented the analysis and calculated a panel regression with

fixed effects to characterize the mobility-temperature relationship while controlling for temporal and spatial variability. This

analysis suggested that all areas exhibited lower mobility with higher summer temperatures. However, similar to the results of

the quantile regression, the rate of decrease in mobility in response to high temperature was significantly greater among the

wealthiest census block groups compared with the least wealthy. Given the fundamental difference in the mobility response to

temperature across income groups, our results are relevant for heat mitigation efforts in highly populated regions in current

and future climate conditions.
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Key Points: 15 

• We investigate the influence of summer temperatures on a normalized mobility indicator 16 
in the San Francisco Bay Area for summer 2020-2021. 17 

• Mobility response to temperature was sensitive to regional public health policies and 18 
local factors such as median income of destinations. 19 

• Wealthier areas generally had lower mobility during periods of severe heat, compared 20 
with other income groups.  21 
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Abstract 22 

Heat related illnesses are one of the leading causes of weather-related mortality in the United 23 
States, and heat extremes continue to increase in frequency and duration. Public health 24 
interventions include population mobility, including travel to central cooling centers or wellness 25 
checks on vulnerable populations. Using anonymized cellphone data from Safegraph’s 26 
neighborhood patterns dataset and gridded temperature data from gridMET, we explored the 27 
mobility-temperature relationship in the San Francisco Bay Area at fine spatial and temporal 28 
scale. We leveraged spatial variability in median income and temporal variability in COVID-19 29 
related policies across two summers (2020-2021) to analyze their influence on the mobility-30 
temperature relationship. We completed quantile regressions for a dataset stratified by income 31 
and year. We found that mobility increased at a higher rate with higher temperatures in 2020 32 
than 2021. However, in 2021, the relationship reversed for several wealthier income groups, 33 
where mobility decreased with higher temperatures. We then augmented the analysis and 34 
calculated a panel regression with fixed effects to characterize the mobility-temperature 35 
relationship while controlling for temporal and spatial variability. This analysis suggested that all 36 
areas exhibited lower mobility with higher summer temperatures. However, similar to the results 37 
of the quantile regression, the rate of decrease in mobility in response to high temperature was 38 
significantly greater among the wealthiest census block groups compared with the least wealthy. 39 
Given the fundamental difference in the mobility response to temperature across income groups, 40 
our results are relevant for heat mitigation efforts in highly populated regions in current and 41 
future climate conditions.  42 
 43 

Plain Language Summary 44 
 45 
The health risks associated with extreme heat are increasing with climate change. There are a 46 
number of steps taken by public health officials that rely on local travel, including public cooling 47 
shelters and wellness checks. We used anonymized cellphone data and gridded daily temperature 48 
data to explore how mobility responded to temperature variations in the San Francisco Bay Area 49 
during the summer months of 2020 and 2021. Our analysis found that when our dataset was 50 
separated by income and year, mobility increased with higher temperatures for nearly all 51 
subgroups in 2020. In 2021, some wealthier areas exhibited the reverse relationship, with 52 
mobility decreasing at higher temperatures. When we completed another analysis that controlled 53 
for variability in time and space, all areas exhibited decreased mobility with higher summer 54 
temperatures, but the wealthiest areas decreased faster than the least wealthy areas. These 55 
differences among income groups make our results particularly relevant for heat management 56 
practices in highly populated regions, both now and in the future. 57 

