
P
os
te
d
on

8
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
04
82
98
.8
18
15
01
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Using the stochastic-threshold incision model to understand the

tectonic expression on fluvial topography: theory and application to

the Dadu River basin, eastern Tibetan Plateau

Yizhou Wang1, Dewen Zheng1, Huiping Zhang2, Taylor Schildgen3, Fiona Clubb4, Matthew
Fox5, and Eitan Shelef6

1Institute of Geology, China Earthquake Administration
2State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake
Administration
3GFZ Potsdam
4Durham University
5University College London
6University of Pittsburgh

December 8, 2022

Abstract

The non-linear reliance of channel steepness on erosion rates can be reconciled by the stochastic-threshold incision model that

incorporates river incision threshold and discharge probability distribution into erosion efficiency. Here, we explored the usage

of the model in river longitudinal profile inversion, by assuming time-dependent tectonic forcing and a linear exponent that

relates channel incision to slope. We developed an analytical solution to the model equation and an inverse scheme to retrieve

relative uplift rate history, whose validity was based on the theoretical demonstration on knickpoint preservation. Application

of the inverse scheme to the main trunks of the Dadu River basin in the eastern Tibetan Plateau produced a history with

two-phase increases in the uplift/incision rates, which is similar to the results from low-temperature thermochronology. Thus,

our analytical procedures provide new insights into the link of tectonic uplift and river profile evolution, when channel steepness

depends on erosion rates non-linearly.
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Key Points: 13 

• Assuming timely dependent tectonic uplift, we present an analytic solution to the linear 14 
stochastic-threshold incision model equation. 15 

• The analytic solution yields a linear inverse scheme to decipher tectonic uplift rate 16 
history from river longitudinal profiles. 17 

• Two-phase increase in the uplift/incision rates that initiated at the late Miocene and early 18 
Pleistocene was inferred for the Dadu basin.  19 

 20 
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Abstract  22 

The non-linear reliance of channel steepness on erosion rates can be reconciled by the 23 
stochastic-threshold incision model that incorporates river incision threshold and discharge 24 
probability distribution into erosion efficiency. Here, we explored the usage of the model in river 25 
longitudinal profile inversion, by assuming time-dependent tectonic forcing and a linear 26 
exponent that relates channel incision to slope. We developed an analytical solution to the model 27 
equation and an inverse scheme to retrieve relative uplift rate history, whose validity was based 28 
on the theoretical demonstration on knickpoint preservation. Application of the inverse scheme 29 
to the main trunks of the Dadu River basin in the eastern Tibetan Plateau produced a history with 30 
two-phase increases in the uplift/incision rates, which is similar to the results from low-31 
temperature thermochronology. Thus, our analytical procedures provide new insights into the 32 
link of tectonic uplift and river profile evolution, when channel steepness depends on erosion 33 
rates non-linearly. 34 

Keywords: stochastic-threshold incision model, time-dependent tectonic uplift, linear slope 35 
exponent, analytical solution, inverse scheme 36 

 37 

Plain Language Summary 38 

River incision into channel bedrock occurs only when the stream power generated by large 39 
floods overcomes the critical value of shear stress. Despite the assumption of a linear 40 
dependency of river erosion on channel gradients, the linear stochastic-threshold incision model 41 
that incorporates both incision threshold and runoff variability can predict the monotonic, non-42 
linear increase of channel steepness with erosion rates. Channel steepness measures the slope 43 
normalized for drainage area. Considering time-dependent tectonic uplift, we presented an 44 
analytical solution to the linear stochastic-threshold model equation and derived an inversion 45 
scheme to decode the temporary changes in the relative uplift rates from river long profiles. The 46 
inverse scheme was successfully applied to the Dadu River that flows through the eastern margin 47 
of the Tibetan Plateau. Our analytical work thus helps to decipher the expression of active 48 
tectonics in erosional landscapes.  49 

