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Abstract

This study develops a new AI-based Self-Adaptive DPC (SADPC) system based on stepwise inference combing with genetic

algorithm optimization technologies, including a filtered-clustering inference prediction model (FCI simulator), a stepwise

inference controller (SI emulator), a model predictive control controller (MPC controller), a 1st-stage optimizer, and a 2nd-

stage optimizer. This system effectively reflects the dynamics and complexity of the biodegradation process and realizes the

control for the remediation system based on the feedback information. To achieve this goal, a statistical model for simulating

the bioremediation process through the FCI simulator is proposed, which can predict the resulting contamination situation

based on the previous contamination situation and control action. Then a bridge between control actions and contamination

situations is established through the SI emulator, which can generate a control action based on a given contamination situation.

Through running the SADPC system, the desired control action can be identified. Results show that The SADPC system

increases the removal rate of benzene and arrives at the remediation goal earlier than other systems. This suggested decision

makers that guidelines and policies on remediation-oriented SADPC systems could be tentatively investigated, developed, and

applied in the future effort.
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Key Points: 9 

• Perform a simulation of enhanced remediation process shown by a contaminant fate and 10 
transport model  11 

• Develop a self-adaptive dynamic process control (SADPC) system and provide 12 
suggestion for guidelines and policies on SADPC systems 13 

• Improve the removal rate of benzene in groundwater during the bioremediation process 14 
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Abstract 16 

This study develops a new AI-based Self-Adaptive DPC (SADPC) system based on stepwise 17 
inference combing with genetic algorithm optimization technologies, including a filtered-18 
clustering inference prediction model (FCI simulator), a stepwise inference controller (SI 19 
emulator), a model predictive control controller (MPC controller), a 1st-stage optimizer, and a 20 
2nd-stage optimizer. This system effectively reflects the dynamics and complexity of the 21 
biodegradation process and realizes the control for the remediation system based on the feedback 22 
information. To achieve this goal, a statistical model for simulating the bioremediation process 23 
through the FCI simulator is proposed, which can predict the resulting contamination situation 24 
based on the previous contamination situation and control action. Then a bridge between control 25 
actions and contamination situations is established through the SI emulator, which can generate a 26 
control action based on a given contamination situation. Through running the SADPC system, 27 
the desired control action can be identified. Results show that The SADPC system increases the 28 
removal rate of benzene and arrives at the remediation goal earlier than other systems. This 29 
suggested decision makers that guidelines and policies on remediation-oriented SADPC systems 30 
could be tentatively investigated, developed, and applied in the future effort. 31 

Keywords 32 

Self-adaptive dynamic process control, in-situ bioremediation, contaminant fate and transport 33 
modeling, physically groundwater simulation 34 

1 Introduction 35 

In-situ bioremediation (ISB) techniques (Albers et al., 2015; Zhang et al., 2020) aim to enhance 36 
the biodegradation of organic constituents in the subsurface by encouraging the growth and 37 
reproduction of indigenous microorganisms. The ISB technique involves a mechanism for 38 
stimulating and maintaining the activity of intrinsic bioremediation processes, by which 39 
indigenous microbes convert contaminants to innocuous end products via electron acceptor 40 
and/or inorganic nutrient amendments. The normal operation of ISB consists of routine checking 41 
of operation and maintenance of equipment, groundwater levels, extraction and injection rates, 42 
groundwater electron acceptor concentrations, nutrient levels, pH, and conductivity. 43 

System optimization approaches have been demonstrated to be useful in enhancing remediation 44 
efficiency and reduce remediation cost during water treatment and remediation (Chiandussi et 45 
al., 2012; He et al., 2008a; He et al., 2008b; He et al., 2008c; Passino, 2002; Sun et al., 2020; 46 
Wang et al., 2020). Compared with system optimization approaches, dynamic process control 47 
(DPC) could be a better way in fulfilling real-time system optimization by temporally regulating 48 
a set of operating conditions such as additions of electron acceptors and nutrients, groundwater 49 
extraction and injection rates, remedial cleanup time, etc. Various studies have been undertaken 50 
on development and applications of DPC techniques (Ahmed & Rodriguez, 2020; Bashivan et 51 
al., 2019; Bechet et al., 2016; Diangelakis et al., 2016; Liu et al., 2016; Mayne, 2014; Miller et 52 
al., 2016; Stentoft et al., 2021; Zeng & Liu, 2015). For example, Stentoft et al. (2021) proposed a 53 
general model predictive control algorithm to achieve the optimal operating conditions by 54 
controlling the effluent concentrations, total costs, and other management objectives. This 55 
approach allows the water resource recovery facilities to quickly accommodate new control 56 
requirements. Liu et al. (2016) presented an Event-driven Model Predictive Control (EMPC) 57 
method to ensure that the flows of sewage streams containing the dosed chemical are reasonably 58 
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distributed throughout the sewer networks. The EMPC strategy substantially enhanced the 59 
performance of sulfide mitigation when dealing with the corrosion and odor problems. Ahmed & 60 
Rodriguez (2020) demonstrated a non-linear model predictive control (NMPC) system to 61 
optimize the automatic start-up of anaerobic digesters, which achieved a higher target methane 62 
production rate and superior control variables set-point tracking error performance. 63 

However, three challenges of the conventional DPC techniques lead to the difficulty in applying 64 
to a general ISB system. First, conventional DPC depends on the use of a set of nonlinear state 65 
equations group (or prediction model) representing the input-output relations. While there is 66 
difficulty in analytically or numerically solving the equations group, the DPC would fail to work 67 
because of extremely low solution efficiency. Because the ISB prediction model is 68 
computationally costly, proxy modeling may be a good means of solving this challenge, i.e., to 69 
produce a set of proxy models to replace initial ones through statistical or artificial intelligence 70 
(AI) methods. Usually, proxy models have the advantages of computation-rapid, result-stable, 71 
and error-tolerable (Gopalakrishnan et al., 2011; Gorelick and Zheng 2015; He et al., 2008a; He 72 
et al., 2008b;Meray et al., 2022; Siade et al., 2020; Stramer et al., 2010). Second, generation of 73 
optimal operating conditions within a given time period by conventional DPC relies on the 74 
difference (or error) between the predicted remediation performance and pre-determined level. 75 
For facilitating computation, a prediction model implied in the DPC framework is generally 76 
assumed to maintain static (without any variation) during the entire remediation process. This 77 
assumption may not be suitable particularly where complex hydrogeological conditions and 78 
biochemical process exist in the groundwater. A feasible approach is to introduce self-adaptive 79 
prediction or proxy models that can be dynamically trained and improved subject to external 80 
environmental variations. Third, it tends to make predictions that cannot meet expectations when 81 
dealing with the complicated situation of contaminant degradation, since the conventional DPC 82 
prediction model remains static during the entire remediation process. To alleviate the problem 83 
of falling into the local optimality dilemma triggered by the DPC static prediction model, a near-84 
ideal biodegradation process can be obtained by conducting a second-stage optimization and 85 
developing the predicted trajectory (setpoint curve) based on the entire process prediction of the 86 
DPC system.  87 

Therefore, this paper aims to present a new AI-based self-adaptive DPC system (SADPC) for 88 
enhancing in-site bioremediation of benzene-contaminated groundwater due to non-aqueous 89 
phase liquids (NAPLs) leakage from underground storage tank. The DPC system includes a 90 
filtered-clustering inference prediction model (also called FCI simulator) (Gerber & Horenko, 91 
2015; Pizzagalli et al., 2019; Zhan et al., 2018), a stepwise inference controller (SI emulator), an 92 
1st-stage optimizer, a model predictive control controller (MPC controller), and a biodegradation 93 
process. The MPC controller includes an FCI simulator, an 2nd-stage optimizer, and an error 94 
regulator.  95 

This task entails: 1) developing a statistical model for simulating the bioremediation process 96 
through the FCI simulator, which can predict the resulting contamination situation based on the 97 
previous contamination situation and control action; 2) establishing a bridge between control 98 
actions and contamination situations through the SI emulator, which can generate a control 99 
action based on a given contamination situation; 3) running the SADPC system to identify the 100 
desired control action. 101 
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2 Materials and Methods 102 

2.1 Development of the pilot-scale reactor 103 

A pilot-scale reactor was developed and used to physically simulate the flow and transport of 104 
benzene (gasoline) in the groundwater (He, 2008; He et al., 2008a). It also facilitated the 105 
implementation of enhanced in-situ biodegradation and the relevant simulation efforts. The 106 
reactor (Figure S1) is of cuboid shape with an interior dimension of Length × Width × Height = 107 
3.6 × 1.2 × 1.4 m3. It was composed of four sections, each of which contained a supporting part, 108 
a loading manhole, and two observation windows. More details regarding the reactor were 109 
shown in the supporting information. 110 

For the simulation of hydrocarbon leakage, 12 liters of gasoline were injected into the bottom of 111 
the second soil layer at an upper stream location during a 1.5-day period. At the same time, tap 112 
water from a water container was pumped into the system as groundwater inflow at a rate of 20 113 
L/day (through a peristaltic pump). The water level in the upstream gauge was 55 cm high and 114 
that in the downstream one was 45 cm high. After the leakage period, such flow conditions were 115 
maintained for 40 days to simulate the process of natural attenuation in the subsurface. The 116 
enhanced in-situ biodegradation process was then started right after this 40-day period. The 117 
experiment of flow and transport lasted 40 days after the gasoline leakage, followed by a 22-day 118 
enhanced in-situ biodegradation action. Environmental managers are more concerned with 119 
benzene than toluene, ethylbenzene, and xylenes (TEX) due to the fact that benzene is highly 120 
toxic and carcinogenic. In addition, during the remediation process, concentrations of TEX 121 
would become much lower than the respective environmental criteria as long as the benzene 122 
concentration is lower than the regulated criterion. Therefore, only benzene concentrations were 123 
analyzed in this study. The set-up of the reactor and the detailed analysis of the pilot-scale 124 
experimentation can be seen in Sections S1 and S2 of the supporting information (McDonald & 125 
Harbaugh, 1988; Jimenez et al., 2006; Zhang et al., 2008; Wolicka et al., 2009; Liang et al., 2013; 126 
Niswonger & Prudic, 2013; Xin et al., 2013; Yang et al., 2019; Hu et al., 2021; Umar et al., 127 
2021). 128 

2.2 Contaminant fate and transport modeling in the groundwater 129 

A critical step in understanding the impact of a subsurface release of NAPL is a modeling 130 
analysis of the NAPL flow and transport and fate of its crucial constituents. The 3D multiphase 131 
and multicomponent (3DMM) model is used to simulate contaminant fate and transport in the 132 
groundwater. The basic mass conservation equation for components in the subsurface can be 133 
written as follows (Li et al., 2007; Schaerlaekens et al., 2005):   134 

kklklllkl

n

l
kkk RCDSuCC

t

p

=∇⋅−⋅∇+
∂
∂ 

=

)]([)~(
1


φρρφ

                                  
(1) 135 

where k is the component index; l is the phase index; φ is the soil porosity; 𝐶ሚ௞ is the overall 136 
concentration of component k (volume fraction); ρk is the density of component k [ML-3]; np is 137 
the number of phases; Ckl is the concentration of component k in phase l (volume fraction); 𝑢ሬ⃗ ௟ is 138 
the Darcy velocity of phase l [LT-1]; 𝑆௟ is the saturation of phase l; 𝑅௞ is the total source/sink 139 
term for component k (volume of the component k per unit volume of porous media per unit 140 
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time); 𝐷ሬሬ⃗ሬሬ⃗ ௞௟  is the dispersion tensor. The overall concentration (𝐶ሚ௞) denotes the volume of the 141 
component k summed over all phases. Formulas, solution methods and other details are given in 142 
the Section S3 in the supporting information (Bear, 1979; Faust et al., 1989; Delshad et al., 143 
1996).  144 

The model can be solved numerically through the block-centered finite difference method, and it 145 
is possible to obtain the concentration of specified component k in phase l (Ckl) at a certain time. 146 
In addition, the biodegradation model with single substrate, single electron acceptor and single 147 
biological species should be required for a system (de Blanc, 1998; Huang et al., 2006). The 148 
solution to the flow equations was used as the initial conditions for the biodegradation reactions. 149 
By incorporating the component concentrations obtained through the pollutant migration model 150 
(Ckl) into the biodegradation modeling of contaminants in the groundwater, the substrate 151 
degradation rate during this time period can be computed. Details regarding the biodegradation 152 
modeling of contaminants in the groundwater are shown in Sections S4 and S5 (Rittmann et al., 153 
1991; Chang & Alvarez-Cohen, 1995; de Blanc, 1998; Chang & Alvarez-Cohen, 2010). 154 

2.3 Framework of the Study Method 155 

In this paper, an artificial intelligence-based self-adaptive dynamic process control (SADPC) 156 
system for enhancing in-situ bioremediation of benzene-contaminated groundwater is 157 
established. SADPC is used to temporarily adjust a set of operating conditions in the 158 
aforementioned biodegradation process to achieve real-time system optimization. For the 159 
realization of in-situ bioremediation of benzene-contaminated groundwater, four groundwater 160 
control models (i.e., SI emulator, FCI optimizer, DPC system and SADPC system) were 161 
simultaneously used to predict and adjust operating conditions for efficient pollutant degradation. 162 

Considering the high complexities and dynamics of the bioremediation system, it is inevitable 163 
that some important information might be missed/ignored when establishing a biodegradation 164 
model since almost all the models are a selective, dynamic abstraction of reality. In some 165 
situations, if there are a large number of experimental data, a statistical relationship can be 166 
developed to substitute the general simplified model (Huang et al., 2006).  167 

In this study, a set of surrogate simulators can be established to quantify the relationship between 168 
pumping/injecting flow rate and benzene concentration by employing a stepwise cluster analysis 169 
(SCA) method, detailed descriptions have been shown in He et al (He, 2008; He et al., 2008a; He 170 
et al., 2008b). More information can be seen in the supporting information (Section S6) (Rao, 171 
1952). To determine the optimal repair strategy, an FCI simulator was presented based on the 172 
SCA method (Zou et al., 2009). 173 