 58 

1 Introduction 59 

Exposure to extremely hot conditions is detrimental to many aspects of human health and 60 
wellbeing (Duffy et al., 2019). Excessively high temperatures that lead to heat-related illnesses 61 
remain one of the leading causes of mortality in the United States (US) due to extreme weather 62 
(CDC, 2019). Hot extremes increase hospitalizations, emergency room visits, use of emergency 63 
transport (Onozuka & Hagihara, 2015, Liss & Naumova, 2019), incidences of cardiovascular 64 
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mortality (Wainwright et al., 1999), suicide (Burke et al., 2018), violence (Hsiang et al., 2013, 65 
Burke et al., 2018), risk of premature mortality (Schwartz et al., 2015), low birth weights 66 
(Deschênes et al., 2009), and kidney stones (Tasian et al., 2014). Heat can also have an adverse 67 
effect on necessary daily activities and lead to increased workplace injuries (Park et al., 2021), 68 
sleep loss (Obradovich et al., 2017, Zheng et al., 2019) and reduced appetites (Zheng et al., 69 
2019). In the US, incidents of extreme heat have increased in both intensity and duration since 70 
the 1960s (USGCRP, 2018, IPCC, 2021). This trend is anticipated to continue into the rest of the 71 
century even in aggressive decarbonization scenarios (Collins et al., 2013, Diffenbaugh & 72 
Ashfaq, 2010, Diffenbaugh et al., 2018), thereby increasing the exposure of the US population to 73 
these events (Reidmiller et al. 2018, IPCC, 2021, Batibeniz et al. 2020). 74 
 75 
Mobility is one way that individuals and populations respond and adjust to extreme 76 
temperatures––in general, as temperatures rise on an annual cycle, so does mobility (Böcker et 77 
al., 2016, Liu et al., 2014). Typically, heat stress is managed using air conditioning, public 78 
cooling centers, and public awareness campaigns and warning systems (Bassil et al., 2009, 79 
Eisenman et al., 2016, Palecki et al., 2001). Many of the interventions that combat the risks of 80 
intensifying heat events include some amount of local travel. This includes traveling to cooling 81 
centers and conducting wellness checks on vulnerable individuals who lack air conditioning 82 
(Widerynski et al., 2017). Characterizing typical mobility patterns in response to increasing 83 
temperatures is thus critical for minimizing health risks associated with extreme heat exposure 84 
by anticipating the potential need for wellness services during heatwaves, supporting 85 
accessibility efforts, and limiting strain on public health services. 86 
 87 
The COVID-19 pandemic provides a unique context in which to explore the influence of social 88 
and policy pressures on mobility patterns during periods of extreme heat. After the declaration of 89 
a worldwide pandemic by the World Health Organization in March 2020 (WHO 2020), 90 
numerous countries began to implement travel and mobility restrictions as their main non-91 
pharmaceutical intervention to reduce the number of COVID-19 infections within their borders. 92 
By April 20th 2020, 100% of travel destinations had some form of travel restrictions in place, of 93 
which 45% partially or completely closed borders to tourists, 18% banned individuals traveling 94 
from select countries, and 7% applied quarantine or self-isolation requirements (UNWTO 2020). 95 
 96 
In the US, individual states and counties implemented their own restrictions, with regulations 97 
often differing between neighboring municipalities. Twenty-four states established travel 98 
restrictions that included periods of isolation and testing requirements for those entering the state 99 
(Studdert et al., 2020). Government responses have been highly variable in space and time as 100 
individual states and municipalities instituted their own guidelines and ordinances in the absence 101 
of blanket federal orders (Diffenbaugh et al., 2020). COVID-19 Shelter in Place (SIP) protocols 102 
did change mobility patterns across the country, and many regions saw an increase in the 103 
frequency of visitations to public, outdoor spaces (Wu et al., 2021). California specifically 104 
implemented travel guidance and allowed counties to impose additional restrictions as they saw 105 
fit (Aragón, 2020). Workplace and school closures were calculated to be effective measures in 106 
avoiding COVID-19 deaths in the San Francisco (SF) Bay Area (Head et al., 2020). As a result 107 
of CDC and state guidance, and quantitative models supporting the efficacy of closures, schools 108 
and ‘non-essential’ businesses were closed and shifted to a virtual environment.  109 
 110 
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The SF Bay Area was one of the early epicenters of COVID-19 transmission in the US, and since 111 
then has consistently seen some of the country’s most restrictive pandemic management policies 112 
(Studdert et al., 2020). Beginning with a multi-county stay-at-home order in March 2020, these 113 
SIP policies heavily restricted business operations and travel for the subsequent year. In addition, 114 
the SF Bay Area has the second lowest rates of at-home cooling among major metropolitan areas 115 
in the US, with only 47% of households reporting at-home air conditioning in 2019 (American 116 
Housing Survey, 2018, Jung, 2021). This means that a majority of households rely on cooling 117 
methods other than domestic air-conditioning during periods of extreme heat. Further, the region 118 
exhibits a classic summer-dry “Mediterranean” climate (Hobbs et al., 1995, Ekstrom & Moser, 119 
2012), enabling investigation of the influence of temperature on mobility in the absence of the 120 
potentially confounding effect of precipitation variability during the hot season. For these 121 
reasons, the SF Bay Area region is an ideal testbed to further investigate the relationship between 122 
temperature and mobility in the context of the pandemic.  123 
 124 
Several studies have identified that differences in socio-economic status (O’Neill et al., 2005, 125 
Vant-Hull et al., 2018) and the built environment (Eisenman et al., 2016, Gronlund & Berrocal., 126 
2020) are associated with varied vulnerability to extreme heat exposure  throughout the US. This 127 
heterogeneity in socio-demographics points to the value of considering how these spatially 128 
defined characteristics may result in varied responses to both policy decisions and climatic 129 
conditions. In addition, given the role mobility plays in public health interventions for heat 130 
illness, and the persistent influence of socio-demographic differences on public health outcomes, 131 
it is important to consider the response to severe heat in the context of policy decisions intended 132 
to minimize the spread of COVID-19. To that end, we used data from personal mobile devices to 133 
characterize the small-scale, daily movement patterns across the SF Bay area throughout the 134 
pandemic period of 2020-2021. We then used both quantile regression and panel regression with 135 
fixed effects to characterize the relationship between income and mobility during the summer 136 
months.  137 
 138 

