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Key Points:16

• Flood maps derived from Height Above Nearest Drainage (HAND) are subject to17

nearest drainage line limitations that affect inundation skill.18

• A means of resolving this limitation is provided by reducing HAND processing units19

to level paths with effective unit stream order.20

• Discretizing the stream network for HAND computation affects the stage-discharge21

relationship and leads to higher skill inundation.22
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Abstract23

Height Above Nearest Drainage (HAND), a drainage normalizing terrain index, is a means24

able of producing flood inundation maps (FIMs) from the National Water Model (NWM)25

at large scales and high resolutions using reach-averaged synthetic rating curves. We high-26

light here that HAND is limited to producing inundation only when sourced from its near-27

est drainage line, thus lacks the ability to source inundation from multiple fluvial sources.28

A version of HAND, known as Generalized Mainstems (GMS), is proposed that discretizes29

a target stream network into segments of unit Horton-Strahler stream order known as30

level paths (LP). The FIMs associated with each independent LP are then mosaiced to-31

gether, effectively turning the stream network into discrete groups of homogeneous unit32

stream order by removing the influence of neighboring tributaries. Improvement in map-33

ping skill is observed by significantly reducing false negatives at river junctions when the34

inundation extents are compared to FIMs from that of benchmarks. A more marginal35

reduction in the false alarm rate is also observed due to a shift introduced in the stage-36

discharge relationship by increasing the size of the catchments. We observe that the im-37

provement of this method applied at 4-5% of the entire stream network to 100% of the38

network is about the same magnitude improvement as going from no drainage order re-39

duction to 4-5% of the network. This novel contribution is framed in a new open-source40

implementation that utilizes the latest combination of hydro-conditioning techniques to41

enforce drainage and counter limitations in the input data.42

Plain Language Summary43

Flooding is one of the most impactful natural disasters on life and property. The44

United States National Water Model (NWM) provides flood forecasts for the entire coun-45

try so that adequate warnings can be raised to the public to enable safe evacuations and46

protective measures. In order to convert flow rates from the NWM to flood inundation47

maps (FIM), a model, known as Height Above Nearest Drainage (HAND), is used that48

converts elevation data from height above mean sea-level to height above the nearest river49

bottom. This model suffers from issues in mapping performance because inundation sourced50

from rivers is only considered from the nearest river line. We developed a technique that51

mitigates these errors by removing consideration for neighboring tributaries in the rel-52

ative elevation computation process. This is done by splitting the stream network into53

continuous river segments known as level paths (LPs). These LPs have no tributaries,54
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thus are known to be stream lines with a unit stream order indicating no branching. HAND55

is computed independently for each LP and the resulting FIMs are mosaiced together56

to form one seamless map. We compared these HAND derived FIMs to maps from physically-57

based models and found improvement in mapping performance.58

1 Introduction59

Flooding is one of the most significant natural disasters in the United States (US)60

affecting both the loss of life and property. In 2017 and 2019, river and flash flooding61

combined represented the leading cause of death and the second leading cause in 201862

among all natural disasters in the US (Service, 2020b; National Weather Service, 2019,63

2018). More than an average of 104 deaths per year are attributed to flood events from64

the 10 year period ending in 2019 (Service, 2020a). With respect to property damages,65

river and flash flooding have contributed to 60.7, 1.6, and 3.7 billion non-inflation ad-66

justed US dollars in the annual periods of 2017 to 2019, respectively (Service, 2020b; Na-67

tional Weather Service, 2019, 2018), with the large spike in 2017 attributed to the Hur-68

ricane Harvey event along the Gulf Coast. Trends related to flood damages and fatal-69

ities have been steadily increasing over recent decades (Mallakpour & Villarini, 2015; Down-70

ton et al., 2005; Kunkel et al., 1999; Pielke Jr & Downton, 2000; Corringham & Cayan,71

2019). Some are expecting that the hydrologic cycle will intensify due to climate change72

which will lead to more extreme precipitation in some areas along with a greater risk of73

flooding (Tabari, 2020; Milly et al., 2002; Wing et al., 2018). Increasing trends in fre-74

quency and risk are not uniform across spatial regions with work by Slater and Villar-75

ini (2016) indicating that trends are increasing across the US Midwest and Great Lakes76

regions while decreasing in the coastal Southeast, Southwest, and California.77

1.1 Operational Forecasting78

Operational flood forecasting systems are primary tools in developing accurate fore-79

casts for public awareness prior to life threatening and property damaging events. One80

of these operational systems is the Advanced Hydrologic Prediction System (AHPS) main-81

tained by the National Oceanic Atmospheric Administration (NOAA) National Weather82

Service (NWS) with thousands of forecasting points across the US at typically short fore-83

cast horizons of 24 or 72 hours (McEnery et al., 2005). AHPS provides forecasting ser-84

vices in the form of ensemble streamflows at more than 3,600 locations and flood inun-85
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dation maps (FIM) at more than 150 of those points shown in Figure 1. Additionally,86

two forecasting networks, Full Resolution (FR) and Mainstems (MS) stream networks,87

relevant to the National Water Model (NWM) (see Section 1.2) are rendered in Figure88

1. The FR network refers to the entire NWM forecasting domain while MS refers to the89

subset of the FR network that is at or downstream of AHPS forecasting points (see Sec-90

tion 1.2). On an approximate basis, there is only one forecast point every 1,450 km of91

river (FR) and one forecast point with FIM every 29,000 km of river (FR). Despite the92

AHPS advances in operational flood forecasting, it lacks sufficient domain coverage, spa-93

tial resolution, and long-range forecast horizons to address the increasingly complex wa-94

ter challenges facing the US.95

Figure 1. Forecast points with and without Flood Inundation Maps (FIM) in United States’

Advanced Hydrologic Prediction System (AHPS). Note that only a small fraction of the AHPS

forecast points have existing FIM. Also shown are the National Water Model (NWM) stream

networks at the Full Resolution (FR) and Mainstems (MS) resolution. The FR network consti-

tutes the entire NWM stream network while the MS resolution network is the FR network at or

downstream of the AHPS forecast points shown.
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1.2 National Water Model96

Additional work is required to address the gaps that the AHPS leaves in terms of97

spatial resolution, spatial coverage, and temporal forecast horizons. In response to grow-98

ing stakeholder demand for enhanced and integrated water resource forecasts, the Of-99

fice of Water Prediction (OWP) at the National Water Center (NWC) along with its part-100

ners at the National Center for Atmospheric Research (NCAR) have developed and im-101

plemented operationally the NWM which is a configuration of the Weather Research and102

Forecasting Hydrologic Model (WRF-Hydro) (Salas et al., 2018; Gochis et al., 2021; Cos-103

grove et al., 2019). The NWM forecasts river discharges at more than 2.7 million fore-104

cast points at a variety of time horizons including lookback-range (3-28 hrs), short-range105

(18 hr), medium-range (10 day) and long-range (30 day) forecast horizons. The NWM106

enhances the spatial and temporal domain of the current AHPS capabilities operated107

at the 13 River Forecast Centers (RFC) in areas known as ‘hydro-blind’. As a comple-108

ment to the operational NWM, RFC forecasts from AHPS forecast points are assimi-109

lated in the NWM and routed downstream to the next downstream AHPS forecast point110

where the process iterates again. This assimilation into the NWM is used to enhance fore-111

casting skill by leveraging best available regional-scale forecasts. The river network upon112

which this special assimilation technique operates on is herein referred to as the Main-113

stem (MS) stream network. Figure 1 shows the NWM V2.1 FR stream network as well114

as the NWM V2.1 MS network. The MS network contains roughly 120 thousand fore-115

casting points or roughly 4.4% of the reaches of the FR stream network.116

The National Hydrography Dataset Plus (NHDPlus) V2.1 is the basis for the “hy-117

drofabric” in the NWM due to its comprehensive use with the hydrologic communities’118

stakeholders (McKay et al., 2012; NHDPlusHR GDB , 2021). The term “hydrofabric”119

is used within the NWM jargon to describe the subset of hydrography composed of the120

geospatial datasets required for hydrologic modeling including but not limited to stream121

networks, catchments, channel properties, and elevation data. The NWM provides stream122

forecasts at these hydrofabric segments using the Muskingum-Cunge method to reduce123

computational requirements of a continental scale model but fails to consider backwa-124

ter dynamics (Bedient et al., 2008; Ponce & Changanti, 1994; Gochis et al., 2021). The125

need for high resolution FIM at 10 m or better requires additional post-processing from126

the principal output of the NWM which is forecast river discharges at the reach scale.127

The use of a 2-dimensional (2D) hydrodynamic model across a continental-scale and high128
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spatial resolutions is very cost prohibitive especially in an operational setting. The Height129

Above Nearest Drainage (HAND) terrain model is one such technique that can be used,130

along with synthetic rating curves (SRC), to convert 1-dimensional (1D) riverine discharges131

to stages, and finally to inundation extents and depths.132

1.3 Height Above Nearest Drainage133

HAND normalizes topography along the nearest drainage path and it has been demon-134

strated to be a good proxy and indicator of a series of important environmental condi-135

tions including soil environments, landscape classes, soil gravitational potentials, geo-136

morphologies, soil moisture, and groundwater dynamics (Rennó et al., 2008; A. Nobre137

et al., 2011). A. D. Nobre et al. (2016) showed evidence for utilizing the drainage nor-138

malizing HAND dataset as a proxy for flood potential to make static flood inundation139

maps from known stages. The terrain index also provides additional utility in the ob-140

servation of riverine flood inundation mapping from remote sensing especially in areas141

of high electromagnetic interference such as vegetated and anthropogenic areas (Aristizabal142

et al., 2020; Shastry et al., 2019; Huang et al., 2017; Twele et al., 2016; Aristizabal &143

Judge, 2021). Zheng, Tarboton, et al. (2018) developed a methodology for determining144

stage-discharge relationships known as SRCs by sampling reach-averaged parameters from145

HAND datasets and inputting into the Manning’s equation (Gauckler, 1867; Manning146

et al., 1890). This collection of methods, coupling HAND with SRCs, have been exper-147

imented with and compared to other sources of FIM including engineering scale mod-148

els, in-situ observation, and remote sensing based observation with solid results in large149

spatial scale applications (Godbout et al., 2019; Johnson et al., 2019; Garousi-Nejad et150

al., 2019; A. D. Nobre et al., 2016; Afshari et al., 2018; Zheng, Maidment, et al., 2018;151

Teng et al., 2015, 2017; Zhang et al., 2018).152

1.4 HAND’s Assumptions and Limitations153

HAND operates on many underlying assumptions since it can only be used as an154

inundation proxy or no physics model and thus, not a true hydrodynamic inundation model155

(A. D. Nobre et al., 2016; Y. Y. Liu et al., 2016; Y. Liu et al., 2020). HAND, to our knowl-156

edge, has only been applied to natural, inland, and riverine inundation applications thus157

it is also missing pluvial, coastal, ground water, and dam break components among other158

possible sources of flooding. Additionally, in order to flood an area, HAND assumes all159
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areas eligible for inundation must drain to some nearest stream line which is used for catch-160

ment allocation and relative elevation calculation (A. D. Nobre et al., 2016; A. Nobre161

et al., 2011; Y. Y. Liu et al., 2016; Y. Liu et al., 2020; Maidment, 2017; Garousi-Nejad162

et al., 2019; Zheng, Tarboton, et al., 2018; Zheng, Maidment, et al., 2018; Johnson et163

al., 2019; Rennó et al., 2008). Stream thalweg networks must also collectively drain to164

a singular outlet point for a given processing region (A. D. Nobre et al., 2016; Zheng,165