In the FCI simulator, the relationships between contaminant concentrations and remediation 174 
operating conditions can be established through the filtered-clustering inference method based on 175 
a number of simulation runs. Given the pollution situation, the optimal operating conditions of 176 
the FCI simulator can be obtained under the constraints of the optimization objective. Based on 177 
the FCI simulator, the FCI optimizer was developed to optimize the biodegradation process (the 178 
framework is shown in Figure S2). Sections S7 and S8 of the supporting information details the 179 
procedures of the FCI simulator and the optimization model for the FCI optimizer (Maybeck, 180 
1979; Jacobs, 1993).  181 
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After the optimal operation conditions for each scenario are determined, the SI emulator is 182 
developed through the obtained knowledge base. For the SI emulator, the corresponding 183 
operating conditions can be obtained by a given benzene concentration, and the benzene 184 
concentration of the next stage can be obtained through the biodegradation process. The 185 
framework of the SI emulator is shown in Figure S3. The operating conditions coming from the 186 
SI emulator cannot be considered the optimal one because there are no standard optimization 187 
curves for the biodegradation process as a reference for the experiments. Therefore, operating 188 
conditions must be optimized before it is applied to the real bioremediation process, which can 189 
be realized through the adjustment of the ranges of control conditions.  190 

At the same time, since the operating conditions obtained by the FCI simulator are optimized for 191 
cost minimization without taking remediation efficiency into consideration, the actual 192 
bioremediation often does not achieve ideal results and cannot be used as an actual optimization 193 
curve to guide in situ bioremediation of groundwater system. Therefore, the minimized operation 194 
cost and maximized degradation efficiency should be considered. For the operating conditions, 195 
decisions of oxygen and nutrient injection rates and groundwater extraction rates directly affect 196 
the operating cost. The lower the injection or extraction rate, the lower the cost and contaminant 197 
removal rate. According to the content above, the optimization model for the DPC system in this 198 
study is given in the Section S9 in the supporting information (Huang et al., 2008).  199 

For the poor performance of traditional DPC technology applied to general ISB systems, this 200 
study proposes a SADPC technology to reduce the impact of the defects of traditional DPC 201 
technology itself. According to this improvement, the reference trajectory (i.e., prediction 202 
curve/setpoint curve) can be obtained based on the prediction results from the entire DPC 203 
process. Then rolling optimization is performed to update the prediction curve in the next time 204 
period. The optimization model for the SADPC system in this study is given in Section S10. GA 205 
is used to solve all the developed discrete and nonlinear model. More information on GA can be 206 
seen in the supporting information (Section S11) (Holland, 1975; Kuo et al., 2006; Matott et al., 207 
2006; Stramer et al., 2010; Opher & Ostfeld, 2011; Greenland et al., 2016; Hou et al., 2017; Liu 208 
et al., 2017; Shen et al., 2018; Liao et al., 2020). 209 

The framework of the DPC system is presented in Figure 1 (a). Based on the DPC system, the 210 
SADPC system can be optimized by adding an MPC controller (Figure 1 (b)).  The major 211 
components include a SI emulator, an FCI simulator, an MPC controller, and an optimization 212 
procedure1. In Figure 1, 𝑋(𝑡) is the input for the SI emulator, the FCI simulator and the MPC 213 
controller; 𝑋௉(𝑡 + 1) is the output of the FCI simulator; 𝑋௥(𝑡 + 1) is the setpoint; 𝑒(𝑡 + 1) is the 214 
error between 𝑋௉(𝑡 + 1) and 𝑋௥(𝑡 + 1); 𝑋∗(𝑡 + 1) is the optimal contamination situation after 215 
system operation;  𝑈(𝑡) is the control action coming from the SI emulator; 𝑈ᇱ(𝑡) is the tentative 216 
control signal; 𝑈①∗(𝑡) is the optimal control action after the 1st-stage optimization procedure; 217 𝑈②∗(𝑡) is the optimal control action after the 2nd-stage optimization procedure. The specific 218 
operation program of the MPC controller can be seen in Section S12 in the supporting 219 
information. 220 
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221 
Figure 1. Framework of the SADPC system(a) and MPC controller (b) 222 

Figure 2 shows the framework of the study method. The general procedure of developing a 223 
process control system for enhanced in-situ biodegradation consists of eight steps. The specific 224 
steps can be seen in Section S13 in the supporting information. Given the same initial benzene 225 
concentration, the predicted optimal degradation strategies of these four developed groundwater 226 
control models are various. By comparing the restoration processes and results, the optimal 227 
groundwater control models and operation strategies can be decided through the comparison of 228 
their degradation processes and the removal results. 229 

 230 

Figure 2. Flowchart of the solution method 231 

3 Results 232 

3.1 Clustering analysis 233 

The developed NAPLs biodegradation model can then be used for simulating the system’s 234 
responses under various operating conditions. However, it will bring high complexities and 235 
computation requirements if the developed simulation model is directly incorporated into the 236 
optimization framework. The filtered clustering method can be used to establish the relationship 237 
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between the remediation efforts (i.e., pumping/injecting rates of selected wells) and the system’s 238 
responses (i.e., benzene concentrations). The developed simulation model was used to generate a 239 
large number of inputs and outputs for supporting the establishment of such a relationship. 240 

According to the characteristics of the soil profile, the NAPLs fate and transport and the 241 
contaminant plume movement, benzene concentrations in six wells were used as the 242 
representatives of the contamination situation in the groundwater. These included wells 5, 7, 8, 243 
10, 11 and 12 (Benzene concentrations in these wells were denoted as 𝑥ଵ଴, 𝑥ଶ଴, 𝑥ଷ଴, 𝑥ସ଴, 𝑥ହ଴, and 𝑥଺଴). 244 
In order to reflect as many contamination situations as possible, a large range of the benzene 245 
concentration levels was considered. The maximum benzene concentration was 30 mg/L, and the 246 
minimum was 0 mg/L. Within this range, 50 concentration levels were generated randomly for 247 
each concerned well such that 50 contamination situations were produced (Table S5) 248 
(Lenczewski et al., 2003; Zhang et al., 2020). 249 

A groundwater pumping system was used to circulate nutrients and oxygen through the 250 
contaminated aquifer. The process involves (a) the introduction of aerated and nutrient- and 251 
biomass-enriched water into the contaminated zone through two injection wells, and (b) the 252 
recovery of the down-gradient water through two extraction wells. The amendments were 253 
circulated through the contaminated zone to provide mixing and intimate contacts among the 254 
oxygen, nutrients, contaminant, and microorganisms. Therefore, the pumping/injecting rates 255 
directly affected the contaminant removal efficiency and system operation cost. In this study, 256 
pumping/injecting rates of selected wells were identified as the main control conditions.  257 

The ranges of pumping/injecting rates were determined by considering the soil porosities and 258 
permeabilities in the pilot system and testifying them through the developed biodegradation 259 
model. The maximum flow rate was set as 40 L/day while the minimum was 10 L/day. The 260 
biomass/oxygen/nutrient concentrations were 20/8/1500 (mg/L) in the injecting fluid, 261 
respectively. Totally 50 scenarios of the operating conditions were randomly generated (Table 262 
S6 in the supporting information). The relevant control variables were denoted as u1 (injection 263 
rate for well I, L/d), u2 (injection rate for well II, L/d), u3 (extraction rate in well III, L/d), and u4 264 
(extraction rate in well IV, L/d). 265 

The combination of the 50 contamination-level scenarios and the 50 operating-condition 266 
scenarios led to 2500 scenarios. Correspondingly, 2500 input files were produced for the 267 
developed NAPLs biodegradation model. The experimental results indicated that benzene 268 
concentrations in the groundwater reduced significantly 18 days after the remediation started. 269 
Therefore, a 22-day duration was set, which was divided into 11 2-day periods. For each 270 
contamination-level scenario (𝑥ଵ଴, 𝑥ଶ଴, 𝑥ଷ଴, 𝑥ସ଴, 𝑥ହ଴, and 𝑥଺଴), 50 sets of data about (1) the respondent 271 
percentage of benzene mass removal (η) and (2) the operating conditions of enhanced in-situ 272 
biodegradation (𝑢ଵ, 𝑢ଶ, 𝑢ଷ, and 𝑢ସ) can be obtained from simulation runs. Basing on the 300 273 
cluster trees obtained through the filtered clustering analysis in total, the value of η can be 274 
predicted given the inputs of operating conditions. 275 

The relationship between the process operating conditions and respondent value of η under 50 276 
contamination-level scenarios were established through the filtered clustering analysis based on a 277 
large number of simulation runs under 50 operating-condition scenarios. For each contamination-278 
level scenario (with the initial benzene concentrations of (𝑥ଵ଴, 𝑥ଶ଴, 𝑥ଷ଴, 𝑥ସ଴, 𝑥ହ଴, and 𝑥଺଴), the resulting 279 
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cluster tree system can be incorporated into a discrete and nonlinear optimization model. Genetic 280 
algorithm was used to solve the developed discrete and nonlinear model under each 281 
contamination-level scenario38-41. The number of generations was set as 200; the crossover rate 282 
(RCRO) was 0.6; the mutation rate (RMUT) was 0.003; and the number of the initial population was 283 
70.  284 

Over-parameterization is described as the scenario where the number of parameters of the model 285 
is redundant compared to the training dataset. Its high power consumption and memory 286 
occupation can degrade the performance of the model and make prediction action worse. This 287 
research is not over-parameterized because the network pruning method (Akyol, 2020; Hao & 288 
Chiang, 2006; Itoh & Adachi, 2017; Sun et al., 2015) was used to alleviate the problems and 289 
achieve the best results by evaluating the importance of the parameters based on the absolute 290 
values and removing the unimportant parameters. Then the regularizer can be added to the loss in 291 
order to make the weights sparse in the training process. During the experiment, a number of 292 
attempts was made to make sure that the model performs well under these specific model 293 
parameters. 294 

3.2 Process control action analysis 295 

Process control is used for operating the ISB system based on the SI emulator, FCI simulator and 296 
GA-based optimizer. In the DPC system, firstly, benzene concentrations at the concerned wells 297 
at the beginning of time period t were monitored. Then the highest contaminant concentration 298 
anywhere in the mesh (ЪMAX) and the percentage of benzene mass removal (η) can be used as 299 
inputs for the SI emulator to generate the optimal operating schemes correspondingly for the 300 
period t. the outputs are pumping/injecting rates of wells I, II, III, and IV. For the FCI simulator, 301 
the inputs include operating conditions of selected wells and the corresponding benzene 302 
concentrations; the outputs are the highest contaminant concentration anywhere in the mesh 303 
(ЪMAX) and the percentage of benzene mass removal (η) (detailed in Table S7 in the supporting 304 
information). It means that the pumping/injecting rates depends on the biodegradation process of 305 
benzene at time period t. Next, benzene concentrations in the concerned wells were monitored at 306 
the end of period t; then they can be regarded as new initial states for the next time period. The 307 
entire biodegradation process in benzene-contaminated groundwater could be controlled with 308 
cost-effective operational decisions step by step.  309 

According to the degradation situation and operation process, a second-stage rolling optimization 310 
model (SADPC system) was used to meet the further expectation. An ideal setpoint curve can be 311 
produced based on the control process and benzene removal information of DPC system and new 312 
setpoint curves should be updated in the next optimization period. Therefore, a SADPC system 313 
can improve the biodegradation performance in the DPC system.  314 

The contaminant concentration distribution of Day 57 was used as initial conditions for the 315 
SADPC system, and the pumping/injecting rates were assumed to be adjusted every two days. 316 
Figure 3 presents the 11 optimal operating conditions for the 11 2-day periods of the entire 317 
remediation duration in the DPC system. Results indicate that the operating conditions of 4 wells 318 
varied significantly under different instructions. Both highest injection rates for well I (u1) and 319 
well II (u2) are found on Day 6 at 0.022 and 0.025 m3/d respectively, and the extraction rates for 320 
well III (u3) and IV (u4) reach the highest on Day 10 with 0.034 and 0.038 m3/d respectively.  321 
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 322 

Figure 3. Optimal pumping/injecting rates of Well I to IV for the remediation duration and the 323 
corresponding percentage of benzene mass removal 324 

Figure 4 presents the predicted remediation results of the DPC and SADPC systems from Day 2 325 
to Day 22 after the leakage. It is shown that the contamination level has been reduced 326 
significantly through both systems. The benzene concentrations are over 0.5 mg/L at the initial 327 
stage and then transport and decrease gradually with groundwater flow. Therefore, the peak 328 
benzene concentrations at the upstream are gradually getting decreased over time to only 0.2 329 
mg/L on day 22 in the DPC system, which has been removed around 60% of the initial 330 
contamination. The SADPC system focus on the biodegradation process from Day 12 to Day 22, 331 
so Figure 4 also shows the different levels between the DPC system and the SADPC system. The 332 
levels of benzene dispersion through the SADPC system are relatively lower compared with the 333 
DPC system since Day 14, and reach the degradation goal on Day 20. It indicates that the 334 
SADPC system has outstanding performance at benzene removal in the groundwater system.  335 
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336 
Figure 4. Benzene concentrations on Days 2, 6, 10, 14, 20 and 22 of the DPC system(a) and 337 