2 Materials and Methods 139 

 140 
2.1 Data  141 
 142 
We utilized the gridMET 4-km gridded daily maximum temperature data (Abatzoglou, 2013) to 143 
calculate temperature in the SF Bay Area region. To quantify the impact of high temperatures on 144 
mobility, we selected all data from May to September, when hot temperatures are most likely to 145 
occur in the region. Using the 2020 census block group boundaries from the US Census, we 146 
calculated the mean daily high temperature of all grid cells within each CBG to obtain a time 147 
series of the high temperature by CBG each day from 1979-2021. We used the 2019 US Census 148 
Bureau's American Community Survey’s (ACS) 5-year Estimates of population and median 149 
income by CBG (US Census Bureau, 2022) 150 
  151 
We analyzed mobility patterns using the SafeGraph Neighborhood Patterns dataset (Safegraph 152 
2022). This dataset was created by analyzing anonymized pings from mobile devices, and 153 
contains footfall data for each CBG from January 2018 to the present day. For this analysis, we 154 
only utilized data starting in 2020. Any devices that were recorded in a CBG for a duration of 155 
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less than a minute were removed, and the remaining devices were counted as a “stop”. Each stop 156 
datapoint included information on the date, hour, and CBG of the recorded stop. Due to data 157 
constraints associated with Safegraph’s privacy policy, the source information included only the 158 
number of devices that spent time in the CBG and did not contain information about whether a 159 
stop was made by a home device or a non-resident device. An accompanying Safegraph dataset 160 
contained a monthly estimate of the total number of home devices based on devices’ nighttime 161 
activity. Safegraph added laplacian noise as a differential privacy technique to protect individual 162 
privacy. 163 
 164 
Wildfires in the Bay Area in the summer and autumn of 2020 and 2021 caused several poor air 165 
quality days where residents were instructed to limit travel and remain indoors (Bay Area Air 166 
Quality Management District’s (BAAQMD), 2022). In order to exclude the influence of days 167 
where this additional public intervention was introduced, we removed data points from all 168 
datasets for the 12 days on which at least one county in the SF Bay Area recorded a BAAQMD 169 
Air Quality Index value of  ≥151 (for which the BAAQMD recommends all individuals should 170 
limit prolonged outdoor exertion). 171 
 172 
2.2 Creation and interpretation of mobility index 173 
 174 
Using the Safegraph dataset, we created a mobility index (MI) that allowed us to compare 175 
mobility across CBGs, and thereby characterize movement across the SF Bay Area. We 176 
estimated the daily number of visits as the number of total stops minus home devices in that 177 
CBG. We then normalized the difference using the number of home devices for each block group 178 
to calculate our final MI value. We calculated MI daily for each census block group from 179 
January 2020 through December 2021.  180 
 181 
This MI index was designed to address some of the limitations of the Safegraph dataset, such as 182 
the ambiguity between stops by visitors and stops by home devices. These limitations should be 183 
considered when interpreting the MI values. By subtracting out the devices identified by 184 
Safegraph as “home devices” we assumed that the remaining number of devices are either 185 
“visitors” to the location or a home device that left and returned that day. Due to these 186 
constraints, MI should be interpreted as a normalized indicator of the amount of travel into a 187 
CBG on a given day–including any home device that left and returned on that day.  188 
 189 
2.3 Census block group analysis 190 
  191 
To further understand how demographics may influence the relationship between a CBG and 192 
mobility during the hottest part of the year, we used ACS’s 5-year estimates of population and 193 
median income by CBG. We assigned each CBG to an income group between 1 (“Low” income) 194 
and 5 (“High” income). We weighted this grouping by population, so that the Low income group 195 
represented the lowest earning 20% of the population in the SF Bay Area, the Medium Low 196 
income group the lowest 20%-40% of earners, and so on. This weighting ensured that there were 197 
roughly the same number of individuals represented in each income group.  198 
 199 
We plotted the distribution of the MI for each income group. In addition, we tested whether the 200 
distributions were different between income groups by comparing all pairings of income groups 201 
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using two non-parametric tests: a two-sample Kolmogorov-Smirnov (K-S) test, and a Wilcoxon 202 
Rank Sum Test. The K-S test is sensitive to differences in both location and shape of the 203 
distributions, and the null hypothesis is that the two samples are drawn from the same underlying 204 
distribution. The Wilcoxon test’s null hypothesis is that the two distributions are the same and 205 
have the same median.  206 
 207 
2.4 Quantile regression 208 
 209 
We used quantile regression to analyze the effect of temperature changes across the distribution 210 
of MI values during the summer months (May - September): 211 
 212 

