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Abstract

Uncertainty quantification in geophysical inversion is a well-recognized area of research, yet it has not become routine practice.

One of the primary challenges is the computational expense of forward solvers, making robust uncertainty quantification

methods like Monte Carlo or Markov Chain Monte Carlo (MCMC) impractical, particularly for higher-dimensional problems.

This challenge is amplified in the case of joint inversion, where multiple types of forward solvers must be run thousands of times.

We propose a stochastic joint inversion framework that integrates the Very Fast Simulated Annealing (VFSA) approach with

a generalized fuzzy c-means clustering technique for effective parameter coupling. By incorporating a sparse parameterization

strategy and executing multiple VFSA chains with varying initial models, we effectively mitigate VFSA’s tendency to converge

at the peak of the derived posterior probability density (PPD) function. The approach presented here address the inherent

challenge of high computational costs for implementing joint-inversion with nonlinear sampling methods like MCMC by providing

a feasible probabilistic joint inversion alternative that can integrate petrophysical information as well as geological constraints.
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Figure 1: ThMean (a), median (b), standard deviation (c) and percentage coefficient of variance (d) for the
estimated resistivity models and the mean (e), median (f), standard deviation (g) and percentage standard
deviation (h) for the estimated velocity models from the joint-inversion.
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Abstract10

Uncertainty quantification in geophysical inversion is a well-recognized area of research,11

yet it has not become routine practice. One of the primary challenges is the computa-12

tional expense of forward solvers, making robust uncertainty quantification methods like13

Monte Carlo or Markov Chain Monte Carlo (MCMC) impractical, particularly for higher-14

dimensional problems. This challenge is amplified in the case of joint inversion, where15

multiple types of forward solvers must be run thousands of times. We propose a stochas-16

tic joint inversion framework that integrates the Very Fast Simulated Annealing (VFSA)17

approach with a generalized fuzzy c-means clustering technique for effective parameter18

coupling. By incorporating a sparse parameterization strategy and executing multiple19

VFSA chains with varying initial models, we effectively mitigate VFSA’s tendency to20

converge at the peak of the derived posterior probability density (PPD) function. The21

method presented here addresses the inherent challenge of high computational costs for22

implementing joint-inversion with nonlinear sampling methods like MCMC by provid-23

ing a feasible probabilistic joint inversion alternative that can integrate petrophysical in-24

formation as well as geological constraints.25

Plain Language Summary26

Understanding uncertainty is important in geophysics, where scientists try to fig-27

ure out what lies beneath the Earth’s surface by interpreting data. However, calculat-28

ing this uncertainty is very challenging and is not commonly done because it requires29

a lot of computing power. Traditional methods like Monte Carlo or Markov Chain Monte30

Carlo (MCMC) are accurate but slow, especially when dealing with complex problems31

that use multiple types of data at once.32

To solve this, we developed a more efficient method that combines a faster tech-33

nique called Very Fast Simulated Annealing (VFSA) with fuzzy clustering, a machine34

learning method that helps connect different types of information. We also simplify the35

process by using fewer points for the inversion through sparse sampling of model param-36

eters, and running multiple simulations with different starting points. This helps avoid37

issue of getting stuck on one possible solution and provides a more complete picture. Our38

approach offers a practical way to combine multiple data types and incorporate geolog-39

ical information without the high computational costs of traditional methods.40

1 Introduction41

Geophysical inverse problems are known to be non-unique, which means, there ex-42

ist a number of plausible models that would fit the data. The idea behind an integrated43

inversion is to reduce the number of possible models by using different but complemen-44

tary geophysical, geological, and petrophysical data in an unified geophysical inversion45

framework. The term ‘joint-inversion’ refers to one of the many integrated (coupled) in-46

version approaches where cost functions of different methods are efficiently combined to47

construct a joint-objective function, which is minimized while adjusting all the model48

parameters concurrently. Since all the involved methods contribute to the model update,49

the inversion artifacts are likely to be reduced in certain subspace of the model, which50

is sensitive to more than one method (Moorkamp et al., 2016). There are some specific51

challenges in the development of a efficient joint-inversion algorithm:52

1. Although a joint-inversion is likely to narrow-down number of possible solutions,53

the inversion problem remains non-unique and the estimated model could be sub-54

optimal.55

2. In realistic models, petrophysical relationship(s) among different model param-56

eters could be complicated, which requires an efficient coupling strategy in the joint-57

inversion algorithm.58
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The first challenge would be dominant if we use a deterministic method for the joint-59

inversion which produces a single ’best’ model. A probabilistic method, however, pro-60

vides many possible models which average to a final model estimation and provide un-61

certainties in it.62

Some previous works in the context of probabilistic joint-inversion have used MC63

method (Bosch & McGaughey, 2001; Chen et al., 2004; Bosch et al., 2006; Jardani & Re-64

vil, 2009; Shen et al., 2013), Co-kriging method (Shamsipour et al., 2012), Markov-Chain65