SADPC system(b) 338 

3.3 Comparison analysis 339 

To examine the remediation efficiency by the DPC system and the SADPC system, nine 340 
hypothetical wells (HWs) are selected from the simulation domain and the locations of these 341 
HWs can be seen in Figure S4. Figure 5 presents the benzene concentrations of the SADPC 342 
system at the nine HWs from Day 2 to Day 22 (Benzene concentrations of the DPC system is 343 
shown in Figure S5). In the DPC system, the analysis of the predicted data of benzene 344 
concentrations at the nine HWs indicates that the benzene concentrations during the first ten days 345 
of remediation decrease slowly or even increase at some locations, and the pumping/injecting 346 
rates has been increased to a certain degree accordingly. The signal of an increasing 347 
concentration of contaminants triggers the necessary adjustment of the operation. The predicted 348 
data also indicates decreases in the contaminant concentrations at almost all locations after ten 349 
days of operation, especially at HW-56, HW-102 and HW-106, which show sharp decreases on 350 
Day 10 or Day 14. The distances between HW-102/HW-106 and the contaminant source are the 351 
same, which can be the reason why these two sites show the similar trend during contaminant 352 
degradation. After second-stage rolling optimization, it can be seen that the benzene 353 
concentrations at the nine HWs decrease in a faster rate in the SADPC system since Day 12, and 354 
reach balances 2 days faster than those in the DPC system. The pumping/injecting rates has been 355 
decreased from Day 12 according to the instructions from both systems. Based on the entire 356 
degradation process, the benzene concentrations in HW-40, HW-42, HW-48 and HW-52 decline 357 
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gently, which may due to the fact that these wells are relatively far from the contaminant source. 358 
Therefore, the benzene can be removed much easier than those sites that are located near the 359 
contaminant source.   360 

 361 

Figure 5. Benzene concentrations of the SADPC system from Day 2 to Day 22, where Figs. (a) 362 
to (i) represents the concentrations at HW-40, HW-42, HW-48, HW-52, HW-56, HW-62, HW-363 

95, HW-102, and HW-106 364 

The values of the percentage of benzene mass removal during the remediation process in the 365 
SADPC system can be seen in Figure 6. To compare the degradation effect in a straight way, 366 
benzene mass removal situations in the SI emulator, FCI optimizer and DPC system were also 367 
simulated. Each subgraph constructs an exponentially fitting curve with a 95% confidence band. 368 
The coefficient of determination values (R2) show that all of the degrees of fitting of these 369 
models are satisfactory. The removal rate in the SI emulator is the minimum at the beginning of 370 
the remediation process, and then the percentage of benzene mass removal rises slowly with 371 
fluctuations until the remediation ends on Day 28. The FCI optimizer deals with benzene in 372 
groundwater at a relatively steady rate especially from Day 2 to Day 10, which is different from 373 
other three methods. Besides, it reaches the equilibrium stage with the removal rate around 82% 374 
on Day 26, only faster than the SI emulator. For the DPC system, it is found there is a 375 
“remediation plateau period” during the whole process (Day 12 to Day 16), while the percentage 376 
of benzene mass removal keeps growing and reaches the cleanup goal on Day 22. About 93% of 377 
the benzene mass has been removed by using the DPC system, which means the highest 378 
remaining benzene concentration anywhere in the simulation domain has been reduced to below 379 
300 μg/L. Because the benzene removal rates of DPC system cannot meet the expectation from 380 
Day 11, an ideal setpoint curve is produced based on the data of the first six points in the DPC 381 
system. It should be noted that the SADPC method is applied from Day 14 to Day 28, and the 382 



Water Resources Research 

13 

setpoint curve of the SADPC system in Figure 6 is only used for the optimization of the seventh 383 
point. The SADPC system improves the biodegradation performance in the DPC system by using 384 
the rolling optimization model, which increases the removal rate during the "remediation plateau 385 
period" and arrives the cleanup goal on Day 20.  386 

 387 

Figure 6. Comparison of predicted benzene removal efficiency by four control systems 388 

The SI emulator only focuses on contamination degradation without considering the cost during 389 
the degradation process. For example, the SI emulator improves the pumping/injecting rate when 390 
the benzene concentration within the high level, so the removal rate is relatively high at the 391 
initial stage. However, the pumping/injecting rate can be reduced as the contaminant 392 
concentration deceases. Only 62.6% of the contaminant in the groundwater system has been 393 
removed by using the SI emulator which shows that it can hardly remove the benzene 394 
effectively. Besides, the whole degradation process in the SI emulator continues for 28 days, 395 
which imposes a heavy economical burden on actual stakeholders when applied to practical 396 
projects in the future. The optimization objective of the FCI optimizer mainly concentrates on 397 
the cost of the operation, which restricts the performance of the benzene removal. Although DPC 398 
system improves the degradation rate to some degree, it cannot always meet the expectations of 399 
people. In general, the remediation effect of the SADPC system is regarded as the best on the 400 
basis of the DPC system, because it fulfils the removal goal within a relatively short period and 401 
takes both cost and efficiency into consideration at the same time.  402 

3.4 Policy implication 403 

Bioremediation has demonstrated to be one of the most cost-effective technologies in organic-404 
contaminated groundwater remediation. It can also be combined with other in-situ (or ex-situ) 405 
physical or chemical technologies to enhance remediation efficiency, shorten remediation 406 
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duration, and reduce remediation cost. Historically, numerous studies have been undertaken by 407 
concentrating on advancement of new remediation technologies (e.g., adopting highly-efficient 408 
microbes and agents, designing new process flows, or optimizing operating conditions) just for 409 
improving remediation performance. Unfortunately, few of them attempted to use dynamic 410 
process approaches from the perspective of whole process to address the challenge. This study 411 
has suggested that a well-designed DPC system could be an easy-to-implement and strong-to-412 
generalize approach compared to those conventional efforts. While this study focused on 413 
bioremediation process of benzene-contaminated groundwater, the developed SADPC system 414 
can be conveniently extended to many other cases no matter what one will need to challenge: 415 
organic or inorganic, physicochemical or biological, and water or soil. The major effort that 416 
needs to be accomplished is to construct a set of equations capable of capturing the relationships 417 
(frequently called proxy equations) between operating conditions and remediation performance. 418 
Nonetheless, as this study is a first attempt, much improvement will be desired, for example, 419 
simplifying the system framework to alleviate computational effort, strengthening the error 420 
information feedback to shorten decision duration, and introducing stochastic analysis to further 421 
mitigate the uncertainty impact. 422 

AI plays an important role in running this SADPC system, which includes stepwise inference, 423 
stepwise filtered-clustering inference, genetic algorithm, etc. As conventional physically based 424 
models can hardly be directly used by SADPC considering the independence of prior 425 
assumptions for model forms (He et al., 2008), these machinery-learning similar inference 426 
methods are introduced to create a set of computation-fast and accuracy-reliable proxy equations 427 
to replace the conventional physical model. Note that a physical model is not a must by all the 428 
cases (this study uses the physical model aiming to generate a substantial number of statistical 429 
samples to obtain proxy equations). This implies that AI techniques have high potential to be 430 
used in remediation studies and practices because of their strong capabilities of convenient 431 
modeling (particularly in modeling highly nonlinear input-output relations), automatic learning, 432 
self-adaptation, and reliable generalization. It is desired that more state-of-the-art AI techniques 433 
be introduced in the SADPC system particularly including those intelligent denoising, error 434 
correction, and decision-making. This will much increase the performance of dynamic process 435 
control and enrich available control approaches.  436 

An obvious knowledge gap implied in this study is the lack of related guidelines when designing 437 
a SADPC system. Historically, various guidelines on groundwater and soil remediation have 438 
been proposed in these past years at the national, provincial (or state-), and municipal levels. In 439 
terms of these guidelines, one can easily know what technologies can be used, how the 440 
remediation wells should be configured, which criteria should be satisfied after remediation, etc. 441 
Without the guidelines, there will be a difficulty in guaranteeing the stability, maturity, and 442 
reliability of a newly designed SADPC system, probably leading to extraordinary carefulness or 443 
even refuse of the potential users. This suggested that guidelines on remediation-oriented 444 
SADPC systems could be tentatively investigated, developed, and applied in future effort. This 445 
work is significant for offering users a set of principles or rules to follow when designing a 446 
SADPC system and helping them clarify the problems such as what procedures should be 447 
implemented when designing and running a SADPC system, how the control errors should be 448 
guaranteed during the whole remediation process, and what criteria could be adopted to evaluate 449 
the control performance. 450 
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4 Conclusions 451 

A system was developed to improve the removal rate of benzene for enhancing in-situ 452 
bioremediation, which can effectively reflect the dynamics and complexity of the biodegradation 453 
process and realize the control for the remediation system based on the feedback information. 454 
The insights from this study can suggest to decision makers that guidelines and policies on 455 
remediation-oriented SADPC systems could be tentatively investigated, developed, and applied 456 
in future effort.   457 

 Results from the error analysis of the contaminant fate and transport model show that the 458 
model agrees well with the data obtained from the pilot experiments, so it can be used for 459 
developing the SADPC system. 460 

 The SADPC system is consist of an FCI simulator, a SI emulator, an MPC controller, a 1st-461 
stage optimizer, and a 2nd-stage optimizer.  462 

 The SADPC system improves the biodegradation performance in the DPC system by using 463 
the rolling optimization model, which increases the removal rate during the "remediation 464 
plateau period" and arrives at the cleanup goal earlier than the DPC system, as well as the SI 465 
emulator and the FCI optimizer. 466 
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Text S1. Set-up of the pilot-scale reactor 
The modeling domain is defined as three-dimensional (3-D), with the contaminated 
zone around the groundwater table considered as the major pollution source. The area 
of the simulation domain is 3.6 × 1.2 m2. Vertically, the simulation domain is 
discretized into four grid blocks corresponding to four simulation layers; each layer is 
located in the middle of the grid block that facilitates the application of a block-centered 
finite difference scheme. In the horizontal plain, each layer is discretized into 24 × 8 
grids. Each grid has dimensions of 0.15, 0.15, and 0.30 m in x, y, and z directions, 
respectively. The total number of grids in this 3-D computational system is 768 (24 × 
8 × 4). Layers 3 and 4 are located in the saturated zone, while layers 1 and 2 are situated 
in the unsaturated zone. The detailed views of the pilot-scale reactor can be seen in 
Figure S1(a)-(d) of the supporting information. 

Three soil distributions in the four layers are shown in Figure S1(f). The monitoring 
wells were used to obtain the subsurface hydrogeology “representative” view (well 
locations are shown in Figure S1(e)) The LNAPLs (Light Non-Aqueous Phase Liquids) 
initially occupied a contaminated area in layers 3 and 4 around the groundwater table. 
The zero-flow boundary conditions were enforced at the top and bottom of the modeling 
domain, as well as at the sides parallel to the x-axis. Constant hydraulic heads were 
employed at the left and right boundaries, allowing continuous water flow in the aquifer. 
Benzene concentrations in the system can be forecasted through the developed 
simulator. Table S1 presents the input parameters for the simulation model.  

Water-table level gauges were installed in the first and fourth sections to monitor water 
depths inside the reactor. Observation windows were built on the front side of each 
section while another on the top. The side windows were used to observe the subsurface 
conditions, and the top ones to observe the soil surface. The four sections were 
connected to each other with flanges, each of which had 44 bolts. Gaskets made of anti-
organic solvent and anti-high temperature rubber and silicone pastern were placed 
between the flanges to prevent the leakages. 

For soils loading, the pre-selected clay was from the construction site of the 
Saskatchewan Indian Federated College, Regina, Saskatchewan, at depths of 2 to 6 m 
from the ground surface. The clayey till and fine sand were provided by the Waxy’s 
Bobcat and Landscaping Ltd. The initial properties of soils can be seen in Table S2. 
The value of soil organic carbon (SOC) in the soils is measured at around 1.14%. Some 
activities around the concentration site accelerate the decomposition of the organic 
carbon, and there is little vegetation and insufficient organic carbon input, resulting in 
the particularly low concentration. Therefore, the transport of organic carbon is not 
considered in this model, which is assumed to migrate with the movement of the organic 
phase. We thus ignored the effect of SOCs in this study, also considering the high 
concentration of benzene contamination, as treated by many existing studies (Jimenez 
et al., 2006; Wolicka et al., 2009; Xin et al., 2013; Umar et al., 2021; Yang et al., 2019). 
For instance, Liang et al (2013) mentioned that benzene can be used as the sole source 
of organic carbons when discussing the chlorobenzene and benzene degradation in the 
groundwater. Besides we did not directly consider the effect of the grain size, instead 
of using porosity and intrinsic permeability when describing the transport of the target 
contaminant in the mathematical model. We did it by hypothesizing the gran size can 
affect soil porosity and intrinsic permeability and have a further impact on the fate and 
transport of benzene. This method is generally used in many groundwater models such 
as MODFLOW and NAPL3D (McDonald & Harbaugh, 1988; Zhang et al., 2008; 
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Niswonger & Prudic, 2013; Hu et al., 2021). Detailed information and guides can be 
seen in USGS website (https://www.usgs.gov/mission-areas/water-
resources/science/modflow-and-related-programs) and EPA website 
(https://www.epa.gov/water-research/non-aqueous-phase-liquid-napl-simulator).  

The inner surface of the reactor wall was labeled and divided into grids where different 
types of soils were loaded. Clay and clay-till were sieved by 1/4 inch sieving meshwork 
before loading. Sand was firstly loaded followed by clay-till and then clay. Upon the 
completion of every 100 mm depth in every grid, tap water was spread on the surface, 
and the soil in the grid was vibrated by concrete vibrator and pressed by impinging a 
hammer on a wood board that directly contacted the soil surface to ensure homogeneity 
and non-fracture structure. Upon the completion of each layer, more water was spread 
and the layer was left overnight to settle. After the soil loading process was completed, 
the system was then left still for three months with a water flow of 10 L/day through 
the loaded soils. No noticeable further settlement or consolidation was observed 
afterwards. 