Maidment, et al., 2018; Rennó et al., 2008). Since elevations don’t naturally do this, they166

must undergo a long series of hydro-conditioning processes to enforce monotonically de-167

creasing elevations across an entire processing unit along with hydrologically correct di-168

rections of flow (A. D. Nobre et al., 2016; A. Nobre et al., 2011; Y. Y. Liu et al., 2016;169

Y. Liu et al., 2020; Donchyts et al., 2016; Rennó et al., 2008). The level of digital ele-170

vation map (DEM) manipulation required to enforce this assumption can be substan-171

tial depending on the region and can be a significant source of error. The drainage en-172

forcing assumption also interacts with an inability to properly account for fluvial inun-173

dation in regions of DEM depressions that lack natural drainage to riverine areas (A. D. No-174

bre et al., 2016; Rennó et al., 2008).175

When used for FIM applications, HAND assumes only fluvial inundation sourced176

from its nearest drainage line is accounted for (A. D. Nobre et al., 2016; McGehee et al.,177

2016). Catchments are independent of one another for FIM purposes meaning a reaches’178

stage value is only used to threshold the HAND values within its respective catchment179

(Y. Y. Liu et al., 2016; Zheng, Tarboton, et al., 2018; Zheng, Maidment, et al., 2018).180

This assumption plays to the “Nearest Drainage” term in HAND and creates a signif-181

icant limitation within HAND for FIM applications (Zhang et al., 2018; McGehee et al.,182

2016; Li et al., 2020; A. D. Nobre et al., 2016). At the junction of high stream order and183

high flow rivers with lower flow tributaries, there can be a lack of inundation extents ex-184

hibited which is known colloquially in the forecasting community as the “catchment bound-185

ary problem”. The academic community has somewhat referenced this issue before but186

it has been characterized more as a problem with the stream delineation process that187

comes from thresholding the drainage accumulation maps (A. D. Nobre et al., 2016; Li188

et al., 2020). Later in this study, we will re-introduce this problem and demonstrate how189

we initialize with a stream network (that of the NWM’s) and thus avoid having to thresh-190

old accumulations to some arbitrary value to define stream networks. We illustrate how191

computing HAND independently for stream lines of unit stream order can significantly192
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enhance FIM performance by accounting for multiple sources of fluvial inundation that193

may exist in certain regions and flow scenarios.194

1.5 HAND Implementations195

Due to significant advances in high performance computing (HPC) and large scale196

high resolution DEMs such as the 3D Elevation Program (3DEP) seamless at the 1/3197

arc-second (approximately 10 m depending on latitude) scale, HAND has been imple-198

mented into software for large-scale, continental computation. As part of the OWP’s In-199

novators Program and NWC’s Summer Institute, the National Flood Interoperability200

Experiment (NFIE) generated FIM hydrofabric (will be used interchangeably with the201

datasets produced by HAND) rapidly on a HPC (Maidment, 2017; Y. Y. Liu et al., 2016).202

NFIE used open-source dependencies including the Terrain Analysis Using Digital El-203

evation Models (TauDEM) (Tarboton, 2005) and the Geospatial Data Abstraction Li-204

brary (GDAL) (Warmerdam, 2008) to compute HAND for the Continental United States205

(CONUS) at 331 Hydrologic Unit Code (HUC) 6 processing units in 1.34 central pro-206

cessing unit (CPU) years. By allocating 31 nodes at 20 cores per node for a total of 620207

available cores to the overall operation, it enabled the production to finish up in 36 hours208

consuming 3.2 terrabyte (TB) of peak memory and 5 TB of total disk space. Originally,209

NFIE utilized the NHD Medium Resolution (MR) to etch or burn flowlines prior to fur-210

ther conditioning but more recent work has advanced this to the more current NHDPlus211

High Resolution (NHDPlusHR) which better agrees with the 10 m DEM from the NHD-212

PlusHR program (Y. Liu et al., 2020). The original NFIE dataset was employed by the213

NWC as an unofficial demonstration to produce forecast FIM from the NWM for ad-214

ditional guidance in hydro-blind regions. Further work by Djokic (2019), implemented215

a series of improvements to HAND including equidistant reaches, updates to use with216

NHDPlusHR hydrography, and AGREE DEM reconditioning (Hellweger & Maidment,217

1997) into an ESRI Arc-Hydro workflow with use in ArcGIS. More notably the software218

added the ability to derive HAND on both the NWM FR and MS stream networks to219

consider multiple sources of fluvial inundation along high impact rivers of primary fore-220

casting concern.221

Related to these efforts, the United States Geological Survey (USGS) has invested222

in relative elevation HAND-like methods via work in the GIS Flood Tool (GFT) that223

also uses SRCs with cross-sections for stage-discharge relationships (Verdin et al., 2016).224
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Additional investment by Petrochenkov (2020) was able to successfully scale this approach225

by transitioning the method to open-source Python source code (PyGFT) and imple-226

menting novel interpolation methods to help address some of the catchment boundary227

discontinuities discussed more in this paper. In addition to the domestic work done in228

the US, some studies have expanded upon HAND to cover global domains at 30 m res-229

olutions (Yamazaki et al., 2019; Donchyts et al., 2016).230

1.6 Office of Water Prediction Flood Inundation Mapping231

In order to mitigate the ever increasing threat of flooding to life and property, an232

operational capability is required to extend NWM streamflow forecasts to river stages,233

inundation extents, and inundation depths. OWP FIM is introduced here as a continen-234

tal scale capability that generates these products at high spatial and temporal resolu-235

tions. Here we introduce OWP FIM that utilizes a few of the latest techniques in HAND236

based FIM oriented for use with the NWM in continental scale operational forecasting237

settings. Within the operational framework of OWP FIM, we introduce research demon-238

strating how FIM performance skill with HAND can be improved by discretizing stream239

networks into units of an effective unit Horton-Strahler stream order (Horton, 1945; Strahler,240

1952, 1952) for HAND computation contexts. Previous authors dating back to the first241

HAND for FIM work by A. D. Nobre et al. (2016) have noted a sensitivity of mapping242

skill to the stream accumulation threshold which is closely related to stream density and243

the maximum Horton-Strahler stream order (or simply stream order) of the processing244

unit employed (Zhang et al., 2018; McGehee et al., 2016; Li et al., 2020). Here we demon-245

strate how reducing a HAND processing unit’s stream network into discrete level paths246

(LPs) of singular, effective stream order, can enhance FIM skill by accounting for mul-247

tiple possible sources of fluvial inundation. This capability is introduced progressively248

as MS (whose network represents about 4% of FR network) and to a higher degree Gen-249

eralized Mainstems (GMS) (covers entire FR network) which will be explained later on.250

The following methods and results describe the work in more detail and demonstrate its251

efficacy in producing enhanced FIM for the NWM.252
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2 Materials and Methods253

OWP FIM is a fully operational pipeline of software tools to help acquire datasets,254

cache hydrofabrics, produce FIMs, and evaluate results. Figure 2 gives a high level overview255

of the methodology used in OWP FIM and in this study. Input data from multiple sources256

are preprocessed (not illustrated) and then subset to processing areas based on the model257

used, FR, MS, or GMS. The standard processing unit of OWP FIM is a HUC8 and the258

entire NWM FR stream network is used for enforcment. Later, we explain how only the259

NWM MS stream network is used for the MS version of HAND, while for GMS, the FR260

stream network is discretized into LPs before computing HAND. A series of hydro-conditioning261

steps enforces the location of stream lines, monotonically decreasing elevations, excavated262

bathymetry, stream thalweg breaching, and levee enforcement. After a DEM suitable for263

HAND’s assumptions is conditioned, the FIM hydrofabric is generated including stream264

network, catchments, HAND, SRCs, and cross-walk table. The FIM hydrofabric is de-265

fined as the datasets required to make an inundation map from discharges including the266

relative elevation model (REM) or HAND grid, the catchments in vector and raster form,267

and the hydro-table (contains SRC and cross-walk information). In operational circum-268

stances, the NWM streamflows are used in conjunction with the FIM hydrofabric to de-269

rive forecast FIMs. However for evaluation purposes, we use the streamflows from the270

cross-sections of our benchmark model. As later discussed in Section 2.6, independent271

FIMs from multiple fluvial sources are mosaiced together. For the case of MS, two sources272

are mosaiced together (FR and MS) while for GMS the inundation from every LP is com-273

posited together. The evaluation FIM extents are compared to the extents of the bench-274

mark model and metrics are computed.275
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Figure 2. Methodology overview detailing high level steps followed in the study. The flow

chart begins with the input data organized by source. Subsetting the data into processing units

depends on which model is being considered. FR utilizes the entire NWM stream network pro-

cessed at HUC8 processing areas. MS only computes HAND using the NWM stream at or down-

stream of legacy forecasting points. The resulting inundation from the MS HAND is eventually

layered with the FIM from FR HAND to account for high levels of inundation contributed by the

mainstem. Generalized Mainstem (GMS) discretized NWM streams into level paths (LP) then

computes HAND and the FIMs independently only to mosaic them later. This better accounts

for multiple possible sources of fluvial inundation. The dotted lines denote the use of NWM

streamflow forecasts to produce operational FIM but not used in this study. All acronyms used in

the figure are defined in the paper.
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2.1 Software Dependencies and Architecture276

OWP FIM exclusively utilizes free and open source software dependencies includ-277

ing Python 3, GDAL, TauDEM, Geographic Resource Analysis Support System (GRASS),278

GNU Parallel, and MPICH (P. C. Team, 2019; contributors, 2020; Tarboton, 2005; G. D. Team,279

2020; Tange, 2015; Amer et al., 2021). Within the Python 3 ecosystem, many common280

packages are employed including but not limited to RichDEM, GeoPandas, Rasterio, Raster-281

stats, and Numba (Barnes, 2018; Jordahl, 2014; Lam et al., 2015). To simplify setup and282

enhance portability across host operating systems, OWP FIM packages all dependen-283

cies up in a Docker image (Merkel, 2014). A user only needs to install Docker on their284

host machine and build the image from the provided recipe. Source code is made avail-285

able for this project on GitHub where a user could consult the Readme.md page for more286

information on how to acquire the datasets and reproduce the pipeline (Aristizabal et287

al., 2022b).288

2.2 Datasets289

Data sources used within OWP FIM are publicly available from a variety of gov-290

ernment sources including the USGS, NWC, Federal Emergency Management Agency291

(FEMA), and US Army Core of Engineers (USACE) to enhance reproducibility and col-292

laboration among government, academia, and industry. Instructions for accessing data293

processed for OWP FIM are provided on the project’s GitHub page via an Amazon Web294

Services (AWS) S3 bucket furnished by the Earth Science Information Partners (ESIP)295

(Aristizabal et al., 2022a). The National Hydrography Dataset Plus High Resolution (NHD-296

PlusHR) Beta Version is the latest hydrography dataset used for land surface hydrologic297

modeling in the US (Moore et al., 2019). We utilized a series of data products from the298

NHDPlusHR including the BurnLineEvents (NHDPlusHR GDB , 2021), Value Added299

Attributes (VAA) (NHDPlusHR GDB , 2021), Water Boundaries (WBD) or HUC Lay-300

ers (NHDPlusHR WBD , 2021), and the DEM elevation rasters (NHDPlusHR DEM , 2021).301

These BurnLines used in conjunction with the hydrofabric of the NWM V2.1 to help de-302

fine flowlines for OWP FIM while the NWM hydrofabric is also used to define reservoirs303

for exclusion and catchments to cross-walk against for forecasting purposes (NWM Hy-304

drofabric V2.1 , 2021). For enforcing levee data, the USACE NLD is used to burn fea-305

ture elevations into DEMs (ENGINEERS, 2021). Since NHDPlusHR datasets extend be-306

yond land borders into sea and Great Lake regions, we used the land-sea border from307
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OpenStreetMap (OSM) (Water polygons, 2021) and the land-lake border from Great Lakes308