Monte-Carlo (MCMC) method(Rosas-Carbajal et al., 2014; Wéber, 2018), trans-dimensional66

MCMC (Blatter et al., 2019), and Very Fast Simulated Annealing (VFSA) method (Kaikkonen67

& Sharma, 1998; YANG et al., 2002; Hertrich & Yaramanci, 2002; Santos et al., 2006).68

Out of these, MC method is the most rigorous probabilistic approach as it samples pro-69

posal models randomly in the parameter space. The proposal models are accepted or re-70

jected based on a computed probability using the Metropolis-Hasting criterion (Metropolis71

et al., 1953). Due to randomness in the selection of the proposal model, MC method pro-72

vides the most accurate posterior probability distribution (PPD) of the model at an ex-73

tremely expensive cost (Sen & Stoffa, 2013).74

Unlike the MC method which is able to draw independent samples from the dis-75

tribution, MCMC method draws proposals where the next model is dependent on the76

existing model by using the Markov-Chain. This allows the algorithms to narrow in on77

the quantity that is being approximated from the distribution making it a less expen-78

sive alternative to the MC method. Sen and Stoffa (1996) discuss several alternatives79

of MC method and demonstrate that a tweaked VFSA is an affordable alternative (Roy,80

Sen, Blankenship, et al., 2005; Roy, Sen, McIntosh, et al., 2005), which can be used to81

derive PPD without using a rigorous sampling method like MC or MCMC. VFSA is an82

optimization algorithm based on the Metropolis-Hastings criterion.83

There are two main differences between MCMC and VFSA as the latter uses a tem-84

perature dependent Cauchy-distribution to draw the proposal model, which tends to nar-85

row down the proposal to the previous state as the temperature decreases. Moreover,86

the probability of accepting a ’bad’ model also decreases over number of iterations and87

becomes sufficiently low near the global minimum. The PPD derived from a single chain88

of VFSA is inherently biased towards towards the global minimum, therefore, multiple89

chains of VFSA are needed to get many plausible models for uncertainty quantification.90

Although, the PPD estimated through rigorous sampling methods are more accurate,91

the same obtained through the VFSA does provide a sweet-spot between affordability92

and accuracy.93

The second challenge, that is, effective coupling of model parameters has mostly94

been discussed in the context of deterministic joint-inversion, which can be categorized95

as (1) structure-based coupling (Haber & Oldenburg, 1997; Gallardo & Meju, 2004) and96

(2) petrophysical coupling (Koketsu & Nakagawa, 2002; Jegen et al., 2009). A detailed97

review about different approaches for parameter coupling can be found in (Colombo &98

Rovetta, 2018). In this paper, we use a guided-fuzzy c-means clustering developed by99

(Sun & Li, 2012), which is a generalized version of the the method proposed by Lelièvre100

et al. (2012) and has been effectively used in deterministic joint-inversion in geoscience101

(Sun & Li, 2016a, 2016b).102

In this paper, we introduce a probabilistic joint inversion approach for multi-physics103

data integration, utilizing the Very Fast Simulated Annealing (VFSA) algorithm com-104

bined with a generalized Fuzzy C-Means (FCM) clustering method. Given that a large105

number of inversion parameters would typically necessitate an impractically high num-106

ber of VFSA iterations for convergence, we employ a sparse parameterization strategy107

to randomly distribute inversion points across the model space. We provide a detailed108

discussion of the VFSA and FCM algorithms, explaining our rationale for their selec-109

tion in the joint inversion framework. To validate the proposed algorithm, we present110
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numerical experiments on the joint inversion of first-arrival seismic traveltime and controlled-111

source electromagnetic (CSEM) data for a 2D slice of the SEAM Phase I model, focus-112

ing on computing mean models and associated uncertainties. Finally, we show that, the113

mean P-wave velocity model obtained from the joint inversion can be further refined us-114

ing Full Waveform Inversion (FWI) (Tarantola, 1984).115

2 Forward Modeling and Cost Computation116

In recent times, there has been a growing interest in the modeling and inversion117

of CSEM data for mapping the resistivity of the subsurface (Constable, 2010; Key, 2016;118