A thermostatic room, in which the pilot-scale system and the accessorial equipment 
were assembled, was built to realize various temperatures by an air conditioner. Water 
and drainage containers were each connected to the upstream inlet and downstream 
outlet, respectively. Water level gauges were used to show the depth of water table in 
the reactor. Tap water in a water container was pumped into the reactor through six 
water inlets on the inlet-end board as upstream groundwater inflow through a peristaltic 
pump. Before the start of the experiments, water in the container was kept still overnight 
to reach the room temperature. A 7-day buffering time preceded all experiments in the 
pilot model so that the temperature at every location in the reactor could reach 
equilibrium. The upstream water was kept flowing through system to acquire the 
desired soil temperature. 

The monitoring wells are for facilitating access to the groundwater so that a 
“representative” view of the subsurface hydrogeology can be obtained, either through 
the collection of water samples or the measurement of physical and hydraulic 
parameters. In this study, a few monitoring wells were also used for pumping and 
injecting purposes during the remediation processes. Locations of the wells are 
presented in Figure S1(e). There are 25 wells allocated in four sections of the pilot 
system. Soil in the system was stratified into four layers, with the third and fourth layers 
being saturated with water. Each layer is 30 cm deep. Among the wells, 13 of them 
(with PVC pipes) were installed to reach the third soil layer; the other 12 wells could 
reach the fourth layer (Figure S1(f)). Small holes were uniformly made around the 
bottom sections of the pipes. Screens were used to wrap the pipes to prevent from soil 
clogging. Soil particles were prevented from moving into the wells while the 
groundwater could infiltrate into them. The wells were sealed by rubber caps at the tops. 
For each well, a hose was installed that passed through the caps and reached its bottom. 
The outside of the hose was clamped by a clip so that air and groundwater in the well 
were isolated from the atmosphere. 

  

https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs
https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs
https://www.epa.gov/water-research/non-aqueous-phase-liquid-napl-simulator
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Text S2. Pilot-scale experimentation analysis 

Benzene concentrations monitored in both natural-attenuation and bioremediation 
phases are listed in Table S3 and Figure S6(a-b) of the Supporting Information. The 
highest benzene concentrations were encountered in well 6 during the entire period of 
the natural-attenuation phase. This was due to the fact that well 6 was close to the 
leakage source. High concentrations were also observed in wells 3 and 10, which were 
placed in the third layer. The contaminant can easily reach these wells along with 
groundwater flow since the leakage occurred at the top of the third layer. Moreover, 
much of the contaminant transported within the third layer and did not migrate to the 
fourth one since gasoline is lighter than water. In comparison, the highest 
concentrations in the fourth layer were observed in well 5, which was installed in the 
sand zone near the leakage source. Due to the low porosity and permeability of silty 
and clayey soils, benzene was not observed in the down gradient domain of the pilot 
system until day 32 (the contaminant reached well 16 on day 32).  

On day 40, enhanced in-situ biodegradation action was undertaken. It is shown from 
Table S3 of the Supporting Information that the benzene concentrations vary greatly 
due to flow-condition changes resulting from the pumping and injecting actions. The 
location of the peak concentration moved towards the downstream. The benzene 
concentrations in the groundwater also decreased greatly compared with those in the 
earlier periods. The peak benzene concentration decreased from 7.34 mg/L at the 
beginning of the remediation program to 0.633 mg/L on day 17 after the remediation 
action started. It is indicated that the enhanced in-situ bioremediation had efficiency in 
removing benzene from the groundwater. 

The experimental results indicated that the developed pilot-scale reactor can effectively 
facilitate the simulation of both natural attenuation and enhanced remediation processes. 
The experimental results can be used for validating, calibrating and verifying the 
developed numerical model under different site conditions. 

Calibration and verification of the developed biodegradation model were undertaken 
using data obtained from the pilot experiments. The results of the error analysis are 
provided in Table S4 of the Supporting Information. The absolute errors between the 
simulated and observed concentrations of 12 wells range from 0.00 to 0.40 mg/L with 
a mean of 0.21 mg/L. The root-mean-square error is 0.27 mg/L, and the correlation 
coefficient is 0.93. According to the error analysis, the biodegradation simulation result 
has been proved to be within a relatively reasonable range. Figure S7 shows the 
verification results for Day 57, which is the end of phase I bioremediation. The 
concentration distributions of benzene are generally the same based on observed data 
and simulated data. The highest concentration levels are obtained at the bottom right 
corner of the experiment region, and the coordinates of these points are around (2.1, 
0.6) and (3, 0.45). The verification results for the temporal variations of benzene 
concentrations in well 5 and well 6 are shown in Figure S8, which indicates that this 
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model can simulate the actual degradation process of benzene properly. After the 
calibration and verification, the simulation model can be used for investigating the 
effects of different bioremediation strategies on benzene concentrations. 
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Text S3. Contaminant fate and transport modeling in the groundwater 

A critical step in understanding the impact of a subsurface release of NAPL is a 
modeling analysis of the NAPL flow and transport and fate of its crucial constituents. 
A complete description of multiphase flow and transport in subsurface must include 
flow of the fluid phases (water, gas, NAPL, etc.), mass transfer of species between these 
phases, and transport of species in each phase. A three-dimensional multiphase 
multicomponent SEAR model is recognized as an effective tool in investigating 
complex physical processes involved in NAPLs flow and transport. Several models 
have been developed to simulate the flow of multiple fluid phases in subsurface during 
recent years. All these models included simplifying assumptions with respect to phase 
presence and dimensionality, NAPL contaminant mass balance and water and air in 
subsurface. Important assumptions used in the development of mass conservation 
equations are: 1) the solid phase is immobile; 2) soil and fluids are slightly compressible; 
3) dispersion is of Fickian form; 4) components mix ideally; 5) Darcy’s law applies in 
the calculation of phase velocities. The basic mass conservation equation for 
components in subsurface can be written as (Delshad et al., 1996): 
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where k is the component index; l is the phase index; φ is the soil porosity; 𝐶̃𝐶𝑘𝑘 is the 
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where τ is tortuosity (defined as a value greater than 1); Dm,kl is molecular diffusion 
coefficient of component k in phase l [L2T-1]; δij is Kronecker delta function; αLl and 
αTl are longitudinal and transverse dispersivities of phase l , respectively [L]; uli and ulj 
are Darcy velocities of phase l  in directions i and j, respectively [LT-1]; lu is 
magnitude of the vector flux for phase l  [LT-1]. The phase flux can be calculated from 
the multiphase form of the Darcy’s law (Faust et al., 1989): 
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where krl is relative permeability of porous medium to phase l; K




 is intrinsic 
permeability tensor [L2]; µl is viscosity of phase l [ML-2T-1]; ρl is density of phase l 
[ML-3]; g is acceleration of gravity [LT-2]; z is vertical distance which is defined as 
positive downward [L]; Pl is pressure of phase l [ML-1T-2]. 
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Grumberg and Nissan’s correlation is used to calculate the NAPL viscosity as a function 
or organic species concentration: 
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where l2µ  is the organic mixture viscosity; o
klx  is molar fraction of each organic 

component in phase l  (water, NAPL, etc.); o
kµ  is the viscosity of single organic 

component; and on  is the number of organic components in NAPL. For a NAPL 
mixture, the overall organic hydrostatic pressure gradient is obtained by assuming ideal 
mixing: 
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where lC2  is concentration of NAPL mixture in phase l  (water, NAPL, etc.); l2γ  is 
density of NAPL mixture in phase l ; o

klC  is concentration of each organic component 
in phase l ; o

klγ  is density of single organic component in phase l ; and on  is the 
number of organic components in NAPL. 

The aquifer boundaries are modeled as either constant potential surfaces or closed 
surfaces. The model can be solved numerically through the block-centered finite 
difference method. The solution method for the contaminant-transport model is the 
implicit pressure-explicit saturation method. The only unknown in the pressure 
equation is the pressure of water phase. 
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Text S4. Biodegradation modeling of contaminants in the groundwater  

Generally, the biodegradation model involves simulation of substrate competition, 
nutrient limitation, product toxic inhibition, and aerobic cometabolism. The basic 
structure of the biodegradation model for a system with single substrate, single electron 
acceptor and single biological species can be characterized as follows (de Blanc, 1998): 
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𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
)

− 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 

(S7) 

𝑑𝑑𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑑𝑑𝑑𝑑
= −

𝐴𝐴𝑆𝑆𝑆𝑆𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴)

−
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸

𝑘𝑘𝑌𝑌
(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
)(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
) 

(S8) 

𝑑𝑑𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑑𝑑𝑑𝑑
=
𝐴𝐴𝑆𝑆𝑆𝑆𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸

𝑉𝑉𝑆𝑆𝑆𝑆
(𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴) −

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝜌𝜌𝑋𝑋𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸

𝑘𝑘𝑌𝑌
(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
)(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
 

(S9) 

𝑑𝑑𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑑𝑑𝑑𝑑
= 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
)(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
) − 𝑘𝑘𝐸𝐸𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 

(S10) 

𝑑𝑑𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑑𝑑𝑑𝑑
= 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
)(

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
) − 𝑘𝑘𝐸𝐸𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 

(S11) 

where CAPS is the aqueous phase substrate concentration (substrate mass per unit 

volume of aqueous phase); 
ABSC  is the substrate concentration in attached biomass 

(mass of substrate per unit volume of biomass); CAPE is the aqueous phase electron 
acceptor concentration (mass of electron acceptor per unit volume of aqueous phase); 

ABEC  is the electron acceptor concentration in attached biomass (mass of electron 

acceptor per unit volume of biomass); CAUB is the aqueous phase concentration of 

unattached biomass (mass of unattached cells per unit volume of aqueous phase); 
AABC  

is the attached biomass concentration (mass of attached cells per volume of aqueous 
phase); ASM is the surface area of a single microcolony (L2); kEMT is the electron 
acceptor mass transfer coefficient (LT-1); kSMT is the substrate mass transfer coefficient 

(LT-1); maxµ is the maximum specific growth rate (T-1); mCSM is the mass of cells in a 
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single microcolony, 
CSM SMm Vρ=  (M); mEAC is the mass of electron acceptor 

consumed per mass of substrate biodegraded; ρ is the biomass density (mass of cells 
per volume of biomass); VSM is the volume of a single microcolony (L3); kY is the yield 
coefficient (mass of cells per volume of biomass); kSHS is the substrate half-saturation 
coefficient (ML-3); kEHS is the electron acceptor half-saturation coefficient (ML-3); kFRR 
is the first-order reaction rate coefficient (for abiotic decay reactions, T-1); kED is the 
endogenous decay coefficient (T-1); and t is the time (T).  
Reduction of contaminants in the aqueous phase in Equation (S6) results from three 
mechanisms. The first term accounts for diffusion of contaminants from liquid phase 
across a stagnant liquid film into attached biomass. The second one indicates the 
reduction of contaminants by unattached microorganisms in the bulk liquid. The 
reduction rate is affected by concentrations of contaminant and electron acceptor 
through the Monod kinetic. Substrate competition, nutrient limitations, inhibition, and 
reducing power limitations can also be incorporated within the second tern as described 
in the following sections. The third term accounts for abiotic loss of contaminants 
through first-order reactions. One equation of the same form as Equation (S6) will be 
used for each substrate. 
Equation (S7) describes the loss of substrate within attached biomass. It describes 
processes of substrate diffusion into attached biomass, biodegradation within the 
biomass, and abiotic decay. Substrate competition, nutrient limitations, inhibition, and 
reducing power limitations can also be incorporated into this term for biodegradation 
of the substrate. Equations (S8) and (S9) describe the loss of the electron acceptor, 
which are of the same form as Equations (S6) and (S7). Equations (S8) and (S9) 
simulate the growth and decay of unattached and attached biomass, respectively.  

The attached biomass concentration (
AABC ) is dependent upon the biomass density, 

microcolony volume and microcolony mass (de Blanc, 1998):  

                                              
CPS PM CSM

AAB
CPM

N D mC
N φ

=                                                          (S12) 

where NCPS is the number of cells per mass of solid; DPM is the bulk density of the 
porous medium; NCPM is the number of cells per microcolony (a constant); and φ  is the 
porosity. 
Since the biomass density, number of cells, mass of one microcolony, and medium 
porosity are assumed to be constant, AABC  is proportional to NCPS or, alternately, to 
(NCPS / NCPM), (the number of microcolonies). Moreover, the area available for transport 
of species from the aqueous phase to the biomass is directly proportional to AABC , 
because the surface area per microcolony is assumed constant. 
 
Multiplicative Monod kinetics 
For multiplicative Monod kinetics, it is assumed that other limiting nutrients are also 
limiting microbial growth besides substrates and electron acceptors. When other 
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chemical species or nutrients such as nitrogen or phosphorous are limiting factors, the 
substrate utilization term can be modified correspondingly in order to account for these 
additional limitations (Rittmann et al., 1991): 

                                                      𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚
′ = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 ∙

𝐶𝐶𝐿𝐿𝐿𝐿

𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿+𝐶𝐶𝐿𝐿𝐿𝐿
                                               (S13) 

where CLN is concentration of a limiting nutrient (ML-3); and kLNH is limiting nutrient 
half-saturation coefficient concentration (ML-3). 
 
