Non-optical Water Quality Retrieval from Zhuhai-1 OHS Hyperspectral Images in Taipu River

Yukun Yukun¹, Yaojen Tu¹, Wenpeng Lin¹, Weiyue Li¹, and Qianwen Cheng¹

¹Shanghai Normal University

December 14, 2022

Abstract

Hyperspectral remote sensing is thought to be a useful technology for assessing the condition of inland waters. However, non-optically active water quality parameters are rarely explored in hyperspectral remote sensing applications, despite they are highly valued in the aquatic environment condition. This study intends to evaluate the performance of non-optically active water quality parameters using Zhuhai-1 hyperspectral imagery. Focusing on total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH3-N) and nitrate-nitrogen (NO3-N) in Taipu River, we constructed empirical models to evaluate the precision of water quality inversion from OHS by comparing with Sentinel-2, and determined the sensitive bands of different water quality parameters. The final results showed that the polynomial model based on OHS had the greatest potential in retrieving TN, TP and NH3-N concentration, and the R2 was 0.9678, 0.7924, 0.7682 respectively. The combination of R(510)/R(820) and R(700)/R(806), R(940)/R(820) and R(806)/R(926), R(709)/R(806) and R(746)/R(620) were most sensitive to TN, TP and NH3-N respectively. The OHS and Sentinel-2 both had potential in retrieving NO3-N. The R2 was 0.9791 from OHS and was 0.9513 from Sentinel-2. The sensitive bands of NO3-N were R(596)/R(665) and R(466)/R(580) from OHS, and Red Eage3/Blue and SWIR1/Blue from Sentinel-2. We also analyzed the drivers of the spatial distribution of water quality in Taipu River, the results showed negative impacts of farmland and urban land on water quality, and beneficial impacts of forest land on water quality. This study represented a promising step in hyperspectral remote sensing for retrieving inland non-optically active water quality parameters utilizing Zhuhai-1.

Hosted file

951400_0_art_file_10509883_rmgqxx.docx available at https://authorea.com/users/566147/ articles/612942-non-optical-water-quality-retrieval-from-zhuhai-1-ohs-hyperspectralimages-in-taipu-river

Non-optical Water Quality Retrieval from Zhuhai-1 OHS Hyperspectral Images in Taipu River

3 Yukun Lin^{a,b}, Yaojen Tu^{a,b,*}, Wenpeng Lin^{a,b,*}, Weiyue Li^{a,b}, Qianwen Cheng^{a,b}

4 a School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai

5 200234, China

b Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation andResearch Station, Shanghai 200234, China

8 Abstract

9 Hyperspectral remote sensing is thought to be a useful technology for assessing the condition 10 of inland waters. However, non-optically active water quality parameters are rarely explored in 11 hyperspectral remote sensing applications, despite they are highly valued in the aquatic 12 environment condition. This study intends to evaluate the performance of non-optically active 13 water quality parameters using Zhuhai-1 OHS hyperspectral imagery. Focusing on total nitrogen 14 (TN), total phosphorus (TP), ammonia nitrogen (NH₃-N) and nitrate-nitrogen (NO₃-N) in Taipu 15 River, we constructed empirical models to evaluate the precision of water quality inversion from 16 OHS by comparing with Sentinel-2, and determined the sensitive bands of different water quality 17 parameters. The final results showed that the polynomial model based on OHS had the greatest potential in retrieving TN, TP and NH₃-N concentration, and the R² was 0.9678, 0.7924, 0.7682 18 19 respectively. The combination of R(510)/R(820) and R(700)/R(806), R(940)/R(820) and 20 R(806)/R(926), R(709)/R(806) and R(746)/R(620) were most sensitive to TN, TP and NH₃-N 21 respectively. The OHS and Sentinel-2 both had potential in retrieving NO₃-N. The R² was 0.9791 22 from OHS and was 0.9513 from Sentinel-2. The sensitive bands of NO₃-N were R(596)/R(665) 23 and R(466)/R(580) from OHS, and Red Eage3/Blue and SWIR1/Blue from Sentinel-2. We also 24 analyzed the drivers of the spatial distribution of water quality in the Taipu River based on 25 redundancy analysis (RDA), the results showed negative impacts of farmland and urban land on 26 water quality, and beneficial impacts of forest land on water quality. This study represented a 27 promising first step in hyperspectral remote sensing for retrieving inland non-optically active 28 water quality parameters utilizing Zhuhai-1.

29 Keywords: Zhuhai-1 satellite, non-optical parameters, water quality, Taipu River, empirical model

30 I. INTRODUCTION

31 The Taipu River serves as a major drinking water supply route for the Yangtze River Delta 32 Ecology and Greenery Integration Development Demonstration Zone in China. The upstream is 33 linked to the East Taihu Lake Water Source, while the downstream is linked to Shanghai Jinze 34 Reservoir and the Jiashan Changbaidang Drinking Water Source Protection Area(H. Zhu, 2018). It 35 serves as a key canal for flood discharge and shipping, moreover, serves as a source of drinkable 36 water, which needs to meet strict criteria for water quality and ecological balance. Along the Taipu 37 River, the dense populations and considerable industries such as chemical, textile, printing and 38 dyeing, polyester, will deteriorate water quality(Y. Wang et al., 2021). Recently, pollution 39 occurrences in the Taipu River have sparked considerable concern. Therefore, analyzing the 40 spatiotemporal distribution features of the Taipu River's water quality is increasingly critical.

41 Four significant non-optical parameters, TN, TP, NH₃-N, and NO₃-N, have been extensively 42 investigated to represent the eutrophication of rivers and lakes, which will cause a critical water 43 pollution issue in many countries like degrading functioning and endangering water security (X. 44 Chen et al., 2018; Liang et al., 2018; Lv & Wu, 2021; Mararakanye et al., 2022). Traditionally, 45 in-situ measurements and the collection of water samples are the major approaches for monitoring 46 water quality. Even if these measurements are accurate for a specific area, they cannot provide a 47 regional perspective on water quality (Ross et al., 2019; D. Sun et al., 2014). In order to represent 48 the spatial distribution and seasonal changes in water quality components, remote sensing 49 technology has been adopted due to the benefits of spatial and temporal coverage (Kallio et al., 50 2001; K. Shi et al., 2018; Xu et al., 2016). Different sensors with visible and infrared wavelengths 51 may be utilized to monitor water quality due to high-frequency data collecting and large-scale 52 coverage.

