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Abstract

The Tropical cyclone (TC) forecast skill of the eight global medium-range forecast models which are participating in the

DIMOSIC (DIfferent Models, Same Initial Conditions) project is investigated in this study. Each model was used to generate

10-day forecasts from the same initial conditions provided by the European Centre for Medium-Range Weather Forecasts.

There are a total of 123 initial dates spanning in one year from June 2018 to June 2019 with a 3-day interval. The TC

track and intensity forecasts are evaluated against the best track dataset. TC-related precipitation and tropical cyclogenesis

forecasts are also compared to explore the differences and similarities of TC forecasts across the models. This comparison of

TC forecasts allows model developers in different centers to benchmark their model against other models, with the impact of

the initial condition quality removed. The verifications reveal that most models show slow-moving and right-of-track biases in

their TC track forecasts. Also, a common dry bias in TC-related precipitation indicates a general deficiency in TC intensity and

convection in the models which should be related to insufficient model resolution. These findings provide important references

for future model developments.
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Key Points: 16 

 Tropical cyclone forecasts are compared between global medium-range models from 17 

leading modeling centers initialized with identical data.  18 

 Similarities and differences between the models set a benchmark of TC forecast with the 19 

impact of the initial condition quality removed.  20 

 Common TC forecast biases indicate general deficiencies in the models and suggest a 21 

direction for further model improvement.  22 
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Abstract 23 

The Tropical cyclone (TC) forecast skill of the eight global medium-range forecast models 24 

which are participating in the DIMOSIC (DIfferent Models, Same Initial Conditions) project is 25 

investigated in this study. Each model was used to generate 10-day forecasts from the same 26 

initial conditions provided by the European Centre for Medium-Range Weather Forecasts. There 27 

are a total of 123 initial dates spanning in one year from June 2018 to June 2019 with a 3-day 28 

interval. The TC track and intensity forecasts are evaluated against the best track dataset.  TC-29 

related precipitation and tropical cyclogenesis forecasts are also compared to explore the 30 

differences and similarities of TC forecasts across the models. This comparison of TC forecasts 31 

allows model developers in different centers to benchmark their model against other models, 32 

with the impact of the initial condition quality removed. The verifications reveal that most 33 

models show slow-moving and right-of-track biases in their TC track forecasts. Also, a common 34 

dry bias in TC-related precipitation indicates a general deficiency in TC intensity and convection 35 

in the models which should be related to insufficient model resolution. These findings provide 36 

important references for future model developments.  37 

 38 

Plain Language Summary 39 

Despite recent improvements in our ability to predict the track and intensity of tropical cyclones, 40 

these storms remain significant forecasting challenges.  Forecasters rely heavily on the guidance 41 

generated by numerical weather prediction systems, making the reliability of these systems 42 

essential for accurate forecasts during these high-impact weather events.  As a result, 43 

improvement the quality of tropical cyclone guidance is an important numerical model 44 

development objective. In this study, the TC forecast skills in the eight global medium-range 45 

forecast models from the model development centers/institutes who participated in the 46 

DIMOSIC (DIfferent Models, Same Initial Conditions) project are examined. All models were 47 

initialized from the same data provided by the ECMWF (European Centre for Medium-Range 48 

Weather Forecasts) to investigate the differences and similarities among their TC forecasts 49 

without the impact of the quality of initial conditions.  Besides the general TC forecast 50 

evaluation metrics including errors and biases of the track and intensity, the TC-related 51 

precipitation and TC genesis skills are also evaluated to comprehensively explore the 52 

performance of TC forecasts among all models. The comparison allows model developers in 53 

different centers to benchmark their model against other participating models. Moreover, the 54 

verification results provide important references for future model developments. 55 

 56 

1 Introduction 57 

Tropical cyclone (TC) prediction is an important mission for weather and climate 58 

agencies in many countries. Over the past few decades, numerical models have become the most 59 

important tools for operational centers to make TC forecasts on weather and sub-seasonal to 60 

seasonal time scales. Therefore, improving the model performance of TC forecasts has been one 61 

of the leading tasks in most operational centers or modeling research institutes working on model 62 

development. In addition, the accurate depiction of physical processes that lead to a better TC 63 
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forecast in the model are also relevant to interesting scientific questions in the atmospheric 64 

science research area more broadly. 65 

The quality of initial conditions has a leading impact on short- to medium-range forecast 66 

skill, including for TC forecasts. In Chen et al. (2019a), the fvGFS (finite volume Global 67 

Forecasting System) model developed at the Geophysical Fluid Dynamics Laboratory (GFDL) 68 

initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated 69 

Forecasting System (IFS) data showed much-improved TC track forecasts for the 2017 Atlantic 70 

hurricane season compared to its retrospective forecasts initialized with the data from the 71 

National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) version 72 

14. In Magnusson et al. (2019), the same approach was used, comparing the GFDL fvGFS model 73 

forecasts to those from the IFS and GFS. The results showed that the choice of initial conditions 74 

clearly dominated the forecast quality in the medium-range predictions, but that the model 75 

formulation could also play a significant role. 76 

Since major model development centers mostly develop their modeling systems 77 

independently, the DIMOSIC project (DIfferent Models, Same Initial Conditions; Magnusson et 78 

al. 2022) was devised to investigate the relationship between the choice of model formulation 79 

and forecast quality. Models developed by different world-leading modeling centers were 80 

initialized from the same initial condition. In Magnusson et al. (2022), the differences and 81 

similarities of the forecasts among the models were presented. The results found that some pairs 82 

of models behaved more similarly than other pairs due to their sharing of partial physical 83 

parameterizations, e.g. ECWMF IFS and DWD (Deutsche Wetterdienst) ICON (Icosahedral 84 

Non-hydrostatic Model). On the other hand, ICON and GFDL SHiELD (System for High-85 

Resolution Prediction on Earth-to-Local Domains) showed relatively large forecast differences, 86 

while both ranking among the best models. Regarding the influences from model formulations 87 

on the forecasts, however, it was difficult to point out a single model component that had the 88 

strongest impact on the forecast differences. Also, as pointed out by Magnusson et al. (2022) the 89 

interaction between different model parameterizations and their respective configurations could 90 

play a significant role as well. 91 

In this study, the performance of TC forecasts from the DIMOSIC models is evaluated. 92 

The TC track and intensity forecast skills among the models during the period of June 2018 to 93 

June 2019 are compared. Since TC intensity in interpolated data does not reflect the actual TC 94 

intensity at the native model resolution, the TC-related precipitation are also evaluated to provide 95 

another perspective on forecasted TC activities for better exploring the differences and 96 

similarities among the models. Also, the forecast skill of TC genesis was investigated by 97 

comparing the hit/false alarm ratios among the models, as well as using the method based on the 98 

lengths of TC genesis lead time introduced in Chen et al. (2019b) to examine the accuracy of TC 99 

genesis timing in the model forecasts. These comparisons should be valuable for model 100 

developers in different centers to benchmark their model’s performance on TC forecasts against 101 

that of other models, with the impact of the initial condition quality removed. 102 

The models participating in the DIMOSIC project are introduced in section 2 which also 103 

describes the observation data and methodology used in this study. The comparisons of track, 104 

intensity, TC-related precipitation, and genesis forecasts among the models are contained in 105 

section 3. Summary and discussion are presented in section 4. 106 
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2 DIMOSIC models, forecasts, and verification data 107 

General information on the numerical models and their developing centers/institutes 108 

participating in the DIMOSIC project are listed in Table 1. The horizontal resolutions and the 109 

number of vertical levels of the models and their key references are included. Some 110 

centers/institutes submitted more than one model configurations to the project, but we only 111 

investigate one configuration of the model for each center/institute based on their suggestions. 112 

The only exception is to include two versions of IFS 45R1 and 47R3, to provide an example of 113 

the incremental change obtained for an upgrade of one model. For the sea surface temperature 114 

evolution in the models, the two IFSs used a partial coupling to the 3D ocean NEMO model 115 

(Mogensen et al. 2017), SHiELD is coupled with a 1D mixed layer ocean model (Pollard et al. 116 

1973), CMC used a thermodynamic mixed layer ocean model (Zeng and Beljaars 2005), and 117 

others used persistent anomalies from the analysis. Other detailed configurations of each model 118 

including dynamical cores and major physical parameterizations can be found in the sub-section 119 

of “Model descriptions” in the section of “Models and data“ and in Table 2 in Magnusson et al. 120 

(2022), but is not repeated in this paper.  121 

Acronyms Models Centers/Institutes Resolution Key references 

ARPEGE 

Action de Recherche Petite Echelle 

Grande Echelle  

(version: 46T1) 

Meteofrance 
5-25 km 

105 levels 
Roehrig et al. (2020) 

CMC 
Global Environmental Multiscale Model 

(GEM) (version: v5.0.2) 

Canadian Meteorological Center 

(CMC) 

15 km 

80 levels 

Girard et al. (2014) 

McTaggart-Cowan et al. (2019) 

ICON 
Icosahedral Non-hydrostatic Model  

(version: April 21) 

Deutsche Wetterdienst  

(DWD) 

13km 

90 levels 
DWD (2022) 

IFS/ 

IFS-47R3 

Integrated Forecasting System  

(versions: 45R1 and 47R3) 

European Centre for Medium-

range Weather Forecasts  

(ECMWF) 

9 km 

137 levels 
ECMWF (2018, 2021) 

JMA 
Global Spectral Model (GSM)  

(version: GSM1705) 

Japan Meteorological Agency 

(JMA) 

20 km 

100 levels 
JMA (2019) 

SHiELD 

System for High-Resolution Prediction on 

Earth-to-Local Domains  

(version: rt2019) 

Geophysical Fluid Dynamics 

Laboratory  

(GFDL) 

13 km 

91 levels 
Harris et al. (2020) 

UM Unified Model UK Met Office 
10 km 

70 levels 
Walters et al. (2019) 

TABLE 1. The eight DIMOSIC models (the ECWMF contributed two IFS configurations). From left to right: model 122 

acronyms, model full names (and versions if applicable), centers/institutes that models belong to, horizontal 123 

resolutions and the number of vertical levels used in the models, and the key references of the models.     124 

All models conducted 10-day forecasts from the same initial conditions:  ECMWF 125 

operational analyses based on the IFS model cycle 45R1 (ECMWF 2018). The 9-km analyses on 126 

137 vertical levels are generated from a 4DVar data assimilation system (Rabier et al. 2000). All 127 

participating institutes received the interpolated data at 0.1 degree for their model initialization. 128 

Detailed procedures for handling the initial conditions in each model are described in section 2c 129 

and Table 3 of Magnusson et al. (2022). 130 

The total 123 forecasts are conducted with initialization dates spanning one year from 131 

June 2018 to June 2019 at 3-day intervals. The 10-day forecast outputs from each model were 132 

interpolated to a common 0.5 degree grid using an average interpolation method available in the 133 

EcCodes/MIR package (https://confluence.ecmwf.int/display/ECC/ecCodes+Home). The GFDL 134 

simpler tracker (Harris et al. 2016) was used with a warm-core criterion to track TCs in the 135 

https://confluence.ecmwf.int/display/ECC/ecCodes+Home
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forecasts of the eight models based on the fields of sea-level pressure, 10-m wind speed, 850-hPa 136 

vorticity, and mean temperature between 500-300 hPa.  137 

There were 109 observed TCs in the DIMOSIC period. Their storm tracks based on the 138 

best track data (b-deck) in Automated Tropical Cyclone Forecast (ATCF) dataset (Miller et al. 139 

1990; Sampson and Schrader 2000) are shown on the map in Fig 1. There were 35 TCs in the 140 

northwest Pacific basin (WPAC), 24 in the northeast Pacific basin (EPAC), and 16 in the North 141 