[1] Yθg = βθXg + εθg 213 
 214 
where Y is the expected daily mobility index (MI) value for income group g in percentile θ; β is 215 
the estimated coefficient of percentile θ; X is the average daily maximum high temperature of a 216 
CBG in income group g. εθg is an unspecified error term, consistent with other nonparametric 217 
quantile regression models.   218 
 219 
The quantiles θ included in this analysis were the 25th, 50th, 75th, and 95th of calculated MI 220 
values. These quantiles represented the least-mobile to most-mobile CBGs, based on daily MI 221 
values. Some CBGs were categorized in the same quantile almost every day (e.g., a residential 222 
area), some were higher during certain parts of the week (e.g., commercial use office spaces), 223 
and others were occasionally categorized in the higher quantiles (e.g., a CBG housing a stadium).  224 
 225 
We stratified the dataset by our assigned income groups to explore how the response across the 226 
MI distribution may be influenced by the underlying income characteristics of each CBG. 227 
Calculated MI values across the SF Bay Area were heavily skewed and contained a number of 228 
outliers and extreme values (Figure S1). We used quantile regression to limit the amount of 229 
distortion from these values (Buchinsky, 1998), and to analyze the response of a specific subset 230 
of the response variable. We also stratified our data by year to explore the difference in our 231 
response variable during a period of strict SIP policies (2020) and the subsequent summer after 232 
most restrictions were lifted (2021). 233 
 234 
2.5 Panel Regression with Fixed Effects 235 
 236 
We complemented our quantile regression analysis with a linear panel regression with fixed 237 
effects, which is a causal inference technique that enabled us to establish a deeper understanding 238 
of how sensitive mobility is to the daily high temperature of a given CBG. Our main 239 
specification tested a cube root relationship between MI and temperature:  240 
 241 