53 Generally, the spectral resolution of data sources for water quality retrieval can be classified 54 into two categories: multispectral data and hyperspectral data (H. Yang et al., 2022). In the field of 55 multispectral water quality retrieval, many scholars monitor the TN and TP using National 56 Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 57 (AVHRR) imagery (Y. Wang et al., 2016), Landsat series data (H. Guo et al., 2022), MODIS data (Arıman, 2021), IKONOS imagery (J. Liu et al., 2015) and Sentinel-2 imagery (H. W. Guo et al., 58 2021). The accuracy (R²) range of TN/TP in references is from 0.36 to 0.87 and 0.59 to 0.96 59 individually. The scenes of high-resolution multispectral SPOT-5 (Satellite Pour l'Observation de 60 61 la Terre) data (X. L. Wang et al., 2011), Landsat-8 OLI satellite data (C. Liu et al., 2019), 62 Sentinel-2 imagery (Dong et al., 2020) and Unmanned Aerial Vehicle (UAV) multispectral data(B. 63 T. Chen et al., 2021) were used to establish the relationship between the surface reflectance and 64 NH₃-N. The accuracy (\mathbb{R}^2) range of NH₃-N in references is from 0.69 to 0.88. The multispectral 65 technology has no relevant results in the monitoring of NO₃-N in inland rivers. Generally, due to 66 spectral resolution limitations, the overall precision of multispectral remote sensing water quality 67 is relatively low.

68 In the field of hyperspectral water quality retrieval, hyperspectral remote sensing data from 69 the ground-based and proximal hyperspectral imager (Q. Cao et al., 2022; X. Sun et al., 2022), the 70 handheld Analytical Spectral Devices (ASD) field spectrometer (S. Wang et al., 2022) and the 71 UAV equipped with a hyperspectral imaging sensor (Song et al., 2014), were applied to water quality retrieval of TN and TP. The accuracy (R^2) is higher than multispectral with the range of 72 73 TN/TP in references from 0.59 to 0.90 and 0.73 to 0.93 individually. The ground-based 74 hyperspectral data(Q. Cao et al., 2022) and UAV-borne hyperspectral imagery (Wang et al., 2021) 75 were used to estimate water quality retrieval of NH_3 -N. The accuracy (R^2) is higher than 76 multispectral with the range from 0.83 to 0.95. The ground-based hyperspectral data was used to estimate water quality retrieval of NO₃-N. The accuracy (R^2) range of NO₃-N in reference is 0.77. 77 78 However, focusing just on the spectrum makes it challenging to understand the spatial distribution 79 of water quality along the whole river channel (Wang et al., 2021). In addition, non-satellite 80 remote sensing data sources that rely on aircraft measurements are more expensive and requires 81 superb UAV operation skills. Moreover, hyperspectral satellites can also solve the problems of 82 synonyms spectrum in multispectral data due to its numerous bands (Y. Cao et al., 2018). These 83 days, the Orbita Hyperspectral Satellites (OHS) with fine spectral, spatial, and temporal resolution

are available. However, the applicability of monitoring inland water quality parameters utilizing
 OHS data has not been well investigated, particularly for the non-optically active water quality
 parameters.

87 The study aims to retrieve TN, TP, NH₃-N and NO₃-N concentrations in the Taipu River from 88 OHS data, as well as to investigate the performance of the empirical model based on the single 89 band and band ratio. In the study, the case study area and relevant data sets were introduced 90 initially. Then, the waterbody was extracted and the cloud and dark surface in the images were 91 detected and removed. Next, we presented four empirical band arithmetic algorithms (linear, 92 logarithmic, exponential and polynomial) for TN, TP, NH₃-N and NO₃-N retrieval. The 93 performances on the Sentinel-2A multispectral image and OHS hyperspectral images were 94 compared and the sensitive features were investigated respectively. The optimal model with the 95 best-performed image were used to create maps of water quality concentration in the Taipu River. 96 The results will be explained and discussed then. Finally, we draw some conclusions.

97 II MATERIALS

98 A. Study Sites and in Situ Data

The Taipu River is a part of the Taihu Lake Basin's river network. Additionally, it is also strongly connected to the surrounding water network, which comprises 205 small to medium-sized lakes, and is impacted by the influx of tributaries on both sides of the river. The length and width of the Taipu River are 57.2 kilometers and 200 meters, respectively. The flow rate is 0.6 m/s on average, and the flow is about 300 m³/s (Yao et al., 2015). Along this canal are tens of thousands of textile factories as well as 95 centralized sewage disposal facilities. (Yao et al., 2014). Therefore, Taipu River is a typical area for water quality research.

As shown in Figure 1, a total of 12 in-situ samples of water quality parameters were collected in Taipu River. The field measurements include total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH₃-N) and nitrate-nitrogen (NO₃-N). The samples are all concentrated at the intersection of the major streams and regional functional zones. The sampling points were measured on July 7, 2021, since the synchronized OHS and Sentinel-2 images corresponded to the Taipu River field experiments were acquired in July 6, 2021 and July 7, 2021 respectively.

112

113 Figure 1 Map of sampling sites for water quality inversion of Taipu River

114 B. Remote Sensing Data

115 The Zhuhai-1 mission, developed by Zhuhai Orbita Control Engineering Ltd. 116 (https://www.myorbita.net/), was China's first commercial microsatellite constellation. The 117 Zhuhai-1 mission includes 34 microsatellites: 12 video satellites (OVS-1/2/3/4), two high spatial 118 resolution satellites (OUS), two radar satellites (SAR), eight infrared satellites (OIS), and ten 119 hyperspectral satellites (OHS)(Qin et al., 2022). The Orbita Hyperspectral Satellites (OHS) comprise 32 bands with a wavelength range of 400 to 1000 nm, a spatial resolution of 10 m, and a 120 121 spectral resolution of 2.5 nm. To date, the single OHS has a temporal resolution of 6 days, and the 122 combined temporal resolution of 8 OHSs is reduced to about 1 day(Zhong et al., 2021). The OHS 123 has significant promise for monitoring inland water quality due to its high spatial, spectral, and 124 temporal resolutions. The preprocessing of OHS includes band combination, radiometric 125 calibration, atmospheric correction, and orthorectification, which converts the raw images into 126 surface reflectance with precise geometric positioning, laying the groundwork for the subsequent 127 inversion of water quality parameters. All the preprocessing steps are completed in ENVI 5.3.