Atlantic basin (NATL). In the Southern Hemisphere (SHEM), there were 27 TCs in the 142 

combined South Indian Ocean and South Pacific Ocean. Besides the overview of global 143 

analyses, the individual TC forecast skill in the above four major sub-regions will be investigated 144 

and compared with each other in the following sections.  145 

 146 

FIGURE 1. All TCs in the DIMOSIC period. The best tracks are from the ATCF dataset. The numbers of TCs are 147 

indicated in the brackets next to the acronyms of the six regions: WPAC: northwest Pacific basin; EPAC: northeast 148 

Pacific basin; CPAC: north-central Pacific basin; NATL: North Atlantic basin; NIOC: north Indian Ocean; SHEM: 149 

Southern Hemisphere. 150 

The ATCF dataset was used to evaluate the forecast errors of TC track and intensity, and 151 

the skill of TC genesis forecasts in the models at six-hour intervals. For the TC-related 152 

precipitation, the NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE 153 

Retrievals for GPM (IMERG) dataset was used (Hong et al. 2004) for verification. To equally 154 

compare to the model output field of total precipitation, this high-resolution (0.1 degree) satellite 155 

observational dataset was interpolated into 0.5 degree. 156 

 157 

3. Results 158 

3.1 TC track forecasts 159 

The prediction of TC path, or track, is the one of the most important factors for taking 160 

necessary precautions against possible impacts from hurricanes or typhoons. The homogeneous 161 

comparisons of global mean TC track forecast errors along with the forecast lead time at 12-h 162 

intervals are shown in Fig. 2a. The differences among the models are small through the 72-hour 163 

lead time with the exception of CMC which shows a relatively higher error than others. During 164 

the 72 to 120-hour head time, TC track errors diverge into two groups.  The two IFSs, ICON, 165 

SHiELD, and ARPEGE show lower errors than UM, CMC, and JMA. Both versions of IFS show 166 

the lowest TC track errors after the 120-hour lead time all the way to the 168-hour lead time, 167 

followed by ICON and SHiELD. Note that most models are within the 95% confidence levels of 168 

IFS, which means the differences in forecast skills are not statistically significant. To highlight 169 
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the difference between the leading models, Fig. 2b shows the differences in TC track errors of 170 

five of the models compared to the IFS. The newer IFS-47R43 performs slightly better (negative 171 

values in track error differences) or equivalently during the entire 7 days. In the early lead times 172 

(36-84 hours), most of the five models also show slightly better forecasts than IFS. ICON 173 

displays similar (or slightly better) skill to the two IFS versions until the 120-hour lead time. 174 

Both SHiELD and ARPEGE perform very well before the 96-hour lead time. After the 120-hour 175 

lead time, SHiELD shows lower forecast errors than other models except for the two IFSs.  176 

 177 

FIGURE 2. (a) Global mean TC track forecast errors (km) at every 12 hour forecast lead time for IFS (black), IFS-178 

47r3 (red), SHiELD (green), ICON (yellow), UM (blue), CMC (magenta), ARPEGE (grass green), and JMA (light 179 

blue). The 95% confidence levels for IFS are indicated by the gray color shading. Numbers of homogeneous cases 180 

for individual lead times are listed in the brackets at the bottom of each abscissa. Vertical gray dotted lines indicate 181 

72 and 120 hour forecast lead times. (b) Global mean TC track forecast error differences of IFS-47r3 (red), SHiELD 182 

(green), ICON (yellow), UM (blue), and ARPEGE (grass green) comparing to IFS.  183 

Figure 3 shows the 5-day average TC track errors for all models in the entire globe and in 184 

the four major sub-regions individually. For the two IFSs, IFS-47R3 shows lower track errors 185 

than IFS globally and in all major sub-regions. ICON shows competitive low track errors to IFS-186 

47R3 in the WPAC and the SHEM, and a very low track error in the NATL. SHiELD performs 187 

the lowest track error in the EPAC, and low track errors besides the two IFSs and ICON in the 188 

SHEM and the WPAC. However, SHiELD has a much larger track error in the NATL, which 189 

results from the slow moving bias shown in the forecasts of Hurricane Florence and the bias of 190 

direction of motion shown in the forecasts of Hurricane Leslie.  Detailed investigations can be 191 

found in Text S1 and Figs. S1-S3. The performance of the TC track forecast in UM is notable. 192 
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The model shows the lowest track error in the NATL but the largest track error in the EPAC, 193 

while its track errors in the WPAC and the SHEM are also at the high end compared to other 194 

models. JMA performs competitively to IFS-47R3 and ICON in EPAC, but not in other sub-195 

regions. With regard to CMC, it shows larger track errors than other models in most sub-regions 196 

except for in the EPAC during this targeted year. From Fig. 3, we can also see that the globally-197 

averaged track forecast errors among the models is dominated by the errors in the WPAC and the 198 

SHEM since the majority of the TCs were found in these two sub-regions. 199 

 200 

FIGURE 3 Averaged Track errors (km) in globe and 4 sub-regions during the 120-hour lead time for the 8 models. 201 

Abbreviations and colors used for the models are the same as in Fig. 2a. Abbreviations used for the sub-regions on 202 

the abscissa are the same as in Fig. 1.  203 

The sources of track errors can be due to biases either in forecasts of the TC translational 204 

speed or the TC direction of motion. The lower sub-panels in Fig. 4 show the globally averaged 205 

along‐track (AT) errors and cross‐track (CT) errors (perpendicular to the track) for all models. 206 

Both AT and CT errors are calculated as great circle distances. Most of the models start to show 207 

negative AT biases and positive CT biases during 72 to 120-hour lead time, which indicates that 208 

the TC track errors during the later lead times are mostly due to the slow and northward (for an 209 

easterly moving TC) moving biases. In general, UM shows the smallest AT and CT biases 210 

among all models, and the biases of SHiELD take place at longer forecast lead times than other 211 

models.  212 

By the Pythagorean Theorem the square of the total error equals the squares of the AT 213 

and CT errors (Chen et al. 2019a). The squares of total track errors, CT errors, and AT errors are 214 

plotted in upper sub-panels in Fig. 4 to illustrate the proportion of contributions from the AT and 215 

CT errors respectively to the total error. From Figs. 4a,b, we can see that the AT error 216 

contributes more than the CT error to the total track error in the two IFSs, which indicates that 217 

the track errors in the IFSs are dominated by the slow-moving bias (negative AT biases). The 218 

characteristic of the consistently larger AT error square than the CT error square can also be 219 

found in ICON, CMC, and UM, but the differences between their AT and CT error squares are 220 
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smaller than those in the IFSs. SHiELD, ARPEGE, and JMA show relatively closer AT and CT 221 

error squares, especially SHiELD. This indicates that the contributions of the slow and 222 

northward moving biases to the total track errors are similar in these models. For ARPEGE, the 223 

CT error is the dominant track error in late lead times, while the AT error contributes more to the 224 

JMA’s total TC track errors during the 120 to 144-hour lead time.  225 
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 226 

FIGURE 4 Global analyses of along-track (AT) error and cross‐track (CT) error for (a) IFS, (b) IFS-47R3, (c) 227 

ICON, (d) SHiELD, (e) CMC, (f) UM, (g) ARPEGE, and (h) JMA. The squares of total track errors (black), along‐228 

track errors (red), and cross‐track errors (blue) are in the upper panels for each model. The biases of along‐track 229 

(magenta) and cross‐track (light blue) errors are in the lower panels. Numbers of homogeneous cases for each lead 230 

time are listed at the bottom of lower panels.  231 
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It is also found that models have different AT and CT errors in different sub-regions. All 232 

models showed a slow-moving bias and a poleward bias in the NATL and the WPAC, but in the 233 

EPAC, except for JMA, most models show a fast-moving bias. In contrast, there are no 234 

consistently slow or fast moving biases among models in the SHEM. Detailed analyses of AT 235 

and CT errors for all eight models in the four major sub-regions can be found in Text S2 and 236 

Figs. S4-S7.  237 

 238 

3.2 TC intensity forecasts 239 

It has been more challenging to predict TC intensity than track, especially for global 240 

models which usually cannot resolve fine scale interactions between thermal dynamics and 241 

dynamics due to insufficient resolutions. As outlined in Section 2, the 10-day forecast outputs 242 

were interpolated to a common 0.5 degree for each model. Therefore, the model-predicted TC 243 

intensities found by the tracker are underestimated due to the low data resolution. However, it is 244 

still of interest to compare the relative differences of TC intensities among the models for the 245 

interpolated output data. The global mean TC intensity errors and biases based on the maximum 246 

10-m wind speed are presented in Fig. 5a. SHiELD predicts a much stronger TC intensity than 247 

other models, followed by UM and ARPEGE. Figure 5b uses SHiELD as an example to 248 

demonstrate the differences between the TC intensities obtained from the native resolution (13 249 

km grid) outputs and in the interpolated 0.5 degree resolution data. The average differences of 250 

total error and bias are between 3 to 5 ms
-1

.   251 

 252 

FIGURE 5. (a) Global mean TC intensity errors and biases. Upper panel: Absolute error of the maximum 10-m wind 253 

speed (m s
-1

) along with the model forecast lead time for 8 models. Abbreviations and colors used for the models are 254 

the same as in Fig. 2a. The 95% confidence levels for IFS are indicated by the gray color shading. Numbers of 255 

homogeneous cases for individual lead times are listed in the brackets at the bottom. Vertical grey dotted lines 256 

indicate 72 hour and 120 hour lead times. Lower panel: As in the upper panel, but for the bias of the maximum 10-m 257 

wind speed (m s
-1

). (b) As in (a), but for SHiELD native resolution data (black; SHiELD_full) and SHiELD 0.5 258 

degree interpolated data (gray; SHiELD_0.5). The 95% confidence levels for each resolution data are indicated by 259 

the same medium and light transparent grey shading areas, with their overlapping region denoted by dark grey 260 

shading. 261 
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3.3 Forecasts of TC-related precipitation 262 

Since the performance of TC intensity forecasts cannot be fully represented by the 263 

interpolated data, here, the TC-related precipitation is evaluated to provide another perspective 264 

on the forecasted TC characteristics in the models. Using the TC track information, the 265 

precipitation within 350 km of each TC center is used to investigate the TC-related precipitation 266 

for each model. Figure 6 shows the accumulated total precipitation for all TCs during the 267 

DIMOSIC period in each model compared to the Global Precipitation Measurement (GPM) 268 

observational data (Fig. 6a). The comparison shows that all models under-predict the amount of 269 

precipitation, especially in the most active areas of the WPAC and the EPAC. From a broad  270 

visual comparison, UM and SHiELD appear to have produced the highest and lowest amounts of 271 

precipitation among all the models, respectively. This can be confirmed by comparing the 272 

accumulated precipitation of models to the GPM data presented in Fig. 7a. The UM shows a 273 

much larger amount of precipitation than other models, followed by ARPEGE and CMC. In 274 

contrast, SHiELD shows the least TC-related precipitation among all models, except in the 275 

EPAC. The ranks of models are similar in different sub-regions, while the global precipitation 276 

amounts are dominated by those in the WPAC and the SHEM, as expected. 277 

 278 

FIGURE 6. Accumulated TC-related precipitation (unit: mm) for all TCs in the DIMOSIC period in (a) Global 279 

Precipitation Measurement (GPM) observations, (b) IFS, (c) IFS-47R3, (d) ICON, (e) SHiELD, (f) CMC, (g) UM, 280 

(h) ARPEGE, and (i) JMA.  281 
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To more objectively compare the forecasted locations of TC-related precipitation in each 282 

model to the GPM observations, the equitable threat scores (ETSs; Schaefer 1990) are computed. 283 