Hydrography Dataset (GLHD) (GLHD , 2020) to exclude those areas from production309

of FIMs. Additionally, the Base Level Engineering (BLE) datasets within FEMA Re-310

gion 6 spanning parts of nine states including Colorado, New Mexico, Texas, Oklahoma,311

Kansas, Arkansas, Louisiana, Missouri and Mississippi at two recurrence intervals, 1%312

(100 year or yr) and 0.2% (500 year or yr), are used for validation in this study and fur-313

nished by the Interagency Flood Risk Management (InFRM) consortium (Base Level En-314

gineering (BLE) Tools and Resources, 2021; estBFE Viewer , 2021). These BLE datasets315

are provided at the watershed scale (HUC8) utilizing best available DEMs and simula-316

tions from the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model317

(USACE, 2022). The full input datasets presented by source are listed in Table 1. Ar-318

eas with all the required data (from the NWM and the USGS) are labeled as the FIM319

domain which includes 2,188 HUC8s for the FR and GMS networks and 1,604 HUC8s320

for the MS method. These methods will be explained in more detail later. An enhance-321

ment of OWP FIM over previous HAND based FIM versions is the support for Hawaii322

and Puerto Rico which are expansion domains in the NWM V2.0 and V2.1, respectively.323

2.3 Hydro-conditioning324

The DEM is subject to a series of hydro-conditioning procedures to enhance its suit-325

ability for riverine flood inundation mapping with HAND. These techniques are specific326

for making OWP FIM and differ from the conditioning methods used by the NHDPlusHR327

Beta (Moore et al., 2019). HAND inherently requires all areas eligible for inundation to328

drain to the designated drainage network. So to satisfy this requirment, DEMs must un-329

dergo significant manipulation. In other words, all areas within a given processing unit330

for HAND must have monotonically decreasing elevations to enable eligiblity for flood-331

ing. Hydro-conditioning is implemented to obtain many objectives including enforcing332

the location of hydrologically relevant features such as flowlines, lakes, or drainage di-333

vides whether natural or anthropogenic. It can also be used to simulate more accurate334

bathymetry which is not accounted for in the 10 m DEM (Gesch et al., 2002).335

Specifically within the context of OWP FIM, the hydro-conditioning operations that336

take place in sequential order are presented. Prior to any hydro-conditioning, all input337

datasets must be subset from their original spatial domain scales into the processing units338

of size HUC8. The subsetting is done by spatial query for the cases of the levees, DEM,339
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and NWM hydrofabric while the NHDPlusHR BurnLineEvents are subset via attribute340

query for the given reach code’s membership in the processing unit. Hydro-conditioning341

raster operations take place on buffered boundary definitions to avoid edge contamina-342

tion and effects (Lindsay & Seibert, 2013).343

2.3.1 Stream Network Enforcement344

The location of the stream network is enforced to ensure general agreement with345

the NWM network which is used for forecasting the streamflow inputs. The NHDPlusHR346

Beta BurnLineEvent layer is used to enforce stream locations in the NHDPlusHR work-347

flow and best agrees with thalweg locations in the DEM used so it is also used here for348

hydro-enforcement (Moore et al., 2019).349

However, to better match the drainage density of the NWM FR V2.1 stream net-350

work, which is based on the NHDPlus V2, the BurnlineEvents are pruned utilizing a near-351

est neighbor search around the NWM flowlines. Headwater points are first derived for352

the NWM FR V2.1. For every NWM headwater point, the nearest NHDPlusHR point353

is selected and placed into a set while those excluded are discarded. Only the nearest354

point on the NHDPlusHR is used so any portion of the NHDPlusHR network upstream355

of this nearest point is discarded to avoid extending inundation too far above the mod-356

eling domain. The points in this nearest neighbor set are then traversed downstream.357

Any headwater portion in the NHDPlusHR or any other stream not traversed are pruned358

away to better match the resolution and spatial locations of the NWM stream network359

and its headwater points. The resulting pruned NHDPlusHR stream network gets hydro-360

enforced in subsequent operations. This procedure is best illustrated in Figure 3 which361

shows that the pruned NHDPlusHR network corresponds to the NHDPlusHR network362

at or downstream of NWM V2.1 headwater locations only. Additionally, the NHDPlusHR363

pruned headwaters are later used for seeding a new FIM drainage network that best agrees364

with the DEM after all hydro-conditioning takes place. This results in a stream network365

that has the same density as the NWM V2.1 flowline network but utilizes the locations366

of the NHDPlusHR Beta BurnLineEvents.367
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Figure 3. This figure illustrates some of the datasets that result from the pruning of NHD-

PlusHR Beta BurnlineEvents (dotted black) to the stream density of the NWM FR V2.1 density

(blue). The stream network used for forecasting, NWM FR V2.1, is of lower stream density than

that of the NHDPlusHR which has better agreement with the thalweg locations in the DEM

used. Thus, we opt to prune the NHDPlusHR network to match the general location and density

of the NWM network. The nearest neighbor segment in the NHDPlusHR of each NWM headwa-

ter locations and the nearest point on that segment is determined to match the closest point to

that of the NWM headwater. These points are then traversed downstream and any segments not

traversed are pruned away. The resulting stream network (red) matches the drainage density of

NWM V2.1 while corresponding spatially with the NHDPlusHR BurnlineEvents.

The pruned stream network is then utilized to hydro-enforce the DEM with a method-368

ology developed by Hellweger and Maidment (1997) known as the AGREE DEM Sur-369

face Reconditioning System. The AGREE algorithm seeks to burn artificially deep thal-370

weg elevations by a uniform value known as sharp drop. The modification continues by371

excavating an area of a given buffer distance from the thalweg by a depth proportional372

to the distance from the channel given by the smooth drop and buffer distance. The re-373

sulting enforcement of the thalweg and general bathymetric region results in a cross-section374
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resembling an inverted triangular notch shape with a significantly lower elevation along375

the thalweg line only. In total, the AGREE algorithm requires three parameters includ-376

ing the buffer distance, smooth drop, and sharp drop which were set to fixed values of377

70 m, 1000 m, and 10 m, respectively, but available to the user via the parameter file.378

While the values for these parameters are critical to the inundation extents produced,379

especially for lower flow rates where bathymetric information has more influence, find-380

ing their optimal values for OWP FIM was not done since it was out of the main scien-381

tific scope of this article. Using the AGREE method as opposed to simple thalweg burn-382

ing techniques helps prevent distortions in the delineation of streams as well as the catch-383

ment boundaries (W. Saunders & Maidment, 1995; W. K. Saunders & Maidment, 1996;384

Mizgalewicz & Maidment, 1996; Hellweger & Maidment, 1997; Quenzer, 1998; Baker et385

al., 2006). Baker et al. (2006) noted AGREE produced satisfactory results when com-386

pared to other enforcement techniques especially when computational costs are consid-387

ered. Downsides to the technique include the possibility of exhibiting parallel streams388

where the burned stream and real stream are both represented (Hellweger & Maidment,389

1997; W. Saunders, 1999) and some distortion of the catchment boundaries can also be390

observed (W. Saunders, 1999; W. K. Saunders & Maidment, 1996). Some of these draw-391

backs are addressed by additional conditioning techniques applied later on.392

2.3.2 Levee Enforcement393

Coarse DEM’s at 10 m, 30 m, and higher resolutions can lack sufficient represen-394

tation of fine grain features such as embankments, flood walls, and closure structures (Arundel395

et al., 2018; Dobbs, 2010; Wang & Zheng, 2005; Sanders, 2007). In order to better rep-396

resent the influences of these features upon hydraulics and inundation extents, the Na-397

tional Levee Database (NLD) published by USACE was used to enforce elevations within398

the 1/3 arc-second DEM. The elevations found in the NLD are burned onto the DEM399

if those elevations were found to exceed those already in place.400

2.3.3 Depression Filling401

Local depressions are naturally occurring features of a DEM but must be addressed402

if a connected drainage network with continuous catchments are to be derived for flood403

modeling purposes with HAND. The partially conditioned DEM was removed of depres-404

sions by filling areas with pits while preserving the stream and levee information pre-405
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viously enforced. Priority-Flood developed by Barnes et al. (2014b) is an algorithm for406

filling said depressions and shown to have improved performance over early works in the407

field by Jenson and Domingue (1988) implemented in Tarboton (2005) as well as Planchon408

and Darboux (2002). The depression filling algorithm used in our pipeline is a Priority-409

Flood variant developed by (Zhou et al., 2016) with enhanced single-thread performance410

and a time complexity of O(n log n) for floating point grids. This performance was en-411

abled by limiting the processing queue with a region-growing method to exclude many412

of the slope cells (Zhou et al., 2016). The depression filling technique employed here does413

leave the existence of flat regions where pits previously existed thus later requiring the414

need for resolving these flats. The enhanced variant of Priority-Flood is implemented415

and made available by Barnes (2018) and Zhou et al. (2015).416

2.3.4 Stream Thalweg Elevation Conditioning417

Thalweg elevations are critical components of relative elevation based inundation418

mapping thus much is performed to ensure the best available, monotonically decreasing,419

elevations are derived prior to the normalizing of elevations. Work on the AGREE DEM420

method from several authors have illustrated that the AGREE DEM method does not421

prevent situations where the burned thalweg and the thalweg endemic to the DEM run422

parallel to one another (Hellweger & Maidment, 1997; Baker et al., 2006; W. Saunders,423

1999; W. K. Saunders & Maidment, 1996; Quenzer, 1998; W. Saunders & Maidment, 1995).424

These works observe that the artificial elevations enforced by the hydrographically based425

stream network and AGREE DEM disagree with those naturally occurring in the na-426

tive DEM. In order to mitigate this documented issue, the normalized excavation algo-427

rithm (W. Saunders, 1999) is used to seek a zonal (nearest neighbor) elevation minimum428

on the original, unconditioned DEM for each thalweg pixel. Each zone is defined as the429

thalweg’s pixel nearest neighborhood within a maximum distance of 50 m. The zonal430

minimum is computed for each thalweg pixel zone and the minimum is used to replace431

the existing thalweg elevation value. This step essentially enforces an estimate of the na-432

tive DEM thalweg elevations onto the sharp drop enforced thalweg elevations from the433

AGREE procedure.434

The next step involves conditioning these local minimums along the thalweg to en-435

force monotonically decreasing thalweg elevations for FIM. Garousi-Nejad et al. (2019)436

proposed an algorithm that breaches stream thalweg pixel elevations in a depth first man-437
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ner. This procedure was found to increase the Critical Success Index (CSI) of resulting438

FIMs from HAND and is employed in OWP FIM to enforce monotonically decreasing439

elevations with thalweg pixel networks.440

2.4 Deriving FIM Hydrofabric441

The FIM Hydrofabric is defined here as the collection of geospatial datasets that442

are used for converting NWM discharges into inundation extents. These datasets include443

the HAND or relative elevation model (REM) raster, reach-level catchments raster/polygons,444

DEM-derived streamlines, SRCs, and cross-walk table. The following sub-sections de-445

scribe how the subset and hydro-enforced geospatial datasets are converted into the FIM446

hydrofabric.447

2.4.1 Flow Directions and Flats Resolution448

To facilitate the generation of a connected stream network and its associated catch-449

ments from the conditioned DEM, the depression-filled DEM is used to derive connec-450

tivity in the form of D-8 flow directions. D-8 seeks to allocate a drainage direction for451

every pixel based on the adjacent eight pixel neighborhood with the steepest slope (O’Callaghan452