[2] ∛(Yct) = βXct + nc + δt + εct 242 
 243 
where Yct is the expected mobility index (MI) value in CBG c on a given day t; β is the estimated 244 
coefficient; X is the average daily maximum high temperature of CBG c on day t; nc is the CBG 245 
fixed effect; δt is the year, month, and week-of-year fixed effect created by concatenating the 246 
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year, month, and number of complete seven day periods that have occurred between the date and 247 
January 1st of the year; and εct is an error term. 248 
 249 
This method was particularly valuable because it controlled for invariant differences between 250 
CBGs, subtracted out average differences in mobility between them, and accounted for any 251 
differences in SIP orders between the different sub-regions of the SF Bay Area. The time fixed 252 
effects variable subtracts out month-to-month, week-of-year, and annual mobility variations––253 
accounting for seasonal changes, as well as shifts in mobility due to week-to-week variation 254 
driven by holidays and short-term shocks, and annual differences between 2020 and 2021. When 255 
compared to using a daily time fixed effects variable, the week, month, and year fixed effect led 256 
to a smaller 95% confidence interval (Figure S2). With these controls, this model isolated the 257 
effect of temperature on mobility from spatial and temporal confounding factors.  258 
 259 
We used the daily high temperature within each CBG as the independent variable, and the 260 
calculated MI value for that day in each census block group as the dependent variable. We 261 
transformed the MI for this analysis by taking the cube root of MI values. To do so, we took the 262 
cube root of the absolute value of each MI, and multiplied the result by the sign of the original 263 
MI. Unlike a log transformation, this strategy allows us to maintain zeros and negative MI values 264 
while addressing the skewed MI values (Figure S1). In addition, we completed supplementary 265 
calculations with log-transformed MI values (where 1.0001 was added to each MI value), and 266 
compared those results to the cube root transformed dataset (Figure S2).   267 
 268 
This first panel regression analysis pooled all income groups. We then performed a second 269 
analysis by adding in median income as an interaction term. We utilized median income as a 270 
proxy for a number of factors that may influence mobility and are correlated with income at the 271 
CBG level. These include socio-economic status, population density, infrastructure, and land use 272 
type. We characterized the relationship between temperature and mobility across five income 273 
groups, again using a cube root specification: 274 
 275 

[3] ∛(Yct) = βXctIg+ nc + δt + εcit 276 
 277 
where Yct is the expected mobility index (MI) value in CBG c on a given day t; β is the estimated 278 
coefficient; X is the average daily maximum high temperature of CBG c on day t; It is the CBG’s 279 
assigned population-weighted income group; nc is the CBG fixed effect; δt is the month, week of 280 
year, and year fixed effect; εct is an error term. 281 
 282 
For all panel regression models, we only used data from May to September. We estimated the 283 
95% confidence intervals using a bootstrap resampling technique. We resampled the original 284 
data by county with replacement to obtain a new dataset of the same length as the original 285 
dataset, and re-ran the same regression on the new subset. We repeated this process 1000 times 286 
to obtain a range of model outputs. Of the resulting model coefficients, we used the 2.5 and 287 
97.5th percentile coefficient values as the minimum and maximum values for our 95% 288 
confidence interval range.  289 
 290 
3 Results 291 
 292 
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from $99,803 to $129,375, and High income CBGs had a median income of $129,421 to 320 
$250,001. Each group represented 20% of the population of the SF Bay Area.  321 
 322 
Our mobility index (MI) estimated the number of visits to a CBG, normalized by the number of 323 
residents. The largest decrease in MI took place from mid-March to early-April of 2020–324 
coinciding with the SIP policies that began on March 16th, 2020, in SF Bay Area counties (San 325 
Francisco Department of Health (SFDoH), 2020). The mean MI during the first 30 days of SIP 326 
policies was 0.15, with the lowest recorded MI value of -0.47 on March 31st, 2020. By definition, 327 
a negative MI value indicates fewer devices entering the CBG – including returning home 328 
devices – than the number of recorded home devices, and the minimum possible value is -1.0. 329 
The average MI in all of 2020 and 2021 was 1.20 (median = 0.69), and 1.24 (median = 0.71) in 330 
the summer. In 2020, our calculated MI was generally lower on days when temperatures 331 
exceeded 34°C (mean = 0.86, median = 0.50) than in 2021 (mean = 1.60, median = 0.96) (Figure 332 
1, Panel C). Of the 4722 CBGs included in the calculation, 3766 (80%) increased in mobility 333 
from 2020 to 2021. Of those 3766, 3026 (80.3%) experienced at least a 50% increase in mobility.  334 
 335 