The ETSs for all TC-related precipitation areas in the four sub-regions for all eight models are 284 

compared in Fig. 7b. Note that although UM shows the closest precipitation amount to the GPM 285 

observation data (Fig. 7a), its ETS (skill) is lower than other models when considering all TC-286 

related precipitation areas. This could be related to its relatively larger track errors (Fig.3) that 287 

cause the displacement of precipitation locations. However, for the areas with at least 300 mm of 288 

accumulated TC-related precipitation, the ETSs of UM are generally higher than those of other 289 

models (Fig. 7c). This is likely due to its relatively better prediction of precipitation amounts 290 

(Fig. 7a). In contrast, SHiELD under-predicts the precipitation amounts, but owing to  its better 291 

track forecast in the EPAC (Fig. 3), it is able to achieve relatively higher ETSs in this sub-region 292 

(Figs. 7b,c). When comparing the two IFSs, Fig. 7 shows that their accumulated precipitation 293 

amounts are similar, but the newer IFS-47R3 generally had higher ETS scores (Figs. 7b,c). 294 

Finally, JMA shows relatively higher ETSs in the WPAC in both categories, while in the NATL, 295 

the highest ETSs in the two categories are achieved by ICON and ARPEGE (Figs. 7b,c).  296 

 297 

FIGURE 7. (a) Global accumulated TC-related precipitation (unit: m) and for the four sub-regions for all TCs in the 298 

DIMOSIC period. The equitable threat scores (ETSs) for (b) all TC-related precipitation areas and (c) the areas with 299 

300 mm and up accumulated TC-related precipitation. The GPM analysis data in (a) is shown in the bars with the 300 

grey checkerboard pattern. Abbreviations and colors used for the models and abbreviations used for the sub-regions 301 

on the abscissa are the same as in Fig. 3. 302 
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 303 

FIGURE 8. Fractions of precipitation events (GPM observations and model forecasts) in each precipitation intensity 304 

bin. (a) 5 bins for precipitation intensities from 0 to 1 mm(6 h)
-1

. (b) four bins for precipitation intensities from 1 to 305 

20 mm(6 h)
-1

. (c) four bins for precipitation intensities from 20 to 300 mm(6 h)
-1

. Abbreviations and colors used for 306 

the model are the same as in Fig. 7. 307 

TC-related precipitation based on different precipitation intensities was also analyzed. 308 

Figure 8 shows the fractions of precipitation events in different precipitation intensity bins. Most 309 

of the models under-predicted light (weaker than 0.5 mm (6 h)
-1

; Fig. 8a) and heavy (stronger 310 

than 50 mm (6 h)
-1

; Fig. 8c) precipitations, but over-predicted medium precipitation events (Fig. 311 

8b). Although SHiELD and UM were able to predicts some heavy precipitation events in the bin 312 

of 100-300 mm (6 h)
-1

, SHiELD significantly over-predicted the events between 1-5 mm (6 h)
-1

. 313 

The SHiELD development team at GFDL will closely examine the precipitation forecasts in the 314 

model in the near future, particularly to better isolate the possible reasons for these excessive 315 

precipitation amounts. 316 

 317 

3.4 Forecasts of TC genesis 318 

When a timeline contains an observed TC genesis, the track and intensity forecasts of the 319 

TC are verified based on the model forecasts initialized at or after the observed TC genesis time. 320 

In contrast, to investigate the models’ performance for TC genesis, the 10-day forecast runs 321 

initialized before the observed TC genesis time which is based on the first “TD (tropical 322 

depression)” recorded in the ATCF best track data are considered. All TCs found by the GFDL 323 

simple tracker in these forecasts but not existing as TCs in the initial conditions for the forecast 324 

are counted as genesis events in the models. If a TC genesis has a track that “matches” an 325 

observed TC track, the genesis case is categorized as a “hit event”. Otherwise, it is a “false 326 

alarm”. The same criteria is used as in Chen et al. (2019b) to judge a model storm was a 327 

successful prediction of an observed genesis event.   328 
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 329 

FIGURE 9. (a) Ratios of hit events to the total number of genesis events and (b) Numbers of total genesis evens 330 

(sum of hit events and false alarms) for all models. Abbreviations and colors used for the models and abbreviations 331 

used for the sub-regions on the abscissa are the same as in Fig. 7. 332 

Figure 9 shows the TC genesis ratios (hits to total predicted genesis events) and the 333 

number of total genesis events for each of the eight models in different regions. The sum of hit 334 

events and false alarms is equal to the number of total forecasted genesis events. We first find 335 

that all models show the highest hit ratios (Fig. 9a) with the fewest total genesis events in the 336 

EPAC. This indicates that models can predict TC genesis more skillfully in the EPAC than in 337 

other sub-regions. In contrast, models show the lowest hit ratios but the largest numbers of total 338 

genesis events in the SHEM, which indicates that models generate more false alarms in this sub-339 

region than in the others. In general, SHiELD demonstrates the highest hit ratios both globally 340 

and in all sub-regions, followed by the two IFSs and ICON. CMC also shows high hit ratios in 341 

the EPAC. UM shows the lowest hit ratios in most regions with the exception of the WPAC.    342 

During the DIMOSIC period, there were 16, 23, 34, and 27 TCs generated in the NATL, 343 

the EPAC, the WPAC, and the SHEM, respectively. However, not all observed TC geneses were 344 

predicted by the models. Figure 10a lists the number of TCs which were completely missed by 345 

models in each sub-region. It shows that JMA missed the genesis of total 30 TCs globally which 346 

is the most among all models. Most TC missed by JMA were in the WPAC and the SHEM. UM 347 

also missed many TC geneses in the EPAC. SHiELD had the least number of missed TCs 348 

globally followed by IFS and CMC. The newer IFS-47R3 missed more TCs than IFS in the 349 

NATL and the EPAC.  350 
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 351 

FIGURE 10. (a) Numbers of missed TCs and (b) miss ratios (%) in the genesis forecasts from the eight models. 352 

Abbreviations and colors used for the models and abbreviations used for the sub-regions on the abscissa are the 353 

same as in Fig. 7. The numbers on the abscissa in (a) indicate the observed TC numbers in each sub-regions.  354 

In the DIMOSIC period, models were initialized every three days. Hence, during the 10 355 

days before an observed TC genesis event, a model could have three or four 10-day forecasts 356 

initialized and these runs are expected to predict this genesis event. Therefore, besides counting 357 

the number of completely missed TCs, the “miss ratio” can be computed as the number of 358 

missing cases compared to the number of expected genesis hit events (Chen et al. 2019b). The 359 

miss ratios for each model in the different sub-regions are shown in Fig. 10b to better revel the 360 

differences among the models. It shows that SHiELD shows the lowest miss ratios generally, 361 

except for in the NATL, while JMA and UM still struggle with relatively high miss ratios 362 

globally. We note that IFS-47R3 shows higher miss ratios than IFS in all sub-regions (Fig. 10b), 363 

including in the WPAC and the SHEM where IFS-47R3 shows the same or fewer numbers of 364 

completely missed TCs than IFS (Fig. 10a).  365 

Following Chen et al. (2019b), beyond the scores of hit events, false alarms, and missing 366 

cases, we also investigate how precisely a model could predict the timing of TC genesis by 367 

comparing the “length of lead time” (see Fig. 8 in Chen et al. 2019b). The observed genesis lead 368 

time (OLT) is defined as the difference in time between the model initial time and the time at 369 

which observed TC genesis occurred. On the other hand, the time span from the model initial 370 

time to the model-predicted TC genesis lead time is referred as the model genesis lead time 371 

(MLT). The differences between the MLT and OLT (DMO) can indicate how accurate a model 372 

is in generating storms at the observed genesis time. If a model-predicted TC genesis occurred 373 

exactly at the observed TC genesis time, the DMO of this hit event is “zero”. A positive DMO 374 

means that the model hit event occurs later than the observed TC genesis time, while negative 375 

DMO values are associated with early initiation of the TC in the model 376 

For each observed TC, it is expected that more than one hit event will happen in the set of 377 

10-day forecasts that cover the observed genesis time. To assess the predictive skill of each 378 

model, we only consider the maximum OLT, corresponding to the integration that identified the 379 

observed TC at the longest lead time. Figure 11a shows the mean values of the maximum OLT 380 

of all observed TCs in the four major sub-regions. In the NATL, both SHiELD and ARPEGE 381 

show a 110-hour OLT which is longer than the OLTs of other models, e.g. 78-hour OLT of UM. 382 

This indicates that SHiELD and ARPEGE could, on average, predict a hit TC genesis event 32 383 
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hours earlier than UM in the NATL. SHiELD also shows the earliest hit events in the EPAC and 384 

the WPAC, while ARPEGE shows the earliest hit events in the SHEM. The models in this study 385 

generally predict hit events earlier in the EPAC than in other sub-regions, except for JMA, which 386 

performs betters in the WPAC and the SHEM than in other sub-regions. It is also interesting to 387 

see that IFS shows earlier hit events than the newer IFS-47R3 in most sub-regions.  388 

 389 

FIGURE 11. (a) Mean values of maximum observed genesis lead time (in hours) of all storms in each sub-region for 390 

the eight models. Abbreviations used for the sub-regions on the abscissa are the same as in Fig. 7. (b) Fractions of 391 

global total hit events in each model that occurred within a certain DMO length. On the abscissa, “0” is for hit 392 

events which happened at the observed genesis time. “Within 6 (12, 24, or 48)” is for hit events with DMO lengths 393 

in 6 (12, 24, or 48) hours. “Early” is for all hit events with negative DMOs and “late” is for all hit evens with 394 

positive DMOs. Abbreviations and colors used for the models in both (a) and (b) are the same as in Fig. 7.  395 

Figure 11b shows the fraction of global total hit events in each model which occurred 396 

within a certain length of DMO (indicated on the abscissa). From the definition of DMO, a 397 

model showing more genesis cases with short DMOs indicates that the model could predict more 398 

accurate genesis timings of its hit events. It can be found that IFS shows the highest fraction 399 

among all of the eight models in the “zero” DMO length category. The results indicate that IFS 400 

shows the highest ratio of its hit events forecasted at the observed TC genesis time among the 401 

models. Besides the two IFSs, JMA and ARPEGE also accurately predict TC genesis timings 402 

within the first three categories (“zero”, “within 6”, and “within 12”) which is the 24-hour 403 

window (12 hours before or after) centered on the observed TC genesis time. In contrast, ICON 404 

shows the smallest fractions in the first three DMO length categories, which implies that the 405 

accuracy of TC genesis timing of ICON is relatively low compared to the other models. 406 

From the result of the “within 48” DMO in Fig. 11b, we can see that more than 89% of 407 

hit events in each of the models occur within the 48 hours before or after the observed TC 408 

genesis time. When comparing the results in the “early” and “late” categories, it is seen that most 409 

models forecast their hit events before the observed TC genesis time, except for JMA. The ratios 410 

of “early” to “late” cases are larger in SHiELD and CMC compared to other models, while the 411 

IFS-47R3 shows relatively even number of cases of hit events generated before or after the 412 

observed TC genesis time.  413 
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4 Summary and Discussion 414 

The DIMOSIC project provides a great opportunity to engage the worldwide community 415 

of medium-range modeling centers on cooperative model research and development. This study 416 

investigated TC forecast skills in the eight participating global medium-range forecast models 417 

during the year-long DIMOSIC period (June 2018 to June 2019). All models conducted 10-day 418 

forecasts from the same initial conditions based on the ECMWF IFS model cycle 45R1. The 419 

horizontal resolutions of the eight models ranged from 5 to 25km, and there were different 420 

choices of dynamical cores and physics parameterizations across the models (Magnusson et al. 421 

2022). The forecast skills of TC track and intensity have been presented for the eight models. 422 