& Mark, 1984). The horizontal component of slope is defined as one for the four neigh-453

boring pixels in the main cardinal directions while the intercardinal pixels are designated454

a horizontal component of
√
2 by means of the Pythagorean theorem. Flow directions455

are derived for non-depression filled regions trivially with the above procedure but to de-456

fine connectivity for every grid cell the remaining flats corresponding to depression-filled457

cells must be resolved.458

Flat resolution from flats endemic to the DEM or from depression filled regions is459

a costly, non-trivial procedure which was originally addressed by Garbrecht and Martz460

(1997) where flats are resolved by incrementing elevations iteratively. Software imple-461

mentations have developed means to partition the problem and resolve flats iteratively462

with communication across processes (Tarboton et al., 2009; Tesfa et al., 2011; Wallis463

et al., 2009; Tarboton, 2005). The excessive iteration and communication leads to poor464

computational performance which motivated further work on how to optimize flat res-465

olution (Survila et al., 2016; Barnes et al., 2014a). The established literature in this niche466

field of hydrology discusses how prevalent flats can be in given study areas and how dif-467
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ficult the problem is from both computational and hydrologic stand-points (Garbrecht468

& Martz, 1997; Tarboton et al., 2009; Tarboton, 2005; Survila et al., 2016; Barnes et al.,469

2014a; Tesfa et al., 2011; Wallis et al., 2009). OWP FIM utilized a CyberGIS implemen-470

tation of the D-8 flow direction algorithm with the accelerated resolution of flats which471

we found to be very efficient and effective (Survila et al., 2016; Y. Liu et al., 2016).472

2.4.2 Deriving FIM Stream Network473

The derivations of relative elevations and catchments from the newly conditioned474

DEM involves re-deriving a new, DEM based, FIM stream network. The FIM stream475

network is of similar drainage density as the NWM V2.1 network and fully converges at476

all junctions leaving no divergences in the network. This is accomplished by using the477

seed points generated from the stream network enforcement process (Section 2.3.1). These478

seeds points are pruned headwater locations of the NHDPlusHR Beta BurnlineEvents479

layer that spatially correspond to the headwater definitions in the stream network of the480

NWM V2.1. Feeding the seed points and previously computed flow directions into flow481

accumulation methods (Wallis et al., 2009; Tarboton, 1997, 2005) yields a stream link482

accumulation raster that can be converted to a vector file for further processing.483

Each stream link in this derived FIM stream network is split into equidistant reaches484

of 1.5 km in length which is a user exposed parameter. Stream links are defined here as485

segments of rivers discretized by junctions with other NWM river segments. Stream links486

are then further segmented at NWM lakes and HUC8 boundaries. Discretizing at NWM487

lakes isolates reaches and catchments associated with lakes and reservoirs to avoid map-488

ping them using the Manning’s equation and could potentially enable volume based map-489

ping in the future as a feature enhancement. Based on previous research, splitting each490

remaining stream link into equidistant reaches not to exceed a parameterized value of491

1.5 km helps improve SRC and mapping skill (Garousi-Nejad et al., 2019; Godbout et492

al., 2019; Zheng, Maidment, et al., 2018). Small reaches can lead to unrealistic variances493

in channel geometries while oversized reaches can lead to grouping too much slope vari-494

ance into one discretization of the stream network. Short stream segments that are in-495

troduced as a result of forced network breaks due to reservoir, levee, or HUC boundaries496

inherit the SRC properties of the upstream or downstream segment, depending on the497

topology. Section 2.4.5 details the derivation of the SRC and the dependence on chan-498

nel length. Additionally every reach (and later catchment) is assigned a globally unique499
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identifier based on the HUC8 membership. This stream network is important since it500

drives the HAND calculation and derivation of catchments.501

2.4.3 Catchments502

Catchments were derived using the D8 connectivity established by O’Callaghan and503

Mark (1984). Outlet points are set at the pixel center points of the delineated stream504

lines explained in Section 2.4.2. The outlets act as root nodes in a tree structure and the505

connectivity is traversed to derive the contributing, nearest drainage region for each out-506

let point. Two sets of catchments are derived, one set of catchments denotes the unique507

drainage region for each thalweg pixel which is used for relative elevation calculation.508

The other catchments are derived for the drainage region for each stream reach as de-509

fined in Section 2.4.2.510

2.4.4 Height Above Nearest Drainage511

Once the pixel level catchments are derived, the final relative elevations can be com-512

puted. The elevation of every thalweg pixel is subtracted from the elevations of the non-513

thalweg pixels within the same, corresponding pixel-level catchment described in Sec-514

tion 2.4.3. The DEM used for this operation is the DEM resulting from the thalweg con-515

ditioning procedures described in Section 2.3.4. Outside of the excavated channel from516

the AGREE DEM method, the native non-drainage enforced elevations are used to re-517

duce sources of error in relative elevations due to pit filling (Djokic, 2019). Any nega-518

tive values resulting from this subtraction with native elevations are replaced by zero.519

Again, HAND assumes and requires processing areas to drain thus have monotonically520

decreasing elevations with hydrologically correct flow directions all leading to a singu-521

lar outlet point. While this is required for the generation of DEM-derived catchments522

and stream lines, it is not necessarily required for the computation of the relative ele-523

vations. Since the use of hydro-conditioning processes to fit the drainage requirement524

for HAND can be extensive, we found it more fitting to use the native elevations this fi-525

nal HAND computation thus avoid the use of manipulated values that fit modeling as-526

sumptions.527
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2.4.5 Synthetic Rating Curves528

A method for converting forecast river discharges from the NWM to stages or river529

depths at the reach scale is necessary for producing FIMs with HAND. For 1D hydro-530

dynamic models such as the routing methods in the NWM, the typical procedure is to531

establish the stage-discharge relationship by sampling data from the DEM to derive a532

SRC at discrete cross-sections (Quintero et al., 2021; Di Baldassarre & Claps, 2011). For533

this application, we utilized the reach averaged approach for developing SRCs (Zheng,534

Tarboton, et al., 2018). The reach averaged approach seeks to sample the geometry pa-535

rameters in the Manning’s equation (Gauckler, 1867; Manning et al., 1890) on a reach536

scale then dividing those by length. Previously not reported in literature to our knowl-537

edge in this form, the reach averaged Manning’s formula is derived to be538

Q(y) =
1

n

V (y)5/3S1/2

LB(y)2/3
(1)539

where Q is discharge at stage y, n is the Manning’s n roughness coefficient, V is volume540

at y, S is channel slope, L is the along-flow reach length, and B is wetted bed area at y.541

Q, V, and B are taken at specific y values so are more formally written as Q = Q(y),542

V = V (y), and B = B(y), respectively. All units are international (SI) given the one543

in the numerator above n. The reach averaged method has been compared to rating curves544

from HEC-RAS and USGS gages yielding comparable results for estimating the river bot-545

tom elevation profile, channel width at given stages, and stage-discharge relationships546

(Zheng, Tarboton, et al., 2018). The reach averaged geometry parameters including num-547

ber of wet cells, bed area, and volume are sampled from the thalweg conditioned AGREE548

DEM using TauDEM’s catchhydrogeo utility. Using the split reaches described in Sec-549

tion 2.4.2, the channel slope is sampled from the thalweg conditioned DEM at the end550

points of the reaches while the same reaches are used to calculate the reach length. While551

the AGREE DEM is subject to hydro-conditioning processes, it does introduce some no-552

tion of bathymetry estimation that the native DEMs lack while being sensitive to ad-553

ditional parameters that could yield further errors in the FIM. We leave this issue open554

in this study and elaborate on needs with respect to bathymetry and Manning’s n val-555

ues in the Discussion section (Section 4).556

Setting of the Manning’s n roughness coefficient has precedent in previous continental-557

scale FIM (CFIM) studies (Maidment, 2017; Y. Y. Liu et al., 2016; Y. Liu et al., 2020;558

Djokic, 2019; Garousi-Nejad et al., 2019; Zheng, Maidment, et al., 2018) with two noted559

–22–



manuscript submitted to Water Resources Research

values of 0.05 and 0.06 for NFIE and Djokic (2019) respectively. These values are ap-560

plied universally to the entire forecasting domain across space, time, and discharge pro-561

files. We note significant opportunity to enhance CFIM skill by better localizing Man-562

ning’s n according to available data including but not limited to land cover, land use,563

stream order, stream geometry, drainage area, reach length, and discharge percentiles564

(Garousi-Nejad et al., 2019; Johnson et al., 2019). For now and for the purpose of this565

study, we examine the SRCs with Manning’s n set to both 0.06 and 0.12 which we hope566

will shed some light on the sensitivity of this parameter to HAND based FIMs. After567

all the parameters to the Manning’s equation have been determined with either hydro-568

fabric sampling or user parameterization, we select 84 stage values (y in Eq. 1) from 0569

to 25 meters in depth at a third of a meter increments to calculate the discharge values570

for each stage value.571

2.4.6 Cross-walking with NWM Stream Network572

The DEM based stream network derived in Section 2.4.2 must be associated with573

NWM reach identifiers so that a discharge can be converted to stage and later inunda-574

tion extents and depths. For the FR version of HAND, we overlap the reach catchments575

derived in Section 2.4.3 with the NWM catchments matching the ID of the NWM catch-576

ment that most overlaps the derived catchment for HAND. For two subsequent HAND577

methods, MS and GMS, discussed in Sections 2.5.1 and 2.5.2, respectively, we find the578

mid-point of the derived stream reach line described in Section 2.4.2 and find the NWM579

catchment that contains the mid-point. Additionally, only relevant catchments from the580

NWM for the given LP are selected for cross-walking for methods in Sections 2.5.1 and581

2.5.2. While these conflation methods are approximate, they can lead to some substan-582

tial errors which will be discussed more in Section 4.583

2.5 Stream Order Reduction584

As previously discussed, HAND based FIMs are subject to many assumptions and585

limitations in order serve as a suitable inundation proxy for large scale, high resolution586

domains. HAND produced FIMs are limited in only providing inundation sourced from587

the nearest drainage line, however, depending on flow conditions and topography, a given588

area may have multiple contributing fluvial sources of surface water inundation. The fore-589

casting community, in reviewing HAND, have noted significant negative effects at the590
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confluence of lower flow tributaries with higher flow rivers for which the phrase “catch-591

ment boundary issue” has been termed. In previous studies, FIM skill has been shown592

to be sensitive to the drainage density of the stream network employed as the datum for593

HAND which is closely related to the maximum Horton-Strahler stream order of the net-594

work (Zhang et al., 2018; McGehee et al., 2016; Li et al., 2020; A. D. Nobre et al., 2016).595

This sensitivity is partly in due to the limitation that catchment boundaries place on in-596

undation extents where only the nearest drainage line can source inundation for any par-597

ticular area.598

Figure 4 illustrates the exact situation our solution proposes to address where two599

tributaries converge with a higher order stream segment. An actual map with OWP FIM600

is generated using the NWM full-resolution stream network and compared with a FEMA601

100 yr extent (see Section 2.7 for more details) showing significant under-prediction in602

inundation extent. The higher discharge along the main segment in Figure 4 of 1,900 cu-603

bic meters per second (CMS) does not translate to the lower flow rates along the trib-604

utaries of 84 and 195 CMS. This is due to a lack of representation of backwater condi-605

tions in the hydraulic routing techniques used. As a parallel problem, there is excess wa-606

ter accumulated along the mainstem that cannot extend in either a fluvial or pluvial man-607

ner beyond the boundaries of the mainstem catchments.608
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Figure 4. The figure represents an agreement map between a HAND derived FIM and one

produced from the Base Level Engineering (BLE) program for a 100 yr magnitude event at

HUC8 12090301. Agreement maps are symbolized by false negatives (FN), true negatives (TN),

false positives (FP), and true positives (TP) where inundated represents the positive condition

(see Section 2.7 for more details). The streamflows associated with each river segment are shown

in CMS while the flow directions are symbolized as red arrows. The presence of FNs at the con-

fluence of tributaries (circled in red) with the main segment is associated with lower flow rates

in the tributaries that don’t account for backwater effects. Additionally, the flow of 1900 CMS

from the main segment cannot extend to the neighboring catchments belonging to its tributaries

shown here. Water pools up vertically along the catchment boundaries of the higher order seg-

ment distorting rating curve behavior (Section 4). Sourcing fluvial inundation from HAND is

limited to only its nearest drainage line which is the main issue this study aims to address.