Constable et al., 2019; Lu & Farquharson, 2020). Under the low-frequency assumption119

(neglecting the displacement current), and quasi-static limit, the Maxwell’s equations120

can be written as the following121

∇×∇×E− iωµσE− iωµJ = 0. (1)

where E is the electric field, ω is the angular frequency, µ is the magnetic permeability,122

σ, is electrical conductivity, and J is the source-term. The second-order PDE given by123

equation (1) is the governing equation for CSEM modeling. We discretize it by using124

the staggered-grid finite-different method (Yee, 1966; Newman & Alumbaugh, 1995). Dirich-125

let boundary conditions are applied at all boundaries of the computational domain by126

forcing the electric field values to zero. In order to reduce the spurious data due to the127

limited finite-domain, the computational domain was stretched by adding a thick (70km)128

highly-resistive (107Ohm.m) layer on top of the water layer. This additional domain was129

discretized using stretched cells with increasing thickness along the z-direction. In prin-130

ciple, as the angular frequency reaches the static limit, the highly-resistive layer (air) causes131

non-uniqueness in the solution, which further requires a static divergence correction. How-132

ever, for practical CSEM modeling the angular frequency is usually greater than 0.1Hz,133

therefore, CSEM modeling does not require such corrections . A detailed description about134

the finite-difference discritization of the equation(1) can be found in (Streich, 2009; Jaysaval135

et al., 2014). The forward modeling kernel is parallelized by shot, frequencies wavenum-136

ber in the y-dircetion.137

If m is a conductivity model in a set of M models, the optimization problem for138

CSEM can be written as139

mest = arg min
m∈M

ΦCSEM (σ). (2)

The cost function ΦCSEM (σ) is given by140

ΦCSEM (σ) =
∑

rs,rr,F,i,f

0.5WF
i (rr|rs;J, f) |∆Fi (rs, rr, F, i, f, σ) |2 (3)

where Fi is the component of electric or magnetic field in the direction of x or y (i =141

(x, y)). ∆F is the difference between observed and computed fields at receiver location142

rr due the the source J at location rs.143

WF
i =

1

|F obs
i |2 + η2

(4)

The datum weight WF
i balances the contributions from fields at different offsets to the144

cost function.145

For raytracing of seismic first-arrival paths, we use the shortest path method, which146

is an efficient and flexible approach to compute the raypaths and traveltimes of first ar-147

rivals to all points in the earth simultaneously (Moser, 1991; Arnulf et al., 2011, 2014,148

2018). The forward calculation of synthetic first arrivals is fully parallelized for each re-149

ceiver taking advantage of the source receiver reciprocity. The cost function for seismic150
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ϕSE is given by151

ΦSE =

N∑
i=1

(
T pick
i − T cal

i

)2

σerr
i

, (5)

where T pick, and T cal are picked and calculated traveltimes respectively, σerr
i is uncer-152

tainty in picking, and N is total number of picks.153

3 VERY-FAST SIMULATED ANNEALING154

Simulated annealing (SA) is an optimization algorithm, which is inspired from the155

annealing process in Thermodynamics (i.e. (Kirkpatrick et al., 1983); see (Sen & Stoffa,156

2013) for geophysical applications). The annealing is a process where a metal is heated157

until it melts and then cooled in a controlled way to achieve the lowest energy state. Dur-158

ing annealing, thermal equilibrium is reached at every temperature where the set of all159

possible molecular configuration is given by the probability of a particular configuration160

of particles being in a state i161

pi =
e

−Ei
kT∑

j∈S e
−Ej
kT

. (6)

Equation (6) is named the Boltzmann distribution where Ei is the energy state of the162

configuration i, S is the set of all possible configuration, k is the Boltzmann constant163

and T is the temperature. The SA method starts with an initial model and an initial164

(highest) temperature. In the next step, the temperature is decreased by a predefined165

cooling schedule, and the algorithm draws a new (proposed) model from a flat-distribution.166