The TC-related precipitation and the performance of TC genesis forecasts have also been 423 

evaluated.  424 

Comparing the model forecasts to the observations for the 109 TCs in the DIMOSIC 425 

period, IFS (45R1) and the updated version IFS-47R3 shows the best global averaged TC track 426 

forecasts, followed by ICON and SHiELD. CMC shows a relatively higher error than others 427 

before the 72-hour lead time. Based on our preliminary investigates, it could be related to the 428 

initializing moisture shock given that the CMC has much moister analyses than IFS which may 429 

induce convection collapses after the initialization with IFS ICs. For the TC track forecasts in 430 

different sub-regions, UM and ICON show the lowest track errors in the NATL, while SHiELD 431 

had the best track forecasts in the EPAC. In the WPAC and the SHEM, both IFS-47R3 and 432 

ICON show the lowest TC track errors, followed by SHiELD. From the analyses of along-track 433 

(AT) and cross-track (CT) errors, the models behave differently in different sub-regions. All 434 

models showed a slow-moving bias and a poleward bias in the NATL and the WPAC, but in the 435 

EPAC, except for JMA, most models show a fast-moving bias. In contrast, there are no 436 

consistently slow- or fast-moving biases among models in the SHEM.  437 

For TC intensity forecasts, based on the TC tracker results using the interpolated 0.5 438 

degree resolution data, SHiELD performs relatively better than other models, followed by UM 439 

and ARPEGE. From Table 2, we can see that the resolutions of the models range between 5 and 440 

25 km, and the resolution of SHiELD is in the middle of that range. Therefore, the outperforming 441 

TC intensity by SHiELD may imply that the resolution is not the only major factor limiting TC 442 

intensity in global models. The use of dynamics and physics in the model also plays important 443 

role. The performance of TC track and intensity forecasts could reveal some of the 444 

characteristics of a model especially related to its dynamics and physics interactions. In Chen et 445 

al. (2019b), it has been demonstrated that updating the GFS dynamical core to the nonhydrostatic 446 

FV3 (Lin 2004; Putman and Lin 2007; Harris et al. 2020) can largely improve TC intensity 447 

forecasts, and additional improvements in TC intensity and genesis forecasts were seen when 448 

replacing the Zhao-Carr cloud microphysics scheme with the advanced GFDL cloud 449 

microphysics scheme (Zhou et al. 2019).  450 

Here, we attempt to probe into the characteristics of the models based on their biases of 451 

TC track and intensity. Figure 12 shows the scatter plots of TC track and intensity errors for all 452 

of the forecasts during the 72-120-hour lead time in each model. Some similarities can be found 453 

in the scattered distributions of the two IFSs and ICON, including both ranges of intensity bias 454 

and track error. This is consistent with the findings in Magnusson et al. (2022) that IFS and 455 

ICON behave relatively similarly due to the sharing of partial physical parameterizations sharing 456 

between ECWMF and DWD. In contrast, SHiELD, ARPEGE, and JMA show rather unique 457 

patterns their own.  458 
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 459 

FIGURE 12. Scatter plot distribution of track errors (unit: km; ordinate) and intensity biases (the maximum 10-m 460 

wind speed; unit: m s
-1

; abscissa) of all forecasts during the lead time of 72-120 hour for (a) IFS, (b) IFS-47r3, (c) 461 

ICON, (d ) SHiELD, (e) CMC, (f) UM, (g) ARPEGE, and (h) JMA.  462 

Figure 12 also shows that in most models, forecasts with larger track error (>700 km) are 463 

usually accompanied by smaller intensity biases (<10 ms
-1

). In contrast, for those forecasts with 464 

larger intensity biases, their track errors are not consistently larger. At GFDL, it has been noticed 465 

that when the performance of TC track forecasts was improved by using an advection scheme 466 

with a stronger damping in the dynamics, a degradation of TC intensity was observed. The two-467 

delta filter in the non-monotonic advection scheme and the monotonicity constraint in the tracer 468 

advection affect the model diffusivity which can also impact the diabatic heating and the location 469 
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of the TC deep convection relative to the eye (Gao et al. 2021). This was attributed to the impact 470 

of stronger damping, which suppresses finer-scale features and activities, e.g. grid-scale 471 

convection in the TCs, which further suppresses the TC intensities. An in-depth study of the 472 

impact of grid-scale convection activity on TC track forecasts in SHiELD is in preparation.  473 

Since the interpolated data cannot fully represent the performance of TC intensity 474 

forecasts in the models, the TC-related precipitation was also evaluated to provide another 475 

perspective on forecasted TC characteristics. Compared to the GPM observation data, all models 476 

under-predict the amount of TC-related precipitation, especially in the Pacific Ocean. UM better 477 

captures the regions with annual accumulated TC-related precipitation of more than 300mm 478 

compared to the other models. However, when considering all TC-related precipitation areas, the 479 

ETS of UM is generally lower than that of other models. This could be related to the relatively 480 

large track errors of UM, especially in the EPAC. In contrast, SHiELD shows the largest dry bias 481 

in TC-related precipitation among all models, but it still achieves relatively high ETSs in the 482 

EPAC due to its better track forecasts in this sub-region. As to the intensity of TC-related 483 

precipitation, most models over-predict medium precipitation events but under-predict light and 484 

heavy precipitation events. Among all models, SHiELD noticeably over-predicts precipitation 485 

events at the intensity of 1-5 mm (6 h)
-1

. The SHiELD development team at GFDL will take a 486 

close look at its low precipitation amount and over-predicted medium intensity precipitation 487 

events in the future. 488 

The assessment of TC genesis forecast skill was based here on hits and misses, measures 489 

that showed significant inter-model variability across the different sub-regions of interest.  All 490 

models show the highest hit ratios with the fewest total genesis events in the EPAC, which 491 

indicates that models can better predict TC genesis in the EPAC. In contrast, models generate 492 

more false alarms in the SHEM. SHiELD shows the highest hit ratios globally, followed by the 493 

two IFSs and ICON. CMC also achieves high hit ratios in the EPAC. In contrast, UM shows 494 

lower hit ratios than other models. As for the missed TC genesis cases, JMA missed 30 of the 495 

100 observed TC geneses during the target period, which is the most among all models. Note that 496 

JMA uses the coarsest model resolution among all participating models, which could impair its 497 

TC genesis performance. In contrast, SHiELD shows the least number of missed TCs globally, 498 

which may be benefiting from its better TC intensity forecast. 499 

We also investigate how well the participating models predict the timing of TC genesis 500 

by comparing the “length of lead time” proposed by Chen et al. (2019b). The results show that 501 

models can generally accurately predict TC formation earlier in the EPAC than in other sub-502 

regions, except for JMA which predicts the WPAC and the SHEM hit events earlier than in other 503 

sub-regions. SHiELD generally predicts the earliest hit events globally, while ARPEGE also 504 

predicts TC genesis events earlier than other models in the NATL and the SHEM. Based on the 505 

differences between the model genesis lead time and the observed genesis lead time, IFS shows 506 

the most accurate timing of the TC genesis forecast, followed by JMA and ARPEGE. In contrast, 507 

the accuracy of genesis timing in ICON is relatively lower than that of other models. We also 508 

found that most models develop TCs earlier than observed in the best track, except for JMA. In 509 

addition, more than 89% of hit events in each of the models occur within 48 hours of the 510 

observed genesis time.  511 

The comparison between IFS (version 45R1) and IFS-47R3 provides an opportunity to 512 

examine the incremental change obtained for an upgrade of one model. The upgrade from 513 

version 45R1 to 47R3 includes many changes in data assimilation and model physics. The 514 
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changes and meteorological impacts have been documented by ECMWF on the website: 515 

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model. One of 516 

the listed impacts from the upgrade is the improvement of TC position errors. From our analysis, 517 

the average track errors during the first 120 hours of IFS-47R3 are 2.5 to 10.8 km less than IFS 518 

(Fig. 3) in the four major sub-regions, which is consistent with the ECMWF implementation 519 

report. However, from the analyses of the along-track and cross-track errors, the biases of slow 520 

and poleward movement are similar in these two model versions. Possibly associated with the 521 

major upgrade to moist physics (Bechtold et al. 2020), IFS-47R3 shows a slightly larger negative 522 

TC intensity biases than the older IFS version which was also found in Magnusson et al. (2021). 523 

Although total precipitation predictions remain similar across the two IFS versions, the newer 524 

IFS-47R3 achieves higher ETS scores for large accumulations, especially in the WPAC and the 525 

SHEM. We also found that IFS-47R3 has more precipitation events with stronger precipitation 526 

intensity (10-50 mm (6 h)
-1

) than IFS. However, as to the TC genesis forecast, IFS-47R3 shows 527 

some degradation from IFS, including more missed TC genesis event, higher miss ratios, shorter 528 

genesis lead times, and less accuracy on TC genesis timing. These degradations in TC genesis 529 

performance may be related to the weaker TC intensities in the newer version.  530 

To summarize, in this study, extensive evaluation was made of the performance of TC 531 

forecasts in the DIMOSIC models based on one year of model predictions initialized with the 532 

same initial conditions. Although it is hard to precisely isolate the influence of individual 533 

components in different model formulations on TC forecast skill in such an overview, the 534 

comparisons based on different evaluation metrics highlight important similarities and 535 

differences between the models. The results will be valuable for model developers in 536 

participating centers as a benchmark of TC forecast skill with the impact of the initial condition 537 

quality removed. Also, common forecast biases of the TC movement and TC-related 538 

precipitations indicate general deficiencies in DIMOSIC models and point out a direction for 539 

model developers for further model improvement.  540 

 541 
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Abstract 23 

The Tropical cyclone (TC) forecast skill of the eight global medium-range forecast models 24 

which are participating in the DIMOSIC (DIfferent Models, Same Initial Conditions) project is 25 

investigated in this study. Each model was used to generate 10-day forecasts from the same 26 

initial conditions provided by the European Centre for Medium-Range Weather Forecasts. There 27 

are a total of 123 initial dates spanning in one year from June 2018 to June 2019 with a 3-day 28 

interval. The TC track and intensity forecasts are evaluated against the best track dataset.  TC-29 

related precipitation and tropical cyclogenesis forecasts are also compared to explore the 30 

differences and similarities of TC forecasts across the models. This comparison of TC forecasts 31 

allows model developers in different centers to benchmark their model against other models, 32 

with the impact of the initial condition quality removed. The verifications reveal that most 33 

models show slow-moving and right-of-track biases in their TC track forecasts. Also, a common 34 

dry bias in TC-related precipitation indicates a general deficiency in TC intensity and convection 35 

in the models which should be related to insufficient model resolution. These findings provide 36 

important references for future model developments.  37 

 38 

Plain Language Summary 39 

Despite recent improvements in our ability to predict the track and intensity of tropical cyclones, 40 

these storms remain significant forecasting challenges.  Forecasters rely heavily on the guidance 41 

generated by numerical weather prediction systems, making the reliability of these systems 42 

essential for accurate forecasts during these high-impact weather events.  As a result, 43 

improvement the quality of tropical cyclone guidance is an important numerical model 44 

development objective. In this study, the TC forecast skills in the eight global medium-range 45 

forecast models from the model development centers/institutes who participated in the 46 

DIMOSIC (DIfferent Models, Same Initial Conditions) project are examined. All models were 47 

initialized from the same data provided by the ECMWF (European Centre for Medium-Range 48 

Weather Forecasts) to investigate the differences and similarities among their TC forecasts 49 

without the impact of the quality of initial conditions.  Besides the general TC forecast 50 

evaluation metrics including errors and biases of the track and intensity, the TC-related 51 

precipitation and TC genesis skills are also evaluated to comprehensively explore the 52 

performance of TC forecasts among all models. The comparison allows model developers in 53 

different centers to benchmark their model against other participating models. Moreover, the 54 

verification results provide important references for future model developments. 55 

 56 

1 Introduction 57 

Tropical cyclone (TC) prediction is an important mission for weather and climate 58 

agencies in many countries. Over the past few decades, numerical models have become the most 59 

important tools for operational centers to make TC forecasts on weather and sub-seasonal to 60 

seasonal time scales. Therefore, improving the model performance of TC forecasts has been one 61 

of the leading tasks in most operational centers or modeling research institutes working on model 62 

development. In addition, the accurate depiction of physical processes that lead to a better TC 63 
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forecast in the model are also relevant to interesting scientific questions in the atmospheric 64 

science research area more broadly. 65 

The quality of initial conditions has a leading impact on short- to medium-range forecast 66 

skill, including for TC forecasts. In Chen et al. (2019a), the fvGFS (finite volume Global 67 