 336 

Figure 2. Loess regression of all calculated Mobility Index (MI) values from January 2020 337 
through December 2021, by income group. The shaded area represents the 95% confidence 338 
interval of the loess regression. Shelter in Place policies began on March 16th, 2020.  339 
 340 
In the first few months of 2020, prior to the start of SIP policies, the average MI values were 341 
similar among most income groups (Figure 2). The 95% confidence interval of the loess 342 
regression was indistinguishable for CBGs with a median household income below 343 
$130,000/year (comprising the Low to Medium High income groups). In contrast, CBGs in the 344 
High income group (i.e., those with a median household income above ~$130,000/year) had an 345 
average MI that was higher than the other groups in early 2020. However, there was a noticeable 346 
shift in relative MI by income group as the start of the COVID pandemic led to implementation 347 
of SIP policies and closures of many public spaces. CBGs in the Low income group (~ 348 
<$57,000/year) had the highest average MI by mid-2020, a pattern that continued through the 349 
end of 2021. Meanwhile, CBGs in the High income group consistently had the lowest average 350 
MI through the end of 2021 (Figure 2).  351 
 352 
The mean MI value changed for many CBGs over the course of the two-year study period. The 353 
distribution of summer MI was different between the income groups (Figure 3,). For all pairings 354 
of income groups, we reject the null hypothesis of the K-S test. For most pairings, we reject the 355 
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Median regression model shown with solid purple line. Purple shading indicates 95% CI 401 
estimated by bootstrapping by county with replacement (see Materials and Methods). Response 402 
function was centered at the mean summer temperature for 2020-2021 (24°C). (b) Resulting 403 
relationship between MI and temperature after the income group interaction variable is integrated 404 
into the model. Points show median coefficient estimates and vertical bars show the 95% CI 405 
around each point estimate. Solid purple line and shaded area are model results from (a) for 406 
comparison.   407 
 408 
To explore how socio-economic differences may have influenced the relationship between 409 
mobility and temperature, we added a median-income interaction term to the panel regression 410 
model (Figure 5, Panel B). The coefficients for all income groups were negative (implying 411 
decreased mobility in response to higher temperatures), and each had a p-value of <0.001. The 412 
Low income group had the least negative coefficient (implying the least reduction in mobility in 413 
response to higher temperatures), while the High income group had the most negative coefficient 414 
(implying the greatest reduction in mobility in response to higher temperatures). Although there 415 
was substantial overlap in the confidence intervals for the three intermediate income groups 416 
(Medium Low, Medium and Medium High), the confidence intervals for the highest and lowest 417 
income groups were entirely distinct from each other. Further, the confidence interval for the 418 
highest income group (High) was distinct from even the confidence interval for the pooled fixed 419 
effect model that did not distinguish between income groups.   420 