128 Sentinel-2 Level-1C (L1C) MSI data could be downloaded from Sentinels Scientific Data 129 Hub (https://scihub.copernicus.eu/). Sentinel-2 comprises 13 spectral bands with a wavelength 130 range of 430 to 2190 nm. The 5 days revisit time of the twin Sentinel-2 satellites is crucial because 131 of the water quality changes caused by weather condition. The spatial resolution of Sentinel-2 is 132 10m, 20m and 60m, which means even small river and lakes can be studied(Toming et al., 2016). 133 The Sen2Cor plug-in in the SNAP (SeNtinel Application Platform) toolbox was used for 134 atmospheric correction to obtain the reflectance level images. The images then resampled to 20m 135 resolution utilizing the Sentinel-2 Resampling technique also provided by SNAP Toolbox(J. Shi et 136 al., 2022). Table 1 summarized the key technological characteristics of the OHS and Senitnel-2.

		OHS			Sentinel-2	
Channel	Center	Band	Spatial	Center	Band	Spatial
	wavelength	Number	resolution	wavelength	Number	resolution
	(nm)		(m)	(nm)		(m)
	443	B01				
Blue	466	B02	10	490	b2	10
	490	B03				
	500	B04				
	510	B05				
Green	531	B06	10	560	b3	10
	550	B07				
	560	B08				
	580	B09				
	596	B10				
Red	620	B11	10	665	b4	10
	640	B12				
	665	B13				
	670	B14	10	705	b5	20
	686	B15				
Red Edgel	700	B16				
	709	B17				
	730	B18				• •
Red Edge2	746	B19	10	/40	00	20
	760	B20				
Red Edge3	776	B21	10	783	b7	20
	780	B22				
NIR	806	B23				
	820	B24	10	842	b8	10
(Sentinel-2)	833	B25				
Narrow NIR	850	B26				
	865	B27	10	865	b8a	20
(Sentinel-2)						
	880	B28				
	896	B29				
NIR (OHS)	910	B30	10	_	_	_
	926	B31				
	940	B32				
SWIR1				1610	b11	20
	—		_			
SWIR2				2190	b12	20
	_	—	—			

137 Table 1 Center Wavelength and Spatial Resolution of OHS and Sentinel-2

138 III. METHODS

139 A. Waterbody Extraction

The water mask of Taipu River was derived from a vector dataset, the Open Street Map (OSM). OSM contains a huge amount of objects related to water and it is widely used in environmental applications including the extraction of rivers, lakes, and shoreline boundaries for hydrological analysis(Donchyts et al., 2016; Marshak et al., 2020). In this study, we merged all the OSM vectors in Taipu River into a single layer and corrected the typographic errors through the visual interpretation process of the OHS image. All the steps are performed in ArcMap 10.7.

146 B. Cloud Detection and Dark Surface Detection

The spectral bands of optical sensors are substantially impacted by clouds(Irish et al., 2006), in addition, the calculation of spectral indices might suffer from their existence(Huete et al., 2002). Therefore, identifying clouds in optical images is often a prerequisite for their use(Z. Zhu et al., 2015). There was no cloud in the OHS image but sparse cloud in the Sentinel-2 image. Fmask 4.0 was applied to detect cloud for Sentinel-2 image by integrating auxiliary data, new cloud probabilities, and novel spectral-contextual features, which outperformed Sen2Cor 2.5.5 in terms of overall accuracy by 7%(Qiu et al., 2019).

Taipu River, the urban surface water, is easily affected by noise in heterogeneous urban scenes, such as soil, roadways and cloud shadows(X. Yang et al., 2018). The water index, AWEIsh, was calculated to enhance the difference between water and non-water bodies(X. Yang et al., 2018). The AWEIsh tends to have positive values for water bodies, whereas negative values for soil and cloud shadows. The empirical threshold of 0.214 was adopted in this study. The waterbody of Sentinel-2 was conducted by combination of cloud detection result and non-water dark surfaces .The result of cloud/cloud shadow removal is presented in Figure 2.

161

Figure 2 Water mask for the true color composite image (Red, green and blue bands) of Sentinel-2 scenarios (watermask in blue).

164 C. Water Quality Inversion

The water quality inversion are following three steps. First, from each sample point in the Taipu River, the mean value of 3×3 cloud-free pixels were calculated for avoiding noise effectively. Then, the single band and band ratio of OHS and Sentinel-2 were selected to create the effective spectral information expression and to provide a framework for the qualitative and quantitative assessment of water quality. Finally, linear regression model was established by linear, logarithmic, exponential and polynomial, which was constructed by Formulas (1)-(4). Model inversion was mainly realized through MATLAB 2021a.

172
$$Linear \propto a \times R_{rs} + b$$
 (1)

173
$$Logarithmic \propto a \times log_{10}R_{rs} + b$$
 (2)

174
$$Exponential \propto a \times e^{b \times R_{rs}}$$
 (3)

175
$$Polynomial \propto a \times R_{rs}(\lambda) + b \times R_{rs} + c$$
 (4)

where R_{rs} represents band or band ratio of remote sensing images and a, b and c are the fitting coefficients.

178 **D. Validation and Evaluation**

The predictive performance of the linear regression model is primarily determined by the square of the correlation coefficient (R^2) and the Root Mean Squared Error (RMSE), which are calculated between the measured values and predicted values. The best models for assessing water quality are those with the highest R^2 value and the lowest RMSE. The followings are the equations of measurements:

184
$$RMSE = \sqrt{\sum_{i=1}^{n} (y_i - y'_i)^2 / n}$$
(5)

 $R^{2} = 1 - \sum_{i=1}^{n} (y_{i} - y_{i}')^{2} / \sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}$

(6)

186 where y_i and y'_i are the observed and predicted value for the *i*th observation; \bar{y}_i is the average 187 observed value; *n* is the number of validation samples.