Forecasting System) model developed at the Geophysical Fluid Dynamics Laboratory (GFDL) 68 

initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated 69 

Forecasting System (IFS) data showed much-improved TC track forecasts for the 2017 Atlantic 70 

hurricane season compared to its retrospective forecasts initialized with the data from the 71 

National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) version 72 

14. In Magnusson et al. (2019), the same approach was used, comparing the GFDL fvGFS model 73 

forecasts to those from the IFS and GFS. The results showed that the choice of initial conditions 74 

clearly dominated the forecast quality in the medium-range predictions, but that the model 75 

formulation could also play a significant role. 76 

Since major model development centers mostly develop their modeling systems 77 

independently, the DIMOSIC project (DIfferent Models, Same Initial Conditions; Magnusson et 78 

al. 2022) was devised to investigate the relationship between the choice of model formulation 79 

and forecast quality. Models developed by different world-leading modeling centers were 80 

initialized from the same initial condition. In Magnusson et al. (2022), the differences and 81 

similarities of the forecasts among the models were presented. The results found that some pairs 82 

of models behaved more similarly than other pairs due to their sharing of partial physical 83 

parameterizations, e.g. ECWMF IFS and DWD (Deutsche Wetterdienst) ICON (Icosahedral 84 

Non-hydrostatic Model). On the other hand, ICON and GFDL SHiELD (System for High-85 

Resolution Prediction on Earth-to-Local Domains) showed relatively large forecast differences, 86 

while both ranking among the best models. Regarding the influences from model formulations 87 

on the forecasts, however, it was difficult to point out a single model component that had the 88 

strongest impact on the forecast differences. Also, as pointed out by Magnusson et al. (2022) the 89 

interaction between different model parameterizations and their respective configurations could 90 

play a significant role as well. 91 

In this study, the performance of TC forecasts from the DIMOSIC models is evaluated. 92 

The TC track and intensity forecast skills among the models during the period of June 2018 to 93 

June 2019 are compared. Since TC intensity in interpolated data does not reflect the actual TC 94 

intensity at the native model resolution, the TC-related precipitation are also evaluated to provide 95 

another perspective on forecasted TC activities for better exploring the differences and 96 

similarities among the models. Also, the forecast skill of TC genesis was investigated by 97 

comparing the hit/false alarm ratios among the models, as well as using the method based on the 98 

lengths of TC genesis lead time introduced in Chen et al. (2019b) to examine the accuracy of TC 99 

genesis timing in the model forecasts. These comparisons should be valuable for model 100 

developers in different centers to benchmark their model’s performance on TC forecasts against 101 

that of other models, with the impact of the initial condition quality removed. 102 

The models participating in the DIMOSIC project are introduced in section 2 which also 103 

describes the observation data and methodology used in this study. The comparisons of track, 104 

intensity, TC-related precipitation, and genesis forecasts among the models are contained in 105 

section 3. Summary and discussion are presented in section 4. 106 
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2 DIMOSIC models, forecasts, and verification data 107 

General information on the numerical models and their developing centers/institutes 108 

participating in the DIMOSIC project are listed in Table 1. The horizontal resolutions and the 109 

number of vertical levels of the models and their key references are included. Some 110 

centers/institutes submitted more than one model configurations to the project, but we only 111 

investigate one configuration of the model for each center/institute based on their suggestions. 112 

The only exception is to include two versions of IFS 45R1 and 47R3, to provide an example of 113 

the incremental change obtained for an upgrade of one model. For the sea surface temperature 114 

evolution in the models, the two IFSs used a partial coupling to the 3D ocean NEMO model 115 

(Mogensen et al. 2017), SHiELD is coupled with a 1D mixed layer ocean model (Pollard et al. 116 

1973), CMC used a thermodynamic mixed layer ocean model (Zeng and Beljaars 2005), and 117 

others used persistent anomalies from the analysis. Other detailed configurations of each model 118 

including dynamical cores and major physical parameterizations can be found in the sub-section 119 

of “Model descriptions” in the section of “Models and data“ and in Table 2 in Magnusson et al. 120 

(2022), but is not repeated in this paper.  121 

Acronyms Models Centers/Institutes Resolution Key references 

ARPEGE 

Action de Recherche Petite Echelle 

Grande Echelle  

(version: 46T1) 

Meteofrance 
5-25 km 

105 levels 
Roehrig et al. (2020) 

CMC 
Global Environmental Multiscale Model 

(GEM) (version: v5.0.2) 

Canadian Meteorological Center 

(CMC) 

15 km 

80 levels 

Girard et al. (2014) 

McTaggart-Cowan et al. (2019) 

ICON 
Icosahedral Non-hydrostatic Model  

(version: April 21) 

Deutsche Wetterdienst  

(DWD) 

13km 

90 levels 
DWD (2022) 

IFS/ 

IFS-47R3 

Integrated Forecasting System  

(versions: 45R1 and 47R3) 

European Centre for Medium-

range Weather Forecasts  

(ECMWF) 

9 km 

137 levels 
ECMWF (2018, 2021) 

JMA 
Global Spectral Model (GSM)  

(version: GSM1705) 

Japan Meteorological Agency 

(JMA) 

20 km 

100 levels 
JMA (2019) 

SHiELD 

System for High-Resolution Prediction on 

Earth-to-Local Domains  

(version: rt2019) 

Geophysical Fluid Dynamics 

Laboratory  

(GFDL) 

13 km 

91 levels 
Harris et al. (2020) 

UM Unified Model UK Met Office 
10 km 

70 levels 
Walters et al. (2019) 

TABLE 1. The eight DIMOSIC models (the ECWMF contributed two IFS configurations). From left to right: model 122 

acronyms, model full names (and versions if applicable), centers/institutes that models belong to, horizontal 123 

resolutions and the number of vertical levels used in the models, and the key references of the models.     124 

All models conducted 10-day forecasts from the same initial conditions:  ECMWF 125 

operational analyses based on the IFS model cycle 45R1 (ECMWF 2018). The 9-km analyses on 126 

137 vertical levels are generated from a 4DVar data assimilation system (Rabier et al. 2000). All 127 

participating institutes received the interpolated data at 0.1 degree for their model initialization. 128 

Detailed procedures for handling the initial conditions in each model are described in section 2c 129 

and Table 3 of Magnusson et al. (2022). 130 

The total 123 forecasts are conducted with initialization dates spanning one year from 131 

June 2018 to June 2019 at 3-day intervals. The 10-day forecast outputs from each model were 132 

interpolated to a common 0.5 degree grid using an average interpolation method available in the 133 

EcCodes/MIR package (https://confluence.ecmwf.int/display/ECC/ecCodes+Home). The GFDL 134 

simpler tracker (Harris et al. 2016) was used with a warm-core criterion to track TCs in the 135 

https://confluence.ecmwf.int/display/ECC/ecCodes+Home
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forecasts of the eight models based on the fields of sea-level pressure, 10-m wind speed, 850-hPa 136 

vorticity, and mean temperature between 500-300 hPa.  137 

There were 109 observed TCs in the DIMOSIC period. Their storm tracks based on the 138 

best track data (b-deck) in Automated Tropical Cyclone Forecast (ATCF) dataset (Miller et al. 139 

1990; Sampson and Schrader 2000) are shown on the map in Fig 1. There were 35 TCs in the 140 

northwest Pacific basin (WPAC), 24 in the northeast Pacific basin (EPAC), and 16 in the North 141 

Atlantic basin (NATL). In the Southern Hemisphere (SHEM), there were 27 TCs in the 142 

combined South Indian Ocean and South Pacific Ocean. Besides the overview of global 143 

analyses, the individual TC forecast skill in the above four major sub-regions will be investigated 144 

and compared with each other in the following sections.  145 

 146 

FIGURE 1. All TCs in the DIMOSIC period. The best tracks are from the ATCF dataset. The numbers of TCs are 147 

indicated in the brackets next to the acronyms of the six regions: WPAC: northwest Pacific basin; EPAC: northeast 148 

Pacific basin; CPAC: north-central Pacific basin; NATL: North Atlantic basin; NIOC: north Indian Ocean; SHEM: 149 

Southern Hemisphere. 150 

The ATCF dataset was used to evaluate the forecast errors of TC track and intensity, and 151 

the skill of TC genesis forecasts in the models at six-hour intervals. For the TC-related 152 

precipitation, the NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE 153 

Retrievals for GPM (IMERG) dataset was used (Hong et al. 2004) for verification. To equally 154 

compare to the model output field of total precipitation, this high-resolution (0.1 degree) satellite 155 

observational dataset was interpolated into 0.5 degree. 156 

 157 

3. Results 158 

3.1 TC track forecasts 159 

The prediction of TC path, or track, is the one of the most important factors for taking 160 

necessary precautions against possible impacts from hurricanes or typhoons. The homogeneous 161 

comparisons of global mean TC track forecast errors along with the forecast lead time at 12-h 162 

intervals are shown in Fig. 2a. The differences among the models are small through the 72-hour 163 

lead time with the exception of CMC which shows a relatively higher error than others. During 164 

the 72 to 120-hour head time, TC track errors diverge into two groups.  The two IFSs, ICON, 165 

SHiELD, and ARPEGE show lower errors than UM, CMC, and JMA. Both versions of IFS show 166 

the lowest TC track errors after the 120-hour lead time all the way to the 168-hour lead time, 167 

followed by ICON and SHiELD. Note that most models are within the 95% confidence levels of 168 

IFS, which means the differences in forecast skills are not statistically significant. To highlight 169 
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the difference between the leading models, Fig. 2b shows the differences in TC track errors of 170 

five of the models compared to the IFS. The newer IFS-47R43 performs slightly better (negative 171 

values in track error differences) or equivalently during the entire 7 days. In the early lead times 172 

(36-84 hours), most of the five models also show slightly better forecasts than IFS. ICON 173 

displays similar (or slightly better) skill to the two IFS versions until the 120-hour lead time. 174 

Both SHiELD and ARPEGE perform very well before the 96-hour lead time. After the 120-hour 175 

lead time, SHiELD shows lower forecast errors than other models except for the two IFSs.  176 

 177 

FIGURE 2. (a) Global mean TC track forecast errors (km) at every 12 hour forecast lead time for IFS (black), IFS-178 

47r3 (red), SHiELD (green), ICON (yellow), UM (blue), CMC (magenta), ARPEGE (grass green), and JMA (light 179 

blue). The 95% confidence levels for IFS are indicated by the gray color shading. Numbers of homogeneous cases 180 

for individual lead times are listed in the brackets at the bottom of each abscissa. Vertical gray dotted lines indicate 181 

72 and 120 hour forecast lead times. (b) Global mean TC track forecast error differences of IFS-47r3 (red), SHiELD 182 

(green), ICON (yellow), UM (blue), and ARPEGE (grass green) comparing to IFS.  183 

Figure 3 shows the 5-day average TC track errors for all models in the entire globe and in 184 

the four major sub-regions individually. For the two IFSs, IFS-47R3 shows lower track errors 185 

than IFS globally and in all major sub-regions. ICON shows competitive low track errors to IFS-186 

47R3 in the WPAC and the SHEM, and a very low track error in the NATL. SHiELD performs 187 

the lowest track error in the EPAC, and low track errors besides the two IFSs and ICON in the 188 