We seek to resolve this catchment boundary problem or nearest drainage limita-609

tion by discretizing the target stream network into stream networks of reduced, unit stream610

order to avoid the constraining of catchments by those belonging to lower order neigh-611

bors. By discretizing the network into stream networks of unit stream order (later de-612

fined as LP), we remove the influence of neighboring catchments that constrain the in-613
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undation extent. This creates much larger and overlapping catchments that can source614

fluvial inundation from multiple reaches as required by the given river stage at current615

flow conditions. We present two successive methods, National Weather Service MS (Sec-616

tion 2.5.1) and GMS (Section 2.5.2), implemented that reduce the effective Horton-Strahler617

stream orders of the networks employed and test our presented hypothesis that unary618

stream order networks enhance FIM performance skill with HAND by expanding the near-619

est drainage definition to increase potential inundation areas.620

To clarify the phrase “reducing Horton-Strahler stream order” used extensively in621

this paper, every FIM used in evaluation contains a flood extent sourced from every NWM622

forecast point in the given evaluation domain. What we do to reduce stream order is dis-623

cretize the NWM FR network into different units of size, MS network (2.5.1) and GMS624

LPs (2.5.2), that effectively reduce the HAND computation to independent networks of625

unit stream order. These independent HAND datasets are later used to produce FIM626

independently and mosaiced together (see Section 2.6). The inundation from the MS HAND627

is mosaiced with the inundation from FR HAND, while the inundation of each individ-628

ual LP from GMS is mosaiced together. The Horton-Strahler stream order is only re-629

duced for HAND computation purposes to reduce the negative effects of the nearest drainage630

limitation inherent to HAND.631

2.5.1 NWS Mainstems632

The initial attempt at drainage order reduction to solve the catchment boundary633

issue was to use a stream network relevant to the NWS forecasting community. The Main-634

stems (MS) network is a subset of the NWM FR network at and downstream of AHPS635

forecast points as seen in Figure 1. The MS network comprises about 200 thousand km636

of stream length which is less than 4% of the FR total stream length of 5.5 million km.637

It also spans 121,724 reaches across 1,608 HUC8s. In this technique, we derive HAND638

using the FR stream network as well as the MS network which was originally proposed639

by Djokic (2019). Inundation is derived independently from the resulting FR and MS640

HAND hydrofabrics and are mosaiced together using the technique proposed in Section641

2.6 to form the MS FIMs. Within each HUC, one might typically only find a MS stream642

network of uniform stream order but this can vary if more than one AHPS forecasting643

point is found within or upstream of the HUC in question. So while we may refer to the644

MS network as that of one with unit stream order, we acknowledge there are many cases645
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where additional or converging forecast points create multiple branches within a given646

processing unit.647

2.5.2 Generalized Mainstems648

Since MS only covers 4% of the entire FR stream network, we sought to expand649

drainage order reduction techniques to all reaches within the NWM modeling domain.650

In order to do this, we discretized the NWM network into LPs which when considered651

individually have unit Horton-Strahler stream orders. LPs group flowlines by maximiz-652

ing the length of each flow path and minimizing the number of LP identifiers within a653

given domain (Moore et al., 2019; McKay et al., 2012). In order to derive LPs for the654

NWM FR stream network at the HUC8 processing area, we first compute arbolate sums655

which are defined as the cumulative drainage distance of all upstream drainage lines. Ar-656

bolate sum is also inclusive of the current drainage reach as well. Arbolate sums are com-657

puted by starting at the headwater points and summing up drainage distances as you658

traverse downstream.659

Arbolate sum is critical to discretizing the NWM network into LP identifiers. Start-660

ing at a HUC8’s outlet, a unique LP is propagated upstream. At every confluence, the661

direction of maximum arbolate sum is sought to propagate the current LP identifier. For662

the remaining parent reaches of the given junction, a new LP identifier is assigned and663

the process recursively continues with them. Figure 5 illustrates how LPs (symbolized664

by unique colors) are propagated upstream by the value of arbolate sum. The figure shows665

computed arbolate sums and unique LP identifiers on a HUC12 (120903010404) for clar-666

ity but were computed at the corresponding HUC8. The mainstem of the figure runs from667

the red ellipses to the black one which is the outlet. From the figure, we can see how unique668

colors are propagated in the direction of the maximum arbolate sum.669

Each HUC8 is discretized into LPs independently and the relevant inputs as de-670

scribed in Table 1 are assigned to each LP processing unit given a buffer of seven km.671

This buffer was selected to avoid edge contamination (Lindsay & Seibert, 2013) and to672

ensure adequate data availability for wide rivers with large catchments in regions with673

low slope. Further work could be dedicated to tune this user exposed parameter to bet-674

ter balance its effect on FIM extents and computational expense since larger buffers cre-675
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ate additional floating point calculations and storage requirements. For the time being,676

we designate this issue to be out of scope.677

At the LP scale, the methods in Sections 2.3 and 2.4 are executed leaving out any678

tributaries of the LP in question at the time. The only exception to this is the use of the679

NWM stream network directly for use with hydro-enforcement by burning these lines680

and seeding from its headwater points directly instead of going through the NHDPlusHR681

network as described in Section 2.3.1 . This decision was motivated by the difficulty in682

deriving LPs in the NWM stream network with high agreement with the LPs derived683

for the NHDPlusHR stream lines. We found that the same algorithm to compute arbo-684

late sums and LPs could yield enough disagreements associated with disordered branches685

or slight differences in arbolate sums that could significantly affect the agreement of the686

LP identifiers in the NWM and NHDPlusHR networks. This yielded enough error to jus-687

tify the use of the NWM directly for hydro-enforcement operations.688

Once the NWM FR stream network is discretized into LPs, we independently com-689

pute HAND using each LP as the target stream network to be used. To illustrate the690

GMS procedure, we reference Figure 6 to show how deriving HAND and FIMs from GMS691

works. In Figure 6a, we uniquely color code the LPs derived for the NWM stream net-692

work. For each one of these lines, we derive HAND and its associated datasets includ-693

ing catchments, crosswalks, and rating curves. Each LP is buffered to a polygon with694

a user-exposed, distance parameter of seven km that is used to subset the original DEM695

for two selected LPs in Figure 6b. We illustrate two HAND grids for two of the LPs in696

this HUC8 in Figure 6c. Once the FIM hydrofabrics for each LP are generated, we can697

inundate them individually also shown in Figure 6d. Lastly, these individual FIMs are698

mosaiced together as explained in Section 2.6 and shown in Figure 6d.699

For a more intimate look at the drainage order reduction procedure GMS, and its700

effects, we allude to Figure 7 which references the same area (in HUC8 12090301) and701

set of river junctions as in Figure 4. The catchments and stream lines for HAND com-702

puted at the FR scale are illustrated in Figure 7a where the respective inundation at the703

100 yr magnitude is heavily constrained by the limited catchment extents especially at704

junctions. In subsequent sub-figures, we show the same datasets for the HAND compu-705

tation problem for this region but discretized into independent LPs for the main LP (b),706

the eastern tributary (c), and the western tributary (d). Notably, inspecting (b), one sees707
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how removing the tributaries creates much larger catchments for the main LP. These catch-708

ments include drainage areas that would traditionally be considered nearest to the trib-709

utaries thus ineligible to receive inundation sourced from the main LP. The inundation710

extents in (b) overlap those of (c) and (d) and are mosaiced together by methods explained711

in Section 2.6.712
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Figure 5. Illustrates the NWM Full Resolution V2.1 stream network discretized into level

paths (LP), symbolized by unique colors, as well as the values of the arbolate sums to the nearest

whole km distance. The LPs were derived on a HUC8 level (12090301) but only illustrated for

a HUC12 (120903010404) for clarity. The mainstem of this HUC12 runs from the red ellipses to

the outlet denoted by the black ellipses. Arbolate sums are defined as the cumulative drainage

distances of all upstream stream lines. Arbolate sums are computed for the NWM network by

starting at the headwater points then traversing downstream and adding the distances cumula-

tively. LPs are derived by starting at an outlet point with a unique identifier (ID). The unique

LP ID is propagated upstream until a junction is reached where the current LP ID is propagated

in the direction of maximum arbolate sum. The remaining converging segments at the given

junction are each assigned a new unique LP ID and the process is repeated recursively until all

reaches have been assigned a LP. Thus, LP serve as a proxy means of assigning membership to

a given river when presented with a confluence. Each individual LP has a unit Horton-Strahler

stream order thus serves as a great method for our proposed technique.
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Figure 6. Overall procedure for GMS HAND at HUC8 12090301. In (a), we illustrate all

NWM stream lines symbolized by their LP with 372 unique LP IDs in this HUC. Meanwhile (b),

demonstrates the DEM clipped to a seven km buffer around two selected LPs. In (c), we show

how HAND can be computed just for each one of these two LPs independently. We also show

inundation maps created for these two LPs in (c). In (d), we show all the inundation maps for all

the LPs mosaiced together.
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Figure 7. This image, with the same spatial domain as Figure 4 (HUC 12090301), demon-

strates how computing HAND on level path (LP) bases leads to larger, independent catchments

and more expansive inundation extents (100 yr flows). In (a), the catchments and stream net-

work are shown for HAND computed in Full-Resolution (FR) method which shows constrained

inundation extents around the two junctions. (b) demonstrates the LP associated with this re-

gion’s highest order river. By delineating catchments at this scale independent of the neighboring

tributaries, the drainage areas are allowed to expand thus allowing inundation extents to cover

previously restricted areas. In (c) and (d), we show the stream lines, catchments, and inundation

extents of the two tributaries. Later in Section 2.6, we describe how the inundation in (b), (c),

and (d) are mosaiced together to form one seamless inundation map. This process allows for

multiple, possible contributing sources of fluvial inundation to be considered thus enhancing FIM

skill.
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2.6 Inundation Mapping713

The FIM hydrofabric consisting of the relative elevations grid, catchments grid, catch-714

ment polygons, rating curve, and cross-walking data are all used to convert forecasts from715

the NWM into forecasts extents. For operational situations, one would cache the FIM716

hydrofabric then either produce libraries of FIM for a sample of discharges or stages or717

also produce the FIM in near real-time (NRT). From the cached FIM hydrofabric and718

design or forecast discharges including those extracted from the NWM, inundation maps719

can be generated at HUC8 spatial processing units in a rapid, parallel operation. The720

discharges are associated with NWM reach identifiers and cross-walked over to reach iden-721

tifiers in the FIM hydrofabric.722

Utilizing the stage-discharge relationships in the SRCs, each forecast for each catch-723

ment identifier is assigned a stage value. The catchments grid encoded with the reach724

identifiers are used to map the stages by thresholding to the forecast stage. We use the725

basic logic already established in previous works to conduct this (A. D. Nobre et al., 2016;726

Y. Y. Liu et al., 2016; Maidment, 2017). Mathematically, the HAND values, Hij , can727

be indexed by the reach identifiers, i, and pixel indices, j. For each forecast stage, Si, one728

can express the formula for Dij , a continuous variable denoting water depth at a given729

pixel with reach and pixel identifiers i and j respectively in Equation 2. For each fore-730

cast stage, Si, one can express the formula for Fij , a binary variable denoting inunda-731

tion condition in Equation 3 in terms of Dij by simply thresholding at zero depths.732

