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Abstract

The information on plasma pressures in the outer part of the inner magnetosphere is important for

simulations of the inner magnetosphere and the better understanding of its dynamics. Based on 17-year

observations from both CIS and RAPID instruments onboard the Cluster mission, we used machine-

learning-based models to predict proton plasma pressures at energies from ˜40eV to 4MeV in the outer

part of the inner magnetosphere (L*=5-9). The location in the magnetosphere, and parameters of solar,

solar wind, and geomagnetic activity from the OMNI database are used as predictors. We trained several

different machine-learning-based models and compared their performances with observations. The

results demonstrate that the Extra-Trees Regressor has the best predicting performance. The Spearman

correlation between the observations and predictions by the model data is about 68%. The most

important parameter for predicting proton pressures in our model is the L* value, which is related to the

location. The most important predictor of solar and geomagnetic activity is the solar wind dynamic pressure. Based on the

observations and predictions by our model, we find that no matter under quiet or disturbed geomagnetic conditions, both

the dusk-dawn asymmetry at the dayside with higher pressures at the duskside and the day-night asymmetry with higher

pressures at the nightside occur. Our results have direct practical applications, for instance, inputs for simulations of the inner

magnetosphere or the reconstruction of the 3-D magnetospheric electric current system based on the magnetostatic equilibrium,

and can also provide valuable guidance to the space weather forecast.
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Key Points: 

1. A machine learning model is created to predict 3-D distribution of proton plasma pressures at L*=5-

9 for energies ~40eV-4MeV 

2. Our model based on Extra-Trees Regressor reproduces well the global distributions as well as the 

pressure along a spacecraft trajectory  

3. The results of our model are helpful for the interpretation of the plasma pressure in the outer part of 

the magnetosphere 
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Plain Language Summary 

The distribution of the plasma pressures in the magnetosphere is a key parameter for the assessment of 

the magnetostatic equilibrium, the dynamics of geomagnetic storms, and the magnetospheric electric 

current system. In addition, the outer part of the inner magnetosphere (L*=5-9) is often used as the 

boundary in the inner magnetosphere simulations, where the initial composition is specified. Thus, the 

distribution of the plasma pressure at L*=5-9 is essential for the simulations of the inner magnetosphere 

and understanding of the underlying magnetospheric dynamic processes. Although, there are many 

previous studies on the distribution of plasma pressures, building a model to predict the 3-D distribution 

of plasma pressures remains challenging. Based on 17 years of data from both CIS and RAPID 

instruments onboard the Cluster spacecraft mission, a machine-learning-based model for predicting 

proton pressures at energies from ~40eV to 4MeV in the outer part of the inner magnetosphere (L*=5-9) 

is built. We set up the 3-D model for the prediction of the proton pressures depending on the location, 

solar, solar wind, and geomagnetic activity indices. The model gives reliable predictions and can be used 

for the interpretation of the dynamics of the inner magnetosphere under different geomagnetic conditions 

which can also provide valuable guidance to the space weather (such as magnetic storms) forecast. 

Abstract 

The information on plasma pressures in the outer part of the inner magnetosphere is important for 

simulations of the inner magnetosphere and the better understanding of its dynamics. Based on 17-year 

observations from both CIS and RAPID instruments onboard the Cluster mission, we used machine-

learning-based models to predict proton plasma pressures at energies from ~40eV to 4MeV in the outer 

part of the inner magnetosphere (L*=5-9). The location in the magnetosphere, and parameters of solar, 

solar wind, and geomagnetic activity from the OMNI database are used as predictors. We trained several 

different machine-learning-based models and compared their performances with observations. The 

results demonstrate that the Extra-Trees Regressor has the best predicting performance. The Spearman 

correlation between the observations and predictions by the model data is about 68%. The most 

important parameter for predicting proton pressures in our model is the L* value, which is related to the 

location and distance. The most important predictor of solar, solar wind, and geomagnetic activity is the 



solar wind dynamic pressure. Based on the observations and predictions by our model, we find that no 

matter under quiet or disturbed geomagnetic conditions, both the dusk-dawn asymmetry at the dayside 

with higher pressures at the duskside and the day-night asymmetry with higher pressures at the nightside 

occur. Our results have direct practical applications, for instance, inputs for simulations of the inner 

magnetosphere or the reconstruction of the 3-D magnetospheric electric current system based on the 

magnetostatic equilibrium, and can also provide valuable guidance to the space weather forecast.  

1. Introduction 

In the inner magnetosphere, the plasma pressure plays a key role in the understanding of the main 

magnetospheric dynamic processes. The knowledge about distributions of the plasma pressures under 

different geomagnetic conditions is necessary for explaining how the Earth’s magnetosphere reaches the 

magnetostatic equilibrium (the plasma pressure gradient is compensated by Ampere's force) and what 

specific conditions are necessary to maintain it (Antonova, 2004; Stepanova et al., 2019). In addition, 

one of the key parameters for understanding the evolution of geomagnetic storms and substorms is the 

plasma pressure distribution in the inner magnetosphere (Kronberg et al., 2017; Stepanova et al., 2008). 

The increase of the inner magnetospheric plasma pressure is one of the main features of magnetic storms 

(Stepanova et al., 2019).  

The distribution of plasma pressures in the inner magnetosphere has been studied extensively 

during last decades. Based on the measurements from the high-altitude AMPTE/CCE satellite, Lui and 

Hamilton (1992) obtained average radial profiles of plasma pressures from a case study during 

geomagnetically quiet conditions. These profiles showed a peak generally at L = 3 to 4 and decreased 

from L = 4 to L = 9 rather monotonically. Using data from the same satellite, De Michelis et al. (2013) 

presented the statistical study of plasma pressure profiles which were averaged over more than 2 years 

data. The low-activity pressure profile gave the same general features as the profiles in the case study 

published by Lui and Hamilton (1992). The disturbed pressure profile had a peak at a higher L value 

(L~4.5) and decreased from L = 5 to L = 8, also rather monotonically. The equatorial plasma pressure 

distribution can be obtained from low-altitude measurements under the assumption that the plasma 

pressure is conserved along a magnetic field line (Wing & Newell, 1998). Based on the energetic neutral 



atom (ENA) images obtained by HENA onboard the IMAGE spacecraft, Brandt et al. (2004) inferred 

the evolution of the global plasma pressure distribution during storms, showing that there was a peak of 

the proton pressure located around the midnight. Similarly, Lui (2003) found that the proton pressures 

were generally higher in the dusk-midnight sector than in the post-midnight sector under disturbed 

geomagnetic conditions within the L shells from 2 to 9 in the equatorial region. Using the data from both 

low-orbiting (DMSP 16–18 spacecraft, satellites NOAA 15–19, and METOP 1–2 satellites) and high-

orbiting satellites (the THEMIS and Van Allen Probes), Stepanova et al. (2019) performed a 

multisatellite analysis of the variation of plasma pressures near the equatorial plane between 7 to 13 RE 

during a strong geomagnetic storm. They also found that the plasma pressure inside the magnetosphere 

is mainly controlled by the solar wind dynamic pressure. 

Among these previous studies, most of them focus on the 2-D equatorial plasma pressure 

distribution (Antonova et al., 2014; Lui, 2003; Stepanova et al., 2019; Wing & Newell, 1998). The 3-D 

plasma pressure distribution in the inner magnetosphere is relatively unknown. This kind of 3-D 

distribution is not only helpful to understand the dynamics of the inner magnetosphere, but also 

important for the simulations of the inner magnetosphere. For example, it can be used to deduce the 

distribution of the temperature which is an important input for some simulations models (such as Hot 

Electron Ion Drift Integrator (HEIDI) model (Ilie et al., 2012)). In addition, using the steady-state force 

balance equation ∇P = j × B (Sergeev et al., 1994; Stephens et al., 2013) allows one to reconstruct the 3-

D electric current system with the 3-D plasma pressure distribution.  

In this study, we derive a predictive model for the proton pressures at energies from ~40eV to 4MeV 

in the outer part of the inner magnetosphere (L*=5-9). For this energy range, we combined the data from 

both CIS and RAPID instruments onboard Cluster. This L* range is selected because it is the region that 

is often used as the boundary in the inner magnetosphere simulations, where the initial composition is 

specified (Kistler & Mouikis, 2016). Instrumentally, we restricted the minimum distance to L*=5 to 

reduce the contamination of the results by energetic electrons from the outer radiation belt. To enable 

modeling of the complex non-linear multidimensional dependencies, we trained several different 

machine-learning-based models and compared their performances with the observations. Moreover, by 



using a machine learning method we can utilize the full range of solar or geomagnetic parameters as 

inputs to infer and analyze the plasma pressure distribution instead of only considering a few of them as 

most previous studies did. This helps to increase the performance of the predictions. 

To summarize, our study aims are to (1) test the capability of different machine learning algorithms 

and to present the best one for the prediction of the proton plasma pressures in the outer part of the inner 

magnetosphere; (2) reveal which parameters are the most important for the prediction of proton plasma 

pressures; (3) compare and analyze the prediction of the proton plasma pressure distributions under 

different geomagnetic conditions and (4) help future studies that require a proton plasma pressure model. 

The remainder of this paper is organized as follows. In section 2 we describe the observations and data 

analysis. Section 3 is concerned with the methodology used for this study. Section 4 presents the results. 

The discussions and conclusions are drawn in the last two sections 5 and 6. 

2. Observations and Data Set 

In this section, we first introduce the data and the method we used for calculating proton plasma 

pressures. Then, the predictors, also called features, (the variables that are potentially capable to predict 

the proton pressures) are also discussed.  