SHEM and the WPAC. However, SHiELD has a much larger track error in the NATL, which 189 

results from the slow moving bias shown in the forecasts of Hurricane Florence and the bias of 190 

direction of motion shown in the forecasts of Hurricane Leslie.  Detailed investigations can be 191 

found in Text S1 and Figs. S1-S3. The performance of the TC track forecast in UM is notable. 192 
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The model shows the lowest track error in the NATL but the largest track error in the EPAC, 193 

while its track errors in the WPAC and the SHEM are also at the high end compared to other 194 

models. JMA performs competitively to IFS-47R3 and ICON in EPAC, but not in other sub-195 

regions. With regard to CMC, it shows larger track errors than other models in most sub-regions 196 

except for in the EPAC during this targeted year. From Fig. 3, we can also see that the globally-197 

averaged track forecast errors among the models is dominated by the errors in the WPAC and the 198 

SHEM since the majority of the TCs were found in these two sub-regions. 199 

 200 

FIGURE 3 Averaged Track errors (km) in globe and 4 sub-regions during the 120-hour lead time for the 8 models. 201 

Abbreviations and colors used for the models are the same as in Fig. 2a. Abbreviations used for the sub-regions on 202 

the abscissa are the same as in Fig. 1.  203 

The sources of track errors can be due to biases either in forecasts of the TC translational 204 

speed or the TC direction of motion. The lower sub-panels in Fig. 4 show the globally averaged 205 

along‐track (AT) errors and cross‐track (CT) errors (perpendicular to the track) for all models. 206 

Both AT and CT errors are calculated as great circle distances. Most of the models start to show 207 

negative AT biases and positive CT biases during 72 to 120-hour lead time, which indicates that 208 

the TC track errors during the later lead times are mostly due to the slow and northward (for an 209 

easterly moving TC) moving biases. In general, UM shows the smallest AT and CT biases 210 

among all models, and the biases of SHiELD take place at longer forecast lead times than other 211 

models.  212 

By the Pythagorean Theorem the square of the total error equals the squares of the AT 213 

and CT errors (Chen et al. 2019a). The squares of total track errors, CT errors, and AT errors are 214 

plotted in upper sub-panels in Fig. 4 to illustrate the proportion of contributions from the AT and 215 

CT errors respectively to the total error. From Figs. 4a,b, we can see that the AT error 216 

contributes more than the CT error to the total track error in the two IFSs, which indicates that 217 

the track errors in the IFSs are dominated by the slow-moving bias (negative AT biases). The 218 

characteristic of the consistently larger AT error square than the CT error square can also be 219 

found in ICON, CMC, and UM, but the differences between their AT and CT error squares are 220 
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smaller than those in the IFSs. SHiELD, ARPEGE, and JMA show relatively closer AT and CT 221 

error squares, especially SHiELD. This indicates that the contributions of the slow and 222 

northward moving biases to the total track errors are similar in these models. For ARPEGE, the 223 

CT error is the dominant track error in late lead times, while the AT error contributes more to the 224 

JMA’s total TC track errors during the 120 to 144-hour lead time.  225 
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 226 

FIGURE 4 Global analyses of along-track (AT) error and cross‐track (CT) error for (a) IFS, (b) IFS-47R3, (c) 227 

ICON, (d) SHiELD, (e) CMC, (f) UM, (g) ARPEGE, and (h) JMA. The squares of total track errors (black), along‐228 

track errors (red), and cross‐track errors (blue) are in the upper panels for each model. The biases of along‐track 229 

(magenta) and cross‐track (light blue) errors are in the lower panels. Numbers of homogeneous cases for each lead 230 

time are listed at the bottom of lower panels.  231 
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It is also found that models have different AT and CT errors in different sub-regions. All 232 

models showed a slow-moving bias and a poleward bias in the NATL and the WPAC, but in the 233 

EPAC, except for JMA, most models show a fast-moving bias. In contrast, there are no 234 

consistently slow or fast moving biases among models in the SHEM. Detailed analyses of AT 235 

and CT errors for all eight models in the four major sub-regions can be found in Text S2 and 236 

Figs. S4-S7.  237 

 238 

3.2 TC intensity forecasts 239 

It has been more challenging to predict TC intensity than track, especially for global 240 

models which usually cannot resolve fine scale interactions between thermal dynamics and 241 

dynamics due to insufficient resolutions. As outlined in Section 2, the 10-day forecast outputs 242 

were interpolated to a common 0.5 degree for each model. Therefore, the model-predicted TC 243 

intensities found by the tracker are underestimated due to the low data resolution. However, it is 244 

still of interest to compare the relative differences of TC intensities among the models for the 245 

interpolated output data. The global mean TC intensity errors and biases based on the maximum 246 

10-m wind speed are presented in Fig. 5a. SHiELD predicts a much stronger TC intensity than 247 

other models, followed by UM and ARPEGE. Figure 5b uses SHiELD as an example to 248 

demonstrate the differences between the TC intensities obtained from the native resolution (13 249 

km grid) outputs and in the interpolated 0.5 degree resolution data. The average differences of 250 

total error and bias are between 3 to 5 ms
-1

.   251 

 252 

FIGURE 5. (a) Global mean TC intensity errors and biases. Upper panel: Absolute error of the maximum 10-m wind 253 

speed (m s
-1

) along with the model forecast lead time for 8 models. Abbreviations and colors used for the models are 254 

the same as in Fig. 2a. The 95% confidence levels for IFS are indicated by the gray color shading. Numbers of 255 

homogeneous cases for individual lead times are listed in the brackets at the bottom. Vertical grey dotted lines 256 

indicate 72 hour and 120 hour lead times. Lower panel: As in the upper panel, but for the bias of the maximum 10-m 257 

wind speed (m s
-1

). (b) As in (a), but for SHiELD native resolution data (black; SHiELD_full) and SHiELD 0.5 258 

degree interpolated data (gray; SHiELD_0.5). The 95% confidence levels for each resolution data are indicated by 259 

the same medium and light transparent grey shading areas, with their overlapping region denoted by dark grey 260 

shading. 261 
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3.3 Forecasts of TC-related precipitation 262 

Since the performance of TC intensity forecasts cannot be fully represented by the 263 

interpolated data, here, the TC-related precipitation is evaluated to provide another perspective 264 

on the forecasted TC characteristics in the models. Using the TC track information, the 265 

precipitation within 350 km of each TC center is used to investigate the TC-related precipitation 266 

for each model. Figure 6 shows the accumulated total precipitation for all TCs during the 267 

DIMOSIC period in each model compared to the Global Precipitation Measurement (GPM) 268 

observational data (Fig. 6a). The comparison shows that all models under-predict the amount of 269 

precipitation, especially in the most active areas of the WPAC and the EPAC. From a broad  270 

visual comparison, UM and SHiELD appear to have produced the highest and lowest amounts of 271 

precipitation among all the models, respectively. This can be confirmed by comparing the 272 

accumulated precipitation of models to the GPM data presented in Fig. 7a. The UM shows a 273 

much larger amount of precipitation than other models, followed by ARPEGE and CMC. In 274 

contrast, SHiELD shows the least TC-related precipitation among all models, except in the 275 

EPAC. The ranks of models are similar in different sub-regions, while the global precipitation 276 

amounts are dominated by those in the WPAC and the SHEM, as expected. 277 

 278 

FIGURE 6. Accumulated TC-related precipitation (unit: mm) for all TCs in the DIMOSIC period in (a) Global 279 

Precipitation Measurement (GPM) observations, (b) IFS, (c) IFS-47R3, (d) ICON, (e) SHiELD, (f) CMC, (g) UM, 280 

(h) ARPEGE, and (i) JMA.  281 
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To more objectively compare the forecasted locations of TC-related precipitation in each 282 

model to the GPM observations, the equitable threat scores (ETSs; Schaefer 1990) are computed. 283 

The ETSs for all TC-related precipitation areas in the four sub-regions for all eight models are 284 

compared in Fig. 7b. Note that although UM shows the closest precipitation amount to the GPM 285 

observation data (Fig. 7a), its ETS (skill) is lower than other models when considering all TC-286 

related precipitation areas. This could be related to its relatively larger track errors (Fig.3) that 287 

cause the displacement of precipitation locations. However, for the areas with at least 300 mm of 288 

accumulated TC-related precipitation, the ETSs of UM are generally higher than those of other 289 

models (Fig. 7c). This is likely due to its relatively better prediction of precipitation amounts 290 

(Fig. 7a). In contrast, SHiELD under-predicts the precipitation amounts, but owing to  its better 291 

track forecast in the EPAC (Fig. 3), it is able to achieve relatively higher ETSs in this sub-region 292 

(Figs. 7b,c). When comparing the two IFSs, Fig. 7 shows that their accumulated precipitation 293 

amounts are similar, but the newer IFS-47R3 generally had higher ETS scores (Figs. 7b,c). 294 

Finally, JMA shows relatively higher ETSs in the WPAC in both categories, while in the NATL, 295 

the highest ETSs in the two categories are achieved by ICON and ARPEGE (Figs. 7b,c).  296 

 297 

FIGURE 7. (a) Global accumulated TC-related precipitation (unit: m) and for the four sub-regions for all TCs in the 298 

DIMOSIC period. The equitable threat scores (ETSs) for (b) all TC-related precipitation areas and (c) the areas with 299 

300 mm and up accumulated TC-related precipitation. The GPM analysis data in (a) is shown in the bars with the 300 

grey checkerboard pattern. Abbreviations and colors used for the models and abbreviations used for the sub-regions 301 

on the abscissa are the same as in Fig. 3. 302 
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 303 

FIGURE 8. Fractions of precipitation events (GPM observations and model forecasts) in each precipitation intensity 304 

bin. (a) 5 bins for precipitation intensities from 0 to 1 mm(6 h)
-1

. (b) four bins for precipitation intensities from 1 to 305 

20 mm(6 h)
-1

. (c) four bins for precipitation intensities from 20 to 300 mm(6 h)
-1

. Abbreviations and colors used for 306 

the model are the same as in Fig. 7. 307 

TC-related precipitation based on different precipitation intensities was also analyzed. 308 

Figure 8 shows the fractions of precipitation events in different precipitation intensity bins. Most 309 

of the models under-predicted light (weaker than 0.5 mm (6 h)
-1

; Fig. 8a) and heavy (stronger 310 

than 50 mm (6 h)
-1

; Fig. 8c) precipitations, but over-predicted medium precipitation events (Fig. 311 

8b). Although SHiELD and UM were able to predicts some heavy precipitation events in the bin 312 

of 100-300 mm (6 h)
-1

, SHiELD significantly over-predicted the events between 1-5 mm (6 h)
-1

. 313 

The SHiELD development team at GFDL will closely examine the precipitation forecasts in the 314 

model in the near future, particularly to better isolate the possible reasons for these excessive 315 

precipitation amounts. 316 

 317 

3.4 Forecasts of TC genesis 318 

When a timeline contains an observed TC genesis, the track and intensity forecasts of the 319 

TC are verified based on the model forecasts initialized at or after the observed TC genesis time. 320 

In contrast, to investigate the models’ performance for TC genesis, the 10-day forecast runs 321 

initialized before the observed TC genesis time which is based on the first “TD (tropical 322 

depression)” recorded in the ATCF best track data are considered. All TCs found by the GFDL 323 

simple tracker in these forecasts but not existing as TCs in the initial conditions for the forecast 324 

are counted as genesis events in the models. If a TC genesis has a track that “matches” an 325 

observed TC track, the genesis case is categorized as a “hit event”. Otherwise, it is a “false 326 

alarm”. The same criteria is used as in Chen et al. (2019b) to judge a model storm was a 327 

successful prediction of an observed genesis event.   328 
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 329 

FIGURE 9. (a) Ratios of hit events to the total number of genesis events and (b) Numbers of total genesis evens 330 

(sum of hit events and false alarms) for all models. Abbreviations and colors used for the models and abbreviations 331 

used for the sub-regions on the abscissa are the same as in Fig. 7. 332 

Figure 9 shows the TC genesis ratios (hits to total predicted genesis events) and the 333 

number of total genesis events for each of the eight models in different regions. The sum of hit 334 

events and false alarms is equal to the number of total forecasted genesis events. We first find 335 

that all models show the highest hit ratios (Fig. 9a) with the fewest total genesis events in the 336 