Dij = Si −Hij (2)733

734

Fij = Dij > 0 (3)735

For the cases of MS and GMS, the inundation maps produced for the respective process-736

ing units at lower maximum stream orders must be mosaiced together to form a seam-737

less forecast in the form of a single raster file. For mosaicing the depths, we select the738

maximum inundation depth from the all the contributing areas K index by its lower case739

character, k. Consolidating the depths using a maximum function was decided upon based740

on intuition which we believe to best represent the depth of water in an area with mul-741

tiple contributing fluvial inundation sources. Other aggregation methods could lead to742

different results but were not investigated here. Equation 4 illustrates how the maximum743
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depth from all the contributing areas, k, to each pixel j in catchment i,744

Dij = max
k=[1,...,K]

Dijk (4)745

. Equation 5 illustrates the same process but for mosaicing the binary inundation maps,746

Fij = max
k=[1,...,K]

Fijk (5)747

. For the MS and GMS methods, the contributing areas are defined differently. For MS,748

the FIM from MS HAND and FR HAND are mosaiced together to form a singular in-749

undation map thus K is set to two for that case. For GMS, all FIMs from all the LPs750

in a given area are mosaiced together then K is set to this number of LPs. Figures 6a751

and 6b, illustrate how inundation maps are created for lower stream order processing units752

then mosaiced together.753

2.7 Evaluation754

Possible benchmark FIM candidates for evaluation purposes include high water marks,755

remote sensing observation, crowd-sourced information, and modeled extents. These sources756

are all subject to limitations for evaluating a continental scale model like OWP FIM such757

as but not limited to a lack of spatial coverage, signal interference, lack of streamflow758

data, inaccurate streamflow data, physics-based assumptions, and errors in input data.759

While in-situ observations such as high water marks offer the highest accuracy, they are760

often limited in spatial extent and can lack the associated streamflow data necessary to761

make FIMs to compare to as to isolate out other hydrological factors.762

Evaluation of our relative elevation CFIM method is conducted by comparison to763

the HEC-RAS 1D models produced within FEMA region 6 (Base Level Engineering (BLE)764

Tools and Resources, 2021; estBFE Viewer , 2021; USACE, 2022). This dataset was se-765

lected due to its large spatial coverage, availability of cross-sections with streamflow in-766

formation, higher level of sophistication when compared to HAND, engineering scale de-767

tail, and a storied use in the literature as an evaluation dataset (Cook & Merwade, 2009;768

Rajib et al., 2016; Zheng, Maidment, et al., 2018; Afshari et al., 2018; Wing et al., 2017;769

Criss & Nelson, 2022; Follum et al., 2017). We selected 49 available HUC8s, shown in770

Figure 8, which span about 185 thousand km2 across nine states. The maps of the 1%771

recurrence flow (1 in 100 year) and the 0.2% recurrence flow (1 in 500 year) are furnished772

by InFRM as well as the corresponding discharges and mapping extents for evaluation.773
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We did exclude NWM V2.1 Reservoirs from evaluation because these are not properly774

accounted for in the inundation sourced from OWP FIM.775

By using the same HEC-RAS derived discharges and FIM extents for creating maps776

with OWP FIM, we are able to separate out errors introduced by NWM inputs and pro-777

cesses including land surface interactions, groundwater fluxes, atmospheric forcings, hy-778

draulic routing, and others that would have potentially affected our conclusions if we had779

used NWM forecasted discharges. Figure 9 illustrates both NWM V2.1 and BLE stream780

lines as well as the BLE cross-sections that have recurrence discharges associated with781

them. We elected to spatially intersect the HEC-RAS cross sections with the NWM stream782

network assigning the 1% and 0.2% flow rates to each NWM reach. To handle multiple783

intersections, we opted to use a filter to select the median discharge value attributed to784

each NWM reach. This partially handles the influence of neighboring cross sections that785

could cause flow discontinuities and mass conservation issues. Additionally, the stream786

network of the InFRM furnished models are of higher stream densities and bifurcation787

ratios, as evident in Figure 9, leading to a significant amount of false negatives (FN) (under-788

prediction) along headwater streams with unit Horton-Strahler order due to the lack of789

representation of these additional headwater streams in the NWM network. While the790

limitations are noted, this method does best to detangle the influence of exogenous vari-791

ables that we do not wish to study in this comparison.792
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Figure 8. Shows 185 thousand km2 of modeled areas for the Base Level Engineering (BLE)

domain of 49 HUC8s across nine states at 0.2% recurrence magnitude for flow rates. BLE maps

are produced for two recurrence flows, 1% (100 yr) and 0.2% (500 yr), using 1D HEC-RAS mod-

els. The maps are used as benchmarks for validation purposes of OWP FIM.

–36–



manuscript submitted to Water Resources Research

Figure 9. Illustrates Base Level Engineering (BLE) cross sections and stream lines at the

HUC8 12100203 near the confluences of West Fork Plum Creek and Clear Fork Plum Creek with

Plum Creek. BLE cross sections are intersected with NWM reaches and the median recurrence

discharge for 1% and 0.2% levels are selected per NWM V2.1 Full Resolution (FR) stream lines.

Additionally, we illustrate the NWM V2.1 catchments to provide a sense of how many cross-

sections may intersect a given NWM flowline. The BLE stream network is also shown which is

denser than the NWM V2.1 stream lines meaning there are several lower order streams repre-

sented in the BLE stream network that are not in the NWM V2.1 stream lines. This creates

additional inundation areas in the validation data that are not modeled with our HAND based

FIMs.

The metrics employed in this study to evaluate inundation extents include CSI, Prob-793

ability of Detection (POD), and False Alarm Ratio (FAR) and are presented in Equa-794

tions 6, 7, 8, respectively. To calculate these secondary metrics, one must define three795

primary metrics starting with true positives (TP) which is predicted wet and wet in the796

BLE benchmark dataset. The two types of errors consist of false positives (FP), or type797

I errors, which is dry in the benchmark but predicted wet and false negatives (FN), or798

type II errors, which is wet in the benchmark but predicted dry. Lastly, the reader may799
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come across true negatives (TN) which is defined as dry in both the benchmark and pre-800

dicted datasets. Maximizing POD indicates a model’s ability to detect the given threat801

of interest, inundation, while minimizing FAR is sought to indicate a models ability in802

reducing FN errors. In other words, POD is an indicator of model skill in inundated re-803

gions while FAR is an indicator of model skill in non-inundated regions. Some work by804

Gerapetritis and Pelissier (2004) denotes CSI a good proxy for measuring a forecasting805

system’s utility in protecting life and property and has been shown to be optimized math-806

ematically when POD = 1 − FAR. We use all three secondary metrics here to add807

value to the discussion while avoiding aggregating away the meaning of all four primary808

metrics.809

While these metrics are commonly employed in the evaluation of FIM and binary810

weather prediction communities in general, they do come with some notable limitations811

including frequency dependence in the case of CSI and FAR (Gerapetritis & Pelissier,812

2004; Stephens et al., 2014; Schaefer, 1990; Jolliffe & Stephenson, 2012). Thus, frequency813

dependent statistics should be used with caution when comparing across sites with vary-814

ing frequencies. Lastly, approximately six HUC8s do not have NWM MS reaches thus815

we imputed the metrics for FR for these sites as the best available forecasting capabil-816

ity to compare GMS metrics to.817

CSI =
TP

TP + FN + FP
(6)818

819

POD =
TP

TP + FN
(7)820

821

FAR =
FP

TP + FP
(8)822
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3 Results823

3.1 Flood Mapping Performance824

We produced FIMs for the entire BLE domain within the 49 HUC8 areas across825

several states in the south central US. The forecasted FIMs using the discharges for the826

1% (100 year) and 0.2% (500 year) recurrence flows directly from HEC-RAS were used827

to avoid noise and errors from hydrological processes. We computed the statistics, CSI,828

POD, and FAR, for both 100 and 500 year events for Mannings N set to 0.06 and 0.12.829

These results are presented in Figure 10 as violin plots and in Table 2 as aggregated met-830

rics with the results for MS and GMS presented as percentage changes from their respec-831

tive FR values. To be more specific, Table 2 sums the primary metrics, TP, FP, FN, and832

TN, across all HUC8s then recomputes the secondary metrics which was done to bet-833

ter account for large variances in HUC8 size. The same trends discussed below are con-834

sistent across both reporting methods (Figure 10 and Table 2).835

The distribution of these flood extent metrics can be examined in Figure 10 as vi-836

olin plots. Each half of a violin plot represents the kernel density estimation (KDE) for837

a given model (FR, MS, GMS), Manning’s n value (0.06, 0.12), recurrence interval (1%,838

0.2%), and performance metric (CSI, POD, FAR). For example, let’s examine the vio-839

lin plot for the row marked CSI and column for Manning’s n = 0.06. This sub-figure shows840

the CSI distributions across all 49 HUC8s when Manning’s n is set to 0.06. Each inde-841

pendent, whole violin represents the HUC8 metric value distribution of FR, MS, or GMS842

while each half of the violin represents the distribution of that data divided up by mag-843

nitude (blue for 100 yr and orange for 500 yr). The horizontal dashed and dotted lines844

represent the 25th, 50th, and 75th percentiles from bottom to top, respectively. Addi-845

tionally, we show trend lines symbolized in green that for each metric and Manning’s n846

combination denotes the best fit line for the three methods (FR, MS, and GMS). To avoid847

having two trend lines per sub-figure, we elected to aggregate the two magnitudes to-848

gether as they tend to observe similar trends across the three models. The slope of each849

trend line is quantified in the figure by its β1 value and the p-value for that statistic which850

tests the significance of that trend (deviation from a zero sloped trend line).851

Both Figure 10 and Table 2 contain a fair amount of information that is central852

to the objectives of this study. As previously stated in Section 2.7, we consider CSI as853

a general proxy for the skill of the inundation extents with POD denoting skill on in-854
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undated areas and FAR indicating skill on non-inundated areas. Again, the main objec-855

tive of the study is to introduce how computing HAND with disaggregated stream net-856

works to those with unit stream order can enhance the fidelity of FIMs by capturing flu-857

vial inundation from multiple sources as opposed to that of just the nearest drainage line.858

As can be seen in Figure 10 and Table 2, CSI generally increases from FR to MS and859

MS to GMS for both sets of Manning’s n values and flood magnitudes. This increase is860

primarily driven by an increase in POD thus generally increasing the probability of cor-861

rectly detecting inundation. Also, we note that FAR is somewhat, albeit marginally, de-862

creased from FR to MS and MS to GMS for both sets of Manning’s n values and flood863

magnitudes. The increases in CSI and POD as well as the decreases in FAR with respect864

to the methods, FR, MS, and GMS, are not only observed among the trend lines but also865

in the 25th, 50th, and 75th percentiles (Figure 10). So overall and in other words, the866

broader distribution of HUC8s improves across the three methods. Due to the means by867

which FIM is produced utilizing FR, MS, and GMS, we can say that the more we de-868

rive HAND on networks of unit stream order and mosaic the resulting FIMs, the bet-869

ter those FIMs perform. We move more details on the relationship between stream or-870

der and FIM skill to the Discussion section (Section 4).871

Additional noteworthy trends in Figure 10 center around the all-around better per-872

formance of FIMs for those of higher Manning’s n values and recurrence flows. The higher873

Manning’s n value enhances performance for both recurrence intervals across all mod-874

els which seems to better agree with the value of 0.11 used in the BLE model (Base Level875

Engineering (BLE) Tools and Resources, 2021; estBFE Viewer , 2021). Most of this im-876

provement is driven by significant increases in POD, but unfortunately, it also leads to877

a significant amount of over-prediction as observed by the increase in FAR. More work878

can be invested to better regionalize Manning’s n values for FIM purposes with HAND.879

We also observe additional trends associated with the magnitude or recurrence interval880

of the flow rates used with the higher flow rates exhibiting better overall CSI, POD, and881

FAR values than the lower, 100 yr magnitude. We introduce in the Discussion (Section882

4) that this skill premium exhibited by higher flow events could be due higher quality883

elevation data in regions that are not described as bathymetric areas.884
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Figure 10. Shows kernel density estimation of the distributions (sample size = 49) for 1%

(100 year) and 0.2% (500 year) along with horizontal, dashed lines for the 25th, 50th, and 75th

percentiles (in order from bottom to top). The sub-figures separate the combination of three

metrics (CSI, POD, and FAR) for two settings of Manning’s n (0.06 and 0.12). Trend lines for

each combination of metric and Manning’s n are shown (sample size = 294) along with associated

slope and p-value of slope testing one-tailed significance.
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Table 2. Recomputed CSI, POD, and FAR using the primary metrics, TPs, FPs, and FNs,

aggregated to the BLE domain. The values for MS and GMS methods are expressed in per-

centage change (%) from their respective values with the same Manning’s n, magnitude, and

metric combination in the Full Resolution (FR) method columns. The best value across models is

highlighted in bold.