4 Discussion 421 

 422 
Much of the temperature and mobility research in the context of COVID-19 has centered on viral 423 
transmission. Although temperature is negatively related to COVID-19 transmission (Shao et al., 424 
2021), higher temperatures are positively associated with mobility (Badr et al., 2020, Zhu et al., 425 
2020). Shao et al. (2021) reported that mobility has a suppressing effect on the temperature-426 
transmission relationship. Likewise, Wu et al. (2021) investigated how weather and mobility 427 
may have interacted during the first year of the COVID-19 pandemic by calculating the 428 
correlation between weather and mobility in different US states specifically during 2020, and 429 
found a weakly positive correlation between temperature and park visits on days without rain. 430 
These studies explored the dynamics of mobility and COVID-19 to bring additional insight to the 431 
public health implications of COVID-19 policies and the compounding effects of high 432 
temperatures. 433 
 434 
We augmented this research on pandemic-era temperature-mobility relationships by 435 
incorporating the critical element of socio-demographic spatial heterogeneity in a highly 436 
populated region that contains both metropolitan and rural areas. Thus, our work has the 437 
potential to offer new insight into differences in the response of mobility to temperature across 438 
income groups. In addition, by extending the study period through the summer of 2021, our 439 
analysis included periods of the pandemic with additional COVID-19 virus variants (Vasireddy 440 
et al., 2021) and a wider range of SIP policies.   441 
 442 
Our mobility metric captured the decline in mobility in the SF Bay Area following the 443 
establishment of SIP policies in spring of 2020 (Figure 2, Panel A). For the two years we 444 
analyzed, average mobility was higher in 2021, coinciding with relaxed SIP restrictions. 445 
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Throughout this two-year period, we found a link between our mobility metric and the median 446 
income of a CBG, with the highest earning CBGs associated with a more rapid decrease in MI 447 
value in response to increasing temperatures. This means either that wealthier residents of these 448 
neighborhoods traveled in and out of their CBG less frequently, and/or that fewer outside visitors 449 
entered the CBG.  450 
 451 
In the context of the COVID-19 pandemic, these wealthy CBGs exhibited a pattern of lower 452 
mobility that aligned with the intended effects of SIP policies (i.e., reduction or cessation of non-453 
essential travel, shifting to remote work when possible, and limits on gatherings in an attempt to 454 
reduce virus transmission). Conversely, lower income CBGs showed a pattern of movement that 455 
was less aligned with the intended effects of SIP policies (i.e., either increased travel (Figure 4) 456 
or limited reductions when compared to other subsets of the population (Figure 5)). Notably, any 457 
medically necessary travel was considered ‘essential’ and therefore travel completed to reduce 458 
exposure to extreme heat and protect personal health was allowable under SIP (SFDoH 2020, 459 
Newsom 2020); however, such travel required individuals to choose between continued heat 460 
exposure at home and the risk of exposure to COVID-19 outside the home. Since the median 461 
income value in our analysis was attributed to the visited CBG, we cannot draw conclusions 462 
about the income status of those visiting the CBGs.  463 
 464 
While the COVID-19 pandemic was on-going throughout the study period, the SIP orders and 465 
unique social environment of the period were not uniform across the region. The strict closure of 466 
all non-essential businesses and travel restrictions in 2020 gave way to limited closures and 467 
capacity restrictions after the introduction of vaccines in early 2021. These unique conditions 468 
allowed us to examine the variation in response across the population, and further understand 469 
how public health policies interact with the communities they aim to protect within the context 470 
of extreme heat.  471 
 472 
The effects of these changes were found in our regressions (Figure 4, 5). In 2020, nearly all 473 
CBGs had an MI that increased with increasing temperature in our quantile regression (Figure 4). 474 
In 2021, when most SIP orders were lifted, many CBGs exhibited decreasing MI values with 475 
increasing temperature. One major exception to this pattern was in 2020: CBGs in the 95th 476 
percentile of MI values in the High income group (>$130,000/year) exhibited decreasing MI 477 
values with increasing temperature. The strictest SIP orders were in effect during the summer of 478 
2020, yet the quantile regression showed that only the wealthiest CBGs displayed potential 479 
evidence of decreasing mobility with increasing temperature, while other places around the SF 480 
Bay Area exhibited increasing mobility. Likewise, in our fixed effect model with income 481 
interaction (Figure 5, Panel B), we found that although all income groups exhibited decreasing 482 
mobility with increasing temperature, the wealthiest CBGs displayed the largest decrease, and 483 
were statistically distinct even when compared to a model that included all income groups. One 484 
possible interpretation is that as temperatures increased, areas that were wealthy (and thus more 485 
likely to have access to air conditioning or other heat abatement at home) could continue to 486 
comply with SIP orders.  487 
 488 
Further, while the results of the quantile regression suggested that the response of mobility to 489 
temperature was stronger and more positive (i.e., above 0) in 2020 than in 2021, nearly all Low 490 
and Medium Low income CBGs still exhibited increasing MI with increasing temperature in 491 
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2021 (Figure 4). Likewise, while the fixed effects model with income interaction (which pooled 492 
all MI quantiles, as well as the years 2020 and 2021) predicted a decrease in mobility in response 493 
to increasing temperature for all income groups, the Low income group had a significantly 494 
smaller rate of mobility reduction than the High income group (Figure 5). These results could 495 
potentially indicate, for lower income groups, either (i) reliance on mobility to alleviate the 496 
impacts of extreme heat, or (ii) fewer options to reduce mobility due to work or personal 497 
obligations. 498 
 499 
The distribution of average MI values were right skewed and there were a number of CBGs with 500 
MI values that were an order of magnitude higher than the average (Figure S1). These locations 501 
represented areas that are highly trafficked, and often included points of interest (e.g., retail 502 
centers, tourist attractions, and downtown areas (Table S1)). We found that CBGs with MI 503 
values that fell into these extreme quantiles (95th percentile) often responded differently than the 504 
lower quantiles as temperature increased, and that the median income of the CBG can be 505 
important in determining the direction and/or magnitude of that response (Figure 4).  506 
 507 
It is important to emphasize that income alone cannot fully explain all of the disparity in 508 
environmental (Banzhaf et al., 2019) and health (Zimmerman & Anderson, 2019) outcomes. The 509 
population of the SF Bay Area has variable sensitivities to extreme heat due to known risk 510 
factors such as prevalence of at-home cooling access (O’Neill et al., 2003), median age (Luber 511 
and McGeehin, 2008), racial background (Basu and Ostro, 2008), and ethnic background 512 
(Hansen et al., 2013). We stratified our data by income, which is known to itself influence health 513 
and wellbeing and is also correlated with other risk factors (Downey 1998, Reid et al., 2009). 514 
However, while our study offers additional insight into mobility responses to severe heat within 515 
a highly populated region with severe income inequality, it does not offer a fully exhaustive 516 
directory of CBGs most likely to see a change in MI on a hot day.  517 
 518 
In addition to socioeconomic heterogeneity, the SF Bay Area also encompasses substantial 519 
climatic heterogeneity, including coastal and inland regions. The high variety of geographic 520 
features –– including topography (mountains, inland valleys), and coastal exposure (Ekstrom & 521 
Moser, 2012) –– contributes to the numerous distinct climatic zones. As expected, inland CBGs 522 
have more days that reach extremely high temperatures, as opposed to CBGs closer to the coast 523 
or San Francisco Bay (Figure S2). Due to this spatial variability, there is additional value in the 524 
location-based fixed effects of our panel regression. 525 
 526 
Finally, the results of this study are specific only to 2020-2021, and there remain several 527 
questions about the long-term influence of the temporary COVID-driven mobility restrictions 528 
after SIP orders were lifted across California (Slavitt et al., 2022). These include any persistent 529 
changes to mobility as SIP policies relaxed, and whether extended restrictions led to changes in 530 
the services provided to different CBGs (including permanent closures of some services). It is 531 
possible that individuals now rely on new measures to alleviate heat stress at home––including 532 
investing in cooling technologies such as portable air conditioning units, window tinting, or 533 
improved insulation. Alternately, the lack of any pandemic-related mobility restrictions means 534 
the mobility-temperature relationship may begin to echo the patterns it once held prior to the 535 
March 2020 SIP orders. However, while the risks of contracting COVID-19 have been 536 
significantly reduced through vaccination, the pandemic was still on-going as of Fall 2022. 537 
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Individual sheltering and isolation guidelines continue to evolve, and we have yet to collect data 538 
on a period beyond 2021.     539 