2.1 Instrumentation and Data 

The Cluster mission consists of four identical spacecrafts, each carrying 11 instruments. The 

satellites were launched in two pairs in late 2000, and after a 6-months commissioning phase, the mission 

moved into an operational phase in February 2001 (Laakso et al., 2010). For the first ~6 years of the 

mission, the spacecrafts were placed into a highly elliptical, polar orbits apogee at 19.6 Re and perigee 

at 4 Re (Escoubet et al., 1997).  The orbit has evolved over time, passing through the inner 

magnetosphere closer to the equator. It also covers the full range of local times over the course of a year 

(Kistler & Mouikis, 2016). Thus, the data from the Cluster mission is proper for the study of 3-D 

distribution of proton pressures in the inner magnetosphere. We used the proton observations from the 

spacecraft (SC) 4 (Tango) since for this study it is necessary that particle instruments have been operating 

nearly continuously from 2001 through the present day. The L* range we chose to study is L*=5-9 as we 

introduced above.  



Based on the observations by the Cluster Ion Spectrometry (CIS) using the time-of-flight ion 

Composition Distribution Function (CODIF) sensor (Reme et al., 2001), the low-energy component of 

the proton pressure (PCIS) with the energy range of ∼40 eV to 40 keV is calculated using the formula 

                  ,                              

where n is the proton density, T is the proton temperature. The proton densities and temperatures can be 

found at CSA under the product C4_CP_CIS-CODIF_HS_H1_MOMENTS. 

Based on the observations by the Research with Adaptive Particle Imaging Detector (RAPID) 

(Wilken et al., 2001), the high-energy part of the proton pressure (PRAPID) with the energy range up to 

4MeV is calculated using the formula (Daly & Kronberg, 2018; Kronberg et al., 2017): 

             ,            

where m is the proton mass in atomic mass units (amu), j is the omnidirectional energetic proton 

intensity, ∆𝐸 is the width of the energy channel, and E is the effective energy. The geometric mean is 

used as an approximation for the effective energy (Kronberg & Daly, 2013). The omnidirectional 

energetic proton intensities can be found at CSA under the product 

Proton_Dif_flux__C4_CP_RAP_HSPCT. The first proton RAPID energy channel at 27.7–64.4 keV 

overlaps with the last CIS energy channel. Thus, in order to obtain a continuous spectrum, the first 

RAPID channel was truncated according using the method provided by Kronberg et al. (2022). The CIS 

and the RAPID instruments are well cross-calibrated for protons (Kronberg et al., 2010, 2022). 

The steps of data processing are as follows. First, the proton data from both CIS and RAPID with 

original 4-second resolution was averaged over 1 minute in order to be consistent with the predictors 

related to the solar and geomagnetic activity which have the highest resolution of 1 minute. Then, the 

outliers were eliminated. The data points with calculated 𝑃𝐶𝐼𝑆 = 0 were removed because both proton 

densities and temperatures were 0 at these points. When calculated 𝑃𝐶𝐼𝑆was above 100nPa, the data 

points were also removed. Because based on previous studies (De Michelis et al., 2013; Kronberg et al., 

2017; Lui, 2003), proton pressures have never been over 100nPa even under disturbed geomagnetic 



conditions. The large 𝑃𝐶𝐼𝑆 at these points may be caused by the large proton densities (>100 cm-3) due 

to the background contamination of CODIF. When calculating PRAPID, we had to remove the data points 

with the flux of the second energy channel (75.3-92.2 keV) being 0. The slope of the energy spectra to 

derive the fluxes in the first truncated channel cannot be calculated in this case, leading to the inaccurate 

PRAPID. Next, we added the PCIS and PRAPID with the same timestamp to get the total proton pressure. 

Finally, we chose the points with the position range of L*=5-9 for our study. We also removed the points 

with the total proton pressures less than 0.1nPa because these values are not typical at these distances 

on the closed magnetic field lines. Most previous work showed that the values of the proton pressures 

were mostly above 0.1nPa in the inner magnetosphere (Kronberg et al., 2017; Lui, 2003). In addition, 

there were only 1580 points (0.5% of the total points) less than 0.1nPa. We obtained better model 

performance when dropping the values less than 0.1nPa. In this case, the model was more focused on 

predicting values above 0.1nPa, namely the typical values of proton pressures in the inner 

magnetosphere. 

2. 2 Predictors 

In this subsection, we divide predictors into two groups for description: related to the location in 

the space and related to the solar, solar wind, and geomagnetic activity. All the predictors are listed in 

Table 1. 

2.2.1 Location in the Space 

The predictors related to the location in the space include: L* value, magnetic local time (MLT), 

and the position of Cluster in the Geocentric Solar Ecliptic (GSE) coordinate system (x_gse, y_gse and 

z_gse). The L* values were taken from the Lstar_value__C4_CP_AUX_LSTAR dataset. MLTs can be 

found under the product Mag_Local_time__C4_JP_AUX_PMP. The 

sc_r_xyz_gse__C4_CP_AUX_POSGSE_1M dataset is the source of the position data. The distributions 

of the proton plasma pressures and the numbers of their samples in the GSE system are shown in Figure 

1. The distributions of the proton plasma pressures and the number of their samples in the L*-MLT 

coordinate are shown in Figure 2.  

From Figures 1d-f, we can see that the number of samples is larger on the dayside and especially 

https://ecss.nl/item/?glossary_id=1619


at lower L*shells. As we mentioned above, our L* values are from “Lstar” product (A. G. Smirnov et al., 

2020) which is calculated with Tsyganenko-89 magnetospheric model, T89 (Tsyganenko, 1989). Thus, 

one can understand that the Cluster trajectories can cover more samples in the dayside than in the 

nightside at the same L*-shell range. This phenomenon can also be seen in Figure 2b, the numbers of 

samples in the L*-MLT coordinate. However, this has no effects on the final results because the value in 

each bin is the median of at least hundreds of samples, which is enough to reduce the error and represent 

the median feature of the bin. 

Figures 1a and 1b show that the proton pressures are higher at the nightside than that at the dayside 

in the XY and XZ planes in the GSE coordinate system. Similarly, the same result can be observed in 

the L*-MLT coordinate at L*-shell > 5 in Figure 2a. Figure 1a also shows the dusk-dawn asymmetry at 

the dayside with higher proton pressures at the dusk side. The same higher pressures at the dusk side (+y 

side) are visible in Figure 1c (YZ plane). Likewise, we can note this dusk-dawn asymmetry at the 

dayside at lower L* shells in Figure 2a. The reasons for these asymmetries will be discussed in Section 

5.  

In Figures 3a-e, the relations of mean proton pressures versus the predictors related to the location 

in the space are shown. Figure 3a shows a strong linear decrease of the proton plasma pressure with the 

L* shell which is consistent with previous results as we introduced in Section 1. That is, no matter under 

quiet conditions (Lui & Hamilton, 1992) or disturbed conditions (De Michelis et al., 2013), the proton 

plasma pressure is monotonically decreasing with L* shell when L*=5-9. In Figure 3b, there is a peak 

of the proton pressure around midnight (0-2MLT) and the minimum of proton pressures is shown around 

9 MLT. The proton pressure displays a peak at ~-6RE and roughly linear decrease with XGSE coordinate 

in the distances between -6 RE and 9 RE in Figure 3c. This is also consistent with the day-night 

asymmetry with higher proton pressures at the nightside (-x side) in Figures 1a and 1b. Figure 3d shows 

that the maximum of the proton pressure is around ±5 RE in YGSE direction. This YGSE dependency 

resembles that observed for the proton intensities in the near-Earth space in Kronberg et al. (2021). In 

Figure 3e, we can take ZGSE=-2RE as the symmetry axis, the proton pressures on both sides decrease 

almost linearly with the direction away from the symmetry axis.  



2.2.2 Solar, Solar Wind and Geomagnetic Activity 

The predictors are also related to the observations of solar, solar wind, and geomagnetic parameters 

from the OMNI database (King & Papitashvili, 2005). The solar wind parameters we used include: the 

proton density, NpSW [cm-3]; components of the velocity (VSW) in the GSE coordinates, VxSW_GSE, 

VySW_GSE and VzSW_GSE [km∙s-1]; the proton temperature, Temp [K] and components of the IMF 

in the GSE coordinates, BimfxGSE, BimfyGSE and BimfzGSE [nT]; and the dynamic pressure, Pdyn 

[nPa]. The proton pressures increase with the solar wind velocity in the anti-sunward direction, Vx, in 

Figure 3f. The Vy and Vz components are associated with increase of the proton pressures when they 

deviate from the Earth-Sun direction (Vx) within a certain range (<±100 km/s), as shown in Figure 3g. 

When any component of the interplanetary magnetic field (IMF) becomes stronger, no matter in positive 

or negative directions, it may lead to the increased proton pressures (see Figure 3h). These dependencies 

of the proton pressures on the solar wind velocity components and the IMF components also resemble 

those observed for the proton intensities in the near-Earth space in Kronberg et al. (2021). In order to 

show the relationships more clearly, we plot the figures in the logarithmic scale in Figures 3i-k. In 

Figure 3i, when the solar wind density is greater than 2 cm-3, the proton pressures generally increase 

with it. There is an approximate linear relationship between the proton pressures and the logarithm of 

the solar wind dynamic pressures when the solar wind dynamic pressure is greater than 1nPa (see Figure 

3j).  In Figure 3k, a trend of increase of the proton pressures with the solar wind temperature is visible. 