The objective function is defined as the difference between energy states of the initial167

and the new model. If the energy state of the proposed model is less than that of the168

previous model, the model is accepted. On the other hand, if the energy state of the pro-169

posed model is greater than that of the previous model, the model is considered as a bad170

proposal. Since SA is a global optimization algorithm with a purpose of jumping out of171

a local minimum, it does not discard a bad proposal model but accepts it with a prob-172

ability called the Metropolis-Hasting criterion, which is given as173

Pn = e

(
−

E(mn)−E(mn−1)

tn

)
(7)

where tn is the temperature at the current step. The probability (Pn) of accepting a bad174

proposal model is temperature dependent. As the SA algorithm proceeds to higher it-175

erations, the current temperature decreases and so does the probability. This means that176

at initial iterations, SA would accept most of the bad proposal models but becomes par-177

simonious when the solution approaches the global minimum. The cooling schedule needs178

to be carefully defined as it controls the trade off between the computational cost of SA179

algorithm and its ability of finding the global minimum. A faster cooling would accel-180

erate the algorithm but a slower cooling makes sure the globally optimal solution. There-181

fore, for a complicated optimization problem the cooling schedule needs to be significantly182

slower, which can make SA — unpractical.183

Ingber (1989) proposed a variant of SA, called Very Fast Simulated Annealing (VFSA),184

which offers a significant speed-up with minimum sacrifice in the ability to find the glob-185

ally optimal solution. The main difference between SA and VFSA is that instead of draw-186

ing a proposal model from a flat-distribution, the latter draws the proposal model us-187

ing a temperature-dependent Cauchy-like distribution over the previously accepted model188

as given by189

mn
i = mn−1

i + yi(m
ub
i −mlb

i ), (8)

where mub and mlb are maximum and minimum allowed values of the model parame-190

ter and191

yi = sgn(ui − 0.5)tn

[
(1 + 1/tn)

|2ui−1| − 1
]
, (9)
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where u is a random number between 0 and 1. The VFSA algorithm offers some unique192

flexibility over the SA. As such, in the initial stage of the optimization process (i.e. the193

earlier iterations) the algorithm is set to explore a broad region of the model space. Then,194

as the optimization process starts to converge towards the global minimum, the algo-195

rithm is set to focus on narrower regions of the model space located near the previously196

accepted model. It is worth to be noted that in the case of multi-parameter optimiza-197

tion, VFSA allows different parameters to have their own cooling schedule and model198

search space.199

4 Parameter Coupling200

Clustering is a machine Learning technique that finds groups in a specific dataset,201

where the data belonging to a group are more similar to each other than the data be-202

longing to another group. These groups in the data are called clusters. A clustering al-203

gorithm segments the data into high-density clusters such that inter-cluster members have204

low similarity and intra-cluster data have high similarity. Clustering is an efficient tool205

for exploring the relationship(s) between data, which, traditionally, has been a post-inversion206

process where inversion results from single data inversions are analyzed to interpret the207

final petrophysics and geology of the subsurface. A cross-plot between inverted param-208

eters explains the statistical relationship between model parameters and often a direct209

relationship is derived and used as a coupling scheme in the joint-inversion. Statistical210

coupling gets tricky when the crossplot has complex and more than one relationship be-211

tween parameters. Recently, (Sun & Li, 2016b, 2016a) proposed an efficient way of pa-212

rameter coupling by using a generalized fuzzy c-means (FCM) clustering to constrain213

the statistical relationship of inverted parameters for several deterministic joint-inversion214

studies. In this paper, we show that FCM can also be incorporated into our probabilis-215

tic joint-inversion framework.216

FCM (Dunn, 1973; Bezdek, 1981) is one such clustering approach, where instead217

of belonging to one cluster, the data points can have a certain degree of memberships218

to different clusters. Clustering methods, essentially, solve local optimization problems219

where an optimal data segmentation is achieved by minimizing a certain cost function.220

The cost function for a typical FCM method is given as,221

ΦFCM =

N∑
k=1

c∑
i=1

(µi,k)
m(xk − vi)

TA(xk − vi), (10)

where µi,k are the elements of the ‘partition matrix’ U ∈ RN×c and are termed as mem-222

bership values, which is a measure of of degree of membership of kth data in the ith clus-223

ter. The ‘fuzzification parameter’ (1 < m < ∞) determines the degree of ‘fuzziness’224

in the clustered data, and the vector vi is the center of ith cluster. The distance-norm225