Metric Manning’s n
FR

MS
(% Change)

GMS
(% Change)

100 yr 500 yr 100 yr 500 yr 100 yr 500 yr

CSI
0.06 0.5576 0.5839 2.53 2.59 3.95 4.04

0.12 0.5915 0.6149 2.35 2.26 4.51 4.65

POD
0.06 0.6354 0.6575 2.68 2.74 4.39 4.38

0.12 0.7255 0.7446 2.83 2.71 4.84 4.89

FAR
0.06 0.1800 0.1609 -0.72 -1.24 -1.22 -1.24

0.12 0.2379 0.2208 -0.21 -0.18 -2.31 -2.72

3.2 Computational Performance885

The NFIE experiments were able to produce HAND for 331 HUC6’s in 1.34 CPU886

years (Y. Y. Liu et al., 2016) and estimates using work from Djokic (2019) put produc-887

ing HAND at the FR NWM at 0.55 CPU years. For our work, we were able to produce888

HAND at the full NWM resolution in 0.13 CPU years which represents a substantial speed-889

up compared to previous works. For the MS resolution, an additional 0.05 CPU years890

is required on top of this bringing the total to about 0.18 CPU years to produce 2,188891

HUC8s that span additional areas not covered in previous HAND versions including Hawaii892

and Puerto Rico. GMS which generalizes HAND production to the LP scale adds a sig-893

nificant amount of CPU time to the process bringing the estimate total to about 1.17894

CPU years.895
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4 Discussion896

Overall, the main observation of this study was how FIM performance can be im-897

proved by reducing the Horton-Strahler stream order of the target stream network used898

for HAND computation. Most of this change is accounted for by substantially increas-899

ing POD and inundation extents in some areas thus reducing FNs. We believe, as we later900

argue, that the increase in POD is primarily driven by an increase in the catchment sizes901

that is inherently enabled by dividing up the stream network into independent stream902

networks of unit stream order. Additionally, we note that reducing drainage order also903

has some minor influence on reducing inundation extents in other areas and the rate of904

false alarms. We believe that this effect is driven by a change in the stage-discharge re-905

lationship where a given streamflow leads to lower river stage values when HAND is com-906

puted with target stream networks of unit drainage order. We seek to explain that these907

two effects, catchment boundary enlargement and stage-discharge curve lowering, are highly908

interrelated and cannot be easily detangled. Lastly, we discuss the diminishing effects909

on performance that the MS and GMS techniques may have and also any additional ef-910

fects including enhanced cross-walking abilities.911

As evident in the results of the study in Section 3, a sizable amount of the increase912

in CSI observed by reducing stream order for HAND computation can be attributed to913

increases in POD. This can be inferred by close inspection of Figure 10 and Table 2 where914

changes in POD are significantly higher than that of FAR. Upon investigation of the per-915

formance of HAND derived FIM, we note a general increase of catchment sizes for the916

MS and GMS methods when compared to the FR method as they are now delineated917

independently of any tributaries that would constrain catchment sizes otherwise. Ad-918

ditionally, we note significantly less water build up along catchment boundaries especially919

at the junction of lower order tributaries with lower flow rates and higher order rivers920

with more flow. This allows for inundation extents to expand across regions previously921

encapsulated by catchments of joining reaches in lower flow tributaries. The water built922

up along the catchment boundaries can be thought of as a column of water in a cylin-923

drical container (catchment) that has exceeded the elevation of the container’s rim which924

does not represent accurate physics.925

Large scale HUC8 level evaluations can fail to demonstrate fine grain enhancements926

as they aggregate away many changes that are only clear at more local scales. Future927
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assessments of OWP FIM should consider finer grain evaluation units as well possible928

impact assessments using asset information such as building footprints to better illus-929

trate fine grain changes in a more relevant manner to stakeholders. For now, we provide930

Figure 12 which best illustrates the improvement offered by multi-source fluvial flood-931

ing capabilities in a more local context. The figure is comprised of two agreement rasters932

for two different HAND based FIMs compared to the validation dataset for a given re-933

gion with a high flow mainstem (500 yr recurrence flow) running horizontally along the934

region. Sub-figure 12a demonstrates the agreement raster for the FR stream network as935

well as its respective catchment boundary lines symbolized in white and stream network936

shown in green. Inspection of this sub-figure denotes a clear spatial pattern where TPs937

or areas correctly inundated are pooled alongside catchment boundary lines. On the other938

side of the catchment boundary, one can witness large swaths of FNs that should be in-939

undated. The FNs also exhibit a spatial pattern as in they tend to collocate within catch-940

ments of the pictured mainstems tributaries. This sort of behavior was introduced early941

in the paper and shown qualitatively in Figure 4.942

As an enhancement, this paper proposes computing HAND for stream networks943

comprised of level-paths independently of one another. In sub-figure 12b, the agreement944

raster for the GMS technique is illustrated as well as the stream network lines in green.945

While the entire mosaiced inundation map from GMS (as described in Section 2.6 and946

Equation 2) is used to produce this agreement map, we only show the catchments as-947

sociated with the mainstem of this region that is shown to follow a clear horizontal path.948

Showing all the catchments for the tributaries that were all derived independently would949

convolute the image. The main message illustrated here is that the catchments associ-950

ated with the mainstem of this area significantly increase in size. Since they are not re-951

stricted by the catchments of tributaries that lie in the same drainage areas as those of952

the mainstem, they extend to include those as well. The consequence for inundation ex-953

tents is a general increase in spatial coverage of the river’s water which shows to be in954

much better agreement with the benchmark map. The TPs are no longer bounded by955

the catchment lines and allowed to expand to their natural extents.956

We note here as a contribution of this study that a major inherent, limitation of957

HAND is the “nearest drainage” constraint or the idea that a given river reach only drains958

or, in HAND’s case, inundates its immediate, unique drainage area or catchment. In other959

words, HAND based FIMs are limited to producing fluvial inundation to only their near-960
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est drainage area or catchment. However, we know that fluvial inundation can be sourced961

from several streams nearby that also serve as drainage outlets to the area in question.962

Generally speaking, drainage areas are known to be hierarchical in nature so a given drainage963

area for a given outlet point can be decomposed into nested drainage areas for outlet points964

that lie in the original drainage area. A perfect example of this are points that lie on trib-965

utary reaches closely neighboring a mainstem. These points lie in the drainage area of966

reaches in the mainstem but inundation from the mainstem cannot reach these tribu-967

tary catchments because of the “nearest” assumption in HAND. Hence it’s important968

to state that just like there are different sources of flooding such as fluvial, pluvial, ground-969

water, reservoir, barrier failure (dam/levee/embankment), and coastal, there can also be970

multiple sources of a riverine flood. HAND is only equipped to handle riverine flooding971

from the nearest drainage line. Other relevant drainage lines that produce fluvial flood972

waters are not considered here especially if the routing model used doesn’t consider back-973

water effects.974

The remaining portion of the improvement in CSI was found to come from a marginal975

yet notable reduction in FAR. Upon investigation of the spatial results in the agreement976

maps, we found some areas of slight reductions in FPs especially where changes in catch-977

ment boundaries may have occurred due to the reduction in effective stream order in com-978

puting HAND. These observations pointed to changes in the SRCs introduced by stream979

order reduction and catchment definition adjustments. Figure 11 illustrates the general980

effect that stream order reduction has on SRCs. Sub-figure 11a shows how the average981

SRCs for all reaches for stage values 0 to 25 meters at one-third meter intervals tend to982

shift the curve down and to the right with ever increasing stream order reduction (FR983

to MS to GMS). This bias is more pronounced for GMS since that implements stream984

order reduction down to the unit level for the entire FR network while MS only does so985

for 4-5% of the network.986

Attempting to diagnose this bias in the SRC leads one to Equation 1 which shows987

the reach averaged SRC relationship between stage and discharge. Across the three meth-988

ods explored, FR, MS, and GMS, one identifies differences in the inputs and outputs and989

notes no difference in the stages and Manning’s n values. While the channel slope and990

reach lengths are not exactly the same across methods, their averaged differences are very991

negligible which only leaves room for deviations in volume and bed area. Again, volume992

(V(y) or simply V) is synonymous to reach-averaged cross-sectional area and bed area993
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(B(y) or B) is analogous to reach-averaged hydraulic radius but these associations only994

hold when reach length, L, is considered. Discharge, Q, is directly related to volume and995

inversely related to bed area and each parameter is weighed according to the magnitude996

of its exponent which are 5
3 and 2

3 respectively (see Equation 1). Figures 11b and 11c997

show how volume and bed area compare across the three methods with GMS having sig-998

nificantly greater values than MS which has greater values than FR. Again the relative999

discrepancy between FR vs MS and MS vs GMS is explained by the extent of their spa-1000

tial coverages. Both V and B values increase but are weighed differently by their respec-1001

tive exponents and pull Q in different directions. We show in Figure 11d the relation-1002

ship of V 5/3

B2/3 and plot this ratio against stage, y, to show how these two parameters col-1003

lectively pull the Q up and changes the SRC accordingly. In other words, the magnitude1004

and weight of the volume at each stage level exceeds the influence of the magnitude and1005

weight of the bed area. Both parameters are set to increase mainly due to much larger1006

catchments leading to more pixels at each stage level as shown in Figure 11e.1007

Much of the increase in inundated pixels, volume, and bed area can be explained1008

by much larger catchments that encompass neighboring tributaries. These tributaries1009

have a significant amount of bathymetry that is low-lying thus easily included in the ge-1010

ometry for the SRC derivation. They also contribute volume and bed area that is tech-1011

nically not perpendicular to the flux of streamflow being accounted for in the stream in1012

question. Careful examination of Figure 12b shows how much larger catchments include1013

neighboring tributaries and the geometry associated with those tributaries. This geom-1014

etry is not perpendicular to the flow that is associated with the main reach thus lead-1015

ing to biases in the SRC. We consider this to have a nuanced effect on skill, while reduc-1016

ing the rate of FPs it also can lead to FNs due to biases in the SRC.1017

We note that reducing stream order does suffer from diminishing returns where the1018

increase in mapping skill for applying stream order reduction to roughly 4-5% of the stream1019

network is about the same as the increase for applying stream order reduction to the re-1020

maining 95-96% of the stream network. This motivates further work in identifying what1021

the optimal coverage of stream order reduction could be and how to parameterize that1022

coverage. One option could be removing lower stream orders (e.g. 1 and 2) from stream1023

order reduction and simply using the inundation from FR from these areas.1024
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Additional analysis of Figure 12a, reveals that some catchments don’t have inun-1025

dation or significant inundation. While the cause of these errors can be varied, we as-1026

sert here that conflating four networks for use in evaluations leads to significant error.1027