Biomass growth 
The basic biomass growth expression of equations (S10) and (S11) contains an 
additional term to limit the volume of the biomass. With this limitation, the general 
form of the biomass growth expression is (de Blanc, 1998): 

                       
AUB APS SM AUB

AUB ED AUB
max SHS APS SM( )( )(1 )

0.9A

dC C A CC k C
dt k C K A

µ
ρ

= − −
+ +

     (S14) 

The linear biomass growth expression limits the total volume of biomass to 90% of the 
aqueous phase volume. At low biomass concentrations, such limits have negligible 
effects on biomass growth and substrate utilization because the biomass occupies a 
small volume of the total pore space.  
When the biomass concentration begins to occupy a significant fraction of the pore 
volume, as might be expected near in-situ bioremediation injection wells, the key 
modeling assumption that biofilms in the pore space are thin and can be fully penetrated 
will likely be violated. The reduction (or near cessation) of biomass growth becomes 
less important than biofilm mass transport effects that are not considered in the model. 
Thus, through using the linear growth limitation expression, the model can only crudely 
approximate biological growth in grid blocks occupied by a substantial volume of 
biomass. At low biomass concentrations, the term has an insignificant effect. 
The total biomass in the aquifer consists of the attached biomass and the unattached 
biomass is: 

                                                  T AP AB B B= +                                (S15) 

where BT is the total biomass, BAP is the aqueous phase biomass, and AB is the attached 
biomass. The attached biomass is composed of the minimum biomass population 
( A

minB , which does not partition between the solid and the aqueous phase) and the 
biomass in equilibrium with the aqueous phase biomass: 

                                                      A A AP
minB B Bκ= +              (S16) 

Substituting the equilibrium relationship of equation (S15) into mass balance (S16) 
results in the following equilibrium concentration of aqueous phase biomass: 

                                                       min

1
TX XX
κ
−

=
+

                                   (S17) 
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The attached biomass concentration is then calculated from equation (S16). The κ of 
infinity would mean that all of the biomass is attached, while the κ  of 0 would mean 
that all of the biomass, except A

minB , would exist in the aqueous phase. 
 
Substrate competition 
When two substrates (substrates 1 and 2) compete for the same enzyme, it reduces the 
rate of biodegradation. The half-saturation coefficient of each substrate in Monod term 
is suggested, and thus, the Monod terms for the two substrates would become (Chang 
& Alvarez-Cohen, 1995): 
Substrate 1: 

                                                            S1

HS S2
S1 S1HS

S2

(1 )

C
Ck C
k

+ +
    

                           (S18) 

Substrate 2: 

                                                           S2

HS S1
S2 S2HS

S1

(1 )

C
Ck C
k

+ +
             (S19) 

where CS1, CS2 are concentrations of substrates 1 and 2, respectively (ML-3); kS1HS, kS2HS 
are half-saturation coefficients of substrates 1 and 2, respectively (ML-3). 
 
Inhibition 
Inhibition effects can be addressed through multiplying the substrate biodegradation 
rate term by an inhibition factor (Chang &Alvarez-Cohen, 2010): 









+ ihih

ih

CI
I              (S20) 

where ihI  is an experimentally determined inhibition constant for species ih . Inhibition 
can be used to simulate the sequential use of electron acceptors or the reduction of 
biodegradation rates due to the presence of a toxic or inhibitory compound. The term 
for substrate utilization and biomass growth can be calibrated by using one inhibition 
factor for each inhibiting substance. 
 
Aerobic cometabolism 
To describe the loss of cometabolite and attached biomass growth in aerobic 
cometabolic reactions, the following equations can be used (in the case of no mass 
transfer resistance, no inhibition, and no substrate competition) (de Blanc, 1998): 

APC APC APE RP
SCB AUB

CHS APC EHS APE RHS RP( )( )( )dC C C CR C
dt k C k C K C

= −
+ + +

          (S21) 



13 
 

AUBAUB APS APE RP AUB
max

Y SHS APS EHS APE RHS RP

SCB AUB APC APE RP
ED AUB

TC CHS APC EHS APE RHS RP

0.9(1 )( )( )( )[ ]

              ( )( )( )

CdC C C C C
dt k k C k C K C

R C C C C k C  
k k C k C K C

µ
ρ
−

=
+ + +

− −
+ + +

                (S22) 

where RSCB is maximum specific cometabolite biodegradation rate (ML-3T-1); CAPC is 
aqueous phase cometabolite concentration (ML-3); CRP is reducing power (NAD(P)H) 
concentration within the cells (mMOL e-/mass biomass); KRHS is NAD(P)H half-
saturation constant (mMOL e-/mass biomass); kCHS is cometabolite half-saturation 
coefficient (ML-3); maxµ  is maximum specific growth rate on growth substrate (T-1); 
and kTC is transformation capacity (mass cells deactivated/mass cometabolite 
biodegraded). 
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Text S5. Procedures for solving the coupled flow and transport problem 
The solution procedures are as follows:  
Step 1.  Solve the pressure equation implicitly using a Jacobi conjugate gradient solver 
to yield water phase pressure in all grid blocks; 
Step 2.  Capillary pressures from previous time step are used to determine the pressure 
of other phases in each grid block once the water phase pressure is known;  
Step 3.  The Darcy’s law is used to determine the phase velocities; 
Step 4.  Mass conservation equations are solved explicitly to yield concentration of each 
component in each grid block; 
Step 5.  Phase concentrations and saturations are determined through flash calculations;  
Step 6.  The concentration of the components calculated by the pollutant migration 
model was used as the initial condition of the biodegradation model to obtain the 
pollutant degradation rate for this time step. 
Step 7.  New capillary pressures are determined from the new saturations;  
Step 8.  Repeat the procedures for each time step until simulation ends. 
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Text S6. Stepwise cluster analysis (SCA) 

In the stepwise-cluster analysis, the solutions of the numerical model (benzene 
concentrations at concerned locations) are considered as dependent variables; the 
operating conditions are independent variables. If the developed simulation model is 
run under n scenarios of system conditions, there will then be n sets of such independent 
and dependent variables (e.g., if the model is run 50 times under various system 
conditions, then n = 50). Assume that there are m independent variables [e.g., four 
process control variables, denoted as x = (x1, x2, …, xm), where m = 4], and p dependent 
variables [e.g., benzene concentrations at six concerned locations, denoted as y = (y1, 
y2, …, yp), where p = 6]. Thus, all data can be given by matrixes X = (xtr)n×m and Y = 
( ytr)n×p, where r = 1 , 2 , …, m, and i = 1 , 2 , …, p. 

The first step is to determine the clustering principles for the patterns. In SCA, patterns 
of responses will be cut or merged into a number of sets, and explanatory variables will 
be the references in judging which pattern set in the parent set should enter. After 
completion of cutting and merging processes, cluster trees could be produced and 
further used for predicting responses according to new explanatory values. The essence 
of this method is, based on a given criteria, to cut one pattern set of responses into two, 
and to merge two sets into one, step by step, in order to classify sets and sieve variables. 
Let cluster h, which contains nh patterns, be cut into two sub-clusters e and f, containing 
ne and nf patterns, respectively (i.e., ne + nf = nh). According to Wilks’ likelihood-ratio 
criterion, if the cutting point is optimal, the value of Wilks’ Λ (Λ =|W|/|T| ) should be 
minimum (Wilks, 1960; 1962; 1963; Kennedy and Gentle, 1981), where T and W are 
total-sample sum of the squares and cross products (SSCP) matrix �𝑡𝑡𝑖𝑖𝑖𝑖� and within-
groups SSCP matrix �𝑤𝑤𝑖𝑖𝑖𝑖�, respectively, and T and W mean determinants of matrixes 
 �𝑡𝑡𝑖𝑖𝑖𝑖� and �𝑤𝑤𝑖𝑖𝑖𝑖�, respectively. When the Λ value is very large, clusters e and f cannot be 
cut, but must be merged into greater cluster h. By Rao’s F-approximation (R-Statistic), 
we have: 

                                                        𝑅𝑅 = 1−Λ1 𝑆𝑆⁄

Λ1 𝑆𝑆⁄ ⋅ 𝑍𝑍⋅𝑆𝑆−𝑃𝑃⋅(𝐾𝐾−1) 2⁄ +1
𝑃𝑃⋅(𝐾𝐾−1)                                      (S23) 

                                                         𝑍𝑍 = 𝑛𝑛ℎ − 1 − (𝑃𝑃 + 𝐾𝐾)/2                                         (S24) 

                                                              𝑆𝑆 = 𝑃𝑃2⋅(𝐾𝐾−1)2−4
𝑃𝑃2+(𝐾𝐾−1)2−5

                                                      (S25) 

where statistic R is distributed approximately as an F-value with 𝑣𝑣1 = 𝑃𝑃 ⋅ (𝐾𝐾 − 1) and 
𝑣𝑣2 = 𝑃𝑃 ⋅ (𝐾𝐾 − 1) 2⁄ + 1 degrees of freedom, K is number of groups, and P is number 
of responses. The R - statistics will reduce to an exact F-value when P = 1 or 2, or when 
K = 2 or 3. Since the number of groups is two (K = 2 for system operating conditions 
and benzene concentrations at concerned locations) in this study, an exact F-test is 
possible based on Wilks’ Λ criterion. Thus, we have: 

                                                        𝐹𝐹(𝑃𝑃,𝑛𝑛ℎ − 𝑃𝑃 − 1) = 1−Λ
Λ
⋅ 𝑛𝑛ℎ−𝑃𝑃−1

𝑃𝑃
                          (S26) 

Therefore, the criteria of cutting and merging clusters become to make a number of F-
tests (Rao, 1952).  
The second step is to test optimal cutting points, for which nh patterns in cluster h are  
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sequenced according to the value of 𝑥𝑥𝑟𝑟,𝑘𝑘
(ℎ) in {𝑥𝑥𝑟𝑟}, i.e., 𝑥𝑥𝑟𝑟,1𝑟𝑟

(ℎ) ≤ 𝑥𝑥𝑟𝑟,2𝑟𝑟
(ℎ) ≤ ⋯ ≤ 𝑥𝑥𝑟𝑟,𝑛𝑛ℎ

𝑟𝑟
(ℎ) . Then 

the total-pattern SSCP matrix and within-groups SSCP matrix of responses y are 
calculated based on the sequence statistic {𝐾𝐾𝑟𝑟}: 

                          𝑏𝑏𝑖𝑖𝑖𝑖(𝐾𝐾𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟) =
𝑛𝑛ℎ
𝑟𝑟𝐾𝐾𝑟𝑟⋅��𝐵𝐵𝑖𝑖

(ℎ)(𝐾𝐾𝑟𝑟)−𝐵𝐵𝑖𝑖
(ℎ)(𝑛𝑛ℎ

𝑟𝑟)�⋅�𝐵𝐵𝑗𝑗
(ℎ)(𝐾𝐾𝑟𝑟)−𝐵𝐵𝑗𝑗

(ℎ)(𝑛𝑛ℎ
𝑟𝑟)��

𝑛𝑛ℎ
𝑟𝑟−𝐾𝐾𝑟𝑟

                   (S27) 

                                                      𝑡𝑡𝑖𝑖𝑖𝑖(𝑛𝑛ℎ𝑟𝑟) = 𝐴𝐴𝑖𝑖𝑖𝑖
(ℎ)(𝑛𝑛ℎ𝑟𝑟) − 𝑛𝑛ℎ𝑟𝑟𝐵𝐵𝑖𝑖ℎ(𝑛𝑛ℎ𝑟𝑟)𝐵𝐵𝑗𝑗ℎ(𝑛𝑛ℎ𝑟𝑟)              (S28) 

                                                       𝑤𝑤𝑖𝑖𝑖𝑖(𝐾𝐾𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟) = 𝑡𝑡𝑖𝑖𝑖𝑖(𝑛𝑛ℎ𝑟𝑟) − 𝑏𝑏𝑖𝑖𝑖𝑖(𝐾𝐾𝑟𝑟,𝑛𝑛ℎ𝑟𝑟)                     (S29) 

where: 

                                                                 𝐵𝐵𝑖𝑖 𝑜𝑜𝑜𝑜 𝑗𝑗
(ℎ) (𝑢𝑢) = 1

𝑢𝑢
∑ 𝑦𝑦𝑖𝑖 𝑜𝑜𝑜𝑜 𝑗𝑗,𝑘𝑘

(ℎ)𝑢𝑢
𝑘𝑘=1                             (S30) 

                                                                 𝐴𝐴𝑖𝑖𝑖𝑖
(ℎ)(𝑢𝑢) = ∑ 𝑦𝑦𝑖𝑖,𝑘𝑘

(ℎ)𝑦𝑦𝑗𝑗,𝑘𝑘
(ℎ)𝑢𝑢

𝑘𝑘=1                                  (S31) 

                                                                  𝑘𝑘𝑟𝑟 = 1𝑟𝑟 , 2𝑟𝑟 ,⋯ , (𝑛𝑛ℎ𝑟𝑟 − 1),∀𝑟𝑟 

                                                                  𝑖𝑖, 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝, and 𝑟𝑟 = 1,2,⋯ ,𝑚𝑚 

For each xr, a cutting point k *r is derived, which satisfies: 

                                             Λ(𝑘𝑘∗𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟) = min𝑘𝑘𝑟𝑟=1𝑟𝑟
�𝑛𝑛ℎ

𝑟𝑟−1�{Λ(𝑘𝑘𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟)}                            (S32) 

For each explanatory variable, the index of response that will be used for cutting 
judgments (denoted as r *) is derived, which satisfies: 

                                             Λ�𝑘𝑘∗𝑟𝑟∗ ,𝑛𝑛ℎ𝑟𝑟� = min𝑟𝑟=1𝑚𝑚 {Λ(𝑘𝑘𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟)}                                  (S33) 

Thus, the optimal cutting point of cluster h is 𝑘𝑘∗𝑟𝑟∗, and the relevant value of explanatory 
variable (i.e., the reference for new pattern prediction) is 𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑟𝑟
∗

(ℎ) .Then a F-test can be 
undertaken.  

If 

                                    𝐹𝐹(𝑃𝑃′,𝑛𝑛ℎ𝑟𝑟∗ − 𝑃𝑃′ − 1) = 1−Λ(𝑘𝑘∗𝑟𝑟
∗

,𝑛𝑛ℎ
𝑟𝑟∗)

Λ(𝑘𝑘∗𝑟𝑟∗ ,𝑛𝑛ℎ
𝑟𝑟∗)

𝑛𝑛ℎ
𝑟𝑟∗−𝑃𝑃′

𝑃𝑃′
≥ 𝐹𝐹1                         (S34) 

is satisfied, cluster h can be cut into two sub-clusters according to the distribution of 
𝑥𝑥𝑟𝑟∗: (a) data in explanatory sets with 𝑘𝑘𝑟𝑟∗ ≤ 𝑘𝑘∗𝑟𝑟∗ are allocated into sub-cluster e ( < f ); 
(b) data in explanatory sets with 𝑘𝑘𝑟𝑟∗ > 𝑘𝑘∗𝑟𝑟∗ are allocated into sub-cluster f, where P' is 
number of responses under consideration. Among explanatory variables, 𝑥𝑥𝑟𝑟∗ is the most 
important one affecting the response. If equation (S12) is not satisfied, cluster h cannot 
be cut. Then the other clusters will be tested to decide whether to cut or not, i.e., to test 
h = 1, 2, …, H (H is total number of clusters at the current stage). When no cluster can 
be cut, the next step is to merge the clusters.  