EPAC. This indicates that models can predict TC genesis more skillfully in the EPAC than in 337 

other sub-regions. In contrast, models show the lowest hit ratios but the largest numbers of total 338 

genesis events in the SHEM, which indicates that models generate more false alarms in this sub-339 

region than in the others. In general, SHiELD demonstrates the highest hit ratios both globally 340 

and in all sub-regions, followed by the two IFSs and ICON. CMC also shows high hit ratios in 341 

the EPAC. UM shows the lowest hit ratios in most regions with the exception of the WPAC.    342 

During the DIMOSIC period, there were 16, 23, 34, and 27 TCs generated in the NATL, 343 

the EPAC, the WPAC, and the SHEM, respectively. However, not all observed TC geneses were 344 

predicted by the models. Figure 10a lists the number of TCs which were completely missed by 345 

models in each sub-region. It shows that JMA missed the genesis of total 30 TCs globally which 346 

is the most among all models. Most TC missed by JMA were in the WPAC and the SHEM. UM 347 

also missed many TC geneses in the EPAC. SHiELD had the least number of missed TCs 348 

globally followed by IFS and CMC. The newer IFS-47R3 missed more TCs than IFS in the 349 

NATL and the EPAC.  350 
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 351 

FIGURE 10. (a) Numbers of missed TCs and (b) miss ratios (%) in the genesis forecasts from the eight models. 352 

Abbreviations and colors used for the models and abbreviations used for the sub-regions on the abscissa are the 353 

same as in Fig. 7. The numbers on the abscissa in (a) indicate the observed TC numbers in each sub-regions.  354 

In the DIMOSIC period, models were initialized every three days. Hence, during the 10 355 

days before an observed TC genesis event, a model could have three or four 10-day forecasts 356 

initialized and these runs are expected to predict this genesis event. Therefore, besides counting 357 

the number of completely missed TCs, the “miss ratio” can be computed as the number of 358 

missing cases compared to the number of expected genesis hit events (Chen et al. 2019b). The 359 

miss ratios for each model in the different sub-regions are shown in Fig. 10b to better revel the 360 

differences among the models. It shows that SHiELD shows the lowest miss ratios generally, 361 

except for in the NATL, while JMA and UM still struggle with relatively high miss ratios 362 

globally. We note that IFS-47R3 shows higher miss ratios than IFS in all sub-regions (Fig. 10b), 363 

including in the WPAC and the SHEM where IFS-47R3 shows the same or fewer numbers of 364 

completely missed TCs than IFS (Fig. 10a).  365 

Following Chen et al. (2019b), beyond the scores of hit events, false alarms, and missing 366 

cases, we also investigate how precisely a model could predict the timing of TC genesis by 367 

comparing the “length of lead time” (see Fig. 8 in Chen et al. 2019b). The observed genesis lead 368 

time (OLT) is defined as the difference in time between the model initial time and the time at 369 

which observed TC genesis occurred. On the other hand, the time span from the model initial 370 

time to the model-predicted TC genesis lead time is referred as the model genesis lead time 371 

(MLT). The differences between the MLT and OLT (DMO) can indicate how accurate a model 372 

is in generating storms at the observed genesis time. If a model-predicted TC genesis occurred 373 

exactly at the observed TC genesis time, the DMO of this hit event is “zero”. A positive DMO 374 

means that the model hit event occurs later than the observed TC genesis time, while negative 375 

DMO values are associated with early initiation of the TC in the model 376 

For each observed TC, it is expected that more than one hit event will happen in the set of 377 

10-day forecasts that cover the observed genesis time. To assess the predictive skill of each 378 

model, we only consider the maximum OLT, corresponding to the integration that identified the 379 

observed TC at the longest lead time. Figure 11a shows the mean values of the maximum OLT 380 

of all observed TCs in the four major sub-regions. In the NATL, both SHiELD and ARPEGE 381 

show a 110-hour OLT which is longer than the OLTs of other models, e.g. 78-hour OLT of UM. 382 

This indicates that SHiELD and ARPEGE could, on average, predict a hit TC genesis event 32 383 
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hours earlier than UM in the NATL. SHiELD also shows the earliest hit events in the EPAC and 384 

the WPAC, while ARPEGE shows the earliest hit events in the SHEM. The models in this study 385 

generally predict hit events earlier in the EPAC than in other sub-regions, except for JMA, which 386 

performs betters in the WPAC and the SHEM than in other sub-regions. It is also interesting to 387 

see that IFS shows earlier hit events than the newer IFS-47R3 in most sub-regions.  388 

 389 

FIGURE 11. (a) Mean values of maximum observed genesis lead time (in hours) of all storms in each sub-region for 390 

the eight models. Abbreviations used for the sub-regions on the abscissa are the same as in Fig. 7. (b) Fractions of 391 

global total hit events in each model that occurred within a certain DMO length. On the abscissa, “0” is for hit 392 

events which happened at the observed genesis time. “Within 6 (12, 24, or 48)” is for hit events with DMO lengths 393 

in 6 (12, 24, or 48) hours. “Early” is for all hit events with negative DMOs and “late” is for all hit evens with 394 

positive DMOs. Abbreviations and colors used for the models in both (a) and (b) are the same as in Fig. 7.  395 

Figure 11b shows the fraction of global total hit events in each model which occurred 396 

within a certain length of DMO (indicated on the abscissa). From the definition of DMO, a 397 

model showing more genesis cases with short DMOs indicates that the model could predict more 398 

accurate genesis timings of its hit events. It can be found that IFS shows the highest fraction 399 

among all of the eight models in the “zero” DMO length category. The results indicate that IFS 400 

shows the highest ratio of its hit events forecasted at the observed TC genesis time among the 401 

models. Besides the two IFSs, JMA and ARPEGE also accurately predict TC genesis timings 402 

within the first three categories (“zero”, “within 6”, and “within 12”) which is the 24-hour 403 

window (12 hours before or after) centered on the observed TC genesis time. In contrast, ICON 404 

shows the smallest fractions in the first three DMO length categories, which implies that the 405 

accuracy of TC genesis timing of ICON is relatively low compared to the other models. 406 

From the result of the “within 48” DMO in Fig. 11b, we can see that more than 89% of 407 

hit events in each of the models occur within the 48 hours before or after the observed TC 408 

genesis time. When comparing the results in the “early” and “late” categories, it is seen that most 409 

models forecast their hit events before the observed TC genesis time, except for JMA. The ratios 410 

of “early” to “late” cases are larger in SHiELD and CMC compared to other models, while the 411 

IFS-47R3 shows relatively even number of cases of hit events generated before or after the 412 

observed TC genesis time.  413 
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4 Summary and Discussion 414 

The DIMOSIC project provides a great opportunity to engage the worldwide community 415 

of medium-range modeling centers on cooperative model research and development. This study 416 

investigated TC forecast skills in the eight participating global medium-range forecast models 417 

during the year-long DIMOSIC period (June 2018 to June 2019). All models conducted 10-day 418 

forecasts from the same initial conditions based on the ECMWF IFS model cycle 45R1. The 419 

horizontal resolutions of the eight models ranged from 5 to 25km, and there were different 420 

choices of dynamical cores and physics parameterizations across the models (Magnusson et al. 421 

2022). The forecast skills of TC track and intensity have been presented for the eight models. 422 

The TC-related precipitation and the performance of TC genesis forecasts have also been 423 

evaluated.  424 

Comparing the model forecasts to the observations for the 109 TCs in the DIMOSIC 425 

period, IFS (45R1) and the updated version IFS-47R3 shows the best global averaged TC track 426 

forecasts, followed by ICON and SHiELD. CMC shows a relatively higher error than others 427 

before the 72-hour lead time. Based on our preliminary investigates, it could be related to the 428 

initializing moisture shock given that the CMC has much moister analyses than IFS which may 429 

induce convection collapses after the initialization with IFS ICs. For the TC track forecasts in 430 

different sub-regions, UM and ICON show the lowest track errors in the NATL, while SHiELD 431 

had the best track forecasts in the EPAC. In the WPAC and the SHEM, both IFS-47R3 and 432 

ICON show the lowest TC track errors, followed by SHiELD. From the analyses of along-track 433 

(AT) and cross-track (CT) errors, the models behave differently in different sub-regions. All 434 

models showed a slow-moving bias and a poleward bias in the NATL and the WPAC, but in the 435 

EPAC, except for JMA, most models show a fast-moving bias. In contrast, there are no 436 

consistently slow- or fast-moving biases among models in the SHEM.  437 

For TC intensity forecasts, based on the TC tracker results using the interpolated 0.5 438 

degree resolution data, SHiELD performs relatively better than other models, followed by UM 439 

and ARPEGE. From Table 2, we can see that the resolutions of the models range between 5 and 440 

25 km, and the resolution of SHiELD is in the middle of that range. Therefore, the outperforming 441 

TC intensity by SHiELD may imply that the resolution is not the only major factor limiting TC 442 

intensity in global models. The use of dynamics and physics in the model also plays important 443 

role. The performance of TC track and intensity forecasts could reveal some of the 444 

characteristics of a model especially related to its dynamics and physics interactions. In Chen et 445 

al. (2019b), it has been demonstrated that updating the GFS dynamical core to the nonhydrostatic 446 

FV3 (Lin 2004; Putman and Lin 2007; Harris et al. 2020) can largely improve TC intensity 447 

forecasts, and additional improvements in TC intensity and genesis forecasts were seen when 448 

replacing the Zhao-Carr cloud microphysics scheme with the advanced GFDL cloud 449 

microphysics scheme (Zhou et al. 2019).  450 

Here, we attempt to probe into the characteristics of the models based on their biases of 451 

TC track and intensity. Figure 12 shows the scatter plots of TC track and intensity errors for all 452 

of the forecasts during the 72-120-hour lead time in each model. Some similarities can be found 453 

in the scattered distributions of the two IFSs and ICON, including both ranges of intensity bias 454 

and track error. This is consistent with the findings in Magnusson et al. (2022) that IFS and 455 

ICON behave relatively similarly due to the sharing of partial physical parameterizations sharing 456 

between ECWMF and DWD. In contrast, SHiELD, ARPEGE, and JMA show rather unique 457 

patterns their own.  458 
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 459 

FIGURE 12. Scatter plot distribution of track errors (unit: km; ordinate) and intensity biases (the maximum 10-m 460 

wind speed; unit: m s
-1

; abscissa) of all forecasts during the lead time of 72-120 hour for (a) IFS, (b) IFS-47r3, (c) 461 

ICON, (d ) SHiELD, (e) CMC, (f) UM, (g) ARPEGE, and (h) JMA.  462 

Figure 12 also shows that in most models, forecasts with larger track error (>700 km) are 463 

usually accompanied by smaller intensity biases (<10 ms
-1

). In contrast, for those forecasts with 464 

larger intensity biases, their track errors are not consistently larger. At GFDL, it has been noticed 465 

that when the performance of TC track forecasts was improved by using an advection scheme 466 

with a stronger damping in the dynamics, a degradation of TC intensity was observed. The two-467 

delta filter in the non-monotonic advection scheme and the monotonicity constraint in the tracer 468 

advection affect the model diffusivity which can also impact the diabatic heating and the location 469 
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of the TC deep convection relative to the eye (Gao et al. 2021). This was attributed to the impact 470 

of stronger damping, which suppresses finer-scale features and activities, e.g. grid-scale 471 

convection in the TCs, which further suppresses the TC intensities. An in-depth study of the 472 

impact of grid-scale convection activity on TC track forecasts in SHiELD is in preparation.  473 