The 10.7 cm solar radio flux (F10.7) is one of the most widely used indices of solar irradiance (Tapping, 

2013). Kistler and Mouikis (2016) showed that F10.7 have an impact on the proton flux at L=6-7. In 

Figure 3l, the solar irradiance is non-linearly related to the proton pressure, but a general trend of 

decrease of the proton pressures with the F10.7 is visible.  

For the parameters related to the geomagnetic activity, we used AE index and SYM-H index. The 

auroral electrojet index (AE index) provides a global, quantitative measure of auroral zone magnetic 

activity within the auroral oval. The proton pressures are related roughly linear up to ~ 600nT with the 

logarithm of the AE index in Figure 3m. SYM-H index describes symmetric horizontal component 

disturbances of the geomagnetic field at the equatorial regions (Iyemori et al., 2010). SYM-H index, 



shows non-linear relation with proton pressures, see Figure 3n. The histograms of the number of 

samples of all these predictors are shown in Figure 12 in Appendix. 

2.2.3 Cross-correlations between Proton Pressures and Predictors 

In Figure 4, we show the Pearson linear correlations between proton pressures and the predictors. 

This measurement can only reflect a linear correlation of variables, and ignore other types of 

correlations. The range of this correlation value is from -1 to 1. Values close to -1/1 mean perfect linear 

anticorrelation/correlation and values equal to 0 mean there is no linear dependency between the 

variables. The proton pressures are well anticorrelated with the L* shell (-0.51), in agreement with 

Figure 3a. For the XGSE and ZGSE location of observation, they also show some anticorrelation with 

the proton pressures, -0.21 and -0.14, respectively. From the OMNI parameters, the proton pressures are 

best linearly correlated with the solar wind dynamic pressure, 0.23. The AE-index also shows some 

correlation with proton pressures (0.16), the same as the result in Figure 3. 

3. Methodology 

3.1 Data Split 

After the data processing as we mentioned in Section 2.1, the full dataset we used comprises in 

total 336481 measurements from 2001-02-04 12:31:00 UT to 2018-02-18 00:02:00 UT. We split the 

dataset into a training set (80%) and a test set (20%). To prevent test leakage, we split the data by a time 

point with the original order preserved (Camporeale, 2019; Kronberg et al., 2021). The test set is only 

for the testing of the model. After the model training has been completed, no further changes to the 

model can be made. We utilize the training set to train and optimize the model hyperparameters. The 

sizes and periods of data subsets after splitting are listed in Table 2.  

Machine Learning algorithms don’t perform well when the input numerical features have very 

different scales. Thus, we need to normalize the features in order to get all the features to have the same 

scale (Géron, 2019). We normalized the features by QuantileTransformer in sklearn (Pedregosa et al., 

2011). QuantileTransformer provides a non-parametric transformation to map the data to a uniform 

distribution with values between 0 and 1. This transformation smooths out unusual distributions and is 



less influenced by outliers than other methods (Pedregosa et al., 2011).  

3.2 Machine Learning Models for Proton Pressures 

Our study is one of the typical supervised learning tasks, called regression. We have applied various 

kinds of regression ML models in order to select the best one based on their validation performance. We 

note that most of the relations between the proton pressures and the predictors are not perfectly linear, 

as shown in Figure 3. In addition, the ensemble of the predictions of a group of predictors (such as 

regressors) will often give better predictions than with the best individual predictor (Géron, 2019). Thus, 

we not only tried linear regression models, but also ensemble regression models.  

We have examined the following linear models in sklearn.linear_model and sklearn.svm (Pedregosa 

et al., 2011): (1) Ridge Regression, namely linear least squares with l2 regularization (Hoerl & Kennard, 

1970); (2) Least Angle Regression (LARS) (Efron et al., 2004); (3) Linear Support Vector Regression 

(LinearSVR) (Cortes & Vapnik, 1995).  

We also consider the Decision Trees Regression (Breiman et al., 1984) in sklearn.tree and the tree-

based ensemble models: (1) Random Forest Regression (Ho, 1995); (2) Extra Trees Regression, namely 

extremely randomized trees (Geurts et al., 2006); (3) AdaBoost Regression (Freund & Schapire, 1997); 

(4) Gradient Boosting Regression (Friedman, 2001); (5) Histogram-Based Gradient Boosting 

Regression ((1)-(5) are all from sklearn.ensemble); (6) Light Gradient Boosting Machines (LGBM) (Ke 

et al., 2017) in LightGBM library. 

In order to evaluate different models’ performances, we focus on the Spearman correlation. The 

Spearman correlations between the model results and the observations are listed in Table 3. Pearson 

correlation only assesses linear relationships as we discussed in Figure 4, while Spearman correlation 

assesses monotonic relationships (whether linear or not). The values of the Spearman correlation vary 

between -1 and 1. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations 

imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. Values 

close to 0 means no monotonically correlation. In Table 3, we can note that the Extra-Trees Regressor 

has shown the best predicting performance on the both sets. Although the Decision Tree Regressor also 



has a perfect performance on the train/validation set, it seems to be more inclined to the overfitting (the 

difference between the scores for the train/validation set and test set are larger). In addition, note that a 

gap between model performance on training and test data is often observed for complex models 

(Kronberg et al., 2021). Extra-Trees Regressor fits a large amount of randomized decision trees on the 

training dataset and uses the mean to improve the predictive accuracy and control overfitting. It has two 

main differences with other tree-based ensemble methods: (1) it splits nodes by choosing cut-points fully 

at random. That is, besides searching for the best feature among a random subset of features, like the 

regular Random Forests, it also utilizes random thresholds for each feature rather than searching for the 

best possible thresholds. (2) it uses the whole learning sample (rather than a bootstrap replica) to grow 

the trees (Géron, 2019; Geurts et al., 2006). These characteristics can result a lower variance and a faster 

training speed (compared with regular Random Forests). Thus, we decided to use Extra-Trees Regressor. 

3.3 Training the selected model 

We trained the model using the K-Fold cross-validation (CV) function (from 

sklearn.model_selection.KFold). This method is widely used in previous work (e.g., Kronberg et al., 

2020; A. Smirnov et al., 2020). Our training data are divided into K subsets (folds) which are roughly 

the same size. In our case, K =5. Then each fold is used once as a validation while the 4 remaining folds 

form the train set. In this way, splitting process is repeated 5 times and results in five arrays of evaluation 

scores. Cross-validation allows one to get not only an estimate of the performance of the model, but also 

a measure of how precise this estimate is (Géron, 2019). 

In order to determine the best hyperparameters, the parameters are optimized by grid-search over a 

parameter grid, using GridSearchCV (from sklearn.model_selection.GridSearchCV). To evaluate the 

performance of the training and validation during the cross-validation for different parameters, we use 

four assessment metrics: Spearman correlation, mean squared error (MSE), mean absolute error (MAE), 

and coefficient of determination (R2). The best scores for MSE and MSE are close to 0. R2 is a number 

between 0 and 1 that measures how well a statistical model predicts an outcome. That is, comparing the 

case of using the model for prediction with the case of only using the mean prediction, to see how much 

the performance of the model has been improved. In the perfect case, R2 is equal to 1. The resulting 

https://www.scribbr.com/frequently-asked-questions/what-is-a-model/


hyperparameters values, as well as their search ranges, are given in Table 4. The performances of the 

model for the train/validation data set are mostly consistent between different metrics. n_estimators 

controls the number of trees in the forest. It will be underfitting when n_estimators is too small, while it 

will be overfitting when n_estimators is too large. max_depth is the maximum depth of the tree. If 

max_depth=None, then nodes are expanded until all leaves are pure or until all leaves contain less than 

min_samples_split samples. min_samples_split is the minimum number of samples required to split an 

internal node. We use the default value 2 for min_samples_split. Another important parameter we 

optimized is the minimum number of data points in leaf (min_data_in_leaf), which has a regularization 

effect and stops the model from learning the noise. 

4. Results 

4.1 Test the model 

The final scores are the average performances of the model for the train/validation data set, see 

Table 5. The values of the Spearman correlation coefficient are very close for the test data (0.68) and 

the average validation (0.71). The mean squared (MSE) and absolute errors (MAE) also yield almost 

identical values for validation and test sets. This means that our model is not overfitting and successfully 

learns relationships between the input parameters and the resulting proton pressures and generalizes well 

onto the unseen data.  

The Spearman correlation between the observed and predicted data is about 68% for the test set. 

This value is reasonable considering the complex dynamics of the energetic protons in the inner 

magnetosphere. In addition, when we use the Spearman correlation to evaluate our model, there is a null 

hypothesis states that the predictions are uncorrelated to the observations (evaluated by p value). We 

obtain p=0. In other words, we can reject the null hypothesis, namely the model predictions are correlated 

to the observations. Thus, our model results are reliable and can learn the overall trend in the proton 

pressures.  

4.2 Visualized Results 

Figure 5a shows the distribution of the observed proton plasma pressures versus the predicted 

values from the training set, while Figure 6a represents the test set distribution. Observed and predicted 



data for the training and test data sets agree relatively well. The diagonal shows the one-to-one ratio 

between the observed and predicted pressures. The data is mainly concentrated along the black dashed 

line, corresponding to a good correlation. The histograms in Figures 5a and 6a represent the predicted 

or observed data points that fall into each corresponding bin. Figures 5b and 6b provides the histogram 

of model residuals. From these figures, we can note that for both the training set and the test set, our 

model has very low bias. Most of the model residuals are within the range of ±0.5, namely the ratios of 

observations and predictions are valued in ~0.3-~3 (10-0.5-100.5). Therefore, we can conclude that our 

final model predicts the proton pressures at L*=5-9 well since it has low bias and can capture the general 

trends represented in the data.  