 50 

1 Introduction 51 

In active mountain ranges, the fluvial system evolves as a response to the spatiotemporal 52 
changes in both tectonic and climatic forcing [Howard and Kerby, 1983; Whipple and Tucker, 53 
1999]. The fluvial channels adjust their profile shape by modulating the pattern of erosion and 54 
sediment transport, exerting a first control on orogen-scale relief [Whipple and Tucker, 2002; 55 
Kirby and Whipple, 2012]. Since decades, a great many models have been proposed to link the 56 
processes between tectonic uplift, climate change, river incision, and landscape evolution [e.g. 57 
Howard and Kerby, 1983; Howard, 1994; Johnson and Whipple, 2007; Lague, 2014]. Instead of 58 
relating to the physics of specific incision process, the stream-power incision model (SPIM) 59 
presents the channel bedrock incision rate, E [L/T], in terms of channel slope, S [L/L], and 60 
upstream drainage area, A [L2] [Howard and Kerby, 1983]:  61 ( , ) = 𝑈(𝑡, 𝑥) − 𝐸(𝑡, 𝑥) = 𝑈(𝑡, 𝑥) − 𝐾𝐴 ( , )  (1) 62 
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where U [L/T] is tectonic uplift rate, z [L] is channel elevation, x [L] is horizontal upstream 63 
distance along the channel, 𝑆 = 𝜕𝑧/𝜕𝑥 is channel slope, t [T] is time, and K [L1-2m/T] is channel 64 
erodibility coefficient. m and n are positive exponents that measure the significance of drainage 65 
area and slope to erosion, respectively. 66 

Although numerical solutions to Equation (1) usually have been used in landscape evolution 67 
forward models [e.g. Tucker et al., 2001; Refice et al., 2012], inversion on the river long profiles 68 
calls for analytical solutions to the SPIM equation [Pritchard et al., 2009; Goren et al., 2014, 69 
2021]. Assuming a linear erosion–slope relationship, i.e. 𝑛 = 1, analytical solutions to Equation 70 
(1) were derived and the related inversion schemes were developed to infer the climatic and/or 71 
tectonic conditions in many active landscapes [Goren et al., 2014; Rudge et al., 2015; Goren, 72 
2016]. However, a growing body of evidences, at both the regional and global scales, have 73 
shown non-linear relationships between erosion rates and channel steepness that measures 74 
channel gradients normalized for downstream increases in drainage area [e.g. Harkins et al., 75 
2007; Harel et al., 2016; Hilley et al., 2019]. These findings thus questions the validity of the 76 
routinely used linear assumption (𝑛 = 1). Combing 𝑛 ≠ 1 and timely variable tectonic uplift, 77 
analytical solutions to Equation (1) predicts the formation of stretch zones that contains no 78 
tectonic information and consuming and merging knickpoints where the tectonic signals could 79 
partly and even entirely lost [Royden and Perron, 2013; Wang et al., 2022]. The non-linear 80 
dynamics thus hinder formal attempts to relate the channel profile form to tectonic history.  81 

Alternatively, many studies have found that the non-linear erosion–steepness scaling does 82 
not necessarily require a non-linear slope exponent n [Snyder et al., 2003; Lague et al., 2005; 83 
Dibiase and Whipple, 2011]. Rather, even if using 𝑛 = 1, the observed relation of non-linear 84 
increase of channel steepness with increasing erosion rate can well be reconciled by taking the 85 
effects of both bedrock resistance to erosion and the effectiveness of stream power [Whipple, 86 
2009; Scherler et al., 2017]. These studies emphasized that river incision was actually triggered 87 
by large floods that generates high stream power to overcome the channel substrate detachment 88 
thresholds, which is not presented in the simple SPIM (Equation 1). 89 

In this contribution, we followed DiBiase and Whipple [2011] to construct the transient 90 
equation of the stochastic-threshold incision model (STIM) that incorporates both the incision 91 
threshold and discharge distribution function. Then, by assuming a timely dependent U(t) and 92 
linear n, we derived an analytical solution to the STIM equation and presented an inversion 93 
scheme to infer U(t) from river long profiles. As a case study, we applied the inverse scheme to 94 
the Dadu River basin that drains parts of the eastern Tibetan Plateau.  95 