A determines the shape of the clusters. The standard FCM algorithm uses the Euclidean226

norm (A = I); therefore, it detects only circular clusters in the data. However, if we227

modify A to include variances adaptive to given data, the FCM can be generalized to228

detect different shapes of clusters in one cross-plot. A generalized formulation of FCM229

uses an adaptive (mahalanobis) distance-norm (Gustafson & Kessel, 1979), where each230

cluster has its own norm-inducing A matrix given by231

Ai = [ρidet(Fi)]
1/n

F−1
i , (11)

where ρi is the determinant of the matrix Ai, and Fi is the fuzzy covariance matrix for232

ith data as given by233

Fi =

∑N
k=1(µi,k)

m(xk − vi)
T (xk − vi)∑N

k=1(µi,k)m
. (12)
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5 Joint-inversion Workflow234

We write the combined objective function for the joint-inversion as follows235

Φ = ΦEM +ΦSE +ΦFCM + λ

c∑
i=1

∥ vi − gi ∥2 . (13)

Where ΦEM , ΦSE , and ΦFCM are cost functions of CSEM, seismic, and FCM respec-236

tively. To adjust the contributions from each methods, we normalize the individual cost237

functions for their target errors derived from separate VFSA inversions. This will make238

sure that all the methods contribute equally near the global minimum and avoids free239

parameters (weights) in the joint-inversion. The forth-term in equation (13) incorporates240

prior information about the known geology by minimizing the distance between inverted241

cluster centers vi, and known cluster centers gi. The parameter λ reflects our confidence242

in the priors. The value of λ = 0 would imply that there is no prior information about243

cluster centers and final inverted centers will be determined purely through the inver-244

sion. The iterative update scheme (Sun & Li, 2016b) for FCM centers (including the pri-245

ors) is derived as246

vi =

∑N
k=1(µi,k)

mxk + λgi∑N
k=1(µi,k)m + λ

. (14)

In the following algorithm, we explain the probabilistic joint-inversion workflow for247

CSEM and seismic data for one inner loop inside the main VFSA loop. The model pa-248

rameters mres and mvel represent the vertical resistivity (R) and p-wave velocity (Vp),249

respectively.250

251

Initialize maximum temperature t0, number of VFSA iterations, number of loops inside252

VFSA iteration, random initial models: m0
res, m

0
vel, initial random centers v0

i253

repeat for n = 0, 1, 2, ..., number of VFSA iteration254

| Compute the current temperature tn using a cooling schedule255

| Draw proposal models mn+1
res , and mn+1

vel using equation (8)256

| Compute memberships µn+1
i,k using FCM (mn

res, m
n
vel,v

n
i )257

| Update cluster centers vn+1
i using equation (14)258

| Compute δE = Φn+1 − Φn
259

| If δE ≤ 0260

| Accept µn+1
i,k , vn+1

i , mn+1
res , mn+1

vel261

| mn
res = mn+1

res ; mn
vel = mn+1

vel262

| else263

| P = exp
(
− δE

tn

)
264

| Draw a random number {u : u ∈ (0, 1)}265

| If P > u266

| Accept µn+1
i,k , vn+1

i , mn+1
res , mn+1

vel267

| mn
res = mn+1

res ; mn
vel = mn+1

vel268

| end269

| end270

| n = n+1271

end272

273

We have normalized individual cost functions for CSEM and seismic with their respec-274

tive target misfit and do not use relative weights.275

6 Test case276

We apply the proposed joint-inversion workflow for CSEM and seismic travel-time277

data generated on a subset of SEAM Phase I model (Pangman, 2007). The subsurface278