In Figure 7, we show a qualitative example of the model’s predictions within the 6-hour time 

interval on 2017-07-04 (in the test set) under quiet geomagnetic conditions (SYM_H>-1). The model 

almost predicts the same proton plasma pressures with the observations in Figure 7c. Figure 8 shows 

another example on 2017-09-28 (in the test set) which demonstrates the model performance during the 

main phase of a magnetic storm with the SYM-H index dropping down to ~-68nT. We can note in the 

panel c that the predictions are almost always lower than the observations under disturbed geomagnetic 

conditions. This is because the main phases of the magnetic storms are rather rare events in our dataset. 

Our model is not developed specifically for the prediction of the proton pressures under disturbed 

geomagnetic conditions. The ML model of soft proton intensities by Kronberg et al. (2021) also has 

better prediction efficiency under quiet geomagnetic conditions.  

We also plot the distributions of the predicted proton plasma pressures in L*-MLT coordinates 

under quiet (Figure 7d) and disturbed geomagnetic conditions (Figure 8d). The input predictors are the 

median values of the parameters over the time period (except the location parameters: X/Y/Z_GSE, L* 

value and MLT) in the purple region in Figures 7 and 8. The details of the input predictors are listed in 

Table 6 in the Appendix. For calculations of L* values, it is necessary to specify the satellite position, 

magnetic field model and geomagnetic conditions (by 'get_Lstar' function in IRBEM library). The initial 

position range we give in each direction is [-11, 11] RE in the GSE system, which is consistent with the 

X/Y/Z_GSE range of our observation dataset. Tsyganenko-89 magnetospheric model, T89 (Tsyganenko, 



1989) with Kp index as an input is employed, as Smirnov et al. (2020) did. The Kp index for quiet 

geomagnetic times is set as 0, while for disturbed geomagnetic times is set as 4. The time moments 

indicated by the red dotted lines in Figures 7 and 8 are specified for the calculations of MLTs. All of the 

calculations are performed using the spacepy.irbempy library ('get_Lstar' function). Finally, we select 

the data points that fit the range of L*=5-9 from the output results for plotting Figures 7d and 8d.  

We can note that there are no results when L*>~8 under disturbed geomagnetic conditions in Figure 

8d. L* is the property of a stably trapped particle. A pseudo-trapped particle (particles that will leave the 

magnetosphere before completing a 180◦
 drift) that drifts into the magnetopause (magnetopause 

shadowing) or into the tail (tail-shadowing) does not have an L*-value (Roederer, 1967; Roederer & 

Lejosne, 2018). The particles are easier become pseudo-trapped particles and to be lost during disturbed 

times (Roederer & Lejosne, 2018) since the magnetosphere is compressed based on T89 model 

(Tsyganenko, 1989).  

From the predictions in Figure 7d and 8d, we can note the dusk-dawn asymmetry at the dayside 

with higher proton pressures at the dusk side and the day-night asymmetry with higher proton pressures 

at the night side. In regard of the day-night asymmetry under quiet geomagnetic conditions in Figure 

7d we consider the higher L* shells (L*>6). In addition, we can note that the proton pressures at the 

nightside under disturbed geomagnetic conditions seem to be higher than that under quiet geomagnetic 

conditions. The proton pressures at the afternoon sector (12-18MLT) under quiet geomagnetic conditions 

seem to be higher than that under disturbed geomagnetic conditions. A quantitative analysis of this 

phenomenon and the reasons for these asymmetries will be discussed in Section 5.  

The plotting process of Figure 9b is the same as that of Figures 7d and 8d, except that the input 

predictors are the median values of the parameters over the whole dataset time. The details of the input 

predictors are listed in Table 6 in the Appendix. The Kp index is set as 0. The Figure 9a and Figure 2a 

is the same figure, namely the distribution of the observed H+ plasma pressures over the whole dataset 

time. In Figure 9b, we can note the dusk-dawn asymmetry at the dayside and the day-night asymmetry, 

just as the observations in Figure 9a. By comparing the results of observations (Figure 9a) and 

predictions by our model (Figure 9b) based on the whole dataset, we can conclude that our model can 



reproduce the overall characteristics of the distributions of observed proton plasma pressures in the range 

of L*=5-9. 

4.3 Feature Importance 

One of the advantages of the tree-based machine learning models is that they make it easy to 

measure the relative importance of each feature (Géron, 2019). Scores are automatically computed for 

each feature after training. The values of all the feature importances sum to 1. This process is called 

feature importance. The importance of a feature is computed as the (normalized) total reduction of the 

criterion brought by that feature, also known as the Gini importance. The higher the value, the more 

important the feature is. Figure 10 shows the feature importance for each input variable. The black 

horizontal lines represent confidence intervals at 95% confidence level. The parameters related to the 

location show significantly higher importance than parameters related to solar, solar wind, and 

geomagnetic activity. From those, on average, the strongest dependence is seen for L* shell. This is also 

consistent with the results in Figures 3a and 4. The least important location parameter is y_gse. From 

the other parameters, the solar wind dynamic pressure is the most important parameter for predicting the 

proton plasma pressures. Based on the observations of multiple satellites, Stepanova et al. (2019) also 

found that the plasma pressure inside the magnetosphere is mainly controlled by the solar wind dynamic 

pressure, which can be related to the pressure balance at the magnetospheric flanks.  

5. Discussions 

Based on the observations and predictions by our model under quiet (Figure 7) and disturbed 

(Figure 8) geomagnetic conditions, we note that no matter under quiet or disturbed geomagnetic 

conditions, both the dusk-dawn asymmetry at the dayside and the day-night asymmetry occur. The 

persistent dusk-dawn asymmetry with higher proton pressures at the duskside may be related to the 

dawn-dusk asymmetry of the proton distribution in the plasma sheet. Based on 7-years observations of 

energetic protons >274 keV by RAPID instrument, Kronberg et al. (2015b) showed the dawn-dusk 

asymmetries of proton intensities in the plasma sheet at near-Earth nightside under both quiet and 

disturbed geomagnetic conditions. They also explained two general effects which can lead to this kind 

of dawn-dusk asymmetry. In addition, other previous work also reported dawn-dusk asymmetries in the 



plasma sheet of energetic particles intensities with different energy ranges (Meng et al., 1981; 

Sarafopoulos et al., 2001; Kistler & Mouikis, 2016).  

The day-night asymmetry is easy to understand because ions are injected into the inner 

magnetosphere through the plasma sheet at the nightside, especially during the magnetic storms or 

substorms (Kistler et al., 1992). Gabrielse et al. (2014) indicated that injection occurrence rates increase 

with the geomagnetic activity. This may also be the reason for the higher proton pressures at the nightside 

under disturbed geomagnetic conditions as we shown above. For further quantitative analysis of this 

phenomenon, Figure 11 was plotted to investigate the difference between the proton plasma pressure 

under disturbed and quiet geomagnetic conditions. The red colors are positive values which means that 

the proton pressures are higher under disturbed geomagnetic conditions than under quiet geomagnetic 

conditions, while the blue colors are the opposite. The difference was calculated by the predictions of 

our model (Figures 7d and 8d). In Figure 11, we can note that the proton pressures at the nightside 

under disturbed geomagnetic conditions are clearly higher than that under quiet geomagnetic conditions. 

In addition, more red bins are seen at the lower L* shells (L*=5-6) than at the higher L* shells (L*>6) 

at the nightside, which means that there are higher increases in the plasma pressures at the lower L* 

shells (L*=5-6) during disturbed times. This is consistent with the results of Figure 6b in Gabrielse et al. 

(2014). Namely, injections more frequently reach lower L-shells with increased geomagnetic activity. 

This can also be the reason why the day-night asymmetry under quiet geomagnetic conditions in Figure 

7d mainly concentrates on the higher L* shells (L*>6).  

In addition, the proton pressures at 12-18MLT sector (afternoonside) under disturbed geomagnetic 

conditions are clearly lower than that under quiet geomagnetic conditions. This may be related to the 

outflow of energetic ions through the magnetopause in the dayside under disturbed geomagnetic 

conditions. Keika et al. (2005) showed that the outflowing energy flux is higher on the afternoonside 

than that on the morningside during the main phase of magnetic storms, which may lead to the lower 

proton pressures on the afternoonside under disturbed geomagnetic conditions. Estimation of a 

comparison between the losses at the magnetopause and the difference between the proton plasma 

pressure on the afternoonside under disturbed and quiet geomagnetic conditions requires further studies. 



Thus, we can deduce that the patterns of the asymmetries may change with the geomagnetic conditions. 

However, a more detailed calculation of the asymmetry index (e.g., Luo et al.,2017) separately for the 

quiet and the disturbed time is beyond the scope of this paper and will be further studied in the future.  

6. Conclusions 

In this study, based on 17-year data from both CIS and RAPID instruments onboard the Cluster mission, 

we derive a machine-learning-based model for predicting proton pressures at energies from ~40eV to 

4MeV at the outer part of the 3D inner magnetosphere (L*=5-9). The results demonstrate that the Extra-

Trees Regressor shows the best predicting performance. The Spearman correlation between the observed 

and predicted data is about 68% despite the complex dynamics of the energetic protons in the 

magnetosphere. The most important parameter for predicting proton pressures in our model is the L* 

shell, related to the location. The most important predictor of solar, solar wind, and geomagnetic activity 

is the solar wind dynamic pressure. The model results are in general agreement with the previous studies 

(De Michelis et al., 2013; Lui & Hamilton, 1992; Stepanova et al., 2019). In addition, we use the model 

prediction to compare and explain the distributions of the proton plasma pressures under different 

geomagnetic conditions. Moreover, as we discussed in the introduction, our results can be used in the 

simulations of the inner magnetosphere (e.g., HEIDI model) or reconstructing the 3-D electric current 

system. It can also provide valuable guidance to the space weather forecast.  