188 IV. RESULTS

189 A. Analysis of Measured Water Quality

190 The statistics of the measured water quality in this experiment are listed in Table 2, which 191 summarizes the measured water quality parameters in this experiment. The range of TN 192 concentrations was from 0.972 to 2.192 mg/L, and the mean (\pm standard deviation) was 1.457 \pm 193 0.371 mg/L. According to the "Surface Water Environmental Quality Standard" (GB 3838-2002) 194 in China, the average value of TN met the requirement of water class IV. The range of TP 195 concentrations was from 0.03 to 0.14 mg/L, and the mean (\pm standard deviation) was 0.075 \pm 0.034 196 mg/L. The average value of TP met the requirement of water class III. The range of NH₃-N 197 concentrations was from 0.25 to 1.45 mg/L, and the mean (\pm standard deviation) was 0.537 \pm 0.307 198 mg/L. The average value of NH₃-N met the requirement of water class III. Overall the water 199 quality was below Class IV. The overall water quality of the Taipu River tends to be the same as 200 previous years.

201 Table 2 Summary of water quality concentrations of Taipu River sampling points.

	TN (mg/L)	TP (mg/L)	NH ₃ -N (mg/L)	NO ₃ -N (mg/L)
Maximum	2.192	0.14	1.45	1.257
Minimum	0.972	0.03	0.25	0.001
Mean	1.457	0.075	0.537	0.415
Standard deviation	0.371	0.034	0.307	0.42

202 B. Model Performance based on OHS and Sentinel-2

203 As shown in Table 3, the polynomial model had the best accuracy for modeling TN, TP, NH₃-N, and NO₃-N concentrations based on OHS, and their R² was 0.9678, 0.7924, 0.7682 and 204 0.9791, the corresponding RMSE was 0.0520 mg/L, 0.0135 mg/L, 0.051 mg/L and 0.0566 mg/L. 205 206 The combination of green/NIR and Red edge1/NIR bands exhibited significant relationships with 207 TN. The combination of NIR(940nm)/NIR(820nm) and NIR(806nm)/NIR(926nm) bands 208 exhibited significant relationships with TP. The combination of Red edge1/NIR and Red 209 edge2/Red bands exhibited significant relationships with NH₃-N. The combination of 210 Red(596nm)/Red(665nm) and Blue/Red bands exhibited significant relationships with NO₃-N. 211 From Figure 3, a strong linear relationship was shown between the measured and the predicted 212 concentrations of TN, TP, NH₃-N and NO₃-N, which also indicated that polynomial model had 213 good prediction accuracy and was appropriate for OHS remote sensing inversion.

	Model	Band ratio	\mathbb{R}^2	RMSE (mg/L)
	Linear	B03/B05	0.6897	0.1616
	Exp	B02/B09	0.6946	0.1603
TN	Log	B03/B05	0.6892	0.1617
	Polynomial	B05/B24、B16/B23	0.9678	0.0520
	Linear	B24/B23	0.4028	0.0228
	Exp	B24/B23	0.4159	0.0226
TP	Log	B24/B23	0.3898	0.0231
	Polynomial	B32/B24, B23/B31	0.7924	0.0135
	Linear	B23/B21	0.3055	0.0883
	Exp	B25/B27	0.3479	0.0856
NH ₃ -N	Log	B03/B05	0.2923	0.0891
	Polynomial	B17/B23、B19/B11	0.7682	0.051
	Linear	B10/B16	0.7458	0.1974
	Exp	B10/B16	0.757	0.193
NO ₃ -N	Log	B10/B16	0.7356	0.2013
	Polynomial	B10/B13, B02/B09	0.9791	0.0566

214 Table 3 Statistics (R² and RMSE) for TN, TP, NH₃-N and NO₃-N concentrations based on OHS image.

Figure 3 Accuracy of linear relationship between measured and predicted concentrations and RMSE of TN, TP,
 NH₃-N and NO₃-N from OHS image.

230 Compared to water quality estimation results using OHS images, a significant decrease 231 performance was shown from Sentinel-2 image. It can be seen from Table 4 that the polynomial model had the best accuracy for modeling TN, TP, NH₃-N, and NO₃-N concentrations based on 232 Sentinel-2, and their R² was 0.8854, 0.4192, 0.6601 and 0.9513, the corresponding RMSE was 233 234 0.1028 mg/L, 0.0231 mg/L, 0.0622 mg/L and 0.0878 mg/L. The combination of NIR/Narrow NIR 235 and Red edge1/Red bands exhibited significant relationships with TN. The combination of Red 236 edge3/Blue and SWIR1/Blue bands exhibited significant relationships with NO₃-N. From Figure 4, 237 a strong linear relationship was shown between the measured and the predicted concentrations of 238 TN and NO₃-N, which indicated that polynomial model had good prediction accuracy and was 239 appropriate for TN and NO₃-N inversion from Sentinel-2 images. However, we can also observe 240 that there was a large difference between the predicted value and the observed value of TP and 241 NH₃-N, indicating that the prediction errors are relatively large.

	Model	Band ratio	R^2	RMSE (mg/L)
	Linear	b7/b8	0.8156	0.1304
	Exp	b7/b8	0.8173	0.1298
TN	Log	b7/b8	0.8138	0.1310
	Polynomial	b8/b8a, b5/b4	0.8854	0.1028

Table 4 Statistics (R² and RMSE) for TN, TP, NH₃-N and NO₃-N concentrations based on Sentinel-2 image.

	Linear	b4/b2	0.1168	0.0284
	Exp	b4/b2	0.1195	0.0284
TP	Log	b4/b2	0.1133	0.0285
	Polynomial	b6/b8a、b8a/b2	0.4192	0.0231
	Linear	b4/b3	0.4156	0.0816
	Exp	b4/b3	0.4159	0.0815
NH ₃ -N	Log	b4/b3	0.4150	0.0816
	Polynomial	b6/b7、b4/b3	0.6601	0.0622
	Linear	b8a/b11	0.3112	0.3301
	Exp	b2/b12	0.3474	0.3213
NO ₃ -N	Log	b8a/b11	0.2978	0.3333
	Polynomial	b7/b2、b11/b2	0.9513	0.0878

Figure 4 Accuracy of linear relationship between measured and predicted concentrations and RMSE of TN, TP,
 NH₃-N and NO₃-N from Sentinel-2 image.