The third step is the mergence of clusters. To test the mergence of clusters e and f for 
existing clusters, the total-sample SSCP matrix and within-groups SSCP matrix should 
be calculated firstly: 
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          𝑡𝑡𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� = 𝐴𝐴𝑖𝑖𝑖𝑖
(𝑒𝑒)(𝑛𝑛𝑒𝑒) + 𝐴𝐴𝑖𝑖𝑖𝑖

(𝑓𝑓)�𝑛𝑛𝑓𝑓� − �𝑛𝑛𝑒𝑒𝐵𝐵𝑖𝑖
(𝑒𝑒)(𝑛𝑛𝑒𝑒) + 𝑛𝑛𝑓𝑓𝐵𝐵𝑖𝑖

(𝑓𝑓)�𝑛𝑛𝑓𝑓�� ⋅

                                         �𝑛𝑛𝑒𝑒𝐵𝐵𝑗𝑗
(𝑒𝑒)(𝑛𝑛𝑒𝑒) + 𝑛𝑛𝑓𝑓𝐵𝐵𝑗𝑗

(𝑓𝑓)�𝑛𝑛𝑓𝑓�� (𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑓𝑓)�                                         (S35) 

            𝑏𝑏𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� =
𝑛𝑛𝑒𝑒𝑛𝑛𝑓𝑓�𝐵𝐵𝑖𝑖

(𝑒𝑒)(𝑛𝑛𝑒𝑒)−𝐵𝐵𝑖𝑖
(𝑓𝑓)�𝑛𝑛𝑓𝑓��⋅�𝐵𝐵𝑗𝑗

(𝑒𝑒)(𝑛𝑛𝑒𝑒)−𝐵𝐵𝑗𝑗
(𝑓𝑓)�𝑛𝑛𝑓𝑓��

(𝑛𝑛𝑒𝑒+𝑛𝑛𝑓𝑓)
                                            (S36) 

           𝑤𝑤𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� = 𝑡𝑡𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� − 𝑏𝑏𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓�                                                                 (S37) 

where Aij and Bi or j have the same formulation as equations (S30) and (S31); i, j = 1, 
2, …, p. Then a F-test can be undertaken. If 

                          𝐹𝐹�𝑃𝑃′,𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑓𝑓 − 𝑃𝑃′ − 1� = 1−Λ(𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓)
Λ(𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓)

�𝑛𝑛𝑒𝑒+𝑛𝑛𝑓𝑓�−𝑃𝑃′−1
𝑃𝑃′

< 𝐹𝐹2                   (S38) 

is satisfied, clusters e and f can be merged into a new cluster h. Otherwise, it should be 
similarly tested whether other clusters can be merged for e = 1, 2, …, (H-1) and f = 2, 
3, …, H. 

The final step is the prediction of the response according to new explanatory variables. 
After all calculations and tests have been completed (i.e., all hypotheses of further 
cutting or mergence are rejected), a cluster tree can be derived for each response. Each 
cutting point, which leads to two branches, corresponds to the value (𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑟𝑟
∗

(ℎ) ) of an 
explanatory variable. When a new pattern set of explanatory variables {𝑥𝑥𝑟𝑟} is examined, 
its 𝑥𝑥𝑟𝑟∗  value can be compared with 𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑟𝑟
∗

(ℎ)  at the cutting point, and classified into 
relevant branches. Step-by-step, the pattern will finally enter a tip cluster which cannot 
be either cut or merged further. The criterion to classify a new sample to relevant 
branches is that, (a) sample data with 𝑥𝑥𝑟𝑟∗ ≤ 𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑅𝑅
∗

(ℎ)  are merged into cluster e ( < f ) and 

(b) sample data with 𝑥𝑥𝑟𝑟∗ > 𝑥𝑥
𝑟𝑟∗,𝑘𝑘∗𝑅𝑅

∗
(ℎ)  are merged into cluster f. Let e' be the tip cluster 

where the new sample enters. Then the predicted dependent variable {𝑦𝑦𝑖𝑖} is: 
                                                 𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖

(𝑒𝑒′) ± 𝑅𝑅𝑖𝑖
(𝑒𝑒′)                                                          (S39) 

where 𝑦𝑦𝑖𝑖𝑒𝑒′ is mean of dependent variable i in sub-cluster e', and 𝑅𝑅𝑖𝑖𝑒𝑒′ is radius of yi in 
cluster e': 

                              𝑦𝑦𝑖𝑖
(𝑒𝑒′) = �max𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′� + min𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′�)� /2, ∀𝑖𝑖                             (S40) 

                              𝑅𝑅𝑖𝑖
(𝑒𝑒′) = �max𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′� − min𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′�)� /2, ∀𝑖𝑖                              (S41) 
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Text S7. Filtering Process Model 

After the clustering process, a number of leaf clusters are produced. Each leaf cluster 
contains a group of modeling outputs with similar statistical attributes; these modeling 
outputs provide an output value range for the leaf cluster. The purpose of filtering is to 
calculate an optimal estimate for each leaf cluster; this estimate can be used as an 
optimal output value for the leaf cluster. The set of leaf clusters for all well patterns 
thus can be regarded as all possible results for the remediation design. 

Among various filtering methods, the well-known Kalman filter has been recognized 
as a powerful tool in supporting estimations of past, present, and future states. In this 
study, a filtering process model based on the Kalman filter method was developed to 
calculate the optimal estimate for each leaf cluster. 

Generally, the Kalman filter addresses the problem of estimating the state of a discrete-
time controlled process, z (𝑧𝑧 ∈ 𝑅𝑅𝑓𝑓), that is governed by the following linear stochastic 
difference equation: 

                                         𝑧𝑧𝑘𝑘 = 𝐴𝐴𝑧𝑧𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1                                              (S42) 

with a measurement (𝑞𝑞 ∈ 𝑅𝑅𝑔𝑔) as follows: 

                                               𝑞𝑞𝑘𝑘 = 𝐻𝐻𝑧𝑧𝑘𝑘 + 𝑣𝑣𝑘𝑘                                                               (S43) 

where uk is the optional control input (𝑢𝑢 ∈ 𝑅𝑅𝑙𝑙); wk and vk represent the process and 
measurement noise (random variables), respectively. They are assumed to be 
independent (of each other), white, and with normal probability distributions 
𝑝𝑝(𝑤𝑤)~𝑁𝑁(0,𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃)  and 𝑝𝑝(𝑣𝑣)~𝑁𝑁(0,𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀) , respectively. A white noise process is 
defined as a random process of random variables that are uncorrelated, have mean zero, 
and a finite variance. The process noise covariance QPNC and measurement noise 
covariance RMNC matrices are assumed to be constant. 

In equation (S42), the f × f matrix A relates the state at the previous time step (k−1) to 
the state at the current step k, in the absence of a process noise. The f × l matrix B 
relates the optional control input u to the state z. The g × f matrix H in equation (S21) 
relates the state to the measurement q. Matrices A and H are assumed to be constants. 

It is defined that 𝑧̂𝑧𝑘𝑘�  (𝑧̂𝑧𝑘𝑘� ∈ 𝑅𝑅𝑓𝑓) is a priori-state estimate at step k given knowledge of the 
process prior to step k, and 𝑧̂𝑧𝑘𝑘 (𝑧̂𝑧𝑘𝑘 ∈ 𝑅𝑅𝑓𝑓) to be a posteriori-state estimate at step k given 
measurement qk. It is then defined a priori-estimate error and a posteriori-estimate error 
as 𝑒𝑒𝑘𝑘� ≡ 𝑧𝑧𝑘𝑘 − 𝑧̂𝑧𝑘𝑘�  and 𝑒𝑒𝑘𝑘 ≡ 𝑧𝑧𝑘𝑘 − 𝑧̂𝑧𝑘𝑘 , respectively. Thus, the priori-estimate error 
covariance can be written as 𝑃𝑃𝑘𝑘� = 𝐸𝐸[𝑒𝑒𝑘𝑘� 𝑒𝑒𝑘𝑘� 𝑇𝑇]  and the posteriori-estimate error 
covariance as 𝑃𝑃𝑘𝑘 = 𝐸𝐸[𝑒𝑒𝑘𝑘𝑒𝑒𝑘𝑘𝑇𝑇].  

The posteriori-state estimate (𝑧̂𝑧𝑘𝑘) can be calculated as: 

                                                         𝑧̂𝑧𝑘𝑘 = 𝑧̂𝑧𝑘𝑘� + 𝐾𝐾(𝑞𝑞𝑘𝑘 − 𝐻𝐻𝑧̂𝑧𝑘𝑘� )                                       (S44) 

The difference between the actual measurement (qk) and the measurement prediction, 
(𝑞𝑞𝑘𝑘 − 𝐻𝐻𝑧̂𝑧𝑘𝑘� ), in equation (S44) is called the residual, which reflects the discrepancy 
between the predicted measurement and the actual measurement. 

The f × g matrix K in equation (S44) is Kalman gain, which is chosen to minimize the 
posteriori error covariance. The Kalman gain Kk can be given as follows (Maybeck, 
1979; Jacobs, 1993): 
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                                                  𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘�𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘�𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1                                         (S45) 

As the RMNC approaches zero, the gain K weights the residual more heavily. Specifically, 
lim
𝑅𝑅𝑘𝑘→0

𝐾𝐾𝑘𝑘 = 𝐻𝐻−1 . On the other hand, as the priori-estimate error covariance 𝑃𝑃𝑘𝑘�  

approaches zero, the gain K weights the residual less heavily. Specifically, lim
𝑃𝑃𝑘𝑘�→0

𝐾𝐾𝑘𝑘 = 0. 

The Kalman filter consists of time-update equations and measurement-update equations. 
The discrete time-update equations are written as: 

                                                    𝑧̂𝑧𝑘𝑘� = 𝐴𝐴𝑧̂𝑧𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘−1                                                     (S46) 

                                                    𝑃𝑃𝑘𝑘� = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃                                                   (S47) 

The time-update equations are responsible for projecting forward (in time) the current 
state and error covariance estimates to obtain the priori-estimates for the next time step. 
The discrete measurement-update equations are given as: 

                                                   𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘�𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘�𝐻𝐻𝑇𝑇 + 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀)−1                                 (S48) 

                                                   𝑧̂𝑧𝑘𝑘 = 𝑧̂𝑧𝑘𝑘� + 𝐾𝐾𝑘𝑘(𝑞𝑞𝑘𝑘 − 𝐻𝐻𝑧̂𝑧𝑘𝑘� )                                                 (S49) 

                                                   𝑃𝑃𝑘𝑘 = (1 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘�                                                          (S50) 

The measurement-update equations are responsible for the feedback—i.e., for 
incorporating a new measurement into the priori-estimate to obtain an improved 
posteriori-estimate. 

The operation of the filter is shown below. The first step is to compute the Kalman gain, 
Kk. The next step is to actually measure the process to obtain qk and then to generate a 
posteriori-state estimate by incorporating the measurement as in equation (S49). The 
final step is to obtain a posteriori error covariance estimate via equation (S50). After 
each iteration of time update and measurement update, the process is repeated with the 
previous posteriori-estimates used to predict the new priori-estimates. This recursive 
nature is one of the very appealing features of the Kalman filter. For example, compared 
with the implementation of a Wiener filter, which operates on all the data directly for 
each estimate, the implementation of the Kalman filter is much more feasible. 