Further directions for the present study include, first, incorporating oxygen ions data into the model 

in order to predict the complete 3D distribution of ion plasma pressures in the outer part of the inner 

magnetosphere. Second, a machine-learning-based model for predicting the 3-D ion pressures in the 

inner part of the inner magnetosphere (L*=2-5). This aim can be achieved by using data from other 

missions, such as Van Allen Probes. The results of the model for the ion pressures in the inner part of 

the magnetosphere will be compared with the results of this model. In addition, we can combine these 

two models together to predict the 3-D ion pressures in the complete inner magnetosphere (L*=2-9).  
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Plain Language Summary 

The distribution of the plasma pressures in the magnetosphere is a key parameter for the assessment of 

the magnetostatic equilibrium, the dynamics of geomagnetic storms, and the magnetospheric electric 

current system. In addition, the outer part of the inner magnetosphere (L*=5-9) is often used as the 

boundary in the inner magnetosphere simulations, where the initial composition is specified. Thus, the 

distribution of the plasma pressure at L*=5-9 is essential for the simulations of the inner magnetosphere 

and understanding of the underlying magnetospheric dynamic processes. Although, there are many 

previous studies on the distribution of plasma pressures, building a model to predict the 3-D distribution 

of plasma pressures remains challenging. Based on 17 years of data from both CIS and RAPID 

instruments onboard the Cluster spacecraft mission, a machine-learning-based model for predicting 

proton pressures at energies from ~40eV to 4MeV in the outer part of the inner magnetosphere (L*=5-9) 

is built. We set up the 3-D model for the prediction of the proton pressures depending on the location, 

solar, solar wind, and geomagnetic activity indices. The model gives reliable predictions and can be used 

for the interpretation of the dynamics of the inner magnetosphere under different geomagnetic conditions 

which can also provide valuable guidance to the space weather (such as magnetic storms) forecast. 

Abstract 

The information on plasma pressures in the outer part of the inner magnetosphere is important for 

simulations of the inner magnetosphere and the better understanding of its dynamics. Based on 17-year 

observations from both CIS and RAPID instruments onboard the Cluster mission, we used machine-

learning-based models to predict proton plasma pressures at energies from ~40eV to 4MeV in the outer 

part of the inner magnetosphere (L*=5-9). The location in the magnetosphere, and parameters of solar, 

solar wind, and geomagnetic activity from the OMNI database are used as predictors. We trained several 

different machine-learning-based models and compared their performances with observations. The 

results demonstrate that the Extra-Trees Regressor has the best predicting performance. The Spearman 

correlation between the observations and predictions by the model data is about 68%. The most 

important parameter for predicting proton pressures in our model is the L* value, which is related to the 

location and distance. The most important predictor of solar, solar wind, and geomagnetic activity is the 



solar wind dynamic pressure. Based on the observations and predictions by our model, we find that no 

matter under quiet or disturbed geomagnetic conditions, both the dusk-dawn asymmetry at the dayside 

with higher pressures at the duskside and the day-night asymmetry with higher pressures at the nightside 

occur. Our results have direct practical applications, for instance, inputs for simulations of the inner 

magnetosphere or the reconstruction of the 3-D magnetospheric electric current system based on the 

magnetostatic equilibrium, and can also provide valuable guidance to the space weather forecast.  

1. Introduction 

In the inner magnetosphere, the plasma pressure plays a key role in the understanding of the main 

magnetospheric dynamic processes. The knowledge about distributions of the plasma pressures under 

different geomagnetic conditions is necessary for explaining how the Earth’s magnetosphere reaches the 

magnetostatic equilibrium (the plasma pressure gradient is compensated by Ampere's force) and what 

specific conditions are necessary to maintain it (Antonova, 2004; Stepanova et al., 2019). In addition, 

one of the key parameters for understanding the evolution of geomagnetic storms and substorms is the 

plasma pressure distribution in the inner magnetosphere (Kronberg et al., 2017; Stepanova et al., 2008). 

The increase of the inner magnetospheric plasma pressure is one of the main features of magnetic storms 

(Stepanova et al., 2019).  

The distribution of plasma pressures in the inner magnetosphere has been studied extensively 

during last decades. Based on the measurements from the high-altitude AMPTE/CCE satellite, Lui and 

Hamilton (1992) obtained average radial profiles of plasma pressures from a case study during 

geomagnetically quiet conditions. These profiles showed a peak generally at L = 3 to 4 and decreased 

from L = 4 to L = 9 rather monotonically. Using data from the same satellite, De Michelis et al. (2013) 

presented the statistical study of plasma pressure profiles which were averaged over more than 2 years 

data. The low-activity pressure profile gave the same general features as the profiles in the case study 

published by Lui and Hamilton (1992). The disturbed pressure profile had a peak at a higher L value 

(L~4.5) and decreased from L = 5 to L = 8, also rather monotonically. The equatorial plasma pressure 

distribution can be obtained from low-altitude measurements under the assumption that the plasma 

pressure is conserved along a magnetic field line (Wing & Newell, 1998). Based on the energetic neutral 



atom (ENA) images obtained by HENA onboard the IMAGE spacecraft, Brandt et al. (2004) inferred 

the evolution of the global plasma pressure distribution during storms, showing that there was a peak of 

the proton pressure located around the midnight. Similarly, Lui (2003) found that the proton pressures 

were generally higher in the dusk-midnight sector than in the post-midnight sector under disturbed 

geomagnetic conditions within the L shells from 2 to 9 in the equatorial region. Using the data from both 

low-orbiting (DMSP 16–18 spacecraft, satellites NOAA 15–19, and METOP 1–2 satellites) and high-

orbiting satellites (the THEMIS and Van Allen Probes), Stepanova et al. (2019) performed a 

multisatellite analysis of the variation of plasma pressures near the equatorial plane between 7 to 13 RE 

during a strong geomagnetic storm. They also found that the plasma pressure inside the magnetosphere 

is mainly controlled by the solar wind dynamic pressure. 

Among these previous studies, most of them focus on the 2-D equatorial plasma pressure 

distribution (Antonova et al., 2014; Lui, 2003; Stepanova et al., 2019; Wing & Newell, 1998). The 3-D 

plasma pressure distribution in the inner magnetosphere is relatively unknown. This kind of 3-D 

distribution is not only helpful to understand the dynamics of the inner magnetosphere, but also 

important for the simulations of the inner magnetosphere. For example, it can be used to deduce the 

distribution of the temperature which is an important input for some simulations models (such as Hot 

Electron Ion Drift Integrator (HEIDI) model (Ilie et al., 2012)). In addition, using the steady-state force 

balance equation ∇P = j × B (Sergeev et al., 1994; Stephens et al., 2013) allows one to reconstruct the 3-

D electric current system with the 3-D plasma pressure distribution.  

In this study, we derive a predictive model for the proton pressures at energies from ~40eV to 4MeV 

in the outer part of the inner magnetosphere (L*=5-9). For this energy range, we combined the data from 

both CIS and RAPID instruments onboard Cluster. This L* range is selected because it is the region that 

is often used as the boundary in the inner magnetosphere simulations, where the initial composition is 

specified (Kistler & Mouikis, 2016). Instrumentally, we restricted the minimum distance to L*=5 to 

reduce the contamination of the results by energetic electrons from the outer radiation belt. To enable 

modeling of the complex non-linear multidimensional dependencies, we trained several different 

machine-learning-based models and compared their performances with the observations. Moreover, by 



using a machine learning method we can utilize the full range of solar or geomagnetic parameters as 

inputs to infer and analyze the plasma pressure distribution instead of only considering a few of them as 

most previous studies did. This helps to increase the performance of the predictions. 

To summarize, our study aims are to (1) test the capability of different machine learning algorithms 

and to present the best one for the prediction of the proton plasma pressures in the outer part of the inner 

magnetosphere; (2) reveal which parameters are the most important for the prediction of proton plasma 

pressures; (3) compare and analyze the prediction of the proton plasma pressure distributions under 

different geomagnetic conditions and (4) help future studies that require a proton plasma pressure model. 

The remainder of this paper is organized as follows. In section 2 we describe the observations and data 

analysis. Section 3 is concerned with the methodology used for this study. Section 4 presents the results. 

The discussions and conclusions are drawn in the last two sections 5 and 6. 

2. Observations and Data Set 

In this section, we first introduce the data and the method we used for calculating proton plasma 

pressures. Then, the predictors, also called features, (the variables that are potentially capable to predict 

the proton pressures) are also discussed.  

2.1 Instrumentation and Data 

The Cluster mission consists of four identical spacecrafts, each carrying 11 instruments. The 

satellites were launched in two pairs in late 2000, and after a 6-months commissioning phase, the mission 

moved into an operational phase in February 2001 (Laakso et al., 2010). For the first ~6 years of the 

mission, the spacecrafts were placed into a highly elliptical, polar orbits apogee at 19.6 Re and perigee 

at 4 Re (Escoubet et al., 1997).  The orbit has evolved over time, passing through the inner 

magnetosphere closer to the equator. It also covers the full range of local times over the course of a year 

(Kistler & Mouikis, 2016). Thus, the data from the Cluster mission is proper for the study of 3-D 

distribution of proton pressures in the inner magnetosphere. We used the proton observations from the 

spacecraft (SC) 4 (Tango) since for this study it is necessary that particle instruments have been operating 

nearly continuously from 2001 through the present day. The L* range we chose to study is L*=5-9 as we 

introduced above.  