 96 

2 A mathematical expression of the stochastic-threshold incision model (STIM) 97 

Stream power incision into the detachment-limited channel bed occurs when the bed shear 98 
stress, τ [Pa], overcome a critical value (τc). The instantaneous vertical incision rate, I, scales 99 
with τ in the term of a power-law function [Howard and Kerby, 1983]: 100 𝐼 = 𝑘 ∙ (𝜏 − 𝜏 ) (2) 101 

where ke quantifies the channel substrate resistance to incision and a depends on specific incision 102 
mechanism. Following the assumptions of steady, uniform flow and negligible bank friction 103 
[Howard, 1994], Dibiase and Whipple [2011] defined τ as: 104 
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𝜏 = 𝑘 ∙ ( ) ∙ ( )  (3) 105 

where kt is a constant that incorporates water density, gravitational and frictional terms, Q [L3/T] 106 
is river discharge, and w [L] is channel width, and α and β are positive exponents. Hydrologic 107 
records or field measurements support a power-law to relate bankfull channel width (wb) to 108 
mean-annual discharge (𝑄) [Montgomery and Gran, 2001; Zhang et al., 2017]:  109 𝑤 = 𝑘 𝑄  (4) 110 

where kw and ωb are empirical scaling parameters. To incorporate the stochastic distribution of 111 
discharge into bed shear stress (Equation 3), we followed Scherler et al. [2017] to adopt a 112 
geometrical treatment that channel width (w) changes as a function of discharge (Q): 113 = ( )  (5) 114 

where ωs is also an empirical scaling parameter. Mean-annual discharge (𝑄) usually correlates 115 
with drainage area [Tucker, 2004]: 116 𝑄 = 𝑅 𝐴  (6) 117 

where c is positive exponent and Rb (L/T) represents mean annual catchment-integrated runoff. 118 
Assigning Equations (3-6) into (2), we derived: 119 𝐼 = 𝑘 𝑘 𝑘 𝑅 ( ) ∙ ( ) ( ) ∙ 𝐴 ( ) ∙ ( ) − 𝑘 𝜏  (7) 120 

To make Equation (7) concise, we followed Dibiase and Whipple [2011] to define four 121 
variables, 𝜅 = 𝑘 𝑘 𝑘 𝑅 ( ), 𝛾 = 𝛼𝑎(1 − 𝜔 ), 𝛹 = 𝑘 𝜏 , and 𝑄∗ = . 𝑄∗ is normalized 122 

discharge. In the simple form of the SPIM (Equation 1), 𝑚 = 𝛼𝑎(1 − 𝜔 ) and 𝑛 = 𝛽𝑎. Thus, 123 
Equation (7) can be written as: 124 

   𝐼 = 𝜅 ∙ (𝑄∗) ∙ 𝐴 ∙ ( ) − 𝛹 (8) 125 

The probability density function (PDF) of normalized discharge (𝑄∗) can be defined as 126 
[Lague et al., 2005]:  127 PDF(𝑄∗) = ( ) 𝑒 / ∗𝑄∗ ( ) (9) 128 

where Γ is the gama function, and k is the discharge variability parameter. The long-term erosion 129 
rate (Es-c) that incorporates the stochastic distribution of discharge thus can be produced by 130 
integrating I over the range of all possible discharges: 131 𝐸 = [𝜅 ∙ (𝑄∗) ∙ 𝐴 ∙ ( ) − 𝛹]∗∗ ∙ ( ) 𝑒 / ∗𝑄∗ ( )𝑑𝑄∗ (10) 132 

where 𝑄∗ = 𝑄 /𝑄 and 𝑄∗ = 𝑄 /𝑄. 𝑄  is the maximum possible discharge and 𝑄  is the 133 
critical discharge to overcome the threshold shear stress. As long as 𝑄  is sufficiently large, the 134 
integration of Equation (10) is insensitive to the choice of 𝑄  [Lague et al., 2005]. Equation (10) 135 
contains two terms, one of which represents stream power incision (Es) and another relates to 136 
erosion thresholds (Ec):  137 𝐸 = 𝐾′ ∙ 𝐴 ∙ ( )  (11) 138 
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𝐸 = 𝛹 ∙ ( ) ∙ 𝑒 / ∗𝑄∗ ( )∗∗ 𝑑𝑄∗ (12) 139 

where 𝐾′ = 𝜅 ∙ ( ) ∙ (𝑄∗) ( ) ∙∗∗ 𝑒 / ∗𝑑𝑄∗ depends on the critical discharge 𝑄∗. If 140 

assuming 𝑐 = 1 and neglecting the effects of incision threshold (i.e. 𝐸 = 0), Equation (10) 141 
reduces to the simple form of incision rate (E) in Equation (1). We replaced E with Es-c in 142 
Equation (1):  143 = 𝑈(𝑡, 𝑥) − 𝐾′(𝑄∗) ∙ 𝐴 ∙ ( ) + 𝐸 (𝑄∗) (13) 144 