235 C. Optimal Model Application in Best-performed Images

232

Figure 5 shows the results of TN, TP, NH₃-N and NO₃-N inversion of OHS image in the Taipu River using the best fitting model (polynomial). An obvious weakness of the polynomial model is that the negative and anomaly positive value will exist in the result. Therefore, the 238 inversion results exclude negative values and values outside the 95th percentile. The inversion 239 results showed that the maximum value of TN in the Taipu River is 1.66 mg/L, and the minimum 240 value is 0.0067 mg/L, which is basically consistent with the in-situ measurements (TN max = 241 2.192 mg/L, TN min = 0.972 mg/L). The maximum value of TP in the Taipu River is 0.15 mg/L, 242 and the minimum value is 0.001 mg/L, which is basically consistent with the in-situ measurements 243 (TP max = 0.14 mg/L, TP min = 0.03 mg/L). The maximum value of NH₃-N in the Taipu River is 244 5.2 mg/L, and the minimum value is 0.001 mg/L, which is higher than in-situ measurements 245 $(NH_3-N max = 1.45 mg/L, NH_3-N min = 0.25 mg/L)$. However, the mean value of NH_3-N is 246 0.7718 mg/L, which indicates the NH₃-N concentration is low in the Taipu River. The maximum 247 value of NO₃-N in the Taipu River is 1.32 mg/L, and the minimum value is 0.001 mg/L, which is 248 basically consistent with the in-situ measurements (NO₃-N max = 1.257 mg/L, NO₃-N min = 249 0.001 mg/L).

The spatial distribution of TN and NO₃-N shows a general trend of deterioration in the water quality of the Taipu River from upstream to downstream. The TP and NH₃-N concentration in

252 Taipu River is evenly distributed. It also can be seen that the water quality parameter of TN in the

253 upper reaches is class III and in the lower reaches is class IV. Moreover, the water quality

254 parameter of TP is class III, and the water quality classification results for NH₃-N is class IV.

256 Figure 5 Spatial patterns of TN (a), TP (b), NH₃-N (c) and NO₃-N (d) in Taipu River.

257 V. DISCUSSION

258 A. Driving Forces of Water Quality in the Taipu River

As the Figure 6 showed, the upper reaches of the Taipu River is occupied mainly by cropland; the middle reaches of the Taipu River is occupied mainly by impervious surface; the lower reaches of the Taipu River is dominated by forest. In this study, 38 random points was selected evenly distributed along the Taipu River to analyze the drivers of the water quality. The land cover percentage was calculated from 1km buffer.

264

Figure 6 1km buffer zones and land cover types in the Taipu River.

266 Diagrams derived from redundancy analysis using water quality parameters (red solid lines) 267 and land cover metrics (black solid lines) from 1km buffers were shown in Figure 7. The angles 268 between lines indicate the degree of correlation between individual variables, and the stronger the 269 correlation, the smaller the angle. In addition, the acute angle between the two lines indicates a 270 positive correlation, the obtuse angle indicates a negative correlation. The length of the lines 271 represented the contribution of each land cover index to the water quality variables. Obviously, the 272 narrow angles between TN and cropland indicated that cropland was primarily responsible for the 273 negative effects on TN concentration. In particular, there has been a rise in the usage of herbicides 274 and fertilizers in the last decades. Therefore, rapidly rising amounts of relevant pollutants have 275 entered the river through precipitation and runoff (Xu et al., 2016). The narrow angles between 276 three of the indicators (TP, NH₃-N, and NO₃-N) and built area indicated that built area was 277 primarily responsible for the negative effects on TP, NH₃-N, and NO₃-N. Pollution from built area 278 is a result of urban functions. Built-up areas are extremely likely to have a negative impact on the 279 river's water quality due to the discharge of residential and industrial sewage (Wilson & Weng, 280 2010). The large angle between the four water quality parameters and forest indicated that forest 281 was primarily responsible for the beneficial effects on all the water quality parameters. Due to 282 plant roots' capacity to absorb nitrogen, phosphorus, and organic matter, as well as soil microbes' 283 ability to decompose organic matter, the forest has a good purifying effect on water quality than 284 built area and cropland .

285

Figure 7 Redundancy analysis diagram in 1km buffer zones and proportion of land use/cover types in the Taipu River. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

289 B. Sensitive Bands of Non-optical Parameters between OHS and Sentinel-2

290 In recent years, hyperspectral technology has become increasingly mature, and it offers new 291 options for water environmental monitoring. In hyperspectral remote sensing, spectral signatures 292 are usually high dimensional, which supports the identification of elements or the measurement of 293 concentrations (Krutz et al., 2019). Therefore, hyperspectral remote sensing technology is more 294 suitable for complex inland bodies of water with non-optical characteristics. The OHS 295 hyperspectral dataset which consists of 2.5nm spectral intervals, represents the target with 296 continuous spectrum throughout the visible and NIR regions. It is more helpful for extracting the 297 subtle spectral differences between water quality parameters (Zhang et al., 2021). In this study, 298 Sentinel-2 and OHS were direct compared to provide more evidence on the potential of the 299 hyperspectral data to retrieve water quality. By comparing the results in Table 3 and Table 4, it was 300 found that the hyperspectral dataset generated higher accuracy models than the multispectral 301 dataset in all cases. It is also shown that the feature bands of water quality retrieval were all 302 comprise by ratio bands, which can reduce the impact of environmental factors to increase the 303 accuracy of the analysis. The combination of green-NIR ratio and Red edge-NIR ratio were most 304 sensitive to TN. The combination of NIR(940nm)-NIR(820nm) ratio and NIR(806nm)-NIR(926nm) ratio were most sensitive to TP. The combination of Red edge-NIR 305 306 ratio and Red edge-Red ratio were most sensitive to NH₃-N. The combination of 307 Red(596nm)-Red(665nm) ratio and R Blue-Red ratio were most sensitive to NO₃-N. It is also 308 mentioned that the combination of Red edge-Blue ratio and SWIR1-Blue ratio derived from Sentinel-2 image also showed promising results of NO₃-N estimation. That means the SWIR 309

310 spectral region (OHS is not available) is critical for detecting NO₃-N concentration.