Since the interpolated data cannot fully represent the performance of TC intensity 474 

forecasts in the models, the TC-related precipitation was also evaluated to provide another 475 

perspective on forecasted TC characteristics. Compared to the GPM observation data, all models 476 

under-predict the amount of TC-related precipitation, especially in the Pacific Ocean. UM better 477 

captures the regions with annual accumulated TC-related precipitation of more than 300mm 478 

compared to the other models. However, when considering all TC-related precipitation areas, the 479 

ETS of UM is generally lower than that of other models. This could be related to the relatively 480 

large track errors of UM, especially in the EPAC. In contrast, SHiELD shows the largest dry bias 481 

in TC-related precipitation among all models, but it still achieves relatively high ETSs in the 482 

EPAC due to its better track forecasts in this sub-region. As to the intensity of TC-related 483 

precipitation, most models over-predict medium precipitation events but under-predict light and 484 

heavy precipitation events. Among all models, SHiELD noticeably over-predicts precipitation 485 

events at the intensity of 1-5 mm (6 h)
-1

. The SHiELD development team at GFDL will take a 486 

close look at its low precipitation amount and over-predicted medium intensity precipitation 487 

events in the future. 488 

The assessment of TC genesis forecast skill was based here on hits and misses, measures 489 

that showed significant inter-model variability across the different sub-regions of interest.  All 490 

models show the highest hit ratios with the fewest total genesis events in the EPAC, which 491 

indicates that models can better predict TC genesis in the EPAC. In contrast, models generate 492 

more false alarms in the SHEM. SHiELD shows the highest hit ratios globally, followed by the 493 

two IFSs and ICON. CMC also achieves high hit ratios in the EPAC. In contrast, UM shows 494 

lower hit ratios than other models. As for the missed TC genesis cases, JMA missed 30 of the 495 

100 observed TC geneses during the target period, which is the most among all models. Note that 496 

JMA uses the coarsest model resolution among all participating models, which could impair its 497 

TC genesis performance. In contrast, SHiELD shows the least number of missed TCs globally, 498 

which may be benefiting from its better TC intensity forecast. 499 

We also investigate how well the participating models predict the timing of TC genesis 500 

by comparing the “length of lead time” proposed by Chen et al. (2019b). The results show that 501 

models can generally accurately predict TC formation earlier in the EPAC than in other sub-502 

regions, except for JMA which predicts the WPAC and the SHEM hit events earlier than in other 503 

sub-regions. SHiELD generally predicts the earliest hit events globally, while ARPEGE also 504 

predicts TC genesis events earlier than other models in the NATL and the SHEM. Based on the 505 

differences between the model genesis lead time and the observed genesis lead time, IFS shows 506 

the most accurate timing of the TC genesis forecast, followed by JMA and ARPEGE. In contrast, 507 

the accuracy of genesis timing in ICON is relatively lower than that of other models. We also 508 

found that most models develop TCs earlier than observed in the best track, except for JMA. In 509 

addition, more than 89% of hit events in each of the models occur within 48 hours of the 510 

observed genesis time.  511 

The comparison between IFS (version 45R1) and IFS-47R3 provides an opportunity to 512 

examine the incremental change obtained for an upgrade of one model. The upgrade from 513 

version 45R1 to 47R3 includes many changes in data assimilation and model physics. The 514 
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changes and meteorological impacts have been documented by ECMWF on the website: 515 

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model. One of 516 

the listed impacts from the upgrade is the improvement of TC position errors. From our analysis, 517 

the average track errors during the first 120 hours of IFS-47R3 are 2.5 to 10.8 km less than IFS 518 

(Fig. 3) in the four major sub-regions, which is consistent with the ECMWF implementation 519 

report. However, from the analyses of the along-track and cross-track errors, the biases of slow 520 

and poleward movement are similar in these two model versions. Possibly associated with the 521 

major upgrade to moist physics (Bechtold et al. 2020), IFS-47R3 shows a slightly larger negative 522 

TC intensity biases than the older IFS version which was also found in Magnusson et al. (2021). 523 

Although total precipitation predictions remain similar across the two IFS versions, the newer 524 

IFS-47R3 achieves higher ETS scores for large accumulations, especially in the WPAC and the 525 

SHEM. We also found that IFS-47R3 has more precipitation events with stronger precipitation 526 

intensity (10-50 mm (6 h)
-1

) than IFS. However, as to the TC genesis forecast, IFS-47R3 shows 527 

some degradation from IFS, including more missed TC genesis event, higher miss ratios, shorter 528 

genesis lead times, and less accuracy on TC genesis timing. These degradations in TC genesis 529 

performance may be related to the weaker TC intensities in the newer version.  530 

To summarize, in this study, extensive evaluation was made of the performance of TC 531 

forecasts in the DIMOSIC models based on one year of model predictions initialized with the 532 

same initial conditions. Although it is hard to precisely isolate the influence of individual 533 

components in different model formulations on TC forecast skill in such an overview, the 534 

comparisons based on different evaluation metrics highlight important similarities and 535 

differences between the models. The results will be valuable for model developers in 536 

participating centers as a benchmark of TC forecast skill with the impact of the initial condition 537 

quality removed. Also, common forecast biases of the TC movement and TC-related 538 

precipitations indicate general deficiencies in DIMOSIC models and point out a direction for 539 

model developers for further model improvement.  540 

 541 
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Text S1. 

During the DIMOSIC period, SHiELD is one of the top performance models which show 
low tropical cyclone (TC) track forecast errors in most sub-regions but not in the North Atlantic 
basin (NATL).  We therefore further investigate the large track error of SHiELD in the NATL to 
supplement the results of track error analysis, and to provide references for the SHiELD 
development team at GFDL.  

Figure S1a shows the mean TC track forecast errors for all of the 8 DIMISIC models in the 
NATL, with the differences of TC track errors of the 7 models comparing to IFS (Fig. S1b). It can 
be found that SHiELD shows a much larger track error than most other models during the 72-
120 lead times.  

We investigated the track forecasts of the 16 TCs in the NATL during the target year 
individually and found that the basin-wide mean track errors are actually dominated by 2 TCs, 
Hurricanes Florence (2018) and Leslie (2018). Comparing to other leading models, SHiELD 
shows difficulty to forecast the storm movements of these two hurricanes. Figure S2 shows the 
forecasted tracks of Florence from IFS-47R3, SHiELD, ICON, and UM initialized at 00Z Sep. 1st 
(Fig. S2a) and 00Z Sep. 13th (Fig. S2b) comparing to the best track. It can be found that SHiELD 
shows slow moving biases on Florence’s translation in both early and late stage of its lifetime, 
while IFS-47R3, ICON and UM do not show similar forecast biases. Different from Florence 
which had a steady westward movement crossing the Atlantic Ocean, Leslie had an irregular 
track with many loops in the middle of Atlantic Ocean before heading northeasterly to 
Portugal.  From Fig. S3, we can see that SHiELD didn’t well capture some of the sharp turns 
which are critical in the track forecast of this storm. In contrast, IFS-47R3, ICON, and UM can 
perform much better ”v” shape turns in their forecasts initialized from 00Z 1stOct. and from 00Z 
7th Oct.  

To summarize, the large TC track error of SHiELD in the NATL results from the slow 
moving bias shown in the forecasts of Hurricane Florence and the bias of direction of motion 
shown in the forecasts of Hurricane Leslie.  
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Figure S1. (a) Mean TC track forecast errors (km) along with the model forecast lead time for 
IFS (black), IFS-47r3 (red), SHiELD (green), ICON (yellow), UM (blue), CMC (magenta), APREGE 
(grass green), and JMA (light blue) in the North Atlantic basic (NATL). The 95% confidence 
levels for IFS are indicated by the gray color shading. Numbers of homogeneous cases for 
individual lead times are listed in the brackets at the bottom of each abscissa. Vertical gray 
dotted lines are indicated 72 and 120 h. (b) Mean TC track forecast error differences of IFS-47r3 
(red), SHiELD (green), ICON (yellow), UM (blue), CMC (magenta), APREGE (grass green), and 
JMA (light blue) in the NATL comparing to IFS.   
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Figure S2. (a) Model forecasted tracks from IFS-47r3 (red), SHiELD (green), ICON (yellow), and 
UM (blue) initialized at 00Z 20180901 comparing to the Automated Tropical Cyclone Forecast 
(ATCF) best track for Hurricane Florence. Dots for model forecasts and typhoon symbols for the 
best track are at 6-hour interval. The best track of Hurricane Florence during the 10-day 
forecast period is plotted in black, and the rest part of the best track is plotted in grey. (b) As in 
(a), but for model forecasts initialized at 00Z 20180913.  
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Figure S3. As in Figure S2, but for the model forecasts initialized at (a) 00Z 20180925, (b) 00Z 
20181001, and (c) 00Z 20181007 for Hurricane Leslie comparing to the best track. 
  



 

 

6 

 

Text S2. 
            Analyses of along-track (AT) and cross-track (CT) errors for all eight models in the four 
major sub-regions are shown in Figs. S4-S7. We note that the models behave differently in 
different sub-regions. In the NATL (Fig. S4), the AT and CT errors during the first 5 days evenly 
contribute to the total track errors in the two IFSs. UM AT/CT skill is similar to that of the IFSs 
but with a larger AT error component on Day 3 to 4 (Fig. S4f). In contrast, ICON and CMC have a 
much larger AT error component than the CT error (Figs. S4c,e), which indicates that their total 
track errors in the NATL are mostly due to slow moving biases. The source of track error of 
SHiELD in the NATL is a combination of AT error during 96 to 132-hour lead time and CT error 
at Days 6 to 7 (Fig. S4d), which is consistent with the single case analyses (Text S1 and Figs. S1-
S3).  
            In distinct behavior from the NATL, seven of the eight models show positive AT error 
biases in the EPAC during the first five days (Fig. S5). This indicates that the model-predicted 
TCs are usually moving too fast in this basin. In contrast, JAM suffers a slow-moving bias as 
shown by a dominant negative AT error bias (Fig. S5h). Also, the large track error of UM during 
the first five days in this region (Fig. 3) is mostly from a fast-moving bias, but a southward-
moving bias also contributes. In the WPAC, all models consistently show negative AT error 
biases and positive CT error biases after Day 5 (Fig. S6). It is clear that a slow-moving bias is the 
main source of the total track errors in the two IFSs in this region (Figs. S6a,b). UM and JMA 
show large contributions of AT errors during Days 4-5, but northward-moving biases also 
contribute to the total error substantially (Figs. S6f,h). ICON, SHiELD, and CMC show even 
greater contributions of AT and CT errors to their total track errors than other models (Figs. 
S6c-e). In the SHEM (Fig. S7), except for SHiELD showing a relatively even contribution of AT 
and CT errors with small biases, other models generally exhibit much larger components of AT 
errors than CT errors. However, there are no consistently slow- or fast-moving biases among 
models in this basin. IFSs and CMC show consistently slow-moving biases after three days, 
while UM shows fast-moving biases in the later lead times. ICON, APREGE, and JMA show 
mixed slow- or fast-moving biases in the seven days of lead time. 
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Figure S4. Analyses of along-track (AT) error and cross‐track (CT) error for (a) IFS, (b) IFS-47R3, 
(c) ICON, (d) SHiELD, (e) CMC, (f) UM, (g) ARPEGE, and (h) JMA in the North Atlantic basin 
(NATL). The squares of total track errors (black), along‐track errors (red), and cross‐track errors 
(blue) are in the upper panels for each model. The biases of along‐track (magenta) and cross‐
track (light blue) errors are in the lower panels. Numbers of homogeneous cases for each lead 
time are listed at the bottom of lower panels. 
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Figure S5. As in Figure S4, but for the analyses in the northeast Pacific basin (EPAC). 
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Figure S6. As in Figure S4, but for the analyses in the northwest Pacific basin (WPAC). 
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Figure S7. As in Figure S4, but for the analyses in the Southern Hemisphere (SHEM). 