Equation (13) is the mathematical form of the stochastic-threshold incision model (STIM).  145 

 146 

3  Analytical description of the STIM equation 147 

 148 

3.1 An integral approach to the steady-state form of the model equation  149 

Assuming a balance between uplift rates and long-term erosion rates, i.e. Equation (13) 150 
equals to zero, we derived: 151 𝑈(𝑥) = 𝐾′(𝑄∗) ∙ 𝐴 ∙ 𝑆 − 𝐸 (𝑄∗) or 𝑆 = 𝐴 / ∙ [ ( ) ( ∗)( ∗) ] /  (14) 152 

If under the spatially uniform uplift pattern, i.e. 𝑈(𝑥) = 𝑈, the incision efficiency and threshold 153 
related parameters, also should be constants along the river profile, i.e.𝐸 (𝑄∗) = 𝐸 and 𝐾′(𝑄∗) =154 𝐾′. Thus, Equation (14) reduces to: 155 𝑆 = 𝐴 / ∙ ( ) /  (15) 156 

Equation (15) has the same form of the slope-area scaling for a graded river profile [Howard and 157 
Kerby, 1983]. Here, channel concavity 𝜃 = 𝑐𝑚/𝑛 and steepness 𝑘 = ( ) / .  158 

Performing the integration in the upstream direction yields an analytical solution to 159 
Equation (15):  160 𝑧 = 𝑧 + ( ) / ∙ ( ) / ∙ 𝜑(𝑥) (16) 161 

with  𝜑(𝑥) = [ ( )] / 𝑑𝑥′ (17) 162 

where zb is elevation of the base level and A0 is a reference drainage area. Accordingly, 163 
Equations (16-17) produces a 𝜑 − 𝑧 plot, which is similar to the 𝜒 − 𝑧 plot when 𝑐 = 1 [Perron 164 
and Royden, 2013].  165 

The steady-state form produces a way to determine the normalized critical discharge 𝑄∗. 166 
Assigning Equation (15) into (8) and setting 𝐼 = 0 yields [Dibiase and Whipple, 2011]: 167 𝑄∗ = ( ∙ ) /  (18) 168 

 169 
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3.2 A closed form analytical solution to the linear transient equation 170 

By adopting 𝑛 = 1 (𝑎 = 3/2 and 𝛽 = 2/3 [Dibiase and Whipple, 2011]) and timely 171 
dependent uplift rate 𝑈(𝑡), Equation (13) can be re-arranged as:  172 + 𝐾′(𝑄∗) ∙ 𝐴 ∙ = 𝑈(𝑡) + 𝐸 (𝑄∗) (19) 173 

In the transient equation, 𝐾′ and 𝐸  are the functions of critical discharge that relates to channel 174 
steepness. It means that both 𝐾′ and 𝐸  can vary with 𝑈(𝑡). Thus, Equation (19) is difficult to be 175 
solved, if focusing on the whole river profile. Instead, we followed Wang et al. [2022] to deal 176 
with separate transient knickpoints.  177 

The elevation change of a knickpoint that formed as a response to the change in tectonic 178 
uplift rates can be expressed as:  179 ( , ) = + ∙  (20)  180 

Compared with Equation (19), we can derive two characteristic equations:  181 = 𝐾′(𝑄∗) ∙ 𝐴  (21) 182 = 𝑈(𝑡) + 𝐸 (𝑄∗) (22) 183 

Notably, it is unlike the condition of Equation (1) where incision efficiency keeps a constant 184 
through both time and space. In that case, all the knickpoints share a common retreat velocity 185 
formula and can be well preserved [Berlin and Anderson, 2007]. Here, however, for a specific 186 
knickpoint, the parameter 𝐾′(𝑄∗) in the retreat velocity term (Equation 21) relates to the uplift 187 
rate that generated the knickpoint. This means that river incision efficiency varies through time 188 
and space, in terms of a step function. In the 𝑥 − 𝑧 domain, it might be difficult to determine 189 
whether all the knickpoints are preserved. 190 