In this study, the modeling outputs (samples) in each leaf cluster can be regarded as 
measurements. For any leaf cluster, the time update equations were written as: 

                                                          𝑧̂𝑧𝑘𝑘� = 𝑧̂𝑧𝑘𝑘−1                                                                     (S51) 

                                                      𝑃𝑃𝑘𝑘� = 𝑃𝑃𝑘𝑘−1 + 𝑄𝑄𝑃𝑃𝑁𝑁𝑁𝑁                                                   (S52) 

where A=1 (the state did not change from step to step), and u=0 (there was no control 
input). The measurement update equations were given as: 

                                                       𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘� (𝑃𝑃𝑘𝑘� + 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀)−1                                             (S53) 

                                                        𝑧̂𝑧𝑘𝑘 = 𝑧̂𝑧𝑘𝑘� + 𝐾𝐾𝑘𝑘(𝑞𝑞𝑘𝑘 − 𝑧̂𝑧𝑘𝑘� )                                            (S54) 

                                                          𝑃𝑃𝑘𝑘 = (1 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘�                                                   (S55) 

where H=1 (the noisy measurement is of the state directly); k denotes the number of 
samples (modeling outputs) in each leaf cluster. 
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After the clustering and filtering, an optimal estimate can be obtained for each leaf 
cluster. A new sample can be grouped into a corresponding leaf cluster by comparing 
the values of xtr with those of 𝑥𝑥𝑟𝑟∗

𝛼𝛼 (ℎ∗) . The corresponding output variable can be 
predicted as 𝑦𝑦𝑖𝑖 = 𝑧̂𝑧𝑘𝑘,𝑖𝑖, ∀𝑖𝑖. 
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Text S8. Nonlinear Optimization model of the FCI optimizer 

The Nonlinear Optimization model of the FCI optimizer can be formulated as follows 
(to identify the optimum control conditions): 

 

Min  𝑍𝑍 = ∑ 𝑈𝑈𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖=1 + ∑ 𝑈𝑈𝑗𝑗𝐸𝐸𝐸𝐸

𝐽𝐽
𝑗𝑗=1                                                    (S56) 

subject to: 

                           𝑋𝑋𝑘𝑘𝑘𝑘�𝑈𝑈𝑖𝑖𝐼𝐼𝐼𝐼,𝑈𝑈𝑗𝑗𝐸𝐸𝐸𝐸� ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  for all k=1,2, …, K                                (S57) 

                                                          0 ≤ 𝑈𝑈𝑖𝑖𝐼𝐼𝐼𝐼 ≤ 𝑈𝑈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼                                           (S58) 

                                                          0 ≤ 𝑈𝑈𝑗𝑗𝐸𝐸𝐸𝐸 ≤ 𝑈𝑈𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝐸𝐸                                                       (S59) 

                                                          ∑ 𝑈𝑈𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖=1 = ∑ 𝑈𝑈𝑗𝑗𝐸𝐸𝐸𝐸

𝐽𝐽
𝑗𝑗=1                                                 (S60) 

                                                                               

where Z is the total pumping rate for all injection and extraction wells; 𝑈𝑈𝑖𝑖𝐼𝐼𝐼𝐼 and 𝑈𝑈𝑗𝑗𝐸𝐸𝐸𝐸 are 
pumping rates for the ith injection well and the jth extraction well after a period of 
remediation; 𝑈𝑈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼  and 𝑈𝑈𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝐸𝐸  are maximum pumping rates for the ith injection well 

and the jth extraction well; Xmax is environmental standard; I, J, K are numbers of 
injection well, extraction well, and monitoring well, respectively; Xkt is predicted 
benzene concentration at t. Constraint (S60) indicates that all the extracted water will 
be injected into the aquifer. This constraint is emphasized to ensure such a stable 
hydraulic gradient that the groundwater can flow directed toward the plume interior. 
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Text S9. Nonlinear Optimization model of the DPC system 

The Nonlinear Optimization model of the DPC system can be formulated as follows (to 
identify the optimum control conditions): 

                                       Min  
2

1 2( )( ( ) ) ( )Z w X S X H w U U= − +                  (S61) 

subject to: 

                                               
0 0( ) ( ) /S X X X X= −                                                (S62) 

                                                         ( )X F U=                          (S63) 

                                                         L UU U U≤ ≤               (S64) 

where Z is the optimization objective, representing the system cost; UL UU  and  are the 
lower and upper bounds of U, respectively; w1 and w2 are the weights to reflect different 
priorities for the remediation efficiency and cost. In this optimization model, S(X) is 
within the range of 0 to 1; therefore, the injection and extraction rates (U) are 
normalized to fit it. H is a constant greater than or equal to 1 which is the highest 
contaminant removal rate. In this optimization model, a pseudo-equation X=F(U) is 
used to describe the relationship between X and U. 
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Text S10. Nonlinear Optimization model of the SADPC system 

The Nonlinear Optimization model of the SADPC system can be formulated as follows 
(to update the optimum control conditions): 

Min     𝐽𝐽 = �∑ 𝜔𝜔𝑖𝑖
𝑝𝑝
𝑖𝑖=1 (𝑋𝑋)�𝑋𝑋𝑟𝑟(𝑡𝑡 + 𝑖𝑖) − 𝑋𝑋𝑝𝑝(𝑡𝑡 + 𝑖𝑖)�2 + ∑ 𝜔𝜔𝑖𝑖(𝑈𝑈)𝑈𝑈(𝑡𝑡 + 𝑖𝑖 − 1)𝑝𝑝

𝑖𝑖=1 �     (S65) 

subject to: 

                                                                𝑋𝑋 = 𝐹𝐹(𝑈𝑈)                                                                (S66) 

                                                                0 ≤ 𝑋𝑋𝑟𝑟(𝑡𝑡 + 𝑖𝑖) ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚                                      (S67) 

                                                                0 ≤ 𝑋𝑋𝑝𝑝(𝑡𝑡 + 𝑖𝑖) ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚                                     (S68) 

                                                                𝑈𝑈𝐿𝐿 ≤ 𝑈𝑈 ≤ 𝑈𝑈𝑈𝑈                                                       (S69) 

where J is the optimization objective, representing the system cost; P is the prediction 
horizon; wi(X) and wi(u) are the weights to reflect different priorities for the remediation 
efficiency and cost. 𝑋𝑋𝑟𝑟(𝑡𝑡 + 𝑖𝑖)  and 𝑋𝑋𝑃𝑃(𝑡𝑡 + 𝑖𝑖)  are setpoint and predicted value, 
respectively; 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is environmental standard. U is the operating condition; 𝑈𝑈𝐿𝐿 and 𝑈𝑈𝑈𝑈 
are the lower and upper bounds of U, respectively. In this optimization model, a pseudo-
equation 𝑋𝑋 = 𝐹𝐹(𝑈𝑈) is used to describe the relationship between X and U. 

 

  



24 
 

Text S11. Genetic algorithms (GA) 

GAs are heuristic search procedures based on the mechanisms of genetics and Darwin’s 
natural selection principles, combining an artificial survival of the fittest with genetic 
operators abstracted from nature (Holland, 1975). 

An initial random population of genomes within the search space is generated. Each 
genome represents a possible solution to the search/optimization problem and is 
represented by a string of values (genes), one per each search variable. Survival of the 
fittest is accomplished by evaluating each genome’s fitness through an appropriate 
objective function and a biased random selection procedure of individuals for 
“reproduction”, where higher rated genomes are more likely to be selected. Generation 
of a new population is achieved by means of crossover (partial exchange of information 
between pairs of strings) and mutation (a random change in a random location within 
the string). The fittest individuals are transferred unchanged to the next generation, an 
approach known as “elitism”. Every new generation of genomes is expected to be more 
closely concentrated in the vicinity of the optimal solution. The process is repeated until 
a convergence criterion is met or a pre-set maximum number of generations reached. 
GA input parameters include: population size, number of generations, range limits of 
each gene, crossover and mutation rates and a fitness function for genome evaluation. 

In this study, GA is used to solve the developed discrete and nonlinear model. A set of 
parameters are needed to be predefined for guiding the genetic algorithm (Kuo et al., 
2006; Matott et al., 2006; Stramer et al., 2010; Opher and Ostfeld, 2011; Liao et al., 
2020), including: (1) chromosome length LCHR which is the product of the number of 
decision variables (n) and the length of a string (k); (2) population size M which is 
usually within the range of 30 to 200; (3) crossover rate RCRO which is usually within 
the range of 0.6 to 0.95; (4) mutation rate RMUT which is usually within the range of 
0.001 to 0.05; and (5) convergence criterion which is used to judge whether stop the 
search process. Normally the process is stopped after a predetermined generation 
number NG is reached or when there are no significant differences among the best 
solutions. 
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Text S12. MPC control module procedure 

The running procedures are as follows:  

Step 1.  Set the prediction time domain P and the weighting coefficients ωi; 

Step 2.  Use the expected output sequence xr(t) in the future, and the reference trajectory 
comes from the first-order exponential form fitting the actual output value of the DPC 
system;  

Step 3.  The control amount obtained in this sampling time period from the DPC system 
is brought into the biodegradation process to obtain the actual system output x(t); 

Step 4.  Use the DPC system to obtain the model output xm(t) of the current sampling 
time period and the predicted output xm(t+i) of the future time period, and obtain the 
system predicted output value xp(t+i) after feedback correction; 

Feedback correction:                                 𝑥𝑥𝑝𝑝(𝑡𝑡 + 𝑖𝑖) = 𝑥𝑥𝑚𝑚(𝑡𝑡 + 𝑖𝑖) + ℎ𝑒𝑒(𝑡𝑡)                           (S70) 

                                                                  𝑒𝑒(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑚𝑚(𝑡𝑡)                                      (S71) 

h is the compensation coefficient; 

Step 5.  The optimization algorithm is used to solve the rolling optimization, and the 
optimal sequence U(t+i-1) is obtained;  

Step 6.  Apply the first control variable U(t) of the optimal sequence to the system, and 
then return to step 2. 
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Text S13. General procedure for developing a process control system for enhanced 
in situ biodegradation 

Step 1.  A 3D pilot-scale model is designed for supporting the operation of enhanced 
in-situ biodegradation. 

Step 2. After the occurrence of a hydrocarbon spill, an enhanced in-situ biodegradation 
process is to be undertaken. A subsurface LNAPLs biodegradation model is then 
developed to reflect the in-situ LNAPL biodegradation process. 

Step 3. After calibration and verification, the interactions between contaminant 
concentrations and operating conditions are simulated through the subsurface model. 

Step 4. Considering high complexities and computational requirements in incorporating 
numerical simulation model directly into optimization frameworks, coupled with the 
inability to obtain enough samples due to the high cost of sampling, a statistical relation-
ship between remediation system performance and operating condition will be 
developed based on a large number of runs for the developed simulation model under 
various system conditions. Different scenarios of contamination situations and 
operating conditions are considered for the simulation. Under each contamination 
situation, the effects of various operation conditions on contaminant concentrations at 
concerned locations are examined. 

Step 5. The stepwise cluster analysis method or the filtered clustering analysis method 
is used to develop to reflect the effects of variations of operating-condition on 
contaminant concentrations. Thus, a bridge between the subsurface model and the 
operating decision is established for further determining the desired operating 
conditions. 

Step 6. Based on the established statistical relationships, a corresponding nonlinear 
discrete optimization model for groundwater control is established to determine optimal 
operating conditions corresponding to specific contamination situations. The GA 
technique is used to solve the developed optimization model. 

Step 7. After the optimal operation conditions for each scenario are determined, the SI 
emulator is developed through the obtained knowledge base. 

Step 8. A new nonlinear discrete optimization model is formulated by using the part 
that meets the expectation and its epitaxial as the setpoint curve for the contamination 
situations that do not meet the expectation in each scenario. Rolling optimization 
determines the optimal operating conditions corresponding to a specific contamination 
situation. The GA technique is used to solve the newly developed optimization model, 
and the optimal operating conditions of each scene are updated. 
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Text S14. Collinearity test of the independent variables  

The presence of high collinearity in an FCI simulator implies that the conclusions of 
the analysis can be questioned. For example, the accuracy of estimations cannot be 
guaranteed due to high variances of the estimators. Thus, detection of collinearity 
should be a compulsory first step in every correlation analysis. Collinearity measures 
have been widely applied to examine if there are any co-relations among the 
independent variables. Variance Inflator Factor (VIF)is commonly used to evaluate the 
level of collinearity, which can be calculated as follows: 

                                                         (S72) 

                                                (S73) 

                                             (S74) 

where  represents the random disturbance and  is the negative correlation 
coefficient of the independent variable for the regression analysis of the remaining 
independent variables. 

If the data matrix has no full column rank that can be considered “severe 
multicollinearity”, e.g., an independent variable can be expressed linearly by other 
independent variables. The closer the VIF value near 1, the lower the collinearity level 
is. The threshold value is usually 10. In this study, we selected groundwater injection 
rates of oxygen and nutrient in Well I and Well II (u1 and u2), and groundwater 
extraction rates in Well III and Well IV (u3 and u4) as the independent variables (called 
control variables in this paper) (Table S6). Results show that the corresponding VIF 
values of all the independent variables are much less than the threshold value (10), 
indicating that the variables are independent and do not have the multicollinearity 
(Table S8).  
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Figure S1(a). Plan view of the pilot scale system 

 

 
Figure S1(b). Front view of the pilot scale system 
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Figure S1(c). Bottom view of the pilot scale system 

 

 
Figure S1(d). End elevation of the pilot scale system 
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Figure S1(e). Well locations (plan view) 
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Figure S1(f). Well locations and soil types (section view) 

 
Figure S2. Framework of the FCI Optimizer 
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Figure S3. Framework of the SI Emulator 

 

 
Figure S4. Locations of the hypothetical wells 

 

 

0.15 0.45 0.90 1.050.300
0

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

0.60 0.75 1.20 1.35 1.50 1.65 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 3.00 3.15 3.30 3.45 3.60

HW 62

Potential site for injecting well

Potential site for pumping well Monitoring well

Contaminant source

No Flow BoundaryLEGEND

No Flow Boundary Groundwater flow direction

Fr
ee

 F
lo

w
 B

ou
nd

ar
y

Fr
ee

 F
lo

w
 B

ou
nd

ar
y

Y (m)

X (m)

HW 52

HW 42

HW 40

HW 48

HW 56

HW 102

HW 95

HW 106

0.0580

0.0585

0.0590

0.0595

0.0600

0.0605

0.0610

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 40

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.0540

0.0545

0.0550

0.0555

0.0560

0.0565

0.0570

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 42

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.0635

0.0640

0.0645

0.0650

0.0655

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 48

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.1230

0.1240

0.1250

0.1260

0.1270

0.1280

0.1290

0.1300

0.1310

0.1320

0.1330

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 62

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.0544

0.0546

0.0548

0.0550

0.0552

0.0554

0.0556

0.0558

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW52

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.0410

0.0420

0.0430

0.0440

0.0450

0.0460

0.0470

0.0480

0.0490

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 56

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.2300

0.2350

0.2400

0.2450

0.2500

0.2550

0.2600

0.2650

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 95

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.1150

0.1250

0.1350

0.1450

0.1550

0.1650

0.1750

0.1850

0.1950

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 102

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

0.1050

0.1150

0.1250

0.1350

0.1450

0.1550

0.1650

1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

Well I Well II Well III Well IV HW 106

Time (day)

Pu
m

pi
ng

 / 
In

je
ct

in
g 

flo
w

 ra
te

 (m
^3

/d
) 

2 4 6 8 10 12 14 16 18 20 22 

Be
nz

en
e 

co
nc

en
tra

tio
n 

(m
g/

L)
 

(a) 

(g) 

(d) 

(b) (c) 

(e) 

(h) 

(f) 

(i) 