–7–
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model built on the SEAM Phase I data set mimics a realistic geology of a salt-containing279

region in the Gulf of Mexico (Fehler & Keliher, 2011). There is a massive salt body with280

steep flanks embedded into a layered sediment environment. The velocity model has com-281

plex geometrical structures and strong velocity variations that makes seismic imaging282

below salt: challenging. The top boundary of the salt is rugose and has a thin layer of283

muddy salt having velocity slightly lower than the main salt body. Since we use using284

only first-arrival travel-time data for this numerical test, we restrict our area of inter-285

est to 4 km depth. The SEAM model for this test is a subset of a 2D slice of the orig-286

inal 3D model (at north=23900 m) having the dimension of 35 km×4 km. The model287

has a seawater layer of 0.3125 Ωm vertical resistivity and 1490 m/s p-wave velocity, and288

the thickness of the seabed varies from 0.7269 km to 1.606 km. The true synthetic mod-289

els for this experiment are shown in figure (1). The sediments on either side of the salt290

body have some interesting formations, which are not visible in the velocity model but291

are prominent in the vertical resistivity model. A preliminary cluster analysis of this cross-292

plot between true model parameters shows that the geology of the model can reasonably293

be described with five clusters. We’ll assume these cluster centers as a prior geological294

information about the facies in the model. The goal of this numerical test is to perform295

the joint-inversion of seismic and CSEM data over this SEAM model using the given petro-296

physical and geological constraints and quantify the uncertainty in the estimated mod-297

els.298

For the seismic data, we assumed a typical ocean bottom seismometers (OBSs) pro-299

file with 34 receivers uniformly distributed every 1 km, with the seismic wavefield down-300

ward extrapolated to the seafloor (Arnulf et al., 2011, 2014). For the seismic modeling301

we took advantage of the source receiver reciprocity. As such we are modeling 34 shots,302

uniformly distributed at the ocean bottom between x = 1 km to x = 34 km and re-303

ceivers at 50 m interval. For CSEM modeling, we have used 17 sources between x = 3 km304

and 31 km and receivers at every 500 m. The CSEM source is an x− oriented horizon-305

tal electric dipole, which is towed 30 m above the seabed, and receivers are at seabed306

depth. We use two frequencies 0.1 Hz and 0.25 Hz and set their corresponding max-307

imum offset to 10 km and 8 km, respectively. Forward modeling for both methods have308

been done on regular grids (200 m×100 m); however, for the inversion, we use a sparse309

parameterization approach. That is, we interpolate models on 400 randomly generated310

points for VFSA inversion. Once a model is accepted, we transform the model back to311

orthogonal grid for forward computations. The interpolation of the model on the sparse312

grid uses a linear radial basis interpolation. Choice of number of points for the sparse313

parameters is a trade-off between how well it can capture the features of the model and314

how long does it take for VFSA algorithm to converge.315

Since the water layer is known as a prior, we perturb models only below that. For316

sparse parameterization, we fix 400 inversion points (same for both models) for one chain317

and do scattered data interpolation to transform the perturbation to regular modeling318

grids.319

For each VFSA chain, the sparse parametrization was randomly generated (see sup-320

plementary information). As such, each starting model sampled a different spatial lo-321

cation of the model space. For this experiment, we have run 15 different chains (the ini-322

tial models and inversion points are shown in the supplementary material). For FCM323

parameters, we assume 4 clusters (not including the water layer) in the model and pro-324

vide prior centers gi (with prior weight λ = 1000) as deduced from the true models.325

For a real dataset, these centers would be inferred using the prior knowledge about the326

subsurface. Figure (2) shows the resistivity and velocity model recovered in one-chain327

of the joint-inversion. The probabilistic nature of the joint-inversion workflow allows us328

to generate a number of models, which can be used to compute uncertainty in the model329

via statistical analysis. We compute mean, median, and uncertainty in the joint-inversion330

for fifteen independent chains of VFSA for 3000 iterations. Figure (3a) and (3b) show331
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Figure 1. A 2D slice of SEAM Phase I model (a) vertical resistivity (R) on log scale and

(b) p-wave velocity (Vp). The model consist of a salt diapir in a sedimentary basin below the

sea-floor (white line). There are thin reservoirs on the both side of the salt (R1, R2, R3, and R4)

diapir, which are visible only in the vertical resistivity model.

the mean and median resitivity models. The top of the main salt diaper and the flanks332

are recovered. The reservoir R1 is also clearly visible however R2 and the left flank of333

the salt are not clearly resolved. Similarly, the reservoirs on the right-side of the salt R3334

and R4 are recovered together and not clearly distinguished. The background sediments335

are well-recovered. Due to the lack of EM signal in the bottom corners as well as inside336

the salt body, we see higher uncertainties in those areas as shown in figure (3c) and (3d).337