Based on the observations by the Cluster Ion Spectrometry (CIS) using the time-of-flight ion 

Composition Distribution Function (CODIF) sensor (Reme et al., 2001), the low-energy component of 

the proton pressure (PCIS) with the energy range of ∼40 eV to 40 keV is calculated using the formula 

                  ,                              

where n is the proton density, T is the proton temperature. The proton densities and temperatures can be 

found at CSA under the product C4_CP_CIS-CODIF_HS_H1_MOMENTS. 

Based on the observations by the Research with Adaptive Particle Imaging Detector (RAPID) 

(Wilken et al., 2001), the high-energy part of the proton pressure (PRAPID) with the energy range up to 

4MeV is calculated using the formula (Daly & Kronberg, 2018; Kronberg et al., 2017): 

             ,            

where m is the proton mass in atomic mass units (amu), j is the omnidirectional energetic proton 

intensity, ∆𝐸 is the width of the energy channel, and E is the effective energy. The geometric mean is 

used as an approximation for the effective energy (Kronberg & Daly, 2013). The omnidirectional 

energetic proton intensities can be found at CSA under the product 

Proton_Dif_flux__C4_CP_RAP_HSPCT. The first proton RAPID energy channel at 27.7–64.4 keV 

overlaps with the last CIS energy channel. Thus, in order to obtain a continuous spectrum, the first 

RAPID channel was truncated according using the method provided by Kronberg et al. (2022). The CIS 

and the RAPID instruments are well cross-calibrated for protons (Kronberg et al., 2010, 2022). 

The steps of data processing are as follows. First, the proton data from both CIS and RAPID with 

original 4-second resolution was averaged over 1 minute in order to be consistent with the predictors 

related to the solar and geomagnetic activity which have the highest resolution of 1 minute. Then, the 

outliers were eliminated. The data points with calculated 𝑃𝐶𝐼𝑆 = 0 were removed because both proton 

densities and temperatures were 0 at these points. When calculated 𝑃𝐶𝐼𝑆was above 100nPa, the data 

points were also removed. Because based on previous studies (De Michelis et al., 2013; Kronberg et al., 

2017; Lui, 2003), proton pressures have never been over 100nPa even under disturbed geomagnetic 



conditions. The large 𝑃𝐶𝐼𝑆 at these points may be caused by the large proton densities (>100 cm-3) due 

to the background contamination of CODIF. When calculating PRAPID, we had to remove the data points 

with the flux of the second energy channel (75.3-92.2 keV) being 0. The slope of the energy spectra to 

derive the fluxes in the first truncated channel cannot be calculated in this case, leading to the inaccurate 

PRAPID. Next, we added the PCIS and PRAPID with the same timestamp to get the total proton pressure. 

Finally, we chose the points with the position range of L*=5-9 for our study. We also removed the points 

with the total proton pressures less than 0.1nPa because these values are not typical at these distances 

on the closed magnetic field lines. Most previous work showed that the values of the proton pressures 

were mostly above 0.1nPa in the inner magnetosphere (Kronberg et al., 2017; Lui, 2003). In addition, 

there were only 1580 points (0.5% of the total points) less than 0.1nPa. We obtained better model 

performance when dropping the values less than 0.1nPa. In this case, the model was more focused on 

predicting values above 0.1nPa, namely the typical values of proton pressures in the inner 

magnetosphere. 

2. 2 Predictors 

In this subsection, we divide predictors into two groups for description: related to the location in 

the space and related to the solar, solar wind, and geomagnetic activity. All the predictors are listed in 

Table 1. 

2.2.1 Location in the Space 

The predictors related to the location in the space include: L* value, magnetic local time (MLT), 

and the position of Cluster in the Geocentric Solar Ecliptic (GSE) coordinate system (x_gse, y_gse and 

z_gse). The L* values were taken from the Lstar_value__C4_CP_AUX_LSTAR dataset. MLTs can be 

found under the product Mag_Local_time__C4_JP_AUX_PMP. The 

sc_r_xyz_gse__C4_CP_AUX_POSGSE_1M dataset is the source of the position data. The distributions 

of the proton plasma pressures and the numbers of their samples in the GSE system are shown in Figure 

1. The distributions of the proton plasma pressures and the number of their samples in the L*-MLT 

coordinate are shown in Figure 2.  

From Figures 1d-f, we can see that the number of samples is larger on the dayside and especially 

https://ecss.nl/item/?glossary_id=1619


at lower L*shells. As we mentioned above, our L* values are from “Lstar” product (A. G. Smirnov et al., 

2020) which is calculated with Tsyganenko-89 magnetospheric model, T89 (Tsyganenko, 1989). Thus, 

one can understand that the Cluster trajectories can cover more samples in the dayside than in the 

nightside at the same L*-shell range. This phenomenon can also be seen in Figure 2b, the numbers of 

samples in the L*-MLT coordinate. However, this has no effects on the final results because the value in 

each bin is the median of at least hundreds of samples, which is enough to reduce the error and represent 

the median feature of the bin. 

Figures 1a and 1b show that the proton pressures are higher at the nightside than that at the dayside 

in the XY and XZ planes in the GSE coordinate system. Similarly, the same result can be observed in 

the L*-MLT coordinate at L*-shell > 5 in Figure 2a. Figure 1a also shows the dusk-dawn asymmetry at 

the dayside with higher proton pressures at the dusk side. The same higher pressures at the dusk side (+y 

side) are visible in Figure 1c (YZ plane). Likewise, we can note this dusk-dawn asymmetry at the 

dayside at lower L* shells in Figure 2a. The reasons for these asymmetries will be discussed in Section 

5.  

In Figures 3a-e, the relations of mean proton pressures versus the predictors related to the location 

in the space are shown. Figure 3a shows a strong linear decrease of the proton plasma pressure with the 

L* shell which is consistent with previous results as we introduced in Section 1. That is, no matter under 

quiet conditions (Lui & Hamilton, 1992) or disturbed conditions (De Michelis et al., 2013), the proton 

plasma pressure is monotonically decreasing with L* shell when L*=5-9. In Figure 3b, there is a peak 

of the proton pressure around midnight (0-2MLT) and the minimum of proton pressures is shown around 

9 MLT. The proton pressure displays a peak at ~-6RE and roughly linear decrease with XGSE coordinate 

in the distances between -6 RE and 9 RE in Figure 3c. This is also consistent with the day-night 

asymmetry with higher proton pressures at the nightside (-x side) in Figures 1a and 1b. Figure 3d shows 

that the maximum of the proton pressure is around ±5 RE in YGSE direction. This YGSE dependency 

resembles that observed for the proton intensities in the near-Earth space in Kronberg et al. (2021). In 

Figure 3e, we can take ZGSE=-2RE as the symmetry axis, the proton pressures on both sides decrease 

almost linearly with the direction away from the symmetry axis.  



2.2.2 Solar, Solar Wind and Geomagnetic Activity 

The predictors are also related to the observations of solar, solar wind, and geomagnetic parameters 

from the OMNI database (King & Papitashvili, 2005). The solar wind parameters we used include: the 

proton density, NpSW [cm-3]; components of the velocity (VSW) in the GSE coordinates, VxSW_GSE, 

VySW_GSE and VzSW_GSE [km∙s-1]; the proton temperature, Temp [K] and components of the IMF 

in the GSE coordinates, BimfxGSE, BimfyGSE and BimfzGSE [nT]; and the dynamic pressure, Pdyn 

[nPa]. The proton pressures increase with the solar wind velocity in the anti-sunward direction, Vx, in 

Figure 3f. The Vy and Vz components are associated with increase of the proton pressures when they 

deviate from the Earth-Sun direction (Vx) within a certain range (<±100 km/s), as shown in Figure 3g. 

When any component of the interplanetary magnetic field (IMF) becomes stronger, no matter in positive 

or negative directions, it may lead to the increased proton pressures (see Figure 3h). These dependencies 

of the proton pressures on the solar wind velocity components and the IMF components also resemble 

those observed for the proton intensities in the near-Earth space in Kronberg et al. (2021). In order to 

show the relationships more clearly, we plot the figures in the logarithmic scale in Figures 3i-k. In 

Figure 3i, when the solar wind density is greater than 2 cm-3, the proton pressures generally increase 

with it. There is an approximate linear relationship between the proton pressures and the logarithm of 

the solar wind dynamic pressures when the solar wind dynamic pressure is greater than 1nPa (see Figure 

3j).  In Figure 3k, a trend of increase of the proton pressures with the solar wind temperature is visible. 

The 10.7 cm solar radio flux (F10.7) is one of the most widely used indices of solar irradiance (Tapping, 

2013). Kistler and Mouikis (2016) showed that F10.7 have an impact on the proton flux at L=6-7. In 

Figure 3l, the solar irradiance is non-linearly related to the proton pressure, but a general trend of 

decrease of the proton pressures with the F10.7 is visible.  

For the parameters related to the geomagnetic activity, we used AE index and SYM-H index. The 

auroral electrojet index (AE index) provides a global, quantitative measure of auroral zone magnetic 

activity within the auroral oval. The proton pressures are related roughly linear up to ~ 600nT with the 

logarithm of the AE index in Figure 3m. SYM-H index describes symmetric horizontal component 

disturbances of the geomagnetic field at the equatorial regions (Iyemori et al., 2010). SYM-H index, 



shows non-linear relation with proton pressures, see Figure 3n. The histograms of the number of 

samples of all these predictors are shown in Figure 12 in Appendix. 