Section 2.4.6 details how reach identifiers are conflated for the FIM network back to that1028

of the NWM. One of the issues with the FR version of HAND occurs when a reach of1029

given stream order accidentally conflates to that of a neighboring tributary that is of lower1030

order which leads to areas of FNs. The utilization of MS and GMS only conflates to NWM1031

catchments directly associated with the LP in question which is inherently easy to do1032

with those methods. Thus part of the improvement in MS and GMS methods is due to1033

a slight improvement in cross-walking methodology. The NWM stream network was de-1034

rived using the NHDPlus V2 dataset which was derived from coarser DEMs than those1035

used here. Additional conflation is identified in cross-walking the stream network used1036

by the BLE maps and those of HAND. Until a singular stream network is used for the1037

NWM, BLE benchmark, and for HAND based FIM, conflation will continue being a source1038

of error.1039

Our qualitative analysis suggests that the SRCs offer a significant opportunity for1040

improvement in HAND based FIM for future development. The bathymetry of the 101041

m DEM from 3DEP is known to be lacking proper representation thus leading to inad-1042

equate representation of volume and bed area with all three methods employed. Man-1043

ning’s n which typically accounts for roughness could be tuned to account for these DEM1044

limitations or could be held fixed to some local value associated with a given flood mag-1045

nitude. Some adjusting parameter must be introduced to enhance the estimation of the1046

bathymetric representation. Lidar DEMs from the USGS at 3 m and 1 m scale could be1047

utilized to derive HAND as well which we conject should show better agreement with1048

higher fidelity FIMs also derived from the same Lidar based DEMs. We suspect that a1049

significant amount of the difference in performance between 100 yr and 500 yr magni-1050

tude events can be attributed to poor SRC performance due to poor bathymetric rep-1051

resentation. Lower magnitude events are, logically, more susceptible to poor bathymet-1052

ric data due a greater proportion of the inundation being attributable to areas that are1053

more typically under normal flow conditions. Higher flow events tend to cover regions1054

with more floodplain inundation thus less sensitive to errors from bathymetric data qual-1055

ity. On a related note, the use of the AGREE DEM method discussed in Section 2.3.11056

also interacts with the bathymetry issue introducing several artificial geometry param-1057
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eters that affect SRC shape and quality. Due to focus on the nearest drainage problem,1058

we leave future work related to SRC representation including roughness estimation, bathy-1059

metric data assimilation, and bathymetry adjustments as opportunities for major enhance-1060

ments in HAND based FIM.1061

Lastly, after errors introduced by conflation, poor roughness estimation, bathymet-1062

ric/elevation adjustment are accounted for, HAND still has another fundamental lim-1063

itation that is inherently baked into how it works. For HAND to be derived and thus1064

create a FIM for a given area, that area must entirely drain to the stream network and1065

the stream network must also drain itself. In other words, an entire area eligible for flood-1066

ing must monotonically decrease in elevation. DEM’s naturally don’t do this and the dy-1067

namics of true flood events don’t follow drainage patterns. Enforcing this assumption1068

for HAND leads to significant amount of DEM manipulations that introduce basic er-1069

rors. These errors are deep into the assumptions of HAND and thus more difficult to dis-1070

entangle. Ultimately, the use of more advanced 2D hydrodynamic models should be con-1071

sidered for dealing with this limitation of HAND but would come at significant expense1072

at the given high resolution across very large spatial scales and frequent forecast reso-1073

lutions.1074
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Figure 11. Illustrates average quantities for the three methods, FR, MS, and GMS, for each

stage value (m). The values are (a) Discharge m3s−1, (b) Volume m3, (c) Bed Area m2, (d) a

function of Volume and Bed Area, and (e) number of pixels.
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Figure 12. OWP FIM inundation agreement, TP, FP, FN, and TN, with BLE HEC-RAS

maps in HUC 11140105 at the 500 yr recurrence magnitude. Catchment boundaries and stream

lines are shown in white and dotted green, respectively. Sub-figure (a) shows agreement of FR

HAND denoting significant areas of under-prediction due to junctions and catchment bound-

aries. Meanwhile, (b) shows the agreement for GMS and much larger catchments leading to much

better inundation agreement for this given reach. Overall, this illustrates the benefits of stream

order reduction for deriving HAND datasets.
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5 Conclusions1075

Floods present a significant, under-served, and expanding risk to life, property, and1076

resources. Previous flood forecasting systems lacked the coverage to adequately inform1077

society of these risks. The National Water Model (NWM), developed by the National1078

Oceanic and Atmospheric Administration’s (NOAA) Office of Water Prediction (OWP)1079

and the National Center for Atmospheric Research (NCAR), provides increased spatial1080

coverage and resolution as well as additional forecast time horizons on mostly hourly in-1081

tervals. Additional modeling is required to convert streamflows from the NWM to river1082

stages and finally to flood inundation maps (FIM). Height Above Nearest Drainage (HAND)1083

is a means of detrending digital elevations maps (DEM) by normalizing elevation to the1084

nearest relevant drainage point. HAND coupled with the use of reach averaged synthetic1085

rating curves (SRC) provide such a means of creating continental scale FIM capabilities1086

at high resolutions (1/3 arc-second, 10 m) and high temporal frequencies (up to 1 hr).1087

Scalable, open-source software, known as OWP FIM, was developed to produce HAND1088

and associated datasets (catchments, SRCs, and cross-walking data) for the NWM fore-1089

casting area including Hawaii and Puerto Rico (Aristizabal et al., 2022b). HAND is pro-1090

duced using the latest hydro-conditioning techniques to enforce monotonically decreas-1091

ing elevations including stream burning, levee enforcement, pit-filling, stream channel1092

excavation, thalweg breaching, headwater seeding, stream reach resampling, and more.1093

Finally, we used this implementation to investigate the skill of the FIMs by varying the1094

scale of the processing units used to derive HAND. FIM skill was evaluated over large1095

spatial scales by comparison to HEC-RAS 1D models.1096

The main contribution and conclusion of this work centers around a fundamental1097

limitation in HAND based FIM which is a failure to account for multiple possible sources1098

of fluvial inundation since HAND only considers inundation from the nearest drainage1099

line. We illustrate that reducing the Horton-Strahler stream order of a HAND process-1100

ing unit down to one enhances skill by significantly reducing false negatives at junctions1101

of major streams. In order to reduce stream order of the NWM stream network for HAND1102

computation, we dissected the NWM network into two simpler units of singular Horton-1103

Strahler stream order and mosaiced the resulting FIMs derived from each. The NWM1104

Mainstems (MS) stream network, which covers roughly 4-5% of the NWM Full Resolu-1105

tion (FR) network, spans all established forecasting points in the Advanced Hydrologic1106

Prediction System (AHPS) and downstream reaches. The inundation from MS derived1107
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HAND is mosaiced together with the inundation of FR derived HAND. Extending or-1108

der reduction to the entire network, the Generalized Mainstem (GMS) technique discretizes1109

the NWM FR network into level paths (LP) of unit stream order for HAND computa-1110

tion. All LP based FIM derived from LP based HAND datasets are mosaiced together1111

to form one seamless FIM. Dissecting the stream network into regions of LPs with unit1112

stream order is necessary because HAND has a “nearest drainage” limitation meaning1113

it only accounts for riverine inundation sourced from the nearest drainage line. In our1114

evaluation of this technique, we observe that HAND based FIM improves in skill as we1115

extend from nearest drainage inundation in FR to multiple drainage support in MS for1116

only 4-5% of the FR network. Extending multiple drainage support to the entire FR net-1117

work with GMS based HAND improves skill at around the same magnitude that MS im-1118

proved upon FR. Thus we conclude that deriving HAND with independent stream net-1119

works of unit Horton-Strahler stream order enhances the skill of FIM but offers dimin-1120

ishing returns as we extend from 4-5% of the network with MS to 100% of the network1121

with GMS since deriving HAND and FIMs at these localized scale does add computa-1122

tional expense.1123

This primary contribution also affects the parameters used to compute stage-discharge1124

relationships shifting discharge higher at given stages which reduced the rate of false pos-1125

itives. This shift in SRC behavior is driven by larger catchments that influence reach av-1126

eraged geometric parameters in the Manning’s equation. Related to SRCs, we noted bet-1127

ter results and more sensitivity to unit stream order networks with the higher Manning’s1128

n value of 0.12 when compared to 0.06 for high magnitude events at 1% (100 year or yr)1129

and 0.2% (500 year or yr) recurrence intervals. Additionally, we noted better performance1130

for more intense 500 yr events which we attribute to a stronger influence of poor qual-1131

ity bathymetric data in 100 yr magnitude inundation extents. While the AGREE DEM1132

procedure is meant to add some bathymetry primarily motivated to enhance catchment1133

and stream line delineation, it does introduce three parameters that have major impli-1134

cations in the quality of SRCs and the resulting FIMs. Utilizing the highest resolution1135

Lidar and bathymetric data should also improve the vertical accuracy of HAND and bet-1136

ter account for fine grain features that greatly affect inundation extents. We leave ques-1137

tions related to Manning’s n localization as well as bathymetry integration, estimation,1138

and/or calibration open for future research to answer. Two other issues left open for im-1139

provement include the integration of higher resolution Lidar-based digital elevation maps1140
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(DEM) as well as the use of physics-based models for continental scale, high resolution1141

forecasting applications. Due to inherent limitations with HAND, scalable, physics-based1142

methods are necessary to consider to provide a better representation of flood extent dy-1143

namics in steady and unsteady conditions.1144
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Open Research1145

National Water Model (NWM) data used in this study includes the hydrofabric re-1146

lated datasets (NWM Hydrofabric V2.1 , 2021) including catchments, streamlines, and1147

reservoirs (NWM Hydrofabric V2.1 , 2021). These are furnished by the National Oceanic1148

and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) via an Earth1149

Science Information Partners (ESIP) Amazon Web Services (AWS) S3 Bucket (Aristizabal1150

et al., 2022a). OWP Flood Inundation Mapping (FIM) capabilities rely extensively on1151

the use of the National Hydrography Plus High Resolution (NHDPlusHR) datasets in-1152

cluding BurnLineEvents (NHDPlusHR GDB , 2021), value-added attributes (VAA) (NHDPlusHR1153

GDB , 2021), water boundaries (WBD) or hydrologic unit code (HUC) geometries (NHDPlusHR1154

WBD , 2021), and digital elevation maps (DEM) (NHDPlusHR DEM , 2021). Some ad-1155

ditional datasets for processing include the National Levee Database (NLD) furnished1156

by the United States Army Core of Engineers (USACE) (ENGINEERS, 2021), Land-1157

sea border from the Great Lakes Hydrography Dataset (GLHD) furnished by the Great1158

Lakes Aquatic Habitat Framework (GLAHF) (GLHD , 2020), and a Land-sea border pro-1159

vided by OpenStreetMap (OSM) (Water polygons, 2021). Evaluation data was furnished1160

by Interagency Flood Risk Management (InFRM) consortium including cross-sections1161

and flood depths (Base Level Engineering (BLE) Tools and Resources, 2021; estBFE Viewer ,1162

2021). Additionally, some FIM hydrofabric data including HAND grids, catchments, stream-1163

lines, synthetic rating curves, and cross-walk tables are available on the ESIP bucket (Aristizabal1164

et al., 2022a).1165

Software used in preprocessing data, producing FIM hydrofrabic, generating FIM,1166

computing metrics, and conducting analysis is available from a publicly available Github1167

repository called “inundation-mapping” from the “NOAA-OWP” organization (Aristizabal1168

et al., 2022b).1169
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