Assuming knickpoint preservation, Equation (21) can be solved: 191 𝑡 = ( ∗)∙ 𝑑𝑥 + 𝑡 = ∙ ( ∗) [ ( )] 𝑑𝑥 + 𝑡 = ∙ ( ∗) 𝜑(𝑥) + 𝑡  (23) 192 

where ts indicates a transient signal formed at the base level when 𝑡 = 𝑡 . This implies a 193 
boundary condition of 𝑥 = 0 and 𝑧 = 0 at 𝑡 = 𝑡  [Goren et al., 2014; Rudge et al., 2015]. 194 
Equation (23) measures a response time for a knickpoint migration from river outlet to its present 195 
location. 196 

Equation (22) can be solved: 197 𝑧 = [𝑈(𝑡′) + 𝐸 (𝑄∗)] 𝑑𝑡′ + 𝑧  (24) 198 

where zs is a constant term that can be derived by using the boundary condition: 199 𝑧 = − [𝑈(𝑡′) + 𝐸 (𝑄∗)] 𝑑𝑡′ (25) 200 

Assigning Equations (23 and 25) into (24), we derived the closed form analytical solution to the 201 
linear model:  202 𝑧 = [𝑈(𝑡′) + 𝐸 (𝑄∗)] 𝑑𝑡′ = [𝑈(𝑡′) + 𝐸 (𝑄∗)]∙ ( ∗) ( ) 𝑑𝑡′ (26) 203 
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Since K' is usually unknown, a non-dimensional K'-independent uplift history is needed. We 204 
followed Goren et al. [2014] to define two new variables: 205 𝑡∗ = 𝑡 ∙ 𝐴 ∙ 𝐾′(𝑄∗) (27) 206 

and 𝑈∗(𝑡∗) = [𝑈(𝑡) + 𝐸 (𝑄∗)]/(𝐴 ∙ 𝐾′(𝑄∗)) (28) 207 

Thus, Equation (26) can be related to a K'-independent uplift history:  208 𝑧(𝑡∗, 𝑥) = 𝑈∗(𝑡∗ )∗∗ ( ) 𝑑𝑡∗  (29) 209 

Hence, Equation (29) represents the knickpoint evolution in the 𝜑 − 𝑧 domain and segments 210 
between knickpoints are straight lines.   211 

 212 

4 A linear inverse scheme to infer tectonic uplift history 213 

The analytical solution provides a linear inverse scheme that takes the river long profiles as 214 
input data to infer the relative uplift rate history. According to Equation (29), the present channel 215 
profile (at 𝑡 = 0) is: 216 𝑧(𝑥) = 𝑈∗(𝑡∗)𝜑(𝑥) 𝑑𝑡∗ (30) 217 

We proposed three steps to infer the uplift history. First, via Equations (16-17), we 218 
transformed the river long profiles to 𝜑 − 𝑧 plots. A series of 𝑐𝑚 values were using and the one 219 
that minimizes the scatter in the 𝜑 − 𝑧 domain was selected [e.g. Goren et al., 2014; Shelef et al., 220 
2018]. Second, we defined knickpoints [(𝜑 , 𝑧 ), (𝜑 , 𝑧 ), … (𝜑 , 𝑧 )] to divide the 𝜑 − 𝑧 221 
domain into N segments. The basin outlet is identified with (𝜑 = 0, 𝑧 = 0) and the highest 222 
channel head is (𝜑 = 𝜑 , 𝑧 = 𝑧 ). These data points are assumed to share a common 223 
uplift history (i.e. spatially uniform uplift pattern). Segment j, between [ 𝜑 , 𝑧 , (𝜑 , 𝑧 )], is 224 
characterized by a uniform steepness index that shaped the river profile during time interval 225 𝑡 , 𝑡 , where tj is the time for a transient signal migrating from the river outlet (𝑥  or 𝜑 ) to 226 
the point (𝑥  or 𝜑 ). In this way, we can re-write Equation (30) as: 227 𝑧(𝑥 ) = 𝑈∗(𝑡∗)𝜑𝑗 𝑑𝑡∗ = ∑ 𝑈∗ ∙ (𝜑 − 𝜑𝑖−1) (31) 228 

where 𝜑  equals to 𝑡∗. 𝑈∗ can be estimated by a linear regression on the data points within the 229 
time interval (𝜑 , 𝜑 ). Consequently, a non-dimensional uplift history, (𝑈∗, 𝑡∗), without any 230 
prior information on K', can be derived. Third, conversion from (𝑈∗, 𝑡∗) to a dimensional history 231 (𝑈 , 𝑡 ) by solving equations (27-28), after K' is independently constrained. 232 