311 C. Limitations of the Models

The empirical method uses statistical regression models to link remotely sensed data (single bands or band ratios) to in-situ water quality parameters. It is widely used in remote sensing studies for inland water quality inversion, because it is simple and can be refined by selecting more sensitive spectral bands to improve water quality retrieval accuracy(Li et al., 2017). The

316 results of empirical model indicated that TN, TP, NH₃-N and NO₃-N are highly correlated with

OHS spectral data with R² ranging from 0.76 to 0.79. The Artificial Intelligence (AI) mode (AIM) 317 concentrates on learning-from-data algorithms and, as a result, generates highly representative 318 319 features to make linear and non-linear predictions for new unseen data. AIM can also outperform 320 traditional empirical models, which rely heavily on band selection and band combinations. Many 321 researchers have used the AIM mode in water quality retrieval, such as neural networks (NN), 322 support vector machines (SVM), and deep learning (DL), and achieved relatively satisfying results 323 (Chebud et al., 2012; Leong et al., 2019; Pyo et al., 2019). Although the AIM has demonstrated 324 some apparent improvements in assessing water quality, there is an overfitting problem when the 325 sample is not adequate. The AIM cannot be employed in this study since the number of sampling 326 points is limited. The comparison between the empirical model and the AIM is put forward for 327 future research studies.

328 VI. CONCLUSION

329 Hyperspectral remote sensing, especially Zhuhai-1 satellite, is an emerging area for 330 monitoring non-optically active water quality parameters, which requires a significant amount of 331 investigation and development in terms of both methods and applications. In this study, we 332 examined four empirical models (linear, logarithmic, exponential and polynomial) for inversion of 333 water quality parameters from the newly available hyperspectral OHS imagery and Sentinel-2 imagery in Taipu River. The evaluation results indicated that OHS performed better than 334 335 Sentinel-2 for estimating TN, TP, NH₃-N and NO₃-N. This study also demonstrated that the polynomial model based on band ratios performed best for estimating water quality parameters. 336 The band ratios of R(510)/R(820) and R(700)/R(806) performed the best retrieval of TN with $R^2 =$ 337 0.9678. The band ratios of R(940)/R(820) and R(806)/R(926) performed the best retrieval of TP 338 with $R^2 = 0.7924$. The band ratios of R(709)/R(806) and R(746)/R(620) performed the best 339 retrieval of NH₃-N with $R^2 = 0.7682$. The band ratios of R(596)/R(665) and R(466)/R(580) 340 341 performed the best retrieval of NO₃-N with $R^2 = 0.9791$. It is worth mentioning that the band ratio 342 of Red Eage3/Blue and SWIR1/Blue of Sentinel-2 also performed well for NO₃-N inversion with 343 $R^2 = 0.9513.$

The OHS-based empirical models were found acceptable and applicable in estimating water quality parameters of Taipu River. The spatial distribution of TN and NO₃-N shows a general trend of deterioration in the water quality of the Taipu River from upstream to downstream. The TP and NH₃-N concentration is evenly distributed, while all the values of water quality were relatively low across the whole Taipu River. The RDA was applied to analyze the drivers of the spatial distribution of water quality in the Taipu River. The results demonstrated that the proportion of built-up area was significantly positively correlated with TP, NH₃-N and NO₃-N, and cropland was 351 significantly positively correlated with TN. The proportion of forest was significantly negatively 352 correlated with TN, TP, NH₃-N and NO₃-N. In future studies, the AI models will be investigated to

353 unlock the new opportunities of OHS data in large-scale area water quality inversion.

354 CRediT authorship contribution statement

Yukun Lin: Conceptualization, Methodology, Software, Writing – original draft, Writing –
review & editing, Project administration. Yaojen Tu: Conceptualization, Investigation, Resources,
Data Curation, Writing – Review & Editing. Wenpeng Lin: Conceptualization, Writing – review &
editing. Weiyue Li: Resources, Writing – Review & Editing. Qianwen Cheng: Software, Writing –
review & editing.

360 Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

363 Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant number 41730642], the Central Guidance on Local Science and Technology Development Fund of Shanghai [grant number YDZX20213100002003] and the Shanghai Natural Science Foundation [grant number 20ZR1441100].

368 References

369	Arıman, S. (2021). Determination of inactive water quality variables by MODIS data: A case study in
370	the Kızılırmak Delta-Balik Lake, Turkey. <i>Estuarine, Coastal and Shelf Science, 260</i> , 107505.
371	https://doi.org/https://doi.org/10.1016/j.ecss.2021.107505
372	Cao, Q., Yu, G., Sun, S., Dou, Y., Li, H., & Qiao, Z. (2022). Monitoring Water Quality of the Haihe
373	River Based on Ground-Based Hyperspectral Remote Sensing. In <i>Water</i> (Vol. 14, Issue 1).
374	https://doi.org/10.3390/w14010022
375	Cao, Y., Ye, Y., Zhao, H., Jiang, Y., Wang, H., Shang, Y., & Wang, J. (2018). Remote sensing of
376	water quality based on HJ-1A HSI imagery with modified discrete binary particle swarm
377	optimization-partial least squares (MDBPSO-PLS) in inland waters: A case in Weishan Lake.
378	<i>Ecological Informatics</i> , 44, 21–32. https://doi.org/https://doi.org/10.1016/j.ecoinf.2018.01.004
379	Chebud, Y., Naja, G. M., Rivero, R. G., & Melesse, A. M. (2012). Water Quality Monitoring Using
380	Remote Sensing and an Artificial Neural Network. <i>Water, Air, & Soil Pollution, 223</i> (8), 4875–
381	4887. https://doi.org/10.1007/s11270-012-1243-0
382	Chen, B. T., Mu, X., Chen, P., Wang, B. A., Choi, J., Park, H., Xu, S., Wu, Y. L., & Yang, H. (2021).
383	Machine learning-based inversion of water quality parameters in typical reach of the urban river
384	by UAV multispectral data. <i>ECOLOGICAL INDICATORS</i> , 133.
385	https://doi.org/10.1016/j.ecolind.2021.108434
386	Chen, X., Wang, Y., Ye, C., Zhou, W., Cai, Z., Yang, H., & Han, X. (2018). Atmospheric Nitrogen
387	Deposition Associated with the Eutrophication of Taihu Lake. <i>Journal of Chemistry</i> , 2018,
388	4017107. https://doi.org/10.1155/2018/4017107