2.2.3 Cross-correlations between Proton Pressures and Predictors 

In Figure 4, we show the Pearson linear correlations between proton pressures and the predictors. 

This measurement can only reflect a linear correlation of variables, and ignore other types of 

correlations. The range of this correlation value is from -1 to 1. Values close to -1/1 mean perfect linear 

anticorrelation/correlation and values equal to 0 mean there is no linear dependency between the 

variables. The proton pressures are well anticorrelated with the L* shell (-0.51), in agreement with 

Figure 3a. For the XGSE and ZGSE location of observation, they also show some anticorrelation with 

the proton pressures, -0.21 and -0.14, respectively. From the OMNI parameters, the proton pressures are 

best linearly correlated with the solar wind dynamic pressure, 0.23. The AE-index also shows some 

correlation with proton pressures (0.16), the same as the result in Figure 3. 

3. Methodology 

3.1 Data Split 

After the data processing as we mentioned in Section 2.1, the full dataset we used comprises in 

total 336481 measurements from 2001-02-04 12:31:00 UT to 2018-02-18 00:02:00 UT. We split the 

dataset into a training set (80%) and a test set (20%). To prevent test leakage, we split the data by a time 

point with the original order preserved (Camporeale, 2019; Kronberg et al., 2021). The test set is only 

for the testing of the model. After the model training has been completed, no further changes to the 

model can be made. We utilize the training set to train and optimize the model hyperparameters. The 

sizes and periods of data subsets after splitting are listed in Table 2.  

Machine Learning algorithms don’t perform well when the input numerical features have very 

different scales. Thus, we need to normalize the features in order to get all the features to have the same 

scale (Géron, 2019). We normalized the features by QuantileTransformer in sklearn (Pedregosa et al., 

2011). QuantileTransformer provides a non-parametric transformation to map the data to a uniform 

distribution with values between 0 and 1. This transformation smooths out unusual distributions and is 



less influenced by outliers than other methods (Pedregosa et al., 2011).  

3.2 Machine Learning Models for Proton Pressures 

Our study is one of the typical supervised learning tasks, called regression. We have applied various 

kinds of regression ML models in order to select the best one based on their validation performance. We 

note that most of the relations between the proton pressures and the predictors are not perfectly linear, 

as shown in Figure 3. In addition, the ensemble of the predictions of a group of predictors (such as 

regressors) will often give better predictions than with the best individual predictor (Géron, 2019). Thus, 

we not only tried linear regression models, but also ensemble regression models.  

We have examined the following linear models in sklearn.linear_model and sklearn.svm (Pedregosa 

et al., 2011): (1) Ridge Regression, namely linear least squares with l2 regularization (Hoerl & Kennard, 

1970); (2) Least Angle Regression (LARS) (Efron et al., 2004); (3) Linear Support Vector Regression 

(LinearSVR) (Cortes & Vapnik, 1995).  

We also consider the Decision Trees Regression (Breiman et al., 1984) in sklearn.tree and the tree-

based ensemble models: (1) Random Forest Regression (Ho, 1995); (2) Extra Trees Regression, namely 

extremely randomized trees (Geurts et al., 2006); (3) AdaBoost Regression (Freund & Schapire, 1997); 

(4) Gradient Boosting Regression (Friedman, 2001); (5) Histogram-Based Gradient Boosting 

Regression ((1)-(5) are all from sklearn.ensemble); (6) Light Gradient Boosting Machines (LGBM) (Ke 

et al., 2017) in LightGBM library. 

In order to evaluate different models’ performances, we focus on the Spearman correlation. The 

Spearman correlations between the model results and the observations are listed in Table 3. Pearson 

correlation only assesses linear relationships as we discussed in Figure 4, while Spearman correlation 

assesses monotonic relationships (whether linear or not). The values of the Spearman correlation vary 

between -1 and 1. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations 

imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. Values 

close to 0 means no monotonically correlation. In Table 3, we can note that the Extra-Trees Regressor 

has shown the best predicting performance on the both sets. Although the Decision Tree Regressor also 



has a perfect performance on the train/validation set, it seems to be more inclined to the overfitting (the 

difference between the scores for the train/validation set and test set are larger). In addition, note that a 

gap between model performance on training and test data is often observed for complex models 

(Kronberg et al., 2021). Extra-Trees Regressor fits a large amount of randomized decision trees on the 

training dataset and uses the mean to improve the predictive accuracy and control overfitting. It has two 

main differences with other tree-based ensemble methods: (1) it splits nodes by choosing cut-points fully 

at random. That is, besides searching for the best feature among a random subset of features, like the 

regular Random Forests, it also utilizes random thresholds for each feature rather than searching for the 

best possible thresholds. (2) it uses the whole learning sample (rather than a bootstrap replica) to grow 

the trees (Géron, 2019; Geurts et al., 2006). These characteristics can result a lower variance and a faster 

training speed (compared with regular Random Forests). Thus, we decided to use Extra-Trees Regressor. 

3.3 Training the selected model 

We trained the model using the K-Fold cross-validation (CV) function (from 

sklearn.model_selection.KFold). This method is widely used in previous work (e.g., Kronberg et al., 

2020; A. Smirnov et al., 2020). Our training data are divided into K subsets (folds) which are roughly 

the same size. In our case, K =5. Then each fold is used once as a validation while the 4 remaining folds 

form the train set. In this way, splitting process is repeated 5 times and results in five arrays of evaluation 

scores. Cross-validation allows one to get not only an estimate of the performance of the model, but also 

a measure of how precise this estimate is (Géron, 2019). 

In order to determine the best hyperparameters, the parameters are optimized by grid-search over a 

parameter grid, using GridSearchCV (from sklearn.model_selection.GridSearchCV). To evaluate the 

performance of the training and validation during the cross-validation for different parameters, we use 

four assessment metrics: Spearman correlation, mean squared error (MSE), mean absolute error (MAE), 

and coefficient of determination (R2). The best scores for MSE and MSE are close to 0. R2 is a number 

between 0 and 1 that measures how well a statistical model predicts an outcome. That is, comparing the 

case of using the model for prediction with the case of only using the mean prediction, to see how much 

the performance of the model has been improved. In the perfect case, R2 is equal to 1. The resulting 

https://www.scribbr.com/frequently-asked-questions/what-is-a-model/


hyperparameters values, as well as their search ranges, are given in Table 4. The performances of the 

model for the train/validation data set are mostly consistent between different metrics. n_estimators 

controls the number of trees in the forest. It will be underfitting when n_estimators is too small, while it 

will be overfitting when n_estimators is too large. max_depth is the maximum depth of the tree. If 

max_depth=None, then nodes are expanded until all leaves are pure or until all leaves contain less than 

min_samples_split samples. min_samples_split is the minimum number of samples required to split an 

internal node. We use the default value 2 for min_samples_split. Another important parameter we 

optimized is the minimum number of data points in leaf (min_data_in_leaf), which has a regularization 

effect and stops the model from learning the noise. 

4. Results 

4.1 Test the model 

The final scores are the average performances of the model for the train/validation data set, see 

Table 5. The values of the Spearman correlation coefficient are very close for the test data (0.68) and 

the average validation (0.71). The mean squared (MSE) and absolute errors (MAE) also yield almost 

identical values for validation and test sets. This means that our model is not overfitting and successfully 

learns relationships between the input parameters and the resulting proton pressures and generalizes well 

onto the unseen data.  

The Spearman correlation between the observed and predicted data is about 68% for the test set. 

This value is reasonable considering the complex dynamics of the energetic protons in the inner 

magnetosphere. In addition, when we use the Spearman correlation to evaluate our model, there is a null 

hypothesis states that the predictions are uncorrelated to the observations (evaluated by p value). We 

obtain p=0. In other words, we can reject the null hypothesis, namely the model predictions are correlated 

to the observations. Thus, our model results are reliable and can learn the overall trend in the proton 

pressures.  

4.2 Visualized Results 

Figure 5a shows the distribution of the observed proton plasma pressures versus the predicted 

values from the training set, while Figure 6a represents the test set distribution. Observed and predicted 



data for the training and test data sets agree relatively well. The diagonal shows the one-to-one ratio 

between the observed and predicted pressures. The data is mainly concentrated along the black dashed 

line, corresponding to a good correlation. The histograms in Figures 5a and 6a represent the predicted 

or observed data points that fall into each corresponding bin. Figures 5b and 6b provides the histogram 

of model residuals. From these figures, we can note that for both the training set and the test set, our 

model has very low bias. Most of the model residuals are within the range of ±0.5, namely the ratios of 

observations and predictions are valued in ~0.3-~3 (10-0.5-100.5). Therefore, we can conclude that our 

final model predicts the proton pressures at L*=5-9 well since it has low bias and can capture the general 

trends represented in the data.  

In Figure 7, we show a qualitative example of the model’s predictions within the 6-hour time 

interval on 2017-07-04 (in the test set) under quiet geomagnetic conditions (SYM_H>-1). The model 

almost predicts the same proton plasma pressures with the observations in Figure 7c. Figure 8 shows 

another example on 2017-09-28 (in the test set) which demonstrates the model performance during the 

main phase of a magnetic storm with the SYM-H index dropping down to ~-68nT. We can note in the 

panel c that the predictions are almost always lower than the observations under disturbed geomagnetic 

conditions. This is because the main phases of the magnetic storms are rather rare events in our dataset. 

Our model is not developed specifically for the prediction of the proton pressures under disturbed 

geomagnetic conditions. The ML model of soft proton intensities by Kronberg et al. (2021) also has 

better prediction efficiency under quiet geomagnetic conditions.  