The inferred uplift history depends on how to choose the φ interval, which can be evaluated 233 
based on the misfit function. Combing the non-dimensional history and Equation (31), we can 234 
modelled the channel profiles. We followed Wang et al. [2022] to calculate the elevation misfit 235 
between the modelled and actual river profiles:  236 misfit = / ∑ (𝑧 − 𝑧 )  (32) 237 
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where M is the number of pixels in the river profile data. 𝑧  and 𝑧  are the actual and modelled 238 
elevation at the channel node i.  239 

 240 

5 Application: linear inversion on the channel profiles of the Dadu River basin 241 

We present an application of the linear inverse scheme to the Dadu River, in the eastern 242 
margin of the Tibetan Plateau. The river basin is a transient landscape, characterized by high-243 
elevation, low-relief topography in the interior of the Songpan-Ganze block and steep margins 244 
deeply dissected by the major trunk and tributaries of large rivers (Figure 1a). Rock exhumation 245 
rates in the region increased dramatically at 9-13 Ma, suggesting synchronous fluvial response to 246 
the regional uplift initiated at that time [Clark et al., 2005; Tian et al., 2015]. Another event of 247 
the Dadu-Anning capture was dated at the early Pleistocene that the upstream of the paleo 248 
Anning River was captured by the trunk of the present Dadu River at Shimian and then flowed 249 
into the Sichuan Basin [Clark et al., 2004; Yang et al., 2019; Wang et al., 2021].  250 

We selected five long main trunks distributed in the Dadu River basin (Figure 1a), which 251 
was chosen as a case study in Wang et al. [2022]. We extracted the long profiles of these rivers 252 
and observed two generations of knickpoints at the elevations of about 1700 and 3000-3500 m 253 
(Figure 1b). Adopting 𝑐 = 1 and 𝑚 = 0.45 [Scherler et al., 2017], the generated φ-elevation 254 
plots show a uniform trend (Figure 1c). We assumed the number of knickpoints to be 1 to 9 and 255 
for each case, we performed 5000 realizations of the inversion with randomly selected positions 256 
of knickpoints. For each model run, we modeled river φ-elevation plots via Equation (31) and 257 
calculated the elevation misfit by Equation (32). We listed the elevation misfit as a function of 258 
the number of assumed knickpoints and presented the non-dimensional uplift history that 259 
corresponds to the minimum misfit value at two knickpoints (Figure 1d-e). The results of Figure 260 
1c-e are nearly the same to those in Wang et al. [2022]. 261 

In this case, we fixed parameters, 𝑎 = 3/2, 𝜔 = 0.25, 𝜔 = 0.55, 𝜏 = 45 Pa, 𝑘 =262 4.3 × 10  m . 𝑠 kg . , 𝑘 = 1000 m / 𝑠 / kg, and 𝑘 = 15 m . 𝑠 .  [Dibiase and 263 
Whipple, 2011]. Next, we estimated the parameters, Rb and k, based on the monotonic, positive 264 
non-linearity between erosion rates with channel steepness: 265 𝑘 = 𝑘 ∙ 𝐸  (33) 266 

Ouimet et al. [2009] reported a data set of 𝐸 − 𝑘  in the Dadu and adjacent river catchments. A 267 
free fit to the data produced the exponent 𝛷 = 0.4874 (Figure 2). Assigning the 𝑘  data of 268 
Ouimet et al. [2009] into Equations (18 and 10), we calculated erosion rates and the statistic 269 
scaling between the rates and steepness indices. The resulted parameters, 𝛷 and 𝑘 , vary a lot for 270 
changes in 𝑅  and k (Figure 3).  271 

 272 
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 273 
Figure 1. (a) Location of the Dadu River basin. The long, main trunks selected for inversion are in colors. (b) 274 
The long profiles of the selected trunk channels, with prominent knickpoints labeled in black dots. (c) The 275 
colored, solid lines are the φ-elevation plots of the main trunks and the black, dashed line is the best-fit inferred 276 
φ-elevation plot with the history shown in (d). (d) The non-dimensional history of relative uplift rate with the 277 
best-fit solution by using two knickpoints. (e) The elevation misfit as a function of the number of division 278 
points, based on equation (32). (f) The inferred dimensional uplift history with the same runoff variability but 279 
different Rb values. 280 