389 390 391 392	 Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., & Van de Giesen, N. (2016). A 30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. In <i>Remote Sensing</i> (Vol. 8, Issue 5). https://doi.org/10.3390/rs8050386
393	Dong, G., Hu, Z., Liu, X., Fu, Y., & Zhang, W. (2020). Spatio-Temporal Variation of Total Nitrogen
394	and Ammonia Nitrogen in the Water Source of the Middle Route of the South-To-North Water
395	Diversion Project. WATER, 12(9). https://doi.org/10.3390/w12092615
396 397 398 399	Guo, H., Tian, S., Jeanne Huang, J., Zhu, X., Wang, B., & Zhang, Z. (2022). Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive. <i>ISPRS Journal of Photogrammetry and Remote Sensing</i> , 183, 451–469. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.11.023
400	Guo, H. W., Huang, J. J., Chen, B. W., Guo, X. L., & Singh, V. P. (2021). A machine learning-based
401	strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery.
402	<i>INTERNATIONAL JOURNAL OF REMOTE SENSING</i> , 42(5), 1841–1866.
403	https://doi.org/10.1080/01431161.2020.1846222
404	Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the
405	radiometric and biophysical performance of the MODIS vegetation indices. <i>Remote Sensing of</i>
406	<i>Environment</i> , 83(1–2), 195–213.
407 408 409	Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. <i>Photogrammetric Engineering & Remote Sensing</i> , 72(10), 1179–1188.
410 411 412 413	 Kallio, K., Kutser, T., Hannonen, T., Koponen, S., Pulliainen, J., Vepsäläinen, J., & Pyhälahti, T. (2001). Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. <i>Science of The Total Environment</i>, 268(1), 59–77. https://doi.org/https://doi.org/10.1016/S0048-9697(00)00685-9
414 415 416 417 418	 Krutz, D., Müller, R., Knodt, U., Günther, B., Walter, I., Sebastian, I., Säuberlich, T., Reulke, R., Carmona, E., Eckardt, A., Venus, H., Fischer, C., Zender, B., Arloth, S., Lieder, M., Neidhardt, M., Grote, U., Schrandt, F., Gelmi, S., & Wojtkowiak, A. (2019). The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS). In <i>Sensors</i> (Vol. 19, Issue 7). https://doi.org/10.3390/s19071622
419	Leong, W. C., Bahadori, A., Zhang, J., & Ahmad, Z. A. (2019). Prediction of water quality index (WQI)
420	using support vector machine (SVM) and least square-support vector machine (LS-SVM).
421	<i>International Journal of River Basin Management</i> , 19, 149–156.
422	Li, Y., Zhang, Y., Shi, K., Zhu, G., Zhou, Y., Zhang, Y., & Guo, Y. (2017). Monitoring spatiotemporal
423	variations in nutrients in a large drinking water reservoir and their relationships with hydrological
424	and meteorological conditions based on Landsat 8 imagery. <i>Science of The Total Environment</i> ,
425	599–600, 1705–1717. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.05.075
426	Liang, Z., Chen, H., Wu, S., Zhang, X., Yu, Y. H., & Liu, Y. (2018). Exploring Dynamics of the
427	Chlorophyll a-Total Phosphorus Relationship at the Lake-Specific Scale: a Bayesian Hierarchical

428	Model. Water, Air, and Soil Pollution, 229(1). https://doi.org/10.1007/s11270-017-3678-9
429	Liu, C., Qian, B. J., Wang, L. Y., & Mao, Q. (2019). Application of GIS and Remote Sensing in Spatial
430	Distribution of Nitrogen and Phosphorus Pollutant in Urban Rivers: A Case Study of Linyi
431	Economic Development Zone, China. JOURNAL OF COASTAL RESEARCH, 250–256.
432	https://doi.org/10.2112/SI93-033.1
433	Liu, J., Zhang, Y., Yuan, D., & Song, X. (2015). Empirical Estimation of Total Nitrogen and Total
434	Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS
435	Multispectral Imagery. In <i>Water</i> (Vol. 7, Issue 11, pp. 6551–6573).
436	https://doi.org/10.3390/w7116551
437 438	Lv, J., & Wu, Y. (2021). Nitrogen removal by different riparian vegetation buffer strips with different stand densities and widths. <i>Water Supply</i> , <i>21</i> (7), 3541–3556. https://doi.org/10.2166/ws.2021.119
439	Mararakanye, N., Le Roux, J. J., & Franke, A. C. (2022). Long-term water quality assessments under
440	changing land use in a large semi-arid catchment in South Africa. <i>Science of The Total</i>
441	<i>Environment</i> , 818, 151670. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151670
442 443 444	 Marshak, C., Simard, M., Denbina, M., Nilsson, J., & Van der Stocken, T. (2020). Orinoco: Retrieving a River Delta Network with the Fast Marching Method and Python. In <i>ISPRS International Journal of Geo-Information</i> (Vol. 9, Issue 11). https://doi.org/10.3390/ijgi9110658
445	Pyo, J., Duan, H., Baek, S., Kim, M. S., Jeon, T., Kwon, Y. S., Lee, H., & Cho, K. H. (2019). A
446	convolutional neural network regression for quantifying cyanobacteria using hyperspectral
447	imagery. <i>Remote Sensing of Environment</i> , 233, 111350.
448	https://doi.org/https://doi.org/10.1016/j.rse.2019.111350
449	Qin, P., Cai, Y., & Wang, X. (2022). Small Waterbody Extraction With Improved U-Net Using
450	Zhuhai-1 Hyperspectral Remote Sensing Images. <i>IEEE Geoscience and Remote Sensing Letters</i> ,
451	19, 1–5.
452 453	Qiu, S., Zhu, Z., & He, B. (2019). Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery. <i>Remote Sensing of Environment</i> .
454 455 456 457	 Ross, M. R. V, Topp, S. N., Appling, A. P., Yang, X., Kuhn, C., Butman, D., Simard, M., & Pavelsky, T. M. (2019). AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters. <i>Water Resources Research</i>, 55(11), 10012–10025. https://doi.org/https://doi.org/10.1029/2019WR024883
458	Shi, J., Shen, Q., Yao, Y., Li, J., Chen, F., Wang, R., Xu, W., Gao, Z., Wang, L., & Zhou, Y. (2022).
459	Estimation of Chlorophyll-a Concentrations in Small Water Bodies: Comparison of Fused
460	Gaofen-6 and Sentinel-2 Sensors. <i>Remote Sensing</i> , 14(1). https://doi.org/10.3390/rs14010229
461	Shi, K., Zhang, Y., Zhu, G., Qin, B., & Pan, D. (2018). Deteriorating water clarity in shallow waters:
462	Evidence from long term MODIS and in-situ observations. <i>International Journal of Applied</i>
463	<i>Earth Observation and Geoinformation</i> , 68, 287–297.
464	https://doi.org/https://doi.org/10.1016/j.jag.2017.12.015
465	Song, K. S., Li, L., Tedesco, L., Li, S., Shi, K., & Hall, B. (2014). Remote Estimation of Nutrients for a