We also plot the distributions of the predicted proton plasma pressures in L*-MLT coordinates 

under quiet (Figure 7d) and disturbed geomagnetic conditions (Figure 8d). The input predictors are the 

median values of the parameters over the time period (except the location parameters: X/Y/Z_GSE, L* 

value and MLT) in the purple region in Figures 7 and 8. The details of the input predictors are listed in 

Table 6 in the Appendix. For calculations of L* values, it is necessary to specify the satellite position, 

magnetic field model and geomagnetic conditions (by 'get_Lstar' function in IRBEM library). The initial 

position range we give in each direction is [-11, 11] RE in the GSE system, which is consistent with the 

X/Y/Z_GSE range of our observation dataset. Tsyganenko-89 magnetospheric model, T89 (Tsyganenko, 



1989) with Kp index as an input is employed, as Smirnov et al. (2020) did. The Kp index for quiet 

geomagnetic times is set as 0, while for disturbed geomagnetic times is set as 4. The time moments 

indicated by the red dotted lines in Figures 7 and 8 are specified for the calculations of MLTs. All of the 

calculations are performed using the spacepy.irbempy library ('get_Lstar' function). Finally, we select 

the data points that fit the range of L*=5-9 from the output results for plotting Figures 7d and 8d.  

We can note that there are no results when L*>~8 under disturbed geomagnetic conditions in Figure 

8d. L* is the property of a stably trapped particle. A pseudo-trapped particle (particles that will leave the 

magnetosphere before completing a 180◦
 drift) that drifts into the magnetopause (magnetopause 

shadowing) or into the tail (tail-shadowing) does not have an L*-value (Roederer, 1967; Roederer & 

Lejosne, 2018). The particles are easier become pseudo-trapped particles and to be lost during disturbed 

times (Roederer & Lejosne, 2018) since the magnetosphere is compressed based on T89 model 

(Tsyganenko, 1989).  

From the predictions in Figure 7d and 8d, we can note the dusk-dawn asymmetry at the dayside 

with higher proton pressures at the dusk side and the day-night asymmetry with higher proton pressures 

at the night side. In regard of the day-night asymmetry under quiet geomagnetic conditions in Figure 

7d we consider the higher L* shells (L*>6). In addition, we can note that the proton pressures at the 

nightside under disturbed geomagnetic conditions seem to be higher than that under quiet geomagnetic 

conditions. The proton pressures at the afternoon sector (12-18MLT) under quiet geomagnetic conditions 

seem to be higher than that under disturbed geomagnetic conditions. A quantitative analysis of this 

phenomenon and the reasons for these asymmetries will be discussed in Section 5.  

The plotting process of Figure 9b is the same as that of Figures 7d and 8d, except that the input 

predictors are the median values of the parameters over the whole dataset time. The details of the input 

predictors are listed in Table 6 in the Appendix. The Kp index is set as 0. The Figure 9a and Figure 2a 

is the same figure, namely the distribution of the observed H+ plasma pressures over the whole dataset 

time. In Figure 9b, we can note the dusk-dawn asymmetry at the dayside and the day-night asymmetry, 

just as the observations in Figure 9a. By comparing the results of observations (Figure 9a) and 

predictions by our model (Figure 9b) based on the whole dataset, we can conclude that our model can 



reproduce the overall characteristics of the distributions of observed proton plasma pressures in the range 

of L*=5-9. 

4.3 Feature Importance 

One of the advantages of the tree-based machine learning models is that they make it easy to 

measure the relative importance of each feature (Géron, 2019). Scores are automatically computed for 

each feature after training. The values of all the feature importances sum to 1. This process is called 

feature importance. The importance of a feature is computed as the (normalized) total reduction of the 

criterion brought by that feature, also known as the Gini importance. The higher the value, the more 

important the feature is. Figure 10 shows the feature importance for each input variable. The black 

horizontal lines represent confidence intervals at 95% confidence level. The parameters related to the 

location show significantly higher importance than parameters related to solar, solar wind, and 

geomagnetic activity. From those, on average, the strongest dependence is seen for L* shell. This is also 

consistent with the results in Figures 3a and 4. The least important location parameter is y_gse. From 

the other parameters, the solar wind dynamic pressure is the most important parameter for predicting the 

proton plasma pressures. Based on the observations of multiple satellites, Stepanova et al. (2019) also 

found that the plasma pressure inside the magnetosphere is mainly controlled by the solar wind dynamic 

pressure, which can be related to the pressure balance at the magnetospheric flanks.  

5. Discussions 

Based on the observations and predictions by our model under quiet (Figure 7) and disturbed 

(Figure 8) geomagnetic conditions, we note that no matter under quiet or disturbed geomagnetic 

conditions, both the dusk-dawn asymmetry at the dayside and the day-night asymmetry occur. The 

persistent dusk-dawn asymmetry with higher proton pressures at the duskside may be related to the 

dawn-dusk asymmetry of the proton distribution in the plasma sheet. Based on 7-years observations of 

energetic protons >274 keV by RAPID instrument, Kronberg et al. (2015b) showed the dawn-dusk 

asymmetries of proton intensities in the plasma sheet at near-Earth nightside under both quiet and 

disturbed geomagnetic conditions. They also explained two general effects which can lead to this kind 

of dawn-dusk asymmetry. In addition, other previous work also reported dawn-dusk asymmetries in the 



plasma sheet of energetic particles intensities with different energy ranges (Meng et al., 1981; 

Sarafopoulos et al., 2001; Kistler & Mouikis, 2016).  

The day-night asymmetry is easy to understand because ions are injected into the inner 

magnetosphere through the plasma sheet at the nightside, especially during the magnetic storms or 

substorms (Kistler et al., 1992). Gabrielse et al. (2014) indicated that injection occurrence rates increase 

with the geomagnetic activity. This may also be the reason for the higher proton pressures at the nightside 

under disturbed geomagnetic conditions as we shown above. For further quantitative analysis of this 

phenomenon, Figure 11 was plotted to investigate the difference between the proton plasma pressure 

under disturbed and quiet geomagnetic conditions. The red colors are positive values which means that 

the proton pressures are higher under disturbed geomagnetic conditions than under quiet geomagnetic 

conditions, while the blue colors are the opposite. The difference was calculated by the predictions of 

our model (Figures 7d and 8d). In Figure 11, we can note that the proton pressures at the nightside 

under disturbed geomagnetic conditions are clearly higher than that under quiet geomagnetic conditions. 

In addition, more red bins are seen at the lower L* shells (L*=5-6) than at the higher L* shells (L*>6) 

at the nightside, which means that there are higher increases in the plasma pressures at the lower L* 

shells (L*=5-6) during disturbed times. This is consistent with the results of Figure 6b in Gabrielse et al. 

(2014). Namely, injections more frequently reach lower L-shells with increased geomagnetic activity. 

This can also be the reason why the day-night asymmetry under quiet geomagnetic conditions in Figure 

7d mainly concentrates on the higher L* shells (L*>6).  

In addition, the proton pressures at 12-18MLT sector (afternoonside) under disturbed geomagnetic 

conditions are clearly lower than that under quiet geomagnetic conditions. This may be related to the 

outflow of energetic ions through the magnetopause in the dayside under disturbed geomagnetic 

conditions. Keika et al. (2005) showed that the outflowing energy flux is higher on the afternoonside 

than that on the morningside during the main phase of magnetic storms, which may lead to the lower 

proton pressures on the afternoonside under disturbed geomagnetic conditions. Estimation of a 

comparison between the losses at the magnetopause and the difference between the proton plasma 

pressure on the afternoonside under disturbed and quiet geomagnetic conditions requires further studies. 



Thus, we can deduce that the patterns of the asymmetries may change with the geomagnetic conditions. 

However, a more detailed calculation of the asymmetry index (e.g., Luo et al.,2017) separately for the 

quiet and the disturbed time is beyond the scope of this paper and will be further studied in the future.  

6. Conclusions 

In this study, based on 17-year data from both CIS and RAPID instruments onboard the Cluster mission, 

we derive a machine-learning-based model for predicting proton pressures at energies from ~40eV to 

4MeV at the outer part of the 3D inner magnetosphere (L*=5-9). The results demonstrate that the Extra-

Trees Regressor shows the best predicting performance. The Spearman correlation between the observed 

and predicted data is about 68% despite the complex dynamics of the energetic protons in the 

magnetosphere. The most important parameter for predicting proton pressures in our model is the L* 

shell, related to the location. The most important predictor of solar, solar wind, and geomagnetic activity 

is the solar wind dynamic pressure. The model results are in general agreement with the previous studies 

(De Michelis et al., 2013; Lui & Hamilton, 1992; Stepanova et al., 2019). In addition, we use the model 

prediction to compare and explain the distributions of the proton plasma pressures under different 

geomagnetic conditions. Moreover, as we discussed in the introduction, our results can be used in the 

simulations of the inner magnetosphere (e.g., HEIDI model) or reconstructing the 3-D electric current 

system. It can also provide valuable guidance to the space weather forecast.  

Further directions for the present study include, first, incorporating oxygen ions data into the model 

in order to predict the complete 3D distribution of ion plasma pressures in the outer part of the inner 

magnetosphere. Second, a machine-learning-based model for predicting the 3-D ion pressures in the 

inner part of the inner magnetosphere (L*=2-5). This aim can be achieved by using data from other 

missions, such as Van Allen Probes. The results of the model for the ion pressures in the inner part of 

the magnetosphere will be compared with the results of this model. In addition, we can combine these 

two models together to predict the 3-D ion pressures in the complete inner magnetosphere (L*=2-9).  
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