We notice that the reservoirs in the inverted models are slighly deeper than their loca-338

tion in the true resistivity model. As far as the velocity model is concerned, the top bound-339

ary of the salt is well resolved. The salt boundary is clearly visible as shown in the mean340

and median models in figure (3e) and figure (3f), respectively. The background sediments341

are well recovered except the bottom corners and lower part of the salt, which is due to342

lack of rays passing through these areas. Given that we started with random initial mod-343

els, the estimated models from the joint-inversion show excellent agreement with the true344

synthetic models.345

The joint-inversion framework allows us to manually decide the weight on the prior346

cluster centers by adjusting the value of the parameter λ. A smaller value of λ shows less347

prior constrains and final cluster centers are mostly recovered through the inversion. A348

higher value of λ, on the other hand, does not let the centers in the proposal model to349

move too far away from the prior center by forcing a high prior constrains. For exam-350

ple, figure (4a) shows the cross-plot between velocity and resistivity of the true synthetic351

model clustered by using FCM with five centers. Using these centers as priors, figure (4b)352

and figure (4c) show the recovered petrophysics from the joint-inversion with λ = 10,353

and λ = 1000.354

Figure (5) shows the posterior probability density of five vertical profiles in both355

estimated resistivity (top row) and estimated p-wave velocity model (bottom row). As-356

suming the estimated values at each location (not the estimated models themselves) in357

all the chains have the Gaussian distribution, the PPD has been computed using histograms.358

In the resistivity models, the profile at x = 12 km passes through the reservoir R1 be-359

tween 2.7−3.0 km depth. The uncertainty at the top of R1 is less than that of the bot-360
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tom of R1, which means that the upper part of R1 is better resolved than the lower part.361

The vertical profile at x = 14 km passes through a part of the reservoir R2 between362

3.0−3.2 km depth. Since R2 is close to the salt diapir, it is not as well resolved as R1.363

The vertical profile at x = 18 km passes through the salt diapir between 2.0−4.0 km364

depth. This profiles shows that the uncertainties are lower near the boundary of the salt365

and higher as the observation point goes towards the center of the salt. The uncertainty366

between R3 (2.4 − 2.6 km depth) and R4 (2.7 − 2.9 km depth) in the vertical profile367

at x = 24 km have lower uncertainty bounds, however uncertainties inside the reser-368

voir are relatively higher.369

Figure(6) show the convergence of individual ( CSEM and seismc) as well as to-370

tal (joint) cost function for 3000 iterations of 15 different chains of VFSA. The individ-371

ual costs of CSEM and seismic are normalized by their target errors i.e. 1 and 0.01 re-372

spectively. The convergence plots show that the joint-inversion converges in 3000 iter-373

ation of VFSA and uses approximately equal weight of individual cost functions. This374

shows that VFSA is a more affordable alternative to MC or MCMC methods, which re-375

quire thousands of iterations to reach convergence for posterior analysis.376

Figure 2. Inversion results for one chain: p-wave velocity (Vp) and vertical resistivity (R)

models.

On of the advantage of the joint-inversion of CSEM and travel-time seismic data377

is that the mean p-wave velocity model estimated from the joint-inversion is smooth and378

fairly close to the true model, therefore, it can be a good starting model for FWI. We379

modeled 16 sources placed every 1167 m over the length of the model, and receivers were380

laid every 50 m over the length of the model. We generated synthetic data using a 4 Hz381

Ricker wavelet. We used JetPackWaveFD.jl1 for forward modeling and Optim.jl2 for FWI.382

The initial model (mean model from the joint-inversion) is shown in figure (7a) (sam-383

pled at 10 m). We run a low frequency FWI at the same initial model sampled at 50 m.384

1 https://github.com/ChevronETC/JetPackWaveFD.jl
2 https://github.com/JuliaNLSolvers/Optim.jl
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Figure 3. Mean (a), median (b), standard deviation (c) and percentage coefficient of variance

(d) for the estimated resistivity models and the mean (e), median (f), standard deviation (g) and

percentage standard deviation (h) for the estimated velocity models from the joint-inversion. We

notice that the reservoirs in the inverted models are slighly deeper than their location in the true

resistivity model.