466 467	Drinking Water Source Through Adaptive Modeling. <i>WATER RESOURCES MANAGEMENT</i> , 28(9), 2563–2581. https://doi.org/10.1007/s11269-014-0627-x
468	Sun, D., Qiu, Z., Li, Y., Shi, K., & Gong, S. (2014). Detection of Total Phosphorus Concentrations of
469	Turbid Inland Waters Using a Remote Sensing Method. <i>Water, Air, & Soil Pollution</i> , 225(5),
470	1953. https://doi.org/10.1007/s11270-014-1953-6
471	Sun, X., Zhang, Y., Shi, K., Zhang, Y., Li, N., Wang, W., Huang, X., & Qin, B. (2022). Monitoring
472	water quality using proximal remote sensing technology. <i>Science of The Total Environment</i> , 803,
473	149805. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149805
474	Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B., & Nõges, T. (2016). First Experiences in
475	Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. <i>Remote Sensing</i> , 8(8).
476	https://doi.org/10.3390/rs8080640
477 478 479	Wang, S., Shen, M., Liu, W., Ma, Y., Shi, H., Zhang, J., & Liu, D. (2022). Developing remote sensing methods for monitoring water quality of alpine rivers on the Tibetan Plateau. <i>GIScience & Remote Sensing</i> , 59(1), 1384–1405. https://doi.org/10.1080/15481603.2022.2116078
480	Wang, X. L., Fu, L., & He, C. S. (2011). Applying support vector regression to water quality modelling
481	by remote sensing data. <i>INTERNATIONAL JOURNAL OF REMOTE SENSING</i> , 32(23), 8615–
482	8627. https://doi.org/10.1080/01431161.2010.543183
483	Wang, Y., He, B., Duan, W., Li, W., Luo, P., & Razafindrabe, B. H. N. (2016). Source apportionment
484	of annual water pollution loads in river basins by remote-sensed land cover classification. <i>Water</i>
485	(<i>Switzerland</i>), 8(9), 1–14. https://doi.org/10.3390/w8090361
486	 Wang, Y., Li, F., Mao, L., Chen, M., Tao, H., & Li, J. (2021). Spatial Distribution and Pollution
487	Assessment of Potentially Toxic Elements (PTEs) in Surface Sediments at the Drinking Water
488	Source Channel of Taipu River in China. In <i>Minerals</i> (Vol. 11, Issue 11).
489	https://doi.org/10.3390/min11111202
490	Wang, Z., Wei, L., He, C., & Lu, Q. (2021). Ammonia Nitrogen Monitoring of Urban Rivers with
491	UAV-Borne Hyperspectral Remote Sensing Imagery. 2021 IEEE International Geoscience and
492	Remote Sensing Symposium IGARSS, 3713–3716.
493	https://doi.org/10.1109/IGARSS47720.2021.9554632
494	Wilson, C., & Weng, Q. (2010). Assessing Surface Water Quality and Its Relation with Urban Land
495	Cover Changes in the Lake Calumet Area, Greater Chicago. <i>Environmental Management</i> , 45(5),
496	1096–1111. https://doi.org/10.1007/s00267-010-9482-6
497	Xu, J., Li, Z., Chi, H., Wang, M., Guan, C., Reiff-Marganiec, S., & Shen, H. (2016). Optimized
498	Composite Service Transactions through Execution Results Prediction. 2016 IEEE International
499	Conference on Web Services (ICWS), 690–693. https://doi.org/10.1109/ICWS.2016.107
500	Yang, H., Kong, J., Hu, H., Du, Y., Gao, M., & Chen, F. (2022). A Review of Remote Sensing for
501	Water Quality Retrieval: Progress and Challenges. In <i>Remote Sensing</i> (Vol. 14, Issue 8).
502	https://doi.org/10.3390/rs14081770
503	Yang, X., Qin, Q., Grussenmeyer, P., & Koehl, M. (2018). Urban surface water body detection with

504 505	suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. <i>Remote Sensing of Environment</i> , 219(October), 259–270. https://doi.org/10.1016/j.rse.2018.09.016
506	Yao, H., Qian, X., Gao, H., Wang, Y., & Xia, B. (2014). Seasonal and Spatial Variations of Heavy
507	Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible
508	Sources. In International Journal of Environmental Research and Public Health (Vol. 11, Issue
509	11, pp. 11860–11878). https://doi.org/10.3390/ijerph111111860
510	Yao, H., Qian, X., Yin, H., Gao, H., & Wang, Y. (2015). Regional Risk Assessment for Point Source
511	Pollution Based on a Water Quality Model of the Taipu River, China. RISK ANALYSIS, 35(2),
512	265–277. https://doi.org/10.1111/risa.12259
513	Zhang, X. W., Zhang, J. C., Chen, W. Y., Liu, W., Zhang, Z. J., Fan, J. W., Xiao, C. J., & Wang, R.
514	(2021). Semi-automated extraction of surface water based on ZhuHai-1 hyperspectral satellite
515	images. REMOTE SENSING LETTERS, 12(8), 750-756.
516	https://doi.org/10.1080/2150704X.2021.1934593
517	Zhong, Y., Wang, X., Wang, S., & Zhang, L. (2021). Advances in spaceborne hyperspectral remote
518	sensing in China. Geo-Spatial Information Science, 24(1), 95-120.
519	https://doi.org/10.1080/10095020.2020.1860653
520	Zhu, H. (2018). Distribution and control countermeasures for antimony in water source of Huangpu
521	River upper stream. Water Purif. Technol, 37, 25-32.
522	Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm:
523	cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote
524	Sensing of Environment, 159, 269–277. https://doi.org/https://doi.org/10.1016/j.rse.2014.12.014
525	