 281 

 282 
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Figure 2. The non-linearity of the measured erosion rates and channel steepness. The data with error bars (1σ 283 
uncertainty) are from Ouimet et al. [2009]. Red line indicates a free fit to the dataset. Gray and blue lines show 284 
the best fit of Equation (10) through erosion rates, using the same runoff variability but different Rb values.   285 

 286 

Figure 3a shows that, when 𝑘 ≥ 1 and 𝑅  is no more than 2000 mm/a, the 𝛷 is always 287 
below 0.45. Although 𝛷 has the potential to be over 0.45 for much higher runoff, the coefficient 288 𝑘  is getting close to zero (Figure 3b). Figure 3c and e indicates that, as long as 𝑘 ≤ 0.4, the 𝛷 is 289 
higher than 0.5. If 𝑘 ≥ 0.6, the high runoff (𝑅 ≥ 500) produces a 𝛷 that is close to 0.48 but 290 𝑘 < 10 (Figure 3e-f). When 𝑘 = 0.5 and 30 ≤ 𝑅 ≤ 35, we obtained 𝛷~(0.4867, 0.4882) 291 
and 𝑘 ~(16.42, 17.76) (Figure 3g-h). This is consistent with the results of the free fit to the 𝐸 −292 𝑘  dataset (Figure 2).  293 

 294 

 295 
Figure 3. The coefficient (kΦ) and exponent (Φ) of the erosion rate – channel steepness scaling change as a 296 
function runoff (Rb) and its variability (k).  297 
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 298 

Thus, we fixed 𝑘 = 0.5 and used 𝑅 = 30 and 35 to calculate the history of relative uplift 299 
rates. Both the two histories nearly show the same trend with two-phase of increase in the uplift 300 
rates since the Miocene, i.e. one is at 10-12 Ma (the rate increased from 0.05 to ~0.20 mm/a) and 301 
another is at 1.5-2.0 Ma (from 0.20 to 0.45-0.55 mm/a). The inferred history is consistent with 302 
the timing of the tectono-geometric events revealed by low temperature studies [e.g. Ouimet, 303 
2007; Tian et al., 2015; Yang et al., 2019]. And, the history produces an average rate of relative 304 
uplift to be about 0.25-0.30 mm/a (from 10-12 Ma to the present), which is similar to the incision 305 
rates (derived from elevation transects of apatite fission track and Helium ages) along the trunk 306 
channel of the Dadu River [Clark et al., 2005]. 307 

 308 

6 Discussion  309 

 310 

6.1 Limitation and assumption 311 

The analytic work we presented here was based on an essential assumption that erosion rate 312 
depends on channel slope linearly, i.e. the slope exponent 𝑛 = 1. This assumption relies on the 313 
combination of a non-linear relation (𝑎 = 3/2 in Equation 2) between instantaneous incision rate 314 
with shear stress and a Darcy-Weisbach relation (𝛼 = 𝛽 = 2/3 in Equation 3) between shear 315 
stress with channel slope [Howard, 1994]. In the simple SPIM (Equation 1), the non-linearity in 316 
the 𝐸 − 𝑘  scaling is directly parameterized in the non-linear exponent n [Whipple and Tucker, 317 
1999]. Although the non-linear n could cause complex fluvial dynamics [Royden and Perron, 318 
2013], Wang et al. [2022] developed an inverse model to extract tectonic uplift history based on 319 
the assumption of knickpoint preservation. Choosing the same trunk rivers as a case, both Wang 320 
et al. [2022] and this study nearly inferred the same dimensional uplift rate histories. Thus, 321 
applying a linear n in the stochastic-threshold incision model can also solve some inverse 322 
problems relating to the non-linear dependence of channel steepness on river erosion rate.    323 