5 Conclusions 540 

In addition to the primary health impacts of COVID-19, the pandemic has also had secondary 541 
impacts by affecting the ways in which individuals and communities are able to respond to other 542 
health risks, such as severe heat. In this study, we leveraged the variability in SIP policies and 543 
severity of COVID-19 transmission risk to explore how different income groups respond to 544 
severe heat under changing social and policy pressures.  545 
 546 
We built upon prior studies of the relationship between heat and mobility using causal inference 547 
methods to explore how a unit change in temperature may change mobility. In particular, using 548 
panel regressions with fixed effects enableds us to control for unobserved variability between 549 
CBGs and counties (e.g., common behavior patterns, infrastructure) and changes that occur over 550 
time that are common across the CBGs or counties (e.g. federal or state-wide regulations). The 551 
results of this regression model with interaction variables allowed us to investigate how the 552 
median income of the observed CBG may influence the expected mobility during the hottest 553 
days of the year. We also leveraged a quantile regression model to investigate the relationship 554 
between MI and temperature, and explore various parts of the distribution independent from the 555 
rest of the dataset. 556 
 557 
The patterns we uncovered add clarity to the previous understanding of the relationship between 558 
temperature and mobility (Böcker et al., 2016, Liu et al., 2014, Badr et al., 2020, Zhu et al., 559 
2020) during a period when typical mobility patterns were already disrupted by COVID-19 560 
policies. We show that during this pandemic period, wealthier CBGs have generally had lower 561 
mobility during periods of severe heat, compared with other income groups. Our results also 562 
suggest that there is a fundamental difference in the temperature-mobility relationship between 563 
the most mobile High and Low income CBGs, with High income CBGs further decreasing 564 
mobility in response to high temperatures, and lower income CBGs either increasing mobility 565 
(Figure 4) or decreasing at a slower rate (Figure 5). Thus, even in the presence of highly 566 
restrictive public health policies, high temperatures can lead to diverging mobility across income. 567 
Given the key role that mobility plays in public health interventions during periods of extreme 568 
heat, our results are relevant for heat mitigation efforts in highly populated regions, both in the 569 
current climate and in the future.  570 
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