Figure 4. True (a) and recovered petrophysics with λ = 10 (b), and λ = 1000 (c). Each point

is colored by the probability density estimate (PDE) for each point using kernel smoothing over

its nearby points. Red dots represent the prior cluster center included in the joint-inversion as

constraints. For a smaller value of λ, the centers (red dots) can move and the distance between

the centers obtained from joint-inversion and prior centers are minimized over the iterations. For

a larger value of λ, however, the inverted centered are forced near prior centers even in the early

stages of the joint-inversion. This figure represents joint-inversion evolution for one-chain.
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Figure 5. Posterior probability density (PPD) along vertical profiles at locations x =

(12, 14, 18, 24, 32) km for resistivity (top row) and the velocity models (bottom row). The red

line shows the mean of of the models obtained in 15 different chains and green lines show the

upper and lower bound of the PPD (±2 standard deviation). The uncertainty at the top of R1

is less than that of the bottom of R1, which means that the upper part of R1 is better resolved

than the lower part. Since R2 is close to the salt diapir, it is not as well resolved as R1. The

uncertainties are lower near the boundary of the salt and higher as the observation point goes to-

wards the center of the salt. The uncertainty between R3 and R4 have lower uncertainty bounds

however uncertainties inside the reservoir are relatively higher.

Figure (7b) shows the recovered model after 25 iterations of FWI and is in very good385

agreement with the true synthetic model shown in figure (7c). The modeled data and386

their comparison with true data have been shown in figure (7e). We flip the direction387

of the residual and modeled data in order to help display the match with the true data.388

Note that the data modeled in the initial model lacks a lot of reflectivity that is evident389

in the data modeled in the true model. These missing reflectivities are recovered with390

FWI. The FWI results from this experiemnt show that the mean p-wave velocity model391

is a good starting model for FWI.392
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Figure 6. Convergence of (a) CSEM cost function (b) seismic cost function and (c) total cost

function in the joint-inversion for 15 VFSA chains. The individual costs of CSEM and seismic are

normalized by their target errors i.e. 1 and 0.01 respectively. The convergence plots show that

the joint-inversion converges in 3000 iterations of VFSA and uses approximately equal weight of

individual cost functions.

Figure 7. (a) Mean p-wave velocity model from the joint-inversion of CSEM and first-arrival

traveltime data, sampled at 10 m grid. The recovered model after 25 iterations of FWI (b) and is

in very good agreement with the true synthetic model (c). Comparison (e) of modeled data with

true data for the initial model as well as for the FWI model shows that FWI recovered significant

missing reflectivities. Note the flip in the direction of the residual and modeled data in order to

help display the match with the true data. (e) shows data misfit for one shot.

7 Conclusions393

We have proposed a probabilistic workflow for joint inversion and uncertainty es-394

timation, incorporating petrophysical and geological constraints. We applied this work-395

–13–



manuscript submitted to journal for peer-review

flow to the joint inversion of CSEM and seismic synthetic data from the SEAM Phase396

I model. The workflow efficiently integrates petrophysical constraints and prior geolog-397

ical knowledge of the model. With better priors, such as facies interpreted from exist-398

ing well logs, one can assign a significantly higher prior weight, causing the joint inver-399

sion to more rigorously honor the geological information.400

We have demonstrated that VFSA with sparse parameterization converges faster401

and enables the affordable computation of multiple chains, which in turn provide uncer-402

tainty estimates in the model. The generalized FCM approach can accommodate differ-403

ent distance measures, which are necessary for efficient clustering based on the statis-404

tical relationships between model parameters. We believe that VFSA offers a good trade-405

off between the speed of deterministic methods and the robustness of computationally406

expensive sampling techniques.407

However, we acknowledge that the required number of iterations, although signif-408

icantly fewer than those needed for MCMC methods, are still substantially higher than409

those typically used in deterministic approaches. For 3D inversion, a more practical ap-410

plication of this stochastic joint inversion approach would be to estimate starting mod-411

els for deterministic inversion methods given the high computational cost of the forward412

solvers.413

Open Research Section414

The resistivity and velocity models used in the test case can be openly accessed from415

Fehler and Keliher (2011). A MATLAB function for fuzzy c-means clustering used in this416

paper is freely available at (Balasko et al., 2005). An open-source code of the full-waveform417

inversion used can be freely accessed at: https://github.com/ChevronETC/Examples.418

A julia implementation for VFSA joint inversion will be available at419

https://github.com/JuliaGeophysics/MultiphysicsInversion.jl420
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