Another limitation is that our model uses constant runoff and variability. In the case study, 324 
we obtained runoff of 30-35 mm/a and variability parameter 𝑘 = 0.5 to best match the observed 325 𝐸 − 𝑘  scaling. However, for the rivers southeast to the Dadu, the runoff recorded by modern 326 
hydrological stations is more than 500 mm/a and 𝑘 > 3 [Scherler et al., 2017]. That might be 327 
because that those stations are mainly on large rivers, while the 𝐸 − 𝑘  dataset are mostly from 328 
small-scale tributary catchments of the Dadu River [Ouimet et al., 2009]. It means that the 329 
climate parameters that was calibrated via the dataset of small catchments were extrapolated to 330 
the inversion on the long, main trunks of the Dadu basin. The inferred history is well consistent 331 
with the exhumation history along the trunk of the Dadu River [Clark et al., 2005], which might 332 
indicate a consistence in the adjustment response of both trunk and tributary channels to the 333 
changes in incision and/or uplift rates. It also implies that the 𝐸 − 𝑘  scaling at 103-104 yr scale 334 
can be extrapolated to a long time scale of >106 yr. Despite the global climate changes since 2-4 335 
Ma [Zhang et al., 2001], both numerical and analytical models show that the high-frequency 336 
oscillations are not expected to leave significant effects on the topography of bedrock fluvial 337 
channels [Goren et al., 2016].  338 

 339 
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6.2 Whether knickpoints can be preserved  340 

Our analytical solution and inverse method are both based on the premise of no knickpoint 341 
merge. Here, we demonstrated that, under the linear stochastic-threshold incision model, all the 342 
knickpoints can be well preserved. Taking the transformation of Equations (17, 27 and 28), we 343 
can write: 344 = ∗ ∙ ∗ = ∗ ∙ 𝐴 ∙ 𝐾′(𝑄∗) (34) 345 = ∙ = ∙ [ ( )]  (35) 346 

Substituting Equations (34-35) into (19):  347 

∗ ∙ 𝐴 ∙ 𝐾′(𝑄∗) + 𝐾′(𝑄∗) ∙ 𝐴(𝑥) ∙ ∙ [ ( )] = 𝑈(𝑡) + 𝐸 (𝑄∗) (36) 348 

Our approach resolved knickpoint kinematics in a Lagrangian reference frame, which 349 
implies that, along a channel segment between two adjacent knickpoints, 𝐾′ should be a constant. 350 
Thus, Equation (36) can be re-arranged as:   351 

∗ + = ( ) ∙ = 𝑈∗(𝑡∗) (37) 352 

One of the characteristic equations of Equation (37) is:  353 𝑑𝜑/𝑑𝑡∗ = 1 (38) 354 

Thus, taking the transformation of Equations (17, 27 and 28), the transient signals (knickpoints) 355 
migrates at the same velocity in the φ-elevation domain. Thus, our inverse scheme based on the 356 
analytical solution to the linear STIM can deal with inverse problems relating to a nonlinear 𝐸 −357 𝑘  scaling, without the assumption of knickpoint preservation.   358 

Notably, we do not mean that all the nonlinear 𝐸 − 𝑘  cases can be resolved by the simple 359 
stochastic-threshold model. Nevertheless, a combination of this approach and previous analytical 360 
studies on 𝑛 ≠ 1 [e.g. Royden and Perron, 2013; Wang et al., 2022] could produce better 361 
understandings on more complex fluvial dynamics. Besides, incorporating our analytical 362 
procedures into forward and inverse tectonic – fluvial landscape evolution models [e.g. Fox et 363 
al., 2015; Gallen and Fernández-Blanco, 2021; Steer et al. 2021] has the potential to significantly 364 
expedite the model run speed and to make these models more efficient and accurate.  365 

 366 

7 Conclusion  367 

In this contribution, we presented analytical solutions to the simple stochastic-threshold 368 
incision model equation. The solution to the steady-state equation of the model produces a φ-369 
elevation transformation to river long profile. Under the assumptions of a linear slope exponent 370 
and the timely dependent uplift, we derived a closed-form analytical solution to the transient 371 
state equation. This solution allows to relate the topography along fluvial channels to the history 372 
of the relative uplift rate through time. Based on the analytical analysis, we developed a linear 373 
inversion scheme to retrieve the tectonic uplift rate history from river long profiles. We applied 374 
the inverse method to the Dadu River basin where channel steepness indices scale with 375 
catchment erosion rates non-linearly. We inferred a history with two-stage increases in the 376 
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uplift/incision rates since the late Miocene, which is consistent with the exhumation history 377 
recorded by low-temperature thermochronology. Our analytical procedures thus provide 378 
powerful tools for understanding the transient behavior of bedrock channel evolution.  379 
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