33 
 

Figure S5. Benzene concentrations of the DPC system from Day 2 to Day 22, where 
Figs. (a) to (i) represents the concentrations at HW-40, HW-42, HW-48, HW-52, 

HW-56, HW-62, HW-95, HW-102, and HW-106 
 

 
 

 
 

Figure S6. The concentration distribution of Benzene on Day 57 of the experiment 
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Figure S7(a). The concentration distribution of Benzene on Day 40 

 

 
Figure S7(b). The concentration distribution of Benzene on Day 57 
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Figure S8. Verification results for well 5 and well 6 
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Table S1. Input parameters for contaminant transport simulation  

Parameter Value 

Flow and transport simulation parameters  
Hydraulic conductivity of sand/ till/ clay 10 / 5 / 2.5 m/d 
Permeability of sand/ till/ clay  1500/430/ 890 MD 
Porosity of sand/ till/ clay  0.35 / 0.30 / 0.45 
Longitudinal dispersivity of sand/ till/ clay 0.1 / 0.1 / 0.1 m 
Transverse dispersivity of sand/ till/ clay 0.01 / 0.01 / 0.01 m 
Van Genuchten's alpha of sand/ till/ clay 10 m-1 
Van Genuchten's n of sand/ till/ clay 6.8 
First-order reaction rate coefficient of benzene 0.21 /d 
Endogenous decay coefficient 0.2544 /d 
Residual water saturation 0.01 
Water dynamic viscosity 1.0 cp 
Water interfacial tension 45 Dynes/cm 
Benzene density 0.713 g/cm3 
Hydraulic gradient 0.03 m/m 
Water partition coefficient of benzene 0.00203 
Benzene solubility 1750 mg/L 
Aquifer thickness 1.2 m 
Time step 0.101 day 
Maximum time step size 10 day 
Tolerance for concentration change 0.001 

Enhanced biodegradation simulation parameters  
Water injecting rate 20 L/d 
NH4NO3 nutrient injecting rate 1750 mg/L 
NH4HPO4 nutrient injecting rate 1100 mg/L 
Heterotrophs microorganism injecting rate 20 mg/L 
Oxygen injecting rate 8 mg/L 
Water pumping rate 30 L/d 
Microorganisms maximum specific growth rate 4.2 per day 
Biomass density  0.09 g/cm3 
Yield coefficient (g cell/g benzene) 1.0 cells/g soil 
Half-saturation coefficient  0.77 mg/L 
Bulk density of porous medium 1.64 g/cm3 

Simulation period 12 day 
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Table S2. Initial Geochemical and Microbial Properties of the Soil 

Parameter Value 

Soil classification Silty clay, sand, and clay matrix 
till 

Hydraulic conductivity In the range of 10-7 to 10-5 (m/s) 
Moisture content 7.5-32.5% (by volume) 
Porosity 30-53.1% 
Na 436-548 mg/L 
K 16-19.7 mg/L 
Ca 562-629 mg/L 
Mg 338-407 mg/L 
Fe 0.12-1.04 mg/L 
Cl 10-79 mg/L 
N, NO2

-, NO3
- 31-115 mg/L 

Soil organic carbon  1.14% 
Dissolved oxygen concentration <1.0 mg/L to 1.5 mg/L 

Initial microbial species 
Pseudomonas sp. Strain CFS-215, 
Geobacter sp., and Rhodocuccus 
sp. Strain 33 
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Table S3. Observed benzene concentrations (mg/L) 

Well Day 13 Day 15 Day 17 Day 19 Day 21 Day 24 Day 26 Day 28 Day 32 Day 34 Day 36 Day 38 Day 40 

1  0.032   1.073 0.033  0.174 0.696 0.837 0.738 0.462 0.439 
2 0.484 0.564 0.262 0.360 0.672 0.978 0.732 0.699 1.054 1.252 0.682 0.542 0.702 
3 0.643 0.734 3.169 2.391 3.408 1.777 2.137 1.858 1.834 1.897 1.077 0.712 0.606 
4 0.236    0.245   0.090 0.663 0.827 0.671 0.409 0.415 
5 1.347 2.074 1.362 0.888 0.842 0.204 0.601 0.745 0.825 0.974 0.993 0.578 0.685 
6 8.131 7.482 7.795 5.530 7.438 7.068 8.696 5.716 4.080 4.887 6.337 3.519 7.340 
7 0.279       0.392 0.875 1.370 0.756 0.761 0.566 
8 0.296   0.357    0.175 0.851 1.117 0.738 0.594 0.720 
9     1.198 0.186  0.300 0.884 1.067 0.724 0.637 0.741 
10 1.359 1.218 0.498  1.284 4.698 1.029 1.278 1.384 1.890 1.663 0.546 2.488 
11   0.507     0.851 0.508 0.213 0.474 0 0.203 
12  0.502 0.808     0.843 0.578 0.288 0.502 0.036 0.352 
13              
14              
15              

16         0.485 0.211   0.324 

 
Table S3. (continued) 

Well Day 42 Day 44 Day 46 Day 48 Day 52 Day 53 Day 54 Day 57 
1 0.304        
2         
3 0.526 1.593 1.429 0.508 0.501 0.733 0.386 0.285 
4   0.090 0.400 0.285 0.293 0.292 0.245 
5 1.497 1.920 2.070  0.824 0.651 0.581 0.575 
6 0.444   0.472 0.265 0.361 0.284 0.291 
7 0.385 0.733 1.227 0.686 0.300 0.268 0.241 0.224 
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8 0.524 0.703 0.366 0.527 0.359 0.316 0.310 0.273 
9 1.070 0.918 0.698 1.357 0.831 0.874 0.397 0.633 
10 1.366 1.628 0.947 1.590 2.055 1.292 1.162 0.292 
11 0.349 0.710 0.163 0.554 0.363 0.280 0.288 0.249 
12 0.417 0.741 0.166 0.443 0.322 0.267 0.263 0.285 
13   0.079 0.376     
14    0.376 0.231    
15 0.512  0.090 0.398 0.261 0.248 0.237 0.235 

16 0.334 0.373 0.453 0.776 0.563 0.507 0.296 0.296 
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Table S4. Error analysis for the biodegradation simulation results 

Well 
number 

Observed concentration 
(mg/L) 

Simulated 
concentration (mg/L) 

Absolute          
Error (mg/L) 

3 0.00 0.03 0.03 
4 0.00 0.05 0.05 
5 0.51 0.25 0.26 
6 0.40 0.35 0.05 
7 0.80 0.80 0.00 
8 0.47 0.16 0.31 
9 0.69 0.49 0.20 
10 0.53 0.78 0.25 
11 1.36 1.70 0.34 
12 2.00 2.40 0.40 
15 0.41 0.80 0.19 
16 0.44 0.20 0.24 

Mean absolute error 0.21 

Root mean square error 0.27 
Correlation coefficient 0.93 
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Table S5. Fifty levels of contamination situation (mg/L) 

No. 
M 5 

1x  
M 7 

2x  
M 8 

3x  
M 10 

4x  
M 11 

5x  
M 12 

6x  No. 
M 5 

1x  
M 7 

2x  
M 8 

3x  
M 10 

4x  
M 11 

5x  
M 12 

6x  

1 1.68 22.07 5.63 14.10 2.88 1.62 26 6.53 25.45 3.99 2.86 19.79 1.63 
2 7.67 4.59 7.35 22.43 22.71 2.05 27 2.34 19.26 20.82 2.65 1.62 1.84 
3 8.71 16.50 24.76 4.73 2.57 26.12 28 19.72 5.72 3.73 1.72 3.64 2.33 
4 7.53 1.79 12.45 2.26 16.31 20.51 29 9.30 1.93 2.93 4.55 10.89 22.91 
5 3.63 4.24 17.74 3.50 2.12 27.21 30 10.25 23.75 24.24 4.31 16.00 2.81 
6 14.59 7.04 14.73 10.55 23.17 2.34 31 1.63 1.64 2.38 2.57 5.30 6.46 
7 5.27 5.12 6.76 10.95 4.93 20.10 32 5.95 10.31 3.53 3.53 2.17 19.80 
8 1.63 16.66 19.79 10.25 16.10 6.22 33 3.71 16.88 14.63 6.29 4.52 3.29 
9 3.72 1.89 4.63 13.64 23.44 3.41 34 2.61 14.90 20.27 21.74 2.42 1.92 
10 2.17 1.73 6.10 4.88 14.01 5.45 35 6.79 18.64 1.62 12.37 2.39 10.58 
11 4.22 1.73 6.59 4.60 2.49 2.37 36 19.48 2.16 27.50 15.27 20.50 3.13 
12 10.04 24.28 18.27 10.83 12.57 9.21 37 17.92 2.97 1.64 25.34 2.14 2.30 
13 4.99 6.13 25.44 2.06 18.22 2.28 38 4.85 21.68 7.44 26.07 16.37 2.87 
14 1.76 21.19 2.29 2.09 2.04 1.72 39 9.17 4.35 3.61 19.46 2.53 23.10 
15 2.62 15.15 27.64 3.16 4.30 2.92 40 3.93 19.13 13.06 4.08 23.73 5.44 
16 14.17 2.00 15.40 7.13 9.85 13.62 41 14.76 20.89 2.40 19.80 14.06 2.47 
17 8.58 27.04 6.77 13.23 15.66 2.10 42 5.04 1.65 21.25 17.10 6.10 17.77 
18 15.63 18.38 13.20 6.81 1.68 25.45 43 2.60 4.41 25.02 2.85 1.62 3.82 
19 2.22 4.55 7.90 17.96 2.70 2.71 44 4.25 1.73 17.42 1.63 17.27 1.62 
20 2.60 15.15 18.04 16.46 25.59 4.85 45 1.63 15.60 22.53 15.09 1.65 23.74 
21 2.50 6.36 9.61 4.93 11.25 15.38 46 8.25 1.74 24.30 22.94 1.63 2.68 
22 5.41 15.46 5.02 9.83 3.44 22.02 47 3.28 4.63 20.23 4.99 20.29 15.02 
23 2.40 5.94 2.23 2.01 12.77 2.09 48 2.42 2.76 1.62 3.05 4.78 6.56 
24 4.23 20.07 3.26 16.44 1.83 1.68 49 2.91 1.77 3.79 14.65 8.37 4.08 
25 2.21 4.79 2.15 14.61 9.72 2.07 50 19.04 5.04 2.13 1.91 23.67 19.58 
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Table S6. Fifty scenarios of operating conditions 

No. u1  
(L/d) 

u2  
(L/d) 

u3  
(L/d) 

u4 
 (L/d) No. u1 

 (L/d) 
u2 

 (L/d) 
u3  

(L/d) 
u4 

 (L/d) 

1 37.62 19.42 21.12 13.24 26 10.12 14.16 37.08 10.02 
2 15.7 34.46 36.14 30.24 27 11.48 15.66 17.82 27.96 
3 34.42 10.84 25.2 11.16 28 13.16 19.38 34.78 21.78 
4 14.16 11.48 12.92 38.64 29 20.1 11.08 29.9 18.21 
5 32.78 30.18 20.34 12.74 30 23.2 25.1 32.2 12.62 
6 27.92 13 11.36 29.72 31 20.5 38.76 10.68 22.76 
7 16.64 18.46 32.78 31.4 32 14.6 13.34 19.05 18.76 
8 13.08 23.5 30.16 10.08 33 19.8 31.98 26.36 31.88 
9 15.6 30.4 13.92 14.92 34 14.92 17.24 38.68 37.88 

10 15.6 13.5 29.8 12.78 35 30 27.5 13.6 15.56 
11 29.7 26.88 12.6 24.9 36 21.3 12.32 23.36 29.28 
12 28.56 29.3 13.26 25.98 37 18.38 16.08 38.64 10.14 
13 12.96 15.24 25.28 13.9 38 38 23.6 30.42 32.76 
14 35.4 26.68 11.6 13.6 39 17.04 33.84 11.3 14.78 
15 26.14 26.98 39.82 20.66 40 19.6 8.42 32.14 38.56 
16 27.7 39.78 13.92 11.88 41 29.46 24.22 15.74 23.58 
17 28.7 34.9 39.52 12.42 42 16.12 15.06 36.32 33.98 
18 34.54 39.78 35.78 22.16 43 16.64 10.66 17.42 34.34 
19 14.1 37.58 23.2 13.28 44 33.4 24.4 17.02 17.04 
20 24.4 17.66 18.02 38 45 23.32 31.86 28.54 12.72 
21 12.12 16.9 20.24 17.32 46 19.06 18.24 11.92 22.44 
22 21.34 14.3 35.96 15.78 47 33.96 13.1 32.56 15.09 
23 33.42 13.48 23.92 32 48 13.98 13.8 39.72 39.6 
24 22.5 36.2 13 22.64 49 20.06 34.96 16.54 38.44 
25 20.2 27.94 34.72 25.84 50 39.8 26.42 38.82 21.52 
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Table S7. Input and output variables for SI emulator and FCI simulator 

SI Emulator Input (I) or 
Output (O) Symbol FCI Simulator Input (I) or 

Output (O) 
 

Symbol 

Highest contaminant 
concentration anywhere 
in the mesh 

I ЪMAX Highest contaminant 
concentration anywhere 
in the mesh 

I ЪMAX 

Percentage of benzene 
mass removal 

I η Percentage of benzene 
mass removal 

I η 

Injecting rate of well I O u1 Injecting rate of well I I u1 
Injecting rate of well II O u2 Injecting rate of well II I u2 
Pumping rate of well III O u3 Pumping rate of well III I u3 
Pumping rate of well IV O u4 Pumping rate of well IV I u4 
   Highest contaminant 

concentration anywhere 
in the mesh 

O ЪMAX 

   Percentage of benzene 
mass removal 

O η 

 
  



 
 

44 
 

Table S8. The result of the collinearity test 

 
 

Variable VIF Tolerance
u1 1.068 0.936
u2 1.128 0.886
u3 1.043 0.959
u4 1.067